
Scalable Training of Hierarchical Topic Models

Jianfei Chen†, Jun Zhu†∗, Jie Lu‡, and Shixia Liu‡
†Dept. of Comp. Sci. & Tech., BNRist Center, State Key Lab for Intell. Tech. & Sys.

‡School of Software, BNRist Center, State Key Lab for Intell. Tech. & Sys.
Tsinghua University, Beijing, 100084, China

{chenjian14,luj15}@mails.tsinghua.edu.cn; {dcszj,shixia}@tsinghua.edu.cn

ABSTRACT
Large-scale topic models serve as basic tools for feature
extraction and dimensionality reduction in many practical
applications. As a natural extension of flat topic models,
hierarchical topic models (HTMs) are able to learn topics
of different levels of abstraction, which lead to deeper un-
derstanding and better generalization than their flat coun-
terparts. However, existing scalable systems for flat topic
models cannot handle HTMs, due to their complicated data
structures such as trees and concurrent dynamically growing
matrices, as well as their susceptibility to local optima.

In this paper, we study the hierarchical latent Dirichlet al-
location (hLDA) model which is a powerful nonparametric
Bayesian HTM. We propose an efficient partially collapsed
Gibbs sampling algorithm for hLDA, as well as an initializa-
tion strategy to deal with local optima introduced by tree-
structured models. We also identify new system challenges
in building scalable systems for HTMs, and propose efficient
data layout for vectorizing HTM as well as distributed data
structures including dynamic matrices and trees. Empiri-
cal studies show that our system is 87 times more efficient
than the previous open-source implementation for hLDA,
and can scale to thousands of CPU cores. We demonstrate
our scalability on a 131-million-document corpus with 28
billion tokens, which is 4-5 orders of magnitude larger than
previously used corpus. Our distributed implementation can
extract 1,722 topics from the corpus with 50 machines in just
7 hours.

PVLDB Reference Format:
Jianfei Chen, Jun Zhu, Jie Lu and Shixia Liu. Scalable Training
of Hierarchical Topic Models. PVLDB, 11(7): 826-839, 2018.
DOI: https://doi.org/10.14778/3192965.3192972

1. INTRODUCTION
Topic models are popular machine learning tools that ex-

tract a set of latent topics from an input text corpus. Each

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 7
Copyright 2018 VLDB Endowment 2150-8097/18/03... $ 10.00.
DOI: https://doi.org/10.14778/3192965.3192972

file

files

server

data

error

class

string

public

void

int

const

virtual

int

inline

definition

linux

package

install

rpm

perl

driver

windows

drivers

download

bios

notebook

driver

drivers

download

dell

java

apache

project

mysql

repository

php

method

array

object

java

“computer”

“programming”

“C++” “php/Java”

“Linux”

“Linux

software”

“installation”

“notebook”

Figure 1: A subtree of the topic hierarchy learned from a
corpus with 131-million web pages (See experiments for de-
tails). Each node is a topic with its top-5 most frequent
words. The full tree has 1,722 topics. The text in the quote
is summarized by humans.

topic is a unigram distribution over words, and the high-
probability words often present strong semantic correlation.
As a method for dimensionality reduction and feature ex-
traction, topic models have been widely used in informa-
tion retrieval [35], text analysis [7, 41], information visu-
alization [33], online advertising [34], recommendation sys-
tem [31], and many other application areas.

Practical applications call for scalable and efficient topic
modeling systems to handle big data. For example, on-
line advertisement systems extract topics from billions of
search queries [34], and recommendation systems [1] need
to handle millions of users and items. Various efforts has
been made to develop scalable topic modeling systems, in-
cluding asynchronous distributed data parallel training [1,
17], hybrid data-and-model-parallel training [37, 36], em-
barrassingly parallel BSP training [10, 38, 39], and GPU-
accelerated training [40, 16]. These topic modeling systems
mainly handle the partition of the data and model and the
synchronization of the count matrix across machines.

These works are for flat topic models, such as latent Dirich-
let allocation (LDA) [6], which assumes that all the topics
have the same level of abstraction. In reality, however, topics
are naturally organized in a hierarchy [21]. See Fig. 1 as an
example (a more complete version is in experiments). When

826

a topic about “programming” is observed in a document,
we are also likely to observe the more general topic such
as “computer” in the same document. By capturing such
relationships, hierarchical topic models can achieve deeper
understanding and better generalization [2, 21] of the cor-
pus than the flat models. There are many approaches to
learn a topic hierarchy. For example, Google’s Rephil [19]
puts a hierarchical noisy-or network on the documents; the
super-topic approach learns topics of topics [18, 23]; and
the nested Chinese Restaurant Process (nCRP) [5, 2, 21]
approach utilizes the nCRP as a prior on topic hierarchies,
with hierarchical latent Dirichlet allocation (hLDA) [5] as a
popular example. These models have been successfully ap-
plied to document modeling [21], online advertising [19] and
microblog location prediction [2], outperforming flat models.

Despite the success of hierarchical topic models (HTMs)
on small scale corpora, they have not been deployed on prac-
tical applications due to the lack of scalable systems as well
as efficient algorithms. Developing a scalable system for hi-
erarchical topic models is challenging because of the compli-
cated data structures, such as trees and dynamically grow-
ing matrices (e.g., in hLDA). We need to develop distributed
versions of these data structures while maintaining the ef-
ficiency and consistency. Moreover, the access patterns of
these data structures are more complicated than the count
matrix in flat topic models, making efficient vectorization
more difficult. There are also algorithmic challenges, e.g.,
dealing with the local optima during the learning.

In this paper, we make an initial attempt in scaling up
hierarchical topic models. We study the hierarchical latent
Dirichlet allocation (hLDA) [5] model, which can automati-
cally learn the hierarchical topical structure with Gibbs sam-
pling [14] by utilizing an nCRP prior. In hLDA, topics form
a tree with an nCRP prior, while each document is assigned
with a path from the root topic to a leaf topic, and words
in the document are modeled with an admixture of topics
on the path. We propose a novel partially collapsed Gibbs
sampling (PCGS) algorithm that is more efficient than the
original collapsed Gibbs sampling (CGS) algorithm [5]. To
improve the model quality, we analyze the cause of local
optima and propose an effective initialization strategy. On
the system side, we propose a data layout for efficient vec-
torization, and design a concurrent dynamic matrix as well
as a distributed tree to support hLDA’s complicated data
structures for distributed training.

We extensively evaluate the model quality, efficiency and
scalability of our algorithm and system. The experimen-
tal results show that our PCGS algorithm and the vector-
ization strategy lead to an 87 times single-thread speedup
than the existing open source implementation hlda-c [4],
while having better model quality due to our initialization
strategy. Multi-threading and distributed computing fur-
ther speed up our system, and we analyze the speedup and
impact to model quality as the amount of computational
resource grows. Finally, we demonstrate the scalablity of
our distributed system by extracting 1,722 topics from a
131-million-document corpus with 50 machines in 7 hours,
where the corpus is 4-5 orders of magnitude larger than the
largest corpus used for hLDA before. We believe that our
algorithm and system can be extended to more hierarchical
topic models, such as the nested hierarchial Dirichlet process
(nHDP) [21] model.

4

3 1
c1

c2

c3c4

𝑝 =
3

4.5
𝑝 =

1

4.5
𝑝 =

0.5

4.5

(a)

4

3 1

12 1

c1

c2

c3

c4
𝑝 =

3

4.5
×

2

3.5

𝑝 =
3

4.5
×

1

3.5

𝑝 =
3

4.5
×
0.5

3.5

𝑝 =
1

4.5
×

1

1.5

𝑝 =
1

4.5
×
0.5

1.5

𝑝 =
0.5

4.5
×
0.5

0.5

(b)

(c)

Figure 2: The (a) CRP (b) nCRP distribution for
p(c5|c1, . . . , c4) given previous 4 paths, with γ1 = γ2 = 0.5.
Numbers on the nodes are visited counts mt, and dashed
nodes are unvisited. p is the probability for each path. (c)
Graphical model for hLDA.

2. HIERARCHICAL LDA
We first review nCRP and hLDA for learning a topic hi-

erarchy as well as the collapsed Gibbs sampling inference
algorithm proposed by Blei et al. [5].

2.1 Nested Chinese Restaurant Process
Nested Chinese Restaurant process (nCRP) [5] represents

a powerful nonparametric Bayesian method to learn a tree
structure, whose width and depth are unbounded. Following
previous work in hierarchical topic modeling [5], we present
the nCRP with (finite) L-levels, and the infinite-depth tree
can be approximated by setting L to a large number.

Suppose there is a tree with L levels, where each node
except the leaves has infinite children. A unique ID is as-
signed to each node, where the root node has the ID 1.
nCRP defines a probability distribution on a series of paths
(c1, c2, . . .) on the tree, where each path cd ∈ NL+ consists
of L node IDs from the root to a certain leaf. nCRP defines
the joint distribution of paths as

p(c1, c2, . . .) =

∞∏
d=1

p(cd|c<d),

where the subscript < d stands for all the possible indices
that are smaller than d, i.e., c<d = {c1, . . . , cd−1}. Given
previous paths c<d, nCRP defines a probability distribution
p(cd|c<d) on the next path as

p(cd|c<d) =

L∏
l=2

p(cdl|cd,l−1, c<d),

827

which can be interpreted as a generative story: a person
starts from the root node 1 at level 1. Each time he walks to
a child of the current node until he reaches a leaf node, where
the probability of going from cd,l−1 to cdl is p(cdl|cd,l−1, c<d).
The probability of the path he visited is then p(cd|c<d).

The transition probability p(cdl|cd,l−1, c<d) follows the
Chinese Restaurant Process (CRP) [27]. We denote a visit
of node t, if any previous path cd′(d

′ < d) passes through it.
The number of visits mt := #{(d′, l)|cd′ = t, d′ < d}, where
#{·} denotes the cardinality of a set. We assume that the
paths c<d have already visited T nodes in the infinite tree,
with the node ID from 1 to T , and the current node cd,l−1

has K visited children with the IDs t1, . . . , tK . This corre-
sponds to a lazy strategy of assigning IDs to nodes: a node
does not have an ID until it is visited. In CRP, the prob-
ability of going to each child is proportional to its previous
times of visitp(cdl = ti|·) =

mti
γl+mcd,l−1

, k = 1, . . . ,Ki

p(cdl = T + 1|·) = γl
γl+mcd,l−1

,
(1)

where γl is a hyper-parameter controlling the probability
of going to an unvisited child. There are infinite unvisited
children and we may choose any of them to visit, but we
always assign the ID T+1 to the chosen one. This operation
of assigning an ID to an unvisited node is referred as the
generation of a new child in this paper.

Given c<d, the number of different possible paths for cd is
T , which is finite. There are Tleaf paths ending at existing
leaves, and T − Tleaf paths forking from an internal visited
node. Fig. 2(a) and Fig. 2(b) illustrate the possible paths
and their probabilities for CRP and nCRP, respectively.

2.2 Hierarchical Latent Dirichlet Allocation
hLDA is an nCRP-based topic model to learn a topic

hierarchy [5] from a corpus of D bag-of-words documents

W = {wd}Dd=1, where each document wd = {wdn}Nd
n=1 has

Nd tokens, and each token is represented by its word ID
wdn ∈ {1, . . . , V } in the vocabulary of V unique words. In
hLDA, topics form an L-level tree, i.e., each tree node t
is a topic, and is associated with a distribution over words
φt ∈ ∆V−1, where ∆V−1 is the (V −1)-simplex. Since nodes
and topics have one-to-one correspondence, we do not dis-
tinguish them in the sequel.

The hLDA model assumes that each document is assigned
with a path cd following the nCRP. The words of each doc-
ument are modeled by a mixture of the topics in cd, with
the document-specific mixing proportion θd. The generative
process for the corpus is:

• For each node t, draw φt ∼ Dir(βlt1), where lt is the
level of node t and 1 = (1, . . . , 1) is an all-one vector;

• For each document d:

– Draw a path of topics cd ∼ p(cd|c<d) according
to nCRP (Eq. 1);

– Draw the topic mixing proportion θd ∼ Dir(α);

– For each position n, choose a node from the path
cd by drawing the level assignment zdn ∼ Mult(θd).
Then, draw a word from the chosen topic wdn ∼
Mult(φcd,zdn

),

where Dir(·) is the Dirichlet distribution, and α and β are
Dirichlet hyper-parameters. See Fig. 2(c) for the probabilis-
tic graphical model representation of hLDA.

There are two special cases of hLDA. When the tree de-
generates to a chain, hLDA recovers the vanilla latent Dirich-
let allocation (LDA) [6] with L topics, and when the tree has
two levels and the probability of assigning to the first level
θd1 is close to zero, hLDA recovers the Dirichlet Process
Mixture Model (DPMM) [20].

2.3 Notation of Counts
Before introducing the inference algorithm for hLDA, we

need to define some notations of counts. We will encounter
four types of counts. The first is the node visit count mt

defined in Sec. 2.1, which represents how many documents
that visit node t. The remaining three counts are token
counts. Each token in the corpus has four attributes: its
document ID d, word ID wdn, level zdn, and the node ID
cd,zdn it is assigned to. The following counts represent the
number of tokens that have specific attributes

• The document-level count adl = #{n|zdn = l} is the
number of tokens on level l in document d.

• The topic-word count btv = #{(d, n)|wdn = v∧cd,zdn =
t} is the number of tokens of the word v with topic t.

• The topic count st =
∑
v btv is the number of tokens

with topic t.

Furthermore, bold uppercase letters denote the matrix formed
by the counts, e.g., A is a D×L matrix composed by adn’s.
Let ad denote the d-th row vector, a:,l be the l-th column
vector. Let m and s be T -dimensional vectors composed of
mt and st, respectively. Finally, d stands for document d,
¬d represents all documents excluding document d, and ¬dn
means all the tokens excluding token (d, n). Using these
as the superscript of counts means only counting the ob-
jects among the given documents / tokens. For instance,
bdtv = #{n|wdn = v∧cd,zdn = t} and b¬dtv = #{(d′, n)|wd′n =
v ∧ cd′,zd′n = t ∧ d′ 6= d}.

2.4 Collapsed Gibbs Sampling (CGS)
The generative process of hLDA (Sec. 2.2) defines a joint

distribution

p(W, z,θ, c,φ) =

∞∏
t=1

p(φt)

D∏
d=1

p(cd|c<d)p(θd)

D∏
d=1

Nd∏
n=1

p(zdn|θd)p(wdn|φcd,zdn),

where z = {zd}Dd=1 and c = {cd}Dd=1. Given the training
corpus W, we want to infer the posterior distribution of
the underlying topics φt as well as the per-document latent
variables, including the paths cd, mixing proportions θd and
layer assignments zd. We do not have closed-form solutions
for the posterior distribution p(z,θ, c,φ|W) [5]. Instead
we approximate the inference by drawing samples from it,
where Collapsed Gibbs sampling (CGS) [5] is one possible
sampler.

828

Based on the conjugacy between Dirichlet and multino-
mial distributions, CGS integrates out θ and φ to get the
collapsed posterior distribution:

p(W, z, c) =

D∏
d=1

[
p(cd|c<d)

B(ad + α)

B(α)

] ∞∏
t=1

B(bt + βlt)

B(βlt1)
,

(2)

where Γ(·) is the gamma function, and B(·) is the multivari-
ate beta function, B(α) =

∏
k Γ(αk)/Γ(

∑
k αk).

CGS samples from the collapsed posterior distribution in
Eq. (2) by Gibbs sampling [14], i.e., alternatively sampling
z and c from their conditional distributions:

p(zdn = l|wdn = v,W, z¬dn, c) ∝ (a¬dndl + αl)
b¬dncdl,v + βl

s¬dncdl + V βl
,

p(cd = c|W, z, c¬d) ∝ p(c|c¬d)
L∏
l=1

fC(d, cl),

where

fC(d, t) =
B(b¬dt + bdt + βlt)

B(b¬dt + βlt)
. (3)

3. EFFICIENT TRAINING FOR HLDA
The existing algorithms for hLDA (e.g., CGS) are not

efficient, which have limited the evaluation at a small-scale
and made hLDA not applicable in practice. To scale up
hLDA, there are two main algorithmic challenges:

• Efficiency. The main computational burden for CGS,
Eq. (3), needs lots of evaluation of the logarithms (as
we will show in Sec. 3.2), which is expensive.

• Local optimum. The posterior distribution p(z, c|W)
is multi-modal, so the sampler can be trapped around
a local optimum, resulting in bad model quality.

To address these challenges, we propose a partially collapsed
Gibbs sampler (PCGS) with an effective initialization strat-
egy.

3.1 Partially Collapsed Gibbs Sampling
We propose a partially collapsed Gibbs sampling (PCGS)

algorithm to avoid computing most of the logarithms, while
preserving the quality of inference.

We pick a subset I of the visited topic IDs {1, . . . , T}.
Unlike CGS which collapses out all the topic distributions
φt, PCGS only collapses out the topics that do not belong to
I, while leaving the topics in I instantiated. Let Ī = N+\I
be the complement of I. We allow matrices to use sets as
subscripts, e.g., φI . In this case, φI is a matrix composed
of all the row vectors indexed by t ∈ I. PCGS samples from
the marginal distribution

p(W, z, c,φI) =

∫
θ,φĪ

p(W, z,θ, c,φ)dθdφĪ

=

D∏
d=1

[
p(cd|c<d)

B(ad + α)

B(α)

]∏
t∈Ī

B(bt + βlt)

B(βlt)∏
t∈I

[
Dir(φt;βlt)

V∏
v=1

(φtv)btv
]
.

1 2 1 1 2 1 1 2 2 1

1 2 3 3 2 1 2 3 2 1

zd
wd

Bucket sort

1 1 1 1 1 1 2 2 2 2

1 1 1 2 3 3 2 2 2 3

zd
wd

1 1 1 2 3 3 2 2 2 3

1 1 1 2 3 3

0 1 2 0 0 1

2 2 2 3

0 1 2 0count

Figure 3: Illustration of Wd and W ′d

Utilizing the identity B(α+ek)
B(α)

= αk∑
k αk

, where ek is a co-

ordinate vector, we can derive the Gibbs sampling updates
(see the appendix for derivation details):

Sample z: draw the level assignment for each token from

p(zdn = l|wdn = v,W, z¬dn, c,φI)

∝(a¬dndl + αl)

φcdl,v cdl ∈ I,
b¬dncdl,v

+βlt
s¬dncdl

+V βlt
cdl ∈ Ī.

(4)

Sample c: sample the path from

p(cd = c|W, z, c¬d,φI)

∝p(c|c¬d)
L∏
l=1

{
fI(d, cl) cl ∈ I,
fC(d, cl) cl ∈ Ī,

(5)

where fC is defined as Eq. (3), and

fI(d, t) =

V∏
v=1

(φtv)b
d
tv . (6)

Sample φI: For t ∈ I, draw φt ∼ Dir(βlt +bt). To speed
up the mixing, we replace the sampling with expectation in
our implementation, i.e.,

φt ←
βlt + bt
V βlt + st

. (7)

3.2 Time complexity analysis
We now discuss some implementation details of sampling

c, and then we compare the time complexity of CGS and
PCGS. To sample c, we need to enumerate all the possible
T paths and compute their nCRP probability p(c|c¬d) as
described in Sec. 2.1. Then we compute fI(d, t) for all t ∈ I
and fC(d, t) for all t ∈ Ī. Finally, we compute the posterior
probability p(cd = c|W, z, c¬d,φI) for all the possible T
paths, and sample a path.

Because both fI(d, t) and fC(d, t) are very close to zero,
we compute their logarithms. Rewrite Eq. (6):

log fI(d, t) = log

V∏
v=1

(φtv)b
d
tv =

∑
v∈Wd,lt

log φtv, (8)

where lt is the level of node t, and Wdl = {wdn|zdn = l} is
the multiset of all tokens in document d that are assigned
to level l, which can be computed by bucket sorting the
(zdn, wdn) pairs.

Similarly, Eq. (3) can be rewritten as:

log fC(d, t) =
∑

(v,o)∈W′
d,lt

log(b¬dtv + o+ βlt) + ht, (9)

where we convert the logarithm of multivariate beta func-
tion as the sum of logarithms (the derivation details can be

829

Alg. Step Time Complexity Operation
Both Sample z O(NL) Division
CGS Sample c O(NT) Logarithm

PCGS
Sample c ε×O(NT) Logarithm
Sample c (1− ε)×O(NT) Addition

Sample φI O(TV) Division

Table 1: Time complexity analysis of CGS and PCGS. N :
corpus size, typically 106 − 1010; T : number of topics, typ-
ically 102 − 103; L: number of layers, typically 101; V : vo-
cabulary size, typically 104 − 106; ε = 0.05: proportion of
collapsed topics.

found in the appendix). The term ht = log Γ(s¬dt + V βlt)−
log Γ(st + V βlt). The set W ′dl is similar as Wdl, but we
assign each token with a count indicating which time does
this word appear, e.g., if a word v is in Wdl for three times,
we put (v, 0), (v, 1) and (v, 2) into W ′dl. See Fig. 3 as an
illustration.

Theoretically, both CGS and PCGS can perform correct
inference since they both converge to the true posterior dis-
tribution. We also present some intuition on why PCGS
works: b¬dtv + o + βlt in fC is a more fresh version of φtv
in fI , in the sense that b¬dtv is updated instantly after each
sampling operation, but φtv is only updated once per itera-
tion. However, if b¬dtv is large, it will not change much during
the iteration, so PCGS should perform similarly with CGS.
Based on this intuition, we choose I to be the nodes t with
top 95% st, whose corresponding b¬dtv should be large.

We now analyze the time complexity. By analyzing Eq. (8)
and Eq. (9) we know that the time complexity of computing
both fI(d, t) and fC(d, t) for every document d and topic t

is at most O(NT), where N =
∑D
d=1 Nd is the size of the

corpus. Despite having the same time complexity, comput-
ing fI is much more efficient than computing fC . Because
log φtv only changes once per iteration according to Eq. (7),
it can be pre-processed. Hence, computing fI only involves
NT floating-point additions. In contrast, the logarithm can-
not be avoided during computing fC because the count b¬dtv
is changing all the time. Since PCGS computes fC for only
5% of the topics, it is much more cheaper than CGS which
computes fI for 100% of the topics.

Sampling z requires enumerating the level for every token,
so its time complexity is O(NL), which is much cheaper
than O(NT) of sampling c because the number of levels L
is much smaller than the number of topics T . Sampling
φI is O(TV), which is again much smaller than O(NT)
because the vocabulary size V , i.e., the number of unique
tokens, is much smaller than the total number of tokens
N . Therefore, we show that computing fC and fI is indeed
the main computational burden, and PCGS is much cheaper
than CGS because floating-point additions are much cheaper
than logarithms. Table 1 summarizes the time complexity
of CGS and PCGS.

3.3 Initialization Strategy
The tree structure of hLDA introduces more local optima

than flat topic models. As in Sec. 2.2, the topic assignment
for a particular token wdn is defined by a two-step allocation:
one first chooses a path cd from the infinite tree and then
chooses one topic cd,zdn from the path. If we want to change
the topic assignment, we need to change cd and zdn simul-

taneously. More concretely, after a document d is assigned
to a certain path cd, its words are assigned to the levels zd
of the current path. In the next iteration, even if there is
another path c′d such that p(wd|c′d) is larger than p(wd|cd),
p(wd|c′d, zd) is not likely to be larger than p(wd|cd, zd) be-
cause zd is already optimized for cd. In this case, the path
assignments cd will be quickly trapped in a local optimum
even if there are better path. We also noticed that simi-
lar as multinomial mixture models [25], the sampling of cd
is almost deterministic, because p(wd|cd, zd) can differ by
hundreds orders of magnitudes for different cd’s. Therefore,
it is difficult for a sampler to jump out of the local trap
simply by its randomness. In contrast, flat models such as
LDA do not have this type of local optima because their
topic assignments are directly chosen from all the T topics.

Since hLDA is sensitive to local optima, a proper initial-
ization is crucial to get good results. We obtain a good
initialization by sampling c from p(c|W) directly instead of
from p(c|z,W) (Eq. 5) for the first I iterations. In other
words, we integrate z out. In the first I iterations, the sam-
pler focuses on finding the optimal assignment c for each
document. Afterwards, the algorithm samples p(c|z,W) to
refine the model.

The marginal distribution p(c|W) =
∑

z p(c|z,W)p(z)
has no closed-form representation. We approximate it with
Monte-Carlo integration p(c|W) ≈ 1

S

∑
zs∼p(z) p(c|zs,W),

where S is the number of samples, and p(z) =
∫
p(z|θ)p(θ)dθ

is a Polya distribution which is approximated with a uniform
discrete distribution over levels.

We also adopt the progressive online initialization strat-
egy [5, 30], which starts with an empty collection of docu-
ments, and gradually adds documents by inferring the pos-
terior of document-specific variables (cd, zd) given all the
previously observed documents. The documents are orga-
nized into mini-batches, and φI is sampled per mini-batch.

4. SYSTEM IMPLEMENTATION
The tree structured model poses challenges on developing

the distributed system for training hLDA:

1. Efficient vectorization is difficult due to the compli-
cated tree-related data structures.

2. The distributed count matrix has a dynamic number
of columns (topics).

3. The model needs a distributed tree which supports
adding and removing nodes as well as editing the counts.

4. Complicated consistency requirements for the tree and
the matrix. For example, we need to avoid adding
children to a non-existent node of the tree.

Previous flat topic modeling systems [10, 38, 17] that fo-
cus on the data / model partition and count matrix syn-
chronization do not solve the aforementioned challenges of
hierarchical topic models. In this section, we propose a
distributed system for training hLDA. Our system follows
the data-parallel paradigm, where the documents are dis-
tributed across machines and the model is shared. Our sys-
tem consists of machine-level and thread-level parallelism, as
shown in Fig. 4. On the machine level, we update the topic
distribution φ in a bulk-synchronous-parallel (BSP) fash-
ion and update the tree structure and the counts (B,m)

830

Phi[]B[1] B[L]

Worker

Thread

Worker

Thread

Worker

Thread

B[]

Worker Machine

Other Worker Machines

Async. communication

BSP communication

Read / write Write onlyRead only

Figure 4: An overview of the distributed inference system.

asynchronously; On the thread-level, a number of threads
concurrently read and update the local counts.

4.1 Vectorization and Data Layout
We first introduce the design of our data layout for effi-

cient vectorization. As we already analyzed in Sec. 3.2, the
most time-consuming part is the computation of fI and fC
for every t according to Eq. (8) and Eq. (9). We can see
that both fI and fC have similar access patterns. For each
document d and topic t, they read the tokens v in the mul-
tiset Wd,lt , and access the corresponding topic-word entry
(t, v) of the topic distribution matrix φ or the count matrix
B. Hence, we only discuss the vectorization of fI . The com-
putation of fI(d, t) for a single topic t cannot be vectorized
because the word IDs in Wd,lt is discontinuous and varies
by document. However, we can compute log fI(d, t) for all
the t’s in one level altogether. For vectorization, we store a
matrix Phi[l] for each level l, whose v-th row Phi[l][v] is
the log φtv for all the topics t of level l. In this way, we can
compute all the log fI(d, t) for level l by vector summation:
summing up all the rows Phi[l][v] for v ∈ Wd,l.

Fig. 5 illustrates the data layout. For each node t, we
assign a rank rt to it. On level l, the Il nodes in I are
assigned with the rank from 1 to Il, and the other nodes
have ranks from Il+1. We store log φtv at Phi[lt][v, rt] and
b¬dntv at B[lt][v, rt], where lt is the level of topic t, and B[l]

has the same shape with Phi[l], but storing the counts.
We maintain a counter on each level to store the largest

rank on that level. If the sampler decides to generate a new
node on level l, the rank counter is increased by one and the
rank of the new node is set to be the rank counter. Then, we
grow B[l] to have one more column. After each iteration,
we reassign the rank by sorting the nodes on each level by
their topic count st’s. We put t into I if st is among the top
95%, so that the rank of the nodes in I is still continuous.
We also need to permute the columns of Phi[l] and B[l]

according to the new rank. The reassignment of the rank is
performed on a single worker machine and then broadcasted
to all the machines.

1(1)

2(1) 5(2)

3(1) 4(2) 6(3)

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

B

0

1

2

B[1] B[2]

3 12

4 13

5 14

6 9 15

7 10 16

8 11 17

B[3]

Figure 5: Data layout of our system. The number on the
node is “node ID (node rank)”. B is the counting matrix de-
scribed in our algorithm and B[] is the actual stored format.

To summarize, the main data structures for hLDA are a
tree, and L matrices Phi[] and B[]. Phi[l] is a read-only
and static matrix during the sampling of c since both log φtv
and I are static. However, B[l] is a read+write matrix with
dynamically growing number of columns, which is challeng-
ing to implement. We will present the implementation of
B[l] in the next section.

4.2 Concurrent Dynamic Matrices
The count matrix B[l] is concurrently read and updated

by the worker threads, and the number of columns (topics)
can grow over time. There are O(NT) reads and O(NL)
updates per iteration, so the read operation must be effi-
cient, i.e., lock free. On the other hand, the consistency can
be relaxed since a small deviation of the counts will not af-
fect the result much. Therefore, we only ask the matrices
to have eventual consistency, i.e., the values of the matrices
should be eventually correct if no new updates are given.
We adopt atomic updates to preserve eventual consistency,
while the reads are lock-free operations, to maximize the
reading performance.

The dynamic number of columns makes the implemen-
tation challenging. The straightforward implementation for
growing the matrix involves allocating a new memory space,
copying the original content to the new space, and deallocat-
ing the original space. However, this implementation can-
not achieve eventual consistency because the updates during
copying will not be incorporated.

Inspired by the lock-free design of a concurrent vector [11],
we provide an efficient implementation of the concurrent ma-
trix. Internally, it holds a list of matrix blocks, where the i-th
matrix block has the size R× 2c+i−1, while c is a constant.
The first matrix block represents the [0, 2c)-th columns of
the original matrix, the second matrix block represents the
[2c, 3× 2c)-th columns of the original matrix, and so on. If
there is a growing request that exceeds the current capacity,
we allocates the next matrix block on the list. For every
reading and updating request, the requested (r, c) coordi-
nate is converted to the (r, b, c′) coordinate, where b is the
index of the matrix block on the list and c′ is the column
index within the matrix block. According to Sec. 3.2, each
matrix read is always accompanied with an evaluation of
the logarithm, so the overhead of the coordinate conversion
is acceptable. Finally, to improve the locality, we defrag-
ment after each PCGS iteration, i.e., deallocating all the
matrix blocks and concatenating their content to form a sin-
gle larger matrix block. We implement a parameter server
to synchronize the updates of the matrices across machines.

831

4.3 Distributed Tree
To support the tree-structured model, the system needs

a distributed tree implementation, which supports adding
node, removing node, updating the counts m and querying
the current tree structure. The time complexity of the tree
operations is only O(DL) in total, which is much less than
the O(NT) complexity of sampling c. Therefore, we simply
use mutexes for a thread-safe version of the tree.

To share the tree across machines, one possible solution
is a master-client architecture, where the tree is only main-
tained on the master node, who answers all the queries via
RPC calls. This approach has O(DT) communication com-
plexity for the master. Moreover, the master cannot handle
requests simultaneously from multiple clients because it uses
mutexes. Therefore, this approach is not scalable.

We optimize this solution by maintaining the counts m in
a parameter server. Each machine maintains its own copy
of the tree, and the master is only responsible for adding
and removing nodes. The count updates are handled by the
parameter server. There are O(L) count updates per docu-
ment, so the cost of updating counts is O(DL). The number
of operations for adding or removing nodes is roughly O(T),
so the total amount of communication is O(T 2 +DL). Since
T � D and L� T , this complexity is much lower than the
original O(DT). The consistency of the tree structure is
guaranteed because the master handles all the node adding
and removing operations.

5. RELATED WORK
We discuss on the related work from both parallel infer-

ence for nonparametric Bayesian models and scalable sys-
tems for flat topic models.

5.1 Parallel Inference for Nonparametric
Bayesian Models

Nonparametric Bayesian models [42] are flexible and they
can grow their structures as more data are observed. hLDA
is a nonparametric Bayesian model that is based on the
nCRP prior. Dirichlet process mixture models (DPMMs) [20]
and hierarchical Dirichlet processes (HDPs) [28] are the flat
nonparametric Bayesian counterparts of hLDA which are
also based on CRP. There are many parallel algorithms for
DPMMs and HDPs, but none of them can be readily applied
to hLDAs. We now briefly review them.

Instantiated weight algorithms convert DPMMs and HDPs
to the equivalent stick-breaking process [26] formulation,
where an infinite-dimensional mixing proportion is explic-
itly instantiated. Variational inference [5, 32] or slice sam-
pling [13] algorithms are then developed for the stick-breaking
process model variant. Instantiated weight algorithms are
efficient and embarrassingly parallel, but we find that they
cannot obtain good results for hLDAs due to their suscepti-
bility to local optima.

Split-merge algorithms rely on a split-merge Markov chain
Monte-Carlo transition kernel [15] that is able to jump out
of local optima via non-local moves, such as splitting a topic
or merging two topics. Split-merge algorithms are developed
for parallel sampling for DPMMs [9, 8]. However, it is not
clear how to split and merge topics on trees.

For hLDA, the only parallel algorithm we are aware of
is Wang and Blei’s instantiated weight variational inference
algorithm with split-merge moves [30]. However, its time

complexity is quadratic with respect to the number of topics,
which is not scalable to practical big data applications where
we often deal with thousands of topics.

5.2 Scalable Systems for Flat Models
There are various distributed systems developed for flat

topic models, particularly latent Dirichlet allocation (LDA).
These systems mainly focus on partitioning of the data and
the model, and the synchronization of the topic-word count
matrix B. We categorize existing topic modeling systems in
two dimensions

• Style of parallelism: there is data parallel (DP) and
hybrid data-and-model parallel (HDMP) approaches;

• Style of synchronization: there are asynchronous up-
dates by assuming that B changes slowly; and bulk-
synchronous-parallel (BSP) updates by formulating the
algorithm to be an embarrassingly parallel expectation-
maximization (EM) or variational inference (VI) algo-
rithm.

DP+async. Examples include Yahoo! LDA [1] and Param-
eterServer [17]. They use a parameter server, which is a dis-
tributed key-value store, to synchronize the counts. These
systems directly approximate the collapsed Gibbs sampling
(CGS) algorithm for LDA. However, they assume that the
count matrix B fits in the main memory of a single machine,
thus cannot handle a large number of topics or a large vo-
cabulary.
HDMP+sync. Examples include LightLDA, F+LDA and
Peacock [37, 36, 34]. Based on a careful hybrid partition-
ing strategy, they implement the exact collapsed Gibbs sam-
pling algorithm for LDA and thus have better model quality
than the DP+async. systems. They can also handle large
B by splitting it across machines. However, the throughput
is typically lower than pure DP systems due to the compli-
cated scheduling and the large number of partitions, where
WarpLDA [10] is an exception who carefully organizes the
scheduling.
DP+sync. Examples include ESCA [38] and Mr.LDA [39].
They use embarrassingly parallel EM or VI algorithms, where
the EM algorithm is shown to have similar model qual-
ity with CGS [38]. Due to the low system overhead, the
throughput can be very high [38], but again they cannot han-
dle large B. This category also includes some recent GPU-
based systems such as SaberLDA [16] and BIDMach [40].

Our system for hierarchical topic models is a data paral-
lel one. We borrow the synchronization strategy from both
asynchronous and synchronous systems, where we asynchro-
nously update B[] via a parameter server and synchronously
update Phi[] via an MPI Allreduce operation. Different
from existing flat topic modeling systems, we propose effi-
cient data layouts and distributed data structures for hier-
archical topic models. Exploiting better partition strategies
to support large B is one for our future work.

6. EXPERIMENTS
We now present extensive results to evaluate the quality,

efficiency and scalability of our algorithm and system on
several datasets, including NIPS, 20NewsGroups, NYTimes
and PubMed from the UCI machine learning repository [3],
a subset of the NYTimes dataset, and two subsets of the
ClueWeb12 dataset [22] (Table 2). Our quantitative and

832

(0, 33] (33, 66] (66, 100]
Number of topics

2000

2500

3000

3500

P
er

p
le
x
it
y

(0, 33] (33, 66] (66, 100]
Number of topics

2000

2200

2400

2600

2800

P
er

p
le
x
it
y

CGS
CGSi

PCGS
PCGSi

hlda-c

Figure 6: Comparison of inference quality on sNYTimes (left) and NIPS (right). i denotes for our initialization strategy.

Table 2: Statistics of the datasets.

Dataset D # tokens V
sNYTimes 3× 103 7.23× 105 101635
NIPS 1.5× 103 1.93× 106 12375
20NewsGroups 1.88× 104 2.22× 106 60698
NYTimes 2.93× 105 9.7× 107 101635
PubMed 8.2× 106 7.38× 108 141043
sClueWeb12 1.5× 107 5.6× 109 100000
lClueWeb12 1.31× 108 2.8× 1010 100000

qualitative results demonstrate the promise of our system.
The experiments are conducted on the Tianhe-2 supercom-
puter, which has two 12-core Xeon E5-2692v2 CPUs per
node and an InfiniBand network.

We quantitatively compare the quality of the inferred mod-
els by predictive log-likelihood, which indicates how well we
model the testing corpus, using the document completion
approach [29]. To compute the predictive log-likelihood, the

corpus is divided as a training corpus Wt and a testing cor-
pus, and the testing corpus is further divided as an observed
corpus Wo, which contains a random half of the tokens for
each document in the testing corpus; and a heldout corpus

Wh of the other half of the tokens. The predictive log-

likelihood is defined as p(Wh|Wo,φ), where the model φ is

inferred from the training corpus Wt, and is approximated
with a Monte-Carlo integration:

p(Wh|wo,φ) ≈
D∏
d=1

1

S

S∑
s=1

Ld∏
n=1

L∑
l=1

p(wh
dn, z

h
dn = l|c(s)

d ,θ
(s)
d ,φ),

where c
(s)
d and θ

(s)
d are the samples from the posterior distri-

bution p(c
(s)
d ,θ

(s)
d |w

o,φ), which can be obtained with Gibbs
sampling, and S is the number of samples. Finally, we con-
vert predictive log-likelihood to predictive perplexity

perplexity = exp(−log likelihood/number of tokens).

Intuitively, a perplexity of 1,000 means that the model is
as confused as the test data as if it chooses uniformly from
1,000 possibilities per word. The perplexity is between 1 and
the vocabulary size V , and a lower perplexity score indicates
a better model.

6.1 Quality of Inference
We first compare the model inferred by our implementa-

tion of CGS and PCGS and examine the effect of the initial-
ization strategy (Sec. 3.3), where CGS is a special case of

Table 3: Text categorization results on 20NewsGroups.

hLDA
Perplexity

Testing accuracy
algorithm +tfidf +tfidf+lda
None - .818 .827
CGS 8168 .828 .830
CGSi 6500 .834 .836
PCGS 8228 .812 .825
PCGSi 7382 .828 .835

PCGS with an empty set as I. We also include a compari-
son with the open source implementation for hLDA, hlda-c,
which is a CGS algorithm but has a stick-breaking prior on
θ instead of a Dirichlet prior [5].

Unlike parametric models, whose numbers of topics are
fixed, nonparametric models such as hLDA produce differ-
ent numbers of topics for different runs and various inference
algorithms, even with the same hyper-parameter setting. It
is not fair to directly compare the perplexity of two models
with different numbers of topics. For a fair comparison, we
choose a rich set of hyper-parameter configurations, run the
algorithms for all these configurations, and plot the perplex-
ity against the number of topics as in Fig. 6. In this exper-
iment, we train a 4-layer model (i.e., L = 4) on the sNY-
Times dataset, which is a subset of the NYTimes dataset,
and the NIPS dataset, and β = (β0, 0.5β0, 0.25β0, 0.25β0),
where β0 is chosen from {e−4.0, e−3.5, . . . , e2.0}, γ is chosen
from {e−6.0, e−5.5, . . . , e0.0}, and α = 0.2× 1.

By comparing the perplexity produced by different algo-
rithms in Fig. 6, we have a number of observations:

• CGS and PCGS have similar quality.

• Our initialization strategy helps obtain better results
for both CGS and PCGS.

• Our result is not worse (actually better) than hlda-c.
The discrepancy attributes to the different choice of
prior on θ.

Besides perplexity, we also present accuracy results of the
supervised text categorization task on the 20NewsGroups
dataset, whose each document is labeled as one of the 20
categories. We utilize topic models for feature extraction,
where the feature for document d is the count vector (fdt)

T
t=1,

where fdt =
∑
v b

d
tv indicates the numbers of occurrences of

topic t in document d. We also incorporate a popular flat
topic model, latent Dirichlet allocation (LDA) for compari-
son. The result is in Table 3. For each algorithm, we report
the perplexity, and the testing accuracy of a linear support

833

CGS-L CGS PCGS

sNYTimes

100

102

T
im

e
(s

)
4.52 x

6.97 x
2.76 x

CGS-L CGS PCGS

NIPS

100

102

104

T
im

e
(s

) 7.68 x

4.40 x

CGS-L CGS PCGS

NYTimes

100

105

T
im

e
(s

)

4.09 x

5.63 x

CGS-L CGS PCGS

PubMed

102

104
T

im
e

(s
)

3.58 x
2.74 x

CGS-L CGS PCGS

PubMed

100

102

104

Ti
m

e
(s

)

3.58 x
2.74 x

total C Z phi other

Figure 7: Running time comparison. The numbers on the
plot are the speedups over the previous implementation, e.g.,
the speedup of CGS over CGS-L. CGS-L is 4.52 times faster
than hlda-c on sNYTimes.

vector machine (liblinear [12]) with two different set of fea-
tures. The first feature set “+tfidf” contains standard tf-idf
word features [24] and hLDA topic features; and the sec-
ond feature set “+tfidf+lda” further has LDA features. We
report the accuracy for different hLDA training algorithms,
and the baseline “None” does not utilize any hLDA features.

CGSi+tfidf features give 0.834 accuracy, outperforming
the 0.827 accuracy by the None+tfidf+LDA baseline. Uti-
lizing the features produced by both hLDA and LDA, the
CGSi+tfidf+LDA approach further improves the accuracy
to 0.836. The comparison between different training al-
gorithms for hLDA is similar with our previous perplexity
study of Fig. 6. PCGSi+tfidf+LDA gives similar 0.835 ac-
curacy with CGSi+tfidf+LDA, and the algorithms without
our initialization strategies, CGS and PCGS, are consider-
ably worse in terms of both perplexity and testing accuracy.

6.2 Efficiency
We now study the impact of our PCGS algorithm and the

data layout to the efficiency of system. We compare the run-
ning time of three implementations, PCGS, CGS, and CGS
without the proposed data layout and vectorization (“CGS-
L”) on sNYTimes, NIPS, NYTimes and PubMed datasets.
The number of topics is kept around 300 by tuning the
hyper-parameters. To keep the running time reasonable, we
utilize a single thread on sNYTimes and NIPS, 12 threads
on NYTimes, and ten 12-core CPUs on PubMed. On sNY-
Times, we also report the running time of hlda-c, whose
running time is longer than 2 hours on all the other datasets.
The running time is shown in Fig. 7. We report the total
running time as well as the running time for each sampling
step, i.e., sampling C, Z and φ as shown in Table 1. Non-

3000 30000 300000

(a) Number of documents

2

3

4

5

Sp
ee

du
p

CGS PCGS

(b) Time decomposition

0

0.2

0.4

0.6

0.8

1

Pr
op

or
tio

n
of

 e
xe

cu
tio

n
tim

e

100 300 1000

(c) Number of topics

4

5

6

7

Sp
ee

du
p

CGS PCGS

(d) Time decomposition

0

0.2

0.4

0.6

0.8

1

Pr
op

or
tio

n
of

 e
xe

cu
tio

n
tim

e

CGS-L CGS PCGS

PubMed

100

102

104

Ti
m

e
(s

)

3.58 x
2.74 x

total C Z phi other

Figure 8: Speedup of PCGS over CGS w.r.t. the number of
documents. The three bars in are 3000, 30,000, and 300,000
documents in (b) ; and 100, 300, and 1,000 topics in (d).

sampling operations, such as maintaining the tree and the
system overhead, are denoted as “other”. PCGS gives 2.74-
5.63 times speedup over CGS, by avoiding the computing of
logarithms and cheaper read-only data structures. The data
layout and vectorization proposed in Sec. 4.1 give 3.58-7.68
times speedup. Furthermore, CGS-L is 4.52 times faster
than hlda-c due to the implementation, mostly because we
cast difference of logarithm of gamma function as sums of
logarithms as Eq. 3. Overall, our PCGS implementation is
87 times faster than hlda-c on the sNYTimes dataset.

6.3 Impact of the Problem Size
We further examine the impact factors to the speedup of

PCGS over CGS. PCGS mainly reduces the cost of sampling
c. By Table 1, the time complexity of sampling c is propor-
tional to both the corpus size N and the number of topics
T . Therefore, we expect the speedup of PCGS over CGS
is large when the cost of sampling c dominates, i.e., when
N and T are large. We report the speedup results on the
NYTimes dataset, varying N and T , while keeping all the
other factors fixed. Fig. 8(a) shows the speedup of PCGS
over CGS increased from 2.1 to 4.6 times when the number
of documents increases from 3,000 to 300,000. The increase
of speedup is due to the increased proportion of time con-
sumption for sampling c, as shown in Fig. 8(b). Similarly,
Fig. 8(c) shows that the speedup of PCGS over CGS in-
creased from 4.1 to 6.1 times when the number of topics
increases from 100 to 1,000; and the time proportion of each
step is shown in Fig. 8(d).

6.4 Impact of the Machine Size
We also study whether of the number of threads and CPUs

affects the speedup of PCGS over CGS. We run PCGS and
CGS from 1 to 12 threads on the NYTimes corpus, and

834

1 2 3 4 5 6 7 8 9 101112

(a) Number of threads

0

2

4

6

8

10

12
Sp

ee
du

p

PCGS vs CGS

PCGS speedup

CGS speedup

3 4 5 6 7 8 9 10

(b) Number of machines

0

2

4

6

8

Sp
ee

du
p

PCGS vs CGS

PCGS speedup

CGS speedup

Figure 9: Speedup of PCGS over CGS w.r.t. the number
of threads and machines. The two lines are the speedup of
PCGS / CGS as the number of threads / machines grows,
and the bar is the speedup of PCGS over CGS.

(0, 50] (50, 100] (100, 150]
Number of topics

2000

2200

2400

P
er

p
le
x
it
y

I=1
I=2
I=4
I=8
I=16
I=32
I=64

Figure 10: Impact of I to perplexity.

from 3 to 10 CPUs on the PubMed corpus, because CGS
exceeds the main memory capacity on 1-2 machines. CGS
needs to access the concurrent dynamic matrix more often
than PCGS. The scalability of the concurrent dynamic ma-
trix is worse than a read-only matrix which PCGS mostly
accesses, due to the contention of the atomic update opera-
tions. Therefore, the speedup of PCGS over CGS increases
as the number of threads grows, as shown in Fig. 9(a).
Meanwhile, the updates of the distributed matrices and trees
are done asynchronously, so the speedup of PCGS over CGS
remains relatively stable with respect to the number of ma-
chines, as shown in Fig. 9(b).

6.5 Sensitivity of Parameters
We now examine the impact of the hyper-parameters I

and S of our initialization strategy.
Impact of I: I is the number of initializing iterations
to sample from p(c|w). We run PCGS on the sNYTimes
dataset, setting β0 = 1, and varying I and γ. It can be
seen from Fig. 10 that the perplexity steadily decreases for
large I, which again shows that our initialization strategy is
helpful. We select a moderate I = 32 for all the experiments.
Impact of S: S is the number of Monte-Carlo samples to
approximate p(c|w). When S → ∞, we directly sample
from p(c|w) in the first I iterations. We run PCGS on
sNYTimes, with β = (1.0, 0.5, 0.25, 0.25) and γ = 10−40,
and vary S from 1 to 128. As shown in Fig. 11, S has little
impact on both the number of topics and the perplexity,
implying that a small S, e.g., S = 5, is adequate.

2 8 32 128
S

100

110

120

130

N
u
m

b
er

of
to

p
ic
s

2 8 32 128
S

1.8

2

2.2

P
er

p
le
x
it
y

#103

Figure 11: Impact of the number of Monte-Carlo samples
S.

6.6 Scalability
Our experiments on scalability are in two folds: whether

the quality of inference is affected by parallelization; and
how good is the speedup. We repeat each experiment for 10
times. For each experiment, we choose the largest dataset
such that the data fit in the main memory and the run-
ning time is less than two hours. Based on this criteria, we
choose NYTimes for the multi-thread setting, PubMed for
1-10 machines, and sClueWeb12 for 10-100 machines, which
is a subset of the ClueWeb12 corpus.

For the multi-thread setting, where the number of threads
varies from 1 to 12 on the NYTimes corpus. The result is
shown in Fig. 12(a), where we observe that there is no ap-
parent increase of the perplexity as the number of threads
grows. The speedup with 12 threads is 8.56. The proba-
ble reasons of imperfect speedup include serial region, con-
tention for atomic variables, and limited memory bandwidth.

For the multi-machine setting, there are two CPUs per
machine. We run our implementation on the PubMed cor-
pus on 1 to 10 CPUs as shown in Fig. 12(b), and on the
larger sClueWeb12 corpus for 10 to 100 CPUs as shown in
Fig. 12(c). The speedup is 8.5 from 1 to 10 CPUs, and 7.15
from 10 to 100 CPUs. The perplexity is slightly affected by
parallelization when the number of CPUs exceeds 7 and 80
on the two datasets, respectively, indicating that the dataset
is not large enough to utilize that many CPUs.

Finally, to demonstrate the scalability, we learn a model
with 1,722 topics of the 131-million-document lClueWeb12
corpus with 50 machines, and the inference finishes in 7
hours. The results will be presented for qualitative evalua-
tion in the next section.

6.7 Qualitative Analysis
We now demonstrate the topic hierarchy obtained from

the lClueWeb12 corpus, which is a crawl of web pages. The
corpus is obtained by tokenizing the original ClueWeb12
dataset, randomly selecting about 30% documents, trun-
cating the vocabulary size to 100,000 and keeping only the
documents whose length are between [50, 500]. We show the
selected parts of the obtained tree in Fig. 13, where some
topics whose number of occurrences does not pass a partic-
ular threshold are filtered out, and the font size of words is
proportional to the 4th root of their frequency in the topic.
The tree has 5 levels in total.1

Fig. 13(a) shows some selected topics on the first 3 lev-
els. The root node contains the most commonly used words
shared by all the documents. The second level contains a

1The visualization demo is available online at http://ml.
cs.tsinghua.edu.cn/~jianfei/scalable-hlda.html.

835

http://ml.cs.tsinghua.edu.cn/~jianfei/scalable-hlda.html
http://ml.cs.tsinghua.edu.cn/~jianfei/scalable-hlda.html

1 12
Number of threads

3.7

3.8

3.9

4

4.1

P
er

p
le
x
it
y

#103

1 12
Number of threads

0

5

10

S
p
ee

d
U

p

Ideal

(a) NYTimes corpus

1 10
Number of CPUs

3

3.2

3.4

P
er

p
le
x
it
y

#103

1 10
Number of CPUs

0

5

10
S
p
ee

d
U

p

Ideal

(b) PubMed corpus

10 100
Number of CPUs

3

3.2

3.4

3.6

P
er

p
le
x
it
y

#103

10 100
Number of CPUs

0

5

10

S
p
ee

d
U

p

Ideal

(c) sClueWeb12 corpus

Figure 12: Perplexity and speedup as the amount of com-
putational resource increases.

variety of general topics, such as “software”, “travel” and
“city”, and the third level has more detailed concepts, e.g.,
the “city” topic on the second level splits as “shopping”,
“city names”, and “locations”. We further show the topic
subtrees of all the layers rooted at the highlighted nodes to
examine the fine-grained concepts. For example, in Fig. 13(b)
the “travel” topic is divided as “islands”, “India” and “va-
cations”, and the leaf level contains specific concepts, such
as “ferry” and “diving”, which are correctly placed under
the “islands” topic. In Fig. 13(c), the “computer” topic is
divided as “website”, “windows”, “vps”, “programming”,
“linux” and “forum”. To our knowledge, this is the first
time that hLDA is applied to large-scale web data, and the
results demonstrate our ability on automatically learning
topic hierarchy from web data.

7. CONCLUSIONS AND DISCUSSIONS
We address the problem of scalable training of hierarchi-

cal topic models, taking hierarchical latent Dirichlet alloca-
tion (hLDA) as a concrete example. We present a partially
collapsed Gibbs sampling algorithm for the hierarchical la-
tent Dirichlet allocation model. PCGS is efficient because
it avoids most computation of logarithms. To deal with the
local minima introduced by the tree structure, we present
an initialization strategy that improves the model quality.

The complicated data structures of hierarchical topic mod-
els pose challenges for building scalable training systems.
To solve these challenges, we design a distributed training
system with an efficient data layout for vectorization, con-
current dynamic matrices and distributed trees. The pro-
posed system can handle hundreds of millions of documents,
thousands of topics, with thousands of CPU cores.

In the future, we plan to extend our method to the more
sophisticated nested hierarchical Dirichlet process model [21,
2]. Developing sampling algorithms with a sub-linear time
complexity with respect to the number of topics is also a
promising direction.

8. ACKNOWLEDGMENTS
We thank Arnab Bhadury for his help in proofreading

the paper. The work was supported by the National NSF of
China (Nos. 61620106010, 61621136008, 61332007, 61761136020),
Beijing Natural Science Foundation (No. L172037), and a
Special Program for Applied Research on Super Computa-
tion of the NSFC-Guangdong Joint Fund (the 2nd phase).

Appendix
Derivation of PCGS updates: Rewrite the joint distri-
bution in Sec. 2.4 as:

p(W, z,θ, c,φĪ ,φI) =
∏
t∈Ī

p(φt)
∏
t∈I

p(φt)

D∏
d=1

p(cd|c<d)p(θd)
D∏
d=1

Nd∏
n=1

p(zdn|θ)p(wdn|zdn,φĪ ,φI).

Integrating out φC and θ, we have the marginal distribu-
tion

p(W, z, c,φI) =

D∏
d=1

[
p(cd|c<d)

B(ad + α)

B(α)

]∏
t∈Ī

B(bt + βlt)

B(βlt)∏
t∈I

[
Dir(φt;βlt)

V∏
v=1

(φtv)btv
]
.

Utilizing the identity B(α+ek)
B(α)

= αk∑
k αk

, where ek is a co-

ordinate vector, we can derive the Gibbs sampling updates:
Sample z: Keeping only the terms relevant with zdn, we

have p(zdn = l|wdn = v,w, z¬dn, c,φ
I) ∝ B(Cd+α)

B(α)

∏
t∈C

B(Ct+βlt)

B(βlt)

∏
t∈I

∏V
v=1 φ

Ctv
tv ∝ B(C¬dnd +Cdn

d +α)

B(C¬dn
d

+α)∏
t∈C

B(C¬dnt +Cdn
t +βlt)

B(C¬dnt +βlt)

∏
t∈I

∏V
v=1 φ

C¬dntv +Cdn
tv

tv .

Sample c: p(cd = c|w, z, c¬d,φI) ∝ p(cd|c¬d)
∏
t∈C

B(Ct+βlt)

B(βlt)

∏
t∈I

∏V
v=1 φ

Ctv
tv ∝ p(cd|c¬d)

∏
t∈C

B(C¬dt +Cd
t +βlt)

B(C¬dt +βlt)∏
t∈I

∏V
v=1 φ

Cd
tv

tv ∝ nCRP(c;γ, c¬d)
∏L
l=1

{
fI(d, cl) cl ∈ I,
fC(d, cl) cl ∈ C.

Sample φI: For t ∈ I, draw φt ∼ Dir(βlt + bt).
Derivation of log fC(d, t):

We have log fC(d, t) = log
B(b¬dt +bd

t +βlt)

B(b¬dt +βlt)

=
[∑V

v=1

∑bdtv−1
i=0 log(b¬dtv + i+ βlt)

]
+ ht

=
∑

(v,o)∈W′
dl

log(b¬dtv + o+ βlt) + ht.

836

news
email
free
online
business

cracks
lomalka
pro
crack
serials

hotels
hotel
travel
city
airport

city
area
cities
phone
park

order
free
price
shipping
cart

series
model
data

systems
power

php
documentation

version
source
code

student
programs
education
school
staff

price
accessories
steel

products
shipping

girl
girls
black
lady
fashion

build
server
image
serial
web

research
forest
treesearch
international
pacific

islands
country
comment
republic
arab

france
ans

skyrock
suite
ais

india
kerala
goa
travel
delhi

holiday
apartments
italy

vacation
hotel

price
shipping
wood
kitchen
table

local
san
los

angeles
real

west
north
east
south
river

organic
natural
food
protein
fat

prescription
online
buy
generic
pharmacy

john
fishing
race

england
william

pages
talk
special
wiki
log

flowers
plant
flower
seed
seeds

energy
electron
phase
magnetic
structure

car
auto
honda
mercedes
bmw

power
products
cable
mhz
supply

file
files
server
data
error

board
login

password
member
forum

cracks
optimal
lomalka
pro
wall

college
campus
graduate
academic
courses

parts
charger
kit
car

panasonic

macromedia
pro
crack
cracks
perfect

electric
gas
prices
inch
price

product
products
china
machine
bag

martin
jean
paul
michael
david

price
shirts

accessories
size
shirt

notes
tumblr
tags
archive
love

(a) Top 3 levels. The highlighted nodes are expanded as below.

hotels
hotel
travel
city
airport

islands
country
comment
republic
arab

india
kerala
goa
travel
delhi

holiday
apartments
italy

vacation
hotel

belize
island
ladies
weddings
wedding

love
writing
sri

chinmoy
quotes

thailand
pattaya
australia
japan
phuket

italy
cosmic
san
brazil
toll

costa
rica
surf
rican
estate

spa
spas
ferry
ferries
greece

poetry
poems
poem
poets
poet

tour
rajasthan
tours
jaipur
agra

tickets
cheap
flight
ticket
trains

gurgaon
quikr
noida
lacs
plots

tour
tours
wildlife
taj
mahal

nepal
trekking
trek

kathmandu
bhutan

tourism
music
videos

connectingindia
sai

diving
dive
scuba
padi
diver

hotel
booking
feb
united
apr

japanese
kanji
tokyo
japan

dictionary

travel
peru
tours
cusco
spain

flights
airlines
air

airways
airline

train
station

availability
china
railcard

hotel
hotels
london
paris
rooms

flights
holidays
rent
holiday
airlines

italy
breakfast
bed
stars
rome

airport
parking
airline
tickets
flights

vacation
rentals
maui
beach
hawaii

inn
suites
travelape

accommodations
chicago

warsaw
hoteles
hotele
para
poland

villas
villa
bali
ski

thailand

car
hire
rental
airport
cars

(b) Travel subtree

file
files
server
data
error

php
net

mailing
mirror
list

driver
windows
drivers
download

bios

vps
windows
unmetered
mbit
servers

class
string
public
void
int

linux
package
install
rpm
perl

date
message
trac
thread
wiki

java
apache
org

catalina
core

file
extension
extensions
stats
rand

ncurses
includes
deprecated
line
ereg

include
php

function
line

deprecated

maxdb
mysqli
ibase
oci
odbc

notebook
driver
drivers
download
dell

windows
hosting
dedicated
vps
server

fader
quick
pro

automation
record

oracle
error
tns

invalid
sql

trac
years
svn

changeset
edgewall

const
virtual
int
inline

definition

php
method
array
object
java

dll
exe

windows
download
errors

java
apache
project
mysql
repository

netbsd
bytes

sharpdevelop
tgz

compare

text
string
int
void
object

freebsd
linux
backup
git
rfc

aae
thread
fpml
date
png

(c) Computer subtree

Figure 13: Selected subtrees on the topic hierarchy extracted from ClueWeb12 (large).

837

9. REFERENCES
[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,

and A. Smola. Scalable inference in latent variable
models. In WSDM, 2012.

[2] A. Ahmed, L. Hong, and A. J. Smola. Nested chinese
restaurant franchise process: Applications to user
tracking and document modeling. In ICML, 2013.

[3] A. Asuncion and D. Newman. Uci machine learning
repository, 2007.

[4] D. Blei. hlda-c. http://www.cs.columbia.edu/~blei/
downloads/hlda-c.tgz, 2009.

[5] D. M. Blei, T. L. Griffiths, and M. I. Jordan. The
nested chinese restaurant process and bayesian
nonparametric inference of topic hierarchies. Journal
of the ACM (JACM), 57(2):7, 2010.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. JMLR, 3:993–1022, 2003.

[7] J. L. Boyd-Graber, D. M. Blei, and X. Zhu. A topic
model for word sense disambiguation. In
EMNLP-CoNLL, 2007.

[8] T. Campbell, J. Straub, J. W. Fisher III, and J. P.
How. Streaming, distributed variational inference for
bayesian nonparametrics. In NIPS, 2015.

[9] J. Chang and J. W. Fisher III. Parallel sampling of dp
mixture models using sub-cluster splits. In Advances
in Neural Information Processing Systems, pages
620–628, 2013.

[10] J. Chen, K. Li, J. Zhu, and W. Chen. Warplda: a
cache efficient o(1) algorithm for latent dirichlet
allocation. PVLDB, 9(10):744–755, 2016.

[11] D. Dechev, P. Pirkelbauer, and B. Stroustrup.
Lock-free dynamically resizable arrays. In
International Conference On Principles Of Distributed
Systems, 2006.

[12] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. Liblinear: A library for large linear
classification. Journal of machine learning research,
9(Aug):1871–1874, 2008.

[13] H. Ge, Y. Chen, E. CAM, M. Wan, and
Z. Ghahramani. Distributed inference for dirichlet
process mixture models. In ICML, 2015.

[14] S. Geman and D. Geman. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of images.
IEEE Transactions on pattern analysis and machine
intelligence, (6):721–741, 1984.

[15] S. Jain and R. M. Neal. A split-merge markov chain
monte carlo procedure for the dirichlet process
mixture model. Journal of Computational and
Graphical Statistics, 13(1):158–182, 2004.

[16] K. Li, J. Chen, W. Chen, and J. Zhu. Saberlda:
Sparsity-aware learning of topic models on gpus. In
Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 497–509.
ACM, 2017.

[17] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with
the parameter server. In OSDI, volume 1, page 3,
2014.

[18] W. Li and A. McCallum. Pachinko allocation:
Dag-structured mixture models of topic correlations.

In ICML, 2006.

[19] K. P. Murphy. Machine learning: a probabilistic
perspective. MIT press, 2012.

[20] R. M. Neal. Markov chain sampling methods for
dirichlet process mixture models. Journal of
computational and graphical statistics, 9(2):249–265,
2000.

[21] J. Paisley, C. Wang, D. M. Blei, and M. I. Jordan.
Nested hierarchical dirichlet processes. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 37(2):256–270, 2015.

[22] T. L. Project. The clueweb12 dataset.
http://lemurproject.org/clueweb12/, 2013.

[23] J. Pujara and P. Skomoroch. Large-scale hierarchical
topic models. In NIPS Workshop on Big Learning,
2012.

[24] J. Ramos et al. Using tf-idf to determine word
relevance in document queries. In Proceedings of the
first instructional conference on machine learning,
volume 242, pages 133–142, 2003.

[25] L. Rigouste, O. Cappé, and F. Yvon. Inference and
evaluation of the multinomial mixture model for text
clustering. Information processing & management,
43(5):1260–1280, 2007.

[26] J. Sethuraman. A constructive definition of dirichlet
priors. Statistica sinica, pages 639–650, 1994.

[27] Y. W. Teh. Dirichlet process. In Encyclopedia of
machine learning, pages 280–287. Springer, 2011.

[28] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei.
Sharing clusters among related groups: Hierarchical
dirichlet processes. In NIPS, 2004.

[29] H. M. Wallach, I. Murray, R. Salakhutdinov, and
D. Mimno. Evaluation methods for topic models. In
ICML, 2009.

[30] C. Wang and D. M. Blei. Variational inference for the
nested chinese restaurant process. In NIPS, 2009.

[31] C. Wang and D. M. Blei. Collaborative topic modeling
for recommending scientific articles. In Proceedings of
the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 448–456.
ACM, 2011.

[32] C. Wang and D. M. Blei. Truncation-free online
variational inference for bayesian nonparametric
models. In Advances in neural information processing
systems, pages 413–421, 2012.

[33] X. Wang, S. Liu, J. Liu, J. Chen, J. J. H. Zhu, and
B. Guo. Topicpanorama: A full picture of relevant
topics. TVCG, 22(12):2508–2521, 2016.

[34] Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin,
L. Wang, Y. Gao, J. Zeng, Q. Yang, et al. Towards
topic modeling for big data. ACM Transactions on
Intelligent Systems and Technology, 9(4), 2014.

[35] X. Wei and W. B. Croft. Lda-based document models
for ad-hoc retrieval. In SIGIR, 2006.

[36] H.-F. Yu, C.-J. Hsieh, H. Yun, S. Vishwanathan, and
I. S. Dhillon. A scalable asynchronous distributed
algorithm for topic modeling. In Proceedings of the
24th International Conference on World Wide Web,
pages 1340–1350. International World Wide Web
Conferences Steering Committee, 2015.

[37] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng,

838

http://www.cs.columbia.edu/~blei/downloads/hlda-c.tgz
http://www.cs.columbia.edu/~blei/downloads/hlda-c.tgz
http://lemurproject.org/clueweb12/

E. P. Xing, T.-Y. Liu, and W.-Y. Ma. Lightlda: Big
topic models on modest computer clusters. In
Proceedings of the 24th International Conference on
World Wide Web, pages 1351–1361. International
World Wide Web Conferences Steering Committee,
2015.

[38] M. Zaheer, M. Wick, J.-B. Tristan, A. Smola, and
G. L. Steele Jr. Exponential stochastic cellular
automata for massively parallel inference. In
AISTATS, 2016.

[39] K. Zhai, J. Boyd-Graber, N. Asadi, and M. L.
Alkhouja. Mr. lda: A flexible large scale topic
modeling package using variational inference in
mapreduce. In WWW, 2012.

[40] H. Zhao, B. Jiang, J. F. Canny, and B. Jaros. Same
but different: Fast and high quality gibbs parameter
estimation. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1495–1502. ACM, 2015.

[41] J. Zhu, A. Ahmed, and E. P. Xing. MedLDA:
Maximum margin supervised topic models. JMLR,
13:2237–2278, 2012.

[42] J. Zhu, J. Chen, W. Hu, and B. Zhang. Big learning
with bayesian methods. National Science Review, page
nwx044, 2017.

839

	Introduction
	Hierarchical LDA
	Nested Chinese Restaurant Process
	Hierarchical Latent Dirichlet Allocation
	Notation of Counts
	Collapsed Gibbs Sampling (CGS)

	Efficient Training for HLDA
	Partially Collapsed Gibbs Sampling
	Time complexity analysis
	Initialization Strategy

	System Implementation
	Vectorization and Data Layout
	Concurrent Dynamic Matrices
	Distributed Tree

	Related Work
	Parallel Inference for NonparametricBayesian Models
	Scalable Systems for Flat Models

	Experiments
	Quality of Inference
	Efficiency
	Impact of the Problem Size
	Impact of the Machine Size
	Sensitivity of Parameters
	Scalability
	Qualitative Analysis

	Conclusions and Discussions
	Acknowledgments
	References

