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ABSTRACT
Complex event processing (CEP) is a prominent technology
used in many modern applications for monitoring and track-
ing events of interest in massive data streams. CEP engines
inspect real-time information �ows and attempt to detect
combinations of occurrences matching prede�ned patterns.
This is done by combining basic data items, also called
�primitive events�, according to a pattern detection plan,
in a manner similar to the execution of multi-join queries
in traditional data management systems. Despite this sim-
ilarity, little work has been done on utilizing existing join
optimization methods to improve the performance of CEP-
based systems.
In this paper, we provide the �rst theoretical and experi-

mental study of the relationship between these two research
areas. We formally prove that the CEP Plan Generation
problem is equivalent to the Join Query Plan Generation
problem for a restricted class of patterns and can be reduced
to it for a considerably wider range of classes. This result
implies the NP-completeness of the CEP Plan Generation
problem. We further show how join query optimization tech-
niques developed over the last decades can be adapted and
utilized to provide practically e�cient solutions for complex
event detection. Our experiments demonstrate the superi-
ority of these techniques over existing strategies for CEP
optimization in terms of throughput, latency, and memory
consumption.

PVLDB Reference Format:

Ilya Kolchinsky and Assaf Schuster. Join Query Optimization
Techniques for Complex Event Processing Applications. PVLDB,
11 (11): 1332-1345, 2018.
DOI: https://doi.org/10.14778/3236187.3236189

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07... $ 10.00.
DOI: https://doi.org/10.14778/3236187.3236189

Keywords
Stream Processing, Complex Event Processing, Lazy Eval-
uation, Query Optimization

1. INTRODUCTION
Complex event processing has become increasingly im-

portant for applications in which arbitrarily complex pat-
terns must be e�ciently detected over high-speed streams
of events. Online �nance, security monitoring, and fraud
detection are among the many examples. Pattern detection
generally consists of collecting primitive events and combin-
ing them into potential (partial) matches using some type
of detection model. As more events are added to a partial
match, a full pattern match is eventually formed and re-
ported. Popular CEP mechanisms include nondeterministic
�nite automata (NFAs) [5, 18, 51], �nite state machines [6,
45], trees [36], and event processing networks [21, 42].
A CEP engine creates an internal representation for each

pattern P to be monitored. This representation is based on
a model used for detection (e.g., an automaton or a tree)
and re�ects the structure of P . In some systems [5, 51], the
translation from a pattern speci�cation to a corresponding
representation is a one-to-one mapping. Other frameworks
[6, 30, 36, 42, 45] introduce the notion of a cost-based evalu-
ation plan, where multiple representations of P are possible,
and one is chosen according to the user's preference or some
prede�ned cost metric.
We will illustrate the above using the following example.

Assume that we are receiving periodical readings from four
tra�c cameras A, B, C and D. We are required to recognize
a sequence of appearances of a particular vehicle on all four
cameras in order of their position on a road, e.g., A→ B →
C → D. Assume also that, due to a malfunction in camera
D, it only transmits one frame for each 10 frames sent by
the other cameras.
Figure 1(a) displays a nondeterministic �nite automaton

(NFA) for detecting this pattern, as described in [51]. A
state is de�ned for each pre�x of a valid match. During
evaluation, a combination of camera readings matching each
pre�x will be represented by a unique instance of the NFA
in the corresponding state. Transitions between states are
triggered nondeterministically by the arrival of an event sat-
isfying the constraints de�ned by the pattern. A new NFA
instance is created upon each transition.
The structure of the above automaton is uniquely dictated

by the order of events in the given sequence. However, due to
the low transmission rate of D, it would be bene�cial to wait
for its signal before examining the local history for previous
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Figure 1: Evaluation structures for a CEP pattern
SEQ(A,B,C,D): (a) NFA with no reordering; (b) NFA with
reordering; (c) evaluation tree.

readings of A, B and C that match the constraints. This
way, fewer pre�xes would be created. Figure 1(b) demon-
strates an out-of-order NFA for the rewritten pattern (de-
�ned as �Lazy NFA� in [30]). It starts by monitoring the
rarest event type D and storing the other events in the ded-
icated bu�er. As a reading from camera D arrives, the bu�er
is inspected for events from A, B and C preceding the one
received from D and located in the same time window. This
plan is more e�cient than the one implicitly used by the
�rst NFA in terms of the number of partial matches created
during evaluation. Moreover, unless more constraints on the
events are de�ned, it is the best out of all (4!) possible plans,
that is, mutual orders of A, B, C and D.
Not all CEP mechanisms represent a plan as an evalua-

tion order. Figure 1(c) depicts a tree-based evaluation mech-
anism [36] for detecting the above pattern. Events are ac-
cepted at the corresponding leaves of the tree and passed to-
wards the root where full matches are reported. This model
requires an evaluation plan to be supplied, because, for a

pattern of size n, there are at least n! · Cn−1 = (2n−2)!
(n−1)!

pos-

sible trees (where Cn is the nth Catalan number) [37].
In many scenarios, we will prefer the evaluation mech-

anisms supporting cost-based plan generation over those
mechanisms allowing for only one such plan to be de�ned.
This way, we can drastically boost system performance sub-
ject to selected metrics by picking more e�cient plans. How-
ever, as the space of potential plans is at least exponential
in pattern size, �nding an optimal plan is not a trivial task.
Numerous authors have identi�ed and targeted this is-

sue. Some of the proposed solutions are based on rewriting
the original pattern according to a set of prede�ned rules
to maximize the e�ciency of its detection [42, 45]. Other
approaches discuss various strategies and algorithms for gen-
erating an evaluation plan that maximizes the performance
for a given pattern according to some cost function [6, 30,
36]. While the above approaches demonstrate promising
results, this research �eld remains largely unexplored, and
the space of the potential optimization techniques is still far
from being exhausted.

The problem described above closely resembles the prob-
lem of estimating execution plans for large join queries. As
opposed to CEP plan generation, this is a well-known, estab-
lished, and extensively targeted research topic. A plethora of
methods and approaches producing close-to-optimal results
were published during the last few decades. These methods
range from simple greedy heuristics, to exhaustive dynamic
programming techniques, to randomized and genetic algo-
rithms [32, 33, 38, 46, 47, 48].
Both problems look for a way to e�ciently combine mul-

tiple data items such that some cost function is minimized.
Also, both produce solutions possessing similar structures.
If we reexamine Figure 1, we can see that evaluation plans
for NFAs (1(b)) and trees (1(c)) closely resemble left-deep
tree plans and bushy tree plans [26] respectively. An in-
teresting question is whether join-related techniques can be
used to create better CEP plans using a proper reduction.
In this work, we attempt to close the gap between the two

areas of research. We study the relationship between CEP
Plan Generation (CPG) and Join Query Plan Generation
(JQPG) problems and show that any instance of CPG can
be transformed into an instance of JQPG. Consequently, any
existing method for JQPG can be made applicable to CPG.
Our contributions can be summarized as follows:
� We formally prove the equivalence of JQPG and CPG

for a large subset of CEP patterns, the conjunctive pat-
terns. The proof addresses the two major classes of evalu-
ation plans, the order-based plans and the tree-based plans
(Section 3).
� We extend the above result by showing how other pat-

tern types can be converted to conjunctive patterns, thus
proving that any instance of CPG can be reduced to an
instance of JQPG (Section 4).
� The deployment of a JQPG method to CPG is not triv-

ial, as multiple CEP-speci�c issues need to be addressed,
such as detection latency constraints, event consumption
policies, and adaptivity considerations. We present and dis-
cuss the steps essential for successful adaptation of JQPG
techniques to the CEP domain (Section 5).
� We validate our theoretical analysis in an extensive ex-

perimental study. Several well-known JQPG methods, such
as Iterative Improvement [48] and Dynamic Programming
[46], were applied on a real-world event dataset and com-
pared to the existing state-of-the-art CPG mechanisms. The
results demonstrate the superiority of the adapted JQPG
techniques (Section 6).

2. BACKGROUND AND TERMINOLOGY
In this section, we introduce the notations used through-

out this paper, provide the necessary background on com-
plex event processing and describe the two problems whose
relationship will be closely studied in the next sections.

2.1 CEP Patterns
The patterns recognized by CEP systems are normally

formed using declarative speci�cation languages [14, 18, 51].
A pattern is de�ned by a combination of primitive events,
operators, a set of predicates to be satis�ed by the partici-
pating events, and a time window. Each event is represented
by a type and a set of attributes, including the occurrence
timestamp. We assume that each primitive event has a well-
de�ned type, i.e., the event either contains the type as an
attribute or it can be easily inferred from other attributes
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using negligible system resources. The operators describe
the relations between di�erent events comprising a pattern
match. The predicates, usually organized in a Boolean for-
mula, specify the constraints on the attribute values of the
events. As an example, consider the following pattern spec-
i�cation syntax, taken from SASE [51]:

PATTERN op (T1 e1, T2 e2, · · · , Tn en)
WHERE (c1,1 ∧ c1,2 ∧ · · · ∧ cn,n−1 ∧ cn,n)
WITHIN W.

Here, the PATTERN clause speci�es the events e1, · · · , en
we would like to detect and the operator op to combine them
(see below). The WHERE clause de�nes a Boolean CNF
formula of inter-event constraints, where ci,j ; 1 ≤ i, j ≤ n
stands for the mutual condition between attributes of ei and
ej . ci,i declares �lter conditions on ei. Any of ci,j can be
empty. For the rest of our paper, we assume that all condi-
tions between events are at most pairwise. This assumption
is for presentational purposes only, as our results can be eas-
ily generalized to arbitrary predicates. The WITHIN clause
sets the time window W , which is the maximal allowed dif-
ference between the timestamps of any pair of events in a
match.
In this paper, we will consider the most commonly used

operators, namely AND, SEQ, and OR. The AND operator
requires the occurrence of all events speci�ed in the pattern
within the time window. The SEQ operator extends this
de�nition by also expecting the events to appear in a prede-
�ned temporal order. The OR operator corresponds to the
appearance of any event out of those speci�ed.
Two additional operators of particular importance are the

negation operator (NOT) and the Kleene closure operator
(KL). They can only be applied on a single event and are
used in combination with other operators. NOT (ei) re-
quires the absence of the event ei from the stream (or from
a speci�c position in the pattern in the case of the SEQ op-
erator), whereas KL (ei) accepts one or more instances of
ei. In the remainder of this paper, we will refer to NOT and
KL as unary operators, while AND, SEQ and OR will be
called n-ary operators.
The PATTERN clause may include an unlimited number

of n-ary and unary operators. We will refer to patterns con-
taining a single n-ary operator, and at most a single unary
operator per primitive event, as simple patterns. On the
contrary, nested patterns are allowed to contain multiple n-
ary operators (e.g., a disjunction of conjunctions and/or se-
quences will be considered a nested pattern). Nested pat-
terns present an additional level of complexity and require
advanced techniques (e.g., as described in [34]).
We will further divide simple patterns into subclasses. A

simple pattern whose n-ary operator is an AND operator
will be denoted as a conjunctive pattern. Similarly, sequence
pattern and disjunctive pattern will stand for patterns with
SEQ and OR operators, respectively. A simple pattern con-
taining no unary operators will be called a pure pattern.
The �four cameras pattern� described in Section 1 illus-

trates the above. This is a pure sequence pattern, written
in SASE as follows:

PATTERN SEQ(A a,B b,C c,D d)
WHERE(a.vehicleID=b.vehicleID=

=c.vehicleID=d.vehicleID)
WITHIN W.

2.2 Order-based Evaluation Mechanisms
Order-based evaluation mechanisms play an important

role in CEP engines based on state machines. One of the
most commonly used models following this principle is the
NFA (nondeterministic �nite automaton) [5, 18, 51]. An
NFA consists of a set of states and conditional transitions
between them. Each state corresponds to a pre�x of a full
pattern match. Transitions are triggered by the arrival of the
primitive events, which are then added to partial matches.
Conditions between events are veri�ed during the transi-
tions. Figure 1(a) depicts an example of an NFA constructed
for the �four cameras� sequence pattern. While in theory
NFAs may possess an arbitrary topology, non-nested pat-
terns are normally detected by a chain-like structure.
The basic NFA model does not include any notion of alter-

ing the �natural� evaluation order or any other optimization
based on pattern rewriting. Multiple works have presented
methods for constructing NFAs with out-of-order processing
support. W.l.o.g., we will use the Lazy NFA mechanism, a
chain-structured NFA introduced in [29, 30].
Given a pattern of n events and a user-speci�ed order

O on the event types appearing in the pattern, a chain of
n+1 states is constructed, with each state k corresponding
to a match pre�x of size k − 1. The order of the states
matches O. If a type appears more than once in a pattern,
it will also appear multiple times in O. The (n+ 1)th state
in the chain is the accepting state. To achieve out-of-order
evaluation, incoming events are stored locally. A bu�ered
event is retrieved and processed when its corresponding state
in the chain is reached. Figure 1(b) presents an example of
this construction for O = (D,A,B,C).
This construction method allows us to apply all possible

(n!) orders without a�ecting the detection correctness.

2.3 Tree-based Evaluation Mechanisms
An alternative to NFA, the tree-based evaluation mech-

anism [36] speci�es which subsets of full pattern matches
are to be tracked by de�ning tree-like structures. For each
event participating in a pattern, a designated leaf is created.
During evaluation, events are routed to their corresponding
leaves and are bu�ered there. The non-leaf nodes accumu-
late the partial matches. The computation at each non-leaf
node proceeds only when all of its children are available (i.e.,
all events have arrived or partial matches have been calcu-
lated). Matches formed at the tree root are reported to the
end users. An example is shown in Figure 1(c).
ZStream assumes a batch-iterator setting [36]. To perform

our study under a uni�ed framework, we modify this behav-
ior to support arbitrary time windows. As described above
with regard to NFAs, a separate tree instance will be cre-
ated for each currently found partial match. As a new event
arrives, an instance will be created containing this event.
Every instance I corresponds to some subtree s of the tree
plan, with the leaves of s holding the primitive events in I.
Whenever a new instance I ′ is created, the system will at-
tempt to combine it with previously created �siblings�, that
is, instances corresponding to the subtree sharing the parent
node with s′. As a result, another new instance containing
the uni�ed subtree will be generated. This in turn will trig-
ger the same process again, and it will proceed recursively
until the root of the tree is reached or no siblings are found.
ZStream includes an algorithm for determining the opti-

mal tree structure for a given pattern. This algorithm is
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Figure 2: Evaluation trees for a pattern SEQ(A,B,C): (a)
a left-deep tree produced by ZStream; (b) a right-deep tree
produced by ZStream; (c) an optimal evaluation tree, which
cannot be produced by ZStream.

based on a cost model that takes into account the arrival
rates of the primitive events and the selectivities of their
predicates. However, since leaf reordering is not supported,
a subset of potential plans is missed. We will illustrate this
drawback using the following example:

PATTERN SEQ(A a,B b,C c)
WHERE(a.x=c.x) WITHIN W.

We assume that all events arrive at identical rates, and
that the condition between A and C is very restrictive. Fig-
ures 2(a) and 2(b) present the only two possible plans ac-
cording to the algorithm presented in [36]. However, due to
the condition between A and C, the most e�cient evaluation
plan is the one displayed in Figure 2(c).

2.4 CEP Plan Generation
We will start with the de�nition of the CEP evaluation

plan. The evaluation plan provides a scheme for the evalua-
tion mechanism, according to which its internal pattern rep-
resentation is created. Therefore, di�erent evaluation plans
are required for di�erent CEP frameworks. In this paper, we
distinguish between two main types of plans, the order-based
plan and the tree-based plan.
An order-based plan consists of a permutation of the prim-

itive event types declared by the pattern. A CEP engine
uses this plan to set the order in which events are processed.
Order-based plans are applicable to mechanisms evaluating
a pattern event-by-event, as described in Section 2.2.
A tree-based plan extends the above by providing a tree-

like scheme for pattern evaluation. It speci�es which subsets
of valid matches are to be locally bu�ered and how to com-
bine them into larger partial matches. Plans of this type are
used by the evaluation mechanism presented in Section 2.3.
We can thus de�ne two variations of the CEP Plan Gen-

eration problem, order-based CPG and tree-based CPG. In
each variation, the goal is to determine an optimal evalua-
tion plan P subject to some cost function Cost (P ). Di�er-
ent CEP systems de�ne di�erent metrics to measure their
e�ciency. In this paper we will consider a highly relevant
performance optimization goal: reducing the number of ac-
tive partial matches within the time window (denoted below
simply as number of partial matches).
Regardless of the system-speci�c performance objectives,

the implicit requirement to monitor all valid subsets of prim-
itive events can become a major bottleneck. Because any
partial match might form a full pattern match, their number
is worst-case exponential in the number of events participat-
ing in a pattern. Further, as a newly arrived event needs to
be checked against all (or most of) the currently stored par-
tial matches, the processing time and resource consumption

per event can become impractical for real-time applications.
Other metrics, such as detection latency or network commu-
nication cost, may also be negatively a�ected. Thus, given
the crucial role of the number of partial matches in all as-
pects of CEP, it was chosen as our primary cost function.

2.5 Join Query Plan Generation
Join Query Plan Generation is a well-known problem in

query optimization [32, 46, 48]. We are given relations
R1, · · · , Rn and a query graph describing the conditions to
be satis�ed by the tuples in order to be included in the re-
sult. A condition between a pair of relations Ri, Rj has a
known selectivity fi,j ∈ [0, 1]. The goal is to produce a join
query plan minimizing a prede�ned cost function.
One popular choice for the cost function is the number

of intermediate tuples produced during plan execution. For
the rest of this paper, we will refer to it as the intermediate
results size. In [13], the following expression is given to
calculate this function for each two-way join of two input
relations:

C (Ri, Rj) = |Ri| · |Rj | · fi,j ,
where |Ri| , |Rj | are the cardinalities of the joined relations.
This formula is naturally extended to relations produced
during join calculation:

C (S, T ) = |S| · |T | · fS,T .

Here, S = Ri1 ./ · · · ./ Ris ;T = Rj1 ./ · · · ./ Rjt are
the partial join results of some subsets of R1, · · · , Rn and
fS,T = (|S ./ T | / |S × T |) is the product of selectivities of
all predicates de�ned between the individual relations com-
prising S and T .
The two most popular classes of join query plans are the

left-deep trees and the bushy trees [26]. A join tree of the
former type processes the input relations one-by-one, adding
a new relation to the current intermediate result during each
step. Hence, for this class of techniques, a valid solution
is a join order rather than a join plan. Approaches based
on bushy trees pose no limitations on the plan topology,
allowing it to contain arbitrary branches.
JQPG was shown by multiple authors to be NP-complete

[13, 24], even when only left-deep trees are considered.

3. THE EQUIVALENCE OF CPG AND JQPG
FOR PURE CONJUNCTIVE PATTERNS

This section presents the formal proof of equivalence be-
tween CPG and JQPG for pure conjunctive patterns. We
show that, when the pattern to be monitored is a pure con-
junctive pattern and the CPG cost function represents the
number of partial matches, the two problems are equivalent.

3.1 Order-Based Evaluation
We will �rst focus on a CPG variation for order-based

evaluation plans. In this section we will show that this prob-
lem is equivalent to JQPG restricted to left-deep trees. To
that end, we will de�ne the cost model functions for both
problems and then present the equivalence theorem.
Our cost function Costord will re�ect the number of par-

tial matches coexisting in memory within the time window.
The calculations will be based on the arrival rates of the
events and the selectivities of the predicates.
Let seli,j denote the selectivity of ci,j , i.e., the prob-

ability of a partial match containing instances of events
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of types Ti and Tj to pass the condition. Additionally,
let r1, · · · rn denote the arrival rates of corresponding event
types T1, · · ·Tn. Then, the expected number of primitive
events of type Ti arriving within the time windowW isW ·ri.
Let O = (Tp1 , Tp2 , · · ·Tpn) ; pi ∈ [1, n] denote an execution
order. Then, during pattern evaluation according to O, the
expected number of partial matches of length k, 1 ≤ k ≤ n
is given by:

PM (k) =W k ·
k∏

i=1

rpi ·
∏

i,j≤k;i≤j

selpi,pj .

The overall cost function we will attempt to minimize is
thus the sum of partial matches of all sizes, as follows:

Costord (O) =

n∑
k=1

W k ·
k∏

i=1

rpi ·
∏

i,j≤k;i≤j

selpi,pj

 .

For the JQPG problem restricted to output left-deep trees
only, we will use the two-way join cost function C (S, T )
de�ned in Section 2.5. Let L be a left-deep tree and let
{i1, i2, · · · , in} be the order in which input relations are to
be joined according to L. Let Pk, 1 ≤ k < n denote the
result of joining the �rst k tables by L (that is, P1 = Ri1 ,
P2 = Ri1 ./ Ri2 , etc.). In addition, let C1 = |Ri1 | · fi1,i1
be the cost of the initial selection from Ri1 . Then, the cost
of L will be de�ned according to a left-deep join (LDJ) cost
function:

CostLDJ (L) = C1 +

n∑
k=2

C (Pk−1, Rik ) .

We are now ready to formally prove the statement formu-
lated in the beginning of the section.

Theorem 1. Given a pure conjunctive pattern P , the
problem of �nding an order-based evaluation plan for P min-
imizing Costord is equivalent to the Join Query Plan Gen-
eration problem for left-deep trees subject to CostLDJ .

We will only show here the reduction from CPG to JQPG,
which will be used in the later sections to apply join plan
generation algorithms on CEP patterns. The opposite di-
rection is symmetric and can be found in [27].
Given a pure conjunctive pattern P de�ned over event

types T1, · · · , Tn with predicates ci,j : 1 ≤ i, j ≤ n, let
R1, · · · , Rn be a set of relations such that each Ri corre-
sponds to an event type Ti. For each attribute of Ti, in-
cluding the timestamp, a matching column will be de�ned
in Ri. The cardinality of Ri will be set to W · ri, and, for
each predicate ci,j with selectivity seli,j , an identical pred-
icate will be formed between the relations Ri and Rj . We
will de�ne the query corresponding to P as follows:

SELECT * FROM R1, · · ·Rn

WHERE (c1,1 AND · · · AND cn,n) .

We will show that a solution to this instance of the JQPG
problem is also a solution to the initial CPG problem. Recall
that a left-deep JQPG solution L minimizes the function
CostLDJ . By opening the recursion and substituting the
parameters with those of the original problem, we get:

CostLDJ (L) = C1 +

n∑
k=2

C (Pk−1, Rik ) =

= |Ri1 | · fi1,i1 +

n∑
k=2

 k∏
j=1

∣∣Rij

∣∣ · ∏
j.l≤k;j≤l

fij ,il

 =

=

n∑
k=1

 k∏
j=1

(
W · rij

)
·

∏
j.l≤k−1;j≤l

selij ,il

 = Costord (O) .

Consequently, the solution that minimizes CostLDJ also
minimizes Costord, which completes the proof.�
In [13] the authors showed the problem of Join Query

Plan Generation for left-deep trees to be NP-complete for
the general case of arbitrary query graphs. From this result
and from the equivalence stated by Theorem 1 (proven in
full in [27]) we will deduce the following corollary.

Corollary 1. The problem of �nding an order-based eval-
uation plan for a general pure conjunctive complex event
pattern that minimizes Costord is NP-complete.

3.2 Tree-Based Evaluation
In this section, we will extend Theorem 1 to tree-based

evaluation plans. This time we will consider the unrestricted
JQPG problem, allowed to return bushy trees. Similarly to
Section 3.1, we will start by de�ning the cost functions and
then proceed to the proof of the extended theorem.
We will de�ne the cost model for evaluation trees in a

manner similar to Section 3.1. We will estimate the number
of partial matches accumulated in each node of the evalua-
tion tree and sum them up to produce the cost function.
For a leaf node l collecting events of type Ti, the expected

number of partial matches is equal to the number of events
of type Ti arriving inside a time window:

PM(l) =W · ri.

To obtain an estimate for an internal node in, we multiply
the cost function values of its children by the total selectivity
of the predicates veri�ed by this node:

PM(in) = PM (in.left) · PM (in.right) · SELLR (in) ,

where SELLR is the selectivity of the predicates de�ned
between event types accepted at the left and the right sub-
trees of node in, or, more formally:

SELLR (in) =
∏

ei ∈ in.ltree; ej ∈ in.rtree
seli,j .

The total cost function on a tree T is thus de�ned as
follows:

Costtree (T ) =
∑

N∈nodes(T )

PM (N) .

For bushy trees, we will extend the cost function de�ned
in Section 3.1. The cost of a tree node N will be de�ned as
follows:

C (N) =


|Ri| N is a leaf representing Ri

|L| · |R| · fL,R N is an internal node representing

a sub− join L ./ R,

with the bushy join (BJ) cost function de�ned as follows:

CostBJ (T ) =
∑

N∈nodes(T )

C (N) .

We will now extend Theorem 1 to tree-based plans.
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Theorem 2. Given a pure conjunctive pattern P , the
problem of �nding a tree-based evaluation plan for P mini-
mizing Costtree is equivalent to the Join Query Plan Gen-
eration problem subject to CostBJ .

To prove the theorem, we decompose each of the tree cost
functions Costtree, CostBJ into two components, separately
calculating the cost of the leaves and the internal nodes:
Costltree (T ) =

∑
N∈leaves(T ) PM (N)

Costintree (T ) =
∑

N∈in_nodes(T ) PM (N)

CostlBJ (T ) =
∑

N∈leaves(T ) C (N)

CostinBJ (T ) =
∑

N∈in_nodes(T ) C (N) .

Obviously, the following equalities hold:

Costtree (T ) = Costltree (T ) + Costintree (T )

CostBJ (T ) = CostlBJ (T ) + CostinBJ (T ) .

Thus, it is su�cient to prove Costltree (T ) = CostlBJ (T )
and Costltree (T ) = CostinBJ (T ) for every T . From here it
will follow that the solution minimizing Costtree will also
minimize CostBJ and vice versa.
Applying either direction of the reduction from Theorem

1, we observe the following for the �rst pair of functions:

Costltree (T ) =
∑

N∈leaves(T )

PM (N) =

n∑
i=1

W · ri =

=

n∑
i=1

|Ri| =
∑

N∈leaves(T )

C (N) = CostlBJ (T ) .

For the second pair of functions, we will �rst expand the
recursion of Costintree:

Costintree (T ) =
∑

N∈in_nodes(T )

PM (N) =

=
∑

N∈in_nodes(T )

PM (N.left)·PM (N.right)·SELLR (N) =

=
∑

N∈in_nodes(T )

 ∏
m∈leaves(N)

W · rm ·
∏

i,j∈leaves(N)

seli,j

 ,

where leaves (N) denotes the leaves of a tree rooted at N .
By similarly opening the recursion of CostinJB we obtain:

CostinBJ (T ) =

∑
N∈in_nodes(T )

 ∏
m∈leaves(N)

|Rm| ·
∏

i,j∈leaves(N)

fi,j

 .

After substituting rm = |Rm|
W

and selpi,pj = fpi,pj , the
two expressions are identical, which completes the proof.�
The CPG-JQPG reduction that we will use for tree-based

evaluation is the one demonstrated in Theorem 1 for order-
based evaluation.
By Theorem 2 and the generalization of the result in [13],

we derive the following corollary.

Corollary 2. The problem of �nding a tree-based eval-
uation plan for a general pure conjunctive complex event
pattern that minimizes Costtree is NP-complete.

3.3 Join Query Types
As Corollaries 1 and 2 imply, no e�cient algorithm can

be devised to optimally solve CPG for a general conjunctive
pattern unless P = NP . However, better complexity results
may be available under certain assumptions regarding the
pattern structure. Numerous works considered the JQPG
problem for restricted query types, that is, speci�c topolo-
gies of the query graph de�ning the inter-relation conditions.
Examples of such topologies include clique, tree, and star.
It was shown in [24, 32] that an optimal plan can be

computed in polynomial time for left-deep trees and queries
forming an acyclic graph (i.e., tree queries), provided that
the cost function has the ASI (adjacent sequence interchange)
property [39]. The left-deep tree cost function CostLDJ has
this property [13], making the result applicable for our sce-
nario. A polynomial algorithm without the ASI requirement
was proposed for bushy tree plans for chain queries [40].
From Theorems 1 and 2 we can conclude that, for conjunc-
tive patterns only, CPG∈P under the above constraints.
However, these results only hold when the plans produced

by a query optimizer are not allowed to contain cross prod-
ucts [13, 40]. While this limitation is well-known in rela-
tional optimization [50], it is not employed by the existing
CPG methods [6, 30, 36, 45]. Thus, even when an exact
polynomial algorithm is applicable to CPG, it is inferior to
native algorithms in terms of the considered search space
and can only be viewed as a heuristic. In that sense, it is
similar to the greedy and randomized approaches [47, 48].
Other optimizations utilizing the knowledge of the query

type were proposed. For example, the optimal bushy plan
was empirically shown to be identical to the optimal left-
deep plan for star queries and, in many cases, for grid queries
[47]. This observation allows us to utilize a cheaper left-deep
algorithm for the above query types without compromising
the quality of the resulting plan.
With the introduction of additional pattern types (Section

4) and event selection strategies (Section 5.2), new query
graph topologies might be identi�ed and type-speci�c e�-
cient algorithms designed. This topic is beyond the scope of
this paper and is a subject for future work.
Although not used directly by the JQPG algorithms, the

order-based CPG cost functions Costord and Costlatord (that
we will introduce in Section 5.1) also have the ASI property.
We formally prove this in the extended paper [27].

4. JQPG FOR GENERAL PATTERN TYPES
The CPG-JQPG reduction presented above only applies

to pure conjunctive patterns. However, real-world patterns
are much more diverse. To complete the solution, we have
to consider simple patterns containing SEQ, OR, NOT and
KL operators. We also have to address nested patterns.
This section describes how a pattern of each of the afore-

mentioned types can be represented and detected as either
a pure conjunctive pattern or their union. The transforma-
tions presented below are only applied for the purpose of
plan generation, that is, no actual conversion takes place
during evaluation. The formal correctness proofs for the
shown reductions can be found in the extended paper [27].
Sequence patterns. We observe that a sequence pattern

is merely a conjunctive pattern with additional temporal
constraints, i.e., predicates on the values of the timestamp
attribute. Thus, a general pure sequence pattern of the form
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PATTERN SEQ (T1 e1, T2 e2, · · · , Tn en)
WHERE (c1,1 ∧ c1,2 ∧ · · · ∧ cn,n−1 ∧ cn,n)

can be rewritten as follows without any semantic change:

PATTERN AND (T1 e1, T2 e2, · · · , Tn en)
WHERE (c1,1 ∧ · · · ∧ cn,n∧

∧ (e1.ts < e2.ts) ∧ · · · ∧ (en−1.ts < en.ts)).

An instance of the sequence pattern is thus reduced from
CPG to JQPG similarly to a conjunctive pattern, with the
timestamp column added to each relation Ri representing an
event type Ti, and constraints on the values of this column
introduced into the query representation.
Kleene closure patterns. In a pattern with an event

type Ti under a KL operator, any subset of events of Ti

within the time window can participate in a match. During
plan generation, we are interested in modeling this behavior
in a way comprehensible by a JQPG algorithm, that is, using
an equivalent pattern without Kleene closure. To that end,
we introduce a new type T ′i to represent all event subsets
accepted by KL (Ti), that is, the power set of events of Ti.
A set of k events of type Ti will be said to contain 2k �events�
of type T ′i , one for each subset of the original k events. The
new pattern is constructed by replacing KL (Ti) with T ′i .
Since a time window of size W contains 2ri·W subsets of Ti

(where ri is the arrival rate of Ti), the arrival rate r
′
i of T

′
i is

set to 2ri·W

W
. The predicate selectivities remain unchanged.

For example, given the following pattern with the arrival
rate of 5 events per second for each event type:

PATTERN AND(A a,KL(B b),C c)
WHERE (true ) WITHIN 10 seconds,

the pattern to be utilized for plan generation will be:

PATTERN AND(A a,B' b,C c)
WHERE (true ) WITHIN 10 seconds.

The arrival rate of B′ will be calculated as r′B = 2rB ·W

W
=

1
10
· 250. A plan generation algorithm will then be invoked

on the new pattern. Due to an extremely high arrival rate of
B′, its processing will likely be postponed to the latest step
in the plan, which is also the desired strategy for the original
pattern in this case. B′ will then be replaced with B in the
resulting plan, and the missing Kleene closure operator will
be added in the respective stage (by modifying an edge type
for a NFA [29] or a node type for a tree [36]), thus producing
a valid plan for detecting the original pattern.
Negation patterns. Patterns with a negated event will

not be rewritten. Instead, we will introduce a negation-
aware evaluation plan creation strategy. First, a plan will
be generated for a positive part of a pattern as described
above. Then, a check for the appearance of a negated event
will be added at the earliest point possible, when all positive
events it depends on are already received. This construction
process will be implemented by augmenting a plan with a
transition to the rejecting state for a NFA [29] or with a
NSEQ node for a ZStream tree [36]. For example, given
a pattern SEQ(A,NOT(B),C,D), the existence of a matching
B in the stream will be tested immediately after the lat-
est of A and C have been accepted. Since both Lazy NFA

and ZStream incorporate event bu�ering, this technique is
feasible and easily applicable.
Nested patterns. Patterns of this type can contain an

unlimited number of n-ary operators. After transforming
SEQ to AND as shown above, we are left with only two
such operator types, AND and OR. Given a nested pat-
tern, we convert the pattern formula to DNF form, that is,
an equivalent nested disjunctive pattern containing a list of
simple conjunctive patterns is produced. Then, a separate
evaluation plan is created for each conjunctive subpattern,
and their detection proceeds independently. The returned
result is the union of all subpattern matches.
Note that applying the DNF transformation can cause

some expressions to appear in multiple subpatterns. For
example, a nested pattern of the form AND(A,B,OR(C,D))
will be converted to a disjunction of conjunctive patterns
AND(A,B,C)) and AND(A,B,D)). As a result, redundant com-
putations will be performed by automata or trees corre-
sponding to di�erent subpatterns (e.g., comparing A's to
B's). This problem can be solved by applying known multi-
query techniques [17, 35, 43, 44, 54].

5. ADAPTING JQPG ALGORITHMS TO
COMPLEX EVENT PROCESSING

The theoretical results from previous sections imply that
any existing technique for determining a close-to-optimal
execution plan for a join query can be adapted and used in
CEP applications. However, many challenges arise when at-
tempting to perform this transformation procedure in prac-
tice. First, despite the bene�ts of the cost function intro-
duced in Section 2.4, simply counting the partial matches
is not always su�cient. Additional performance metrics,
such as the latency, are often essential. Second, complex
event speci�cation languages contain various constructs not
present in traditional databases, such as event selection strate-
gies. In this section, we will show how these extensions can
be incorporated into existing JQPG algorithms.
In addition, the arrival rates of event types and the pred-

icate selectivities are rarely obtained in advance and can
change rapidly over time. An adaptive solution must be de-
vised to measure the desired statistics on-the-�y and adapt
the evaluation plan accordingly [9, 19, 30, 36]. Due to the
considerable importance and complexity of adaptive CEP,
we devote a separate paper [28] to discuss this problem.

5.1 Pattern Detection Latency
Latency is de�ned as the di�erence between the arrival

time of the last event comprising a full match and the time of
reporting this match. As many existing applications involve
strong real-time requirements, pattern detection latency is
a popular optimization goal. Unfortunately, in most cases it
is impossible to simultaneously achieve maximal throughput
and minimal latency. Trade-o�s between the two are widely
studied in the CEP context [6, 52].
Detection schemes utilizing out-of-order evaluation, like

those discussed in this paper, often su�er from increased la-
tency as compared to simpler approaches. The main reason
is that, when an execution plan is optimized for maximal
throughput, the last event in the pattern may not be the
last event in the plan. After this event is accepted, the sys-
tem still needs to process the remaining part of the plan,
resulting in late detection of the full match.
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Algorithms adopted from JQPG do not naturally support
latency. However, since they are generally independent of
the cost model, this problem can be solved by providing an
appropriate cost function. In addition to functions presented
in Sections 3.1 and 3.2, which we will refer to as Costtrptord

and Costtrpttree, a new pair of functions, Costlatord and Cost
lat
tree,

will re�ect the expected latency of a plan. To combine the
functions, many existing multi-objective query optimization
techniques can be used, e.g., pareto optimal plan calcula-
tion [6] or parametric methods [49]. Systems with limited
computational resources may utilize simpler and less expen-
sive solutions, such as de�ning the total cost function as a
weighted sum of its two components:

Cost (Plan) = Costtrpt (Plan) + α · Costlat (Plan) ,

where α is a user-de�ned parameter adjusted to �t the re-
quired throughput-latency trade-o�. This latter model was
used during our experiments (Section 6).
We will now formally de�ne the latency cost functions.

For a sequence pattern, let Tn denote the last event type in
the order induced by the pattern. Then, for an order-based
plan O, let SuccO (Tn) denote the event types succeeding
Tn in O. Following the arrival of an event of type Tn, in the
worst case we need to examine all locally bu�ered events of
types in SuccO (Tn). There are W · ri such events of type
Ti, hence Cost

lat
ord (O) =

∑
Ti∈SuccO(Tn)W · ri.

Similarly, for a tree-based plan T , let AncT (Tn) denote
all ancestor nodes of the leaf corresponding to Tn in T , i.e.,
nodes located on a path from Tn to the root (excluding the
root). Let us examine the traversal along this path. When
an internal node N with two children L and R receives a
partial match from, say, the child L, it compares this match
to all partial matches currently bu�ered on R. Thus, the
worst-case detection latency of a sequence pattern ending
with Tn is proportional to the number of partial matches
bu�ered on the siblings of the nodes in AncT (Tn). More
formally, let sibling (N) denote the other child of the parent
of N (for the root this function will be unde�ned). Then,
Costlattree (T ) =

∑
N∈AncT (Tn) PM (sibling (N)) .

For a conjunctive pattern, estimating the detection la-
tency is a more di�cult problem, as the last arriving event
is not known in advance. One possible approach is to intro-
duce a new system component, called the output pro�ler.
The output pro�ler examines the full matches reported as
output and records the most frequent temporal orders in
which primitive events appear. Then, as enough informa-
tion is collected, the latency function may be de�ned as in
the previous case, subject to the event arrival order with the
highest probability of appearance.
Finally, for a disjunctive pattern, we de�ne the latency

cost function as the maximum over the disjunction operands.
This de�nition applies also for arbitrary nested patterns.

5.2 Event Selection Strategies
In addition to event types, operators and predicates, CEP

patterns are further de�ned using the event selection strate-
gies [5, 16, 21]. An event selection strategy speci�es how
events are selected from an input stream for partial matches.
In this section, we discuss four existing strategies and show
how a reduction from JQPG to CPG can support them.
Until now, we have implicitly assumed the skip-till-any-

match selection strategy [5], which permits a primitive event
to participate in an unlimited number of matches. This

strategy is the most �exible, as it allows all possible combi-
nations of events comprising a match to be detected. How-
ever, some streaming applications do not require such func-
tionality. Thus, additional strategies were de�ned.
The skip-till-next-match selection strategy [5] limits an

event to appear in at most a single full match. This is en-
forced by �consuming� events already assigned to a match.
While this strategy prevents some matches from being dis-
covered, it considerably simpli�es the detection process. In a
system operating under skip-till-next-match, our cost model
will no longer provide a correct estimate for a number of par-
tial matches. However, since most JQPG algorithms do not
depend on a speci�c cost function, we can solve this issue by
replacing Costord and Costtree with newly devised models.
Let us examine the number of partial matches in an order-

based setting under the skip-till-next-match strategy. We
will denote by m [k] the number of matches of size k ex-
pected to exist simultaneously in a time window. Obviously,
m [1] = W · rp1 , where Tp1 is the �rst event type in the se-
lected evaluation order. For the estimate of m [2], there are
two possibilities. If rp1 > rp2 , there will not be enough
instances of Tp2 to match all existing instances of Tp1 , and
some of the existing matches of size 1 will never be extended.
Hence, m [2] = W · rp2 in this case. Otherwise, as an exist-
ing partial match cannot be extended by more than a single
event of type Tp2 , m [1] will be equal to m [2]. In addition, if
a mutual condition exists between Tp1and Tp2 , the resulting
expression has to be multiplied by selp1,p2 .
By extending this reasoning to an arbitrary partial match,

we obtain the following expression:

m [k] =W ·min (rp1 , rp2 , · · · , rpk )·
∏

i,j≤k;i≤j

selpi,pj ; 1 ≤ k ≤ n.

And the new cost function for order-based CPG is

Costnext
ord (O) =

n∑
k=1

(W ·m [k]) .

Using similar observations, the above result can be triv-
ially extended for the tree-based model.
The two remaining selection strategies, strict contiguity

and partition contiguity [5], further restrict the appearance
of events in a match. The strict contiguity requirement
forces the selected events to be contiguous in the input
stream, i.e., it allows no other events to appear in between.
The partition contiguity strategy is a slight relaxation of
the above. It partitions the input stream according to some
condition and only requires the events located in the same
partition to be contiguous.
We will base the cost models of these strategies on the one

presented above for skip-till-next-match. To express strict
contiguity, we will augment each event with an attribute
re�ecting its position in the stream. Then, we will add a
condition for each pair of potentially neighboring events, re-
quiring the numbers to be adjacent. For partition contiguity,
the new attribute will represent an inner, per-partition or-
der rather than a global one. The new contiguity condition
will �rst compare the partition IDs of the two events, and
only verify their positional counters if the IDs match. We
assume that the value distribution across the partitions re-
mains unchanged. Otherwise, the evaluation plan is to be
generated on a per-partition basis. Techniques incorporat-
ing per-partition plans are beyond the scope of this paper
and are a subject for our future research.
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6. EXPERIMENTAL EVALUATION
In this section, we present our experimental study on real-

world data. Our main goal was to compare some of the well-
known JQPG algorithms, adapted for CPG as described
above, to the currently used methods developed directly for
CPG. The results demonstrate the superiority of the former
in terms of quality and scalability of the generated plans.

6.1 CPG and JQPG Algorithms
We implemented 5 order-based and 3 tree-based CPG al-

gorithms. Out of those, 3 order-based and 2 tree-based al-
gorithms are JQPG methods adapted to the CEP domain.
The rest are native CPG techniques. The order-based plan
generation algorithms included the following:
� Trivial order (TRIVIAL) - the evaluation plan is set to

the initial order of the sequence pattern. This strategy is
used in various CEP engines based on NFAs, such as SASE
[51] and Cayuga [18].
� Event frequency order (EFREQ) - the events are pro-

cessed by the ascending order of their arrival frequencies.
This is the algorithm of choice for frameworks such as PB-
CED [6] and the Lazy NFA [30].
�Greedy cost-based algorithm (GREEDY) [48] - this greedy

heuristic algorithm for JQPG proceeds by selecting at each
step the relation which minimizes the value of the cost func-
tion. Here and below, unless otherwise stated, we will use
cost functions minimizing the intermediate results size (Sec-
tions 3.1 and 3.2).
� Iterative improvement algorithm (II-RANDOM / II-

GREEDY) [48] - a local search JQPG algorithm, starting
from some initial execution plan and attempting a set of
moves to improve the cost function, until a local minimum
is reached. We experimented with two variations of this al-
gorithm. The �rst, denoted as II-RANDOM, starts from
a random order. The second, denoted as II-GREEDY, �rst
applies a greedy algorithm to create an initial state. In both
cases, the functions used to traverse between states are swap
(the positions of two event types in a plan are swapped) and
cycle (the positions of three event types are shifted).
�Dynamic programming algorithm for left-deep trees (DP-

LD) [46] - this exponential-time algorithm utilizes dynamic
programming to produce a provably optimal execution plan.
The result is limited to a left-deep tree topology.
For the tree-based plan generation algorithms, the follow-

ing were used:
� ZStream plan generation algorithm (ZSTREAM) [36] -

creates an evaluation tree by iterating over all possible tree
topologies for a given sequence of leaves.
� ZStream with greedy cost-based ordering (ZSTREAM-

ORD) - as was demonstrated in Section 2.3, the limitation
of the ZStream algorithm is in its inability to modify the
order of tree leaves. This algorithm attempts to utilize an
order-based JQPG method to overcome this drawback. It
operates by �rst executing GREEDY on the leaves of the
tree to produce a 'good' ordering, then applying ZSTREAM
on the resulting list.
� Dynamic programming algorithm for bushy trees (DP-

B) [46] - same as DP-LD, but without the topology restric-
tion.

6.2 Experimental Setup
The data used during the experiments was taken from

the NASDAQ stock market historical records [1]. Each data

(a)

(b)

Figure 3: Throughput for di�erent pattern types (higher is
better): (a) order-based methods; (b) tree-based methods.

record represents a single update to the price of a stock,
spanning a 1-year period and covering over 2100 stock iden-
ti�ers with prices periodically updated. Our input stream
contained 80,509,033 primitive events, each consisting of a
stock identi�er, a timestamp, and a current price. For each
identi�er, a separate event type was de�ned. We also aug-
mented the event format with the precalculated di�erence
between the current and the previous price of each stock.
The majority of the experiments were performed sepa-

rately on 5 sets of patterns: (1) pure sequences; (2) se-
quences with a negated event (marked as 'negation' pat-
terns in the graphs below); (3) conjunctions; (4) sequences
containing an event under KL operator (marked as 'Kleene
closure' patterns); (5) composite patterns, consisting of a
disjunction of three sequences (marked as 'disjunction' pat-
terns). Each set contained 500 patterns with the sizes (num-
bers of the participating events) ranging from 3 to 7, 100
patterns for each value. The pattern time window was set
to 20 minutes.
The pattern structure was motivated by the problem of

monitoring the relative changes in stock prices. Each pat-
tern included a number of predicates, roughly equal to half
the size of a pattern, comparing the di�erence attributes of
two of the involved event types. For example, one pattern
of size 3 from the set of conjunctions was de�ned as follows:

PATTERN AND(MSFTStock m, GOOGStock g, INTCStock i)
WHERE (m.difference < g.difference)
WITHIN 20 minutes.

All arrival rates and predicate selectivities were calculated
during the preprocessing stage. The measured arrival rates
varied between 1 and 45 events per second, and the selectiv-
ities ranged from 0.002 to 0.88. As discussed in Section 5, in
most real-life scenarios these statistics are not available in
advance and may �uctuate frequently and signi�cantly dur-
ing runtime. We experimentally study the impact of these
issues in a separate paper [28].
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(a)

(b)

Figure 4: Memory consumption for di�erent pattern types
(lower is better): (a) order-based methods; (b) tree-based
methods.

To compare a set of plan generation algorithms, we imple-
mented two evaluation mechanisms discussed in this paper,
the out-of-order lazy NFA [30] and the instance-based tree
model based on ZStream [36] as presented in Section 2.3.
The former was then used to evaluate plans created by each
order-based CPG or JQPG algorithm on the patterns gen-
erated as described below. The latter was similarly used for
comparing tree-based plans.
We selected throughput and memory consumption as our

performance metrics for this study. Throughput was de�ned
as the number of primitive events processed per second dur-
ing pattern detection using the selected plan. To estimate
the memory consumption, we measured the peak memory
required by the system during evaluation. The metrics were
acquired separately for each pattern, and the presented re-
sults were then calculated by taking the average.
All models and algorithms were implemented in Java. The

experiments were run on a machine with 2.20 Ghz CPU and
16.0 GB RAM and took about 2.5 months to complete.

6.3 Experimental Results
Figures 3 and 4 present the comparison of the plan genera-

tion algorithms described in Section 6.1 in terms of through-
put and memory consumption, respectively. Each group rep-
resents the results obtained on a particular set of patterns
described above, and each bar depicts the average value of a
performance metric for a particular algorithm. For clarity,
order-based and tree-based methods are shown separately.
On average, the plans generated using JQPG algorithms

achieve a considerably higher throughput than those cre-
ated using native CPG methods. For order-based plans, the
perceived gain of the best-performed DP-LD over EFREQ
ranged from a factor of 1.7 for iteration patterns to 2.7 for
conjunctions. Similar results were obtained for tree-based
plans (ZSTREAM vs. DP-B). JQPG methods also display
better overall memory utilization. The order-based JQPG

(a)

(b)

Figure 5: Throughput as a function of the sequence pattern
length (higher is better): (a) order-based methods; (b) tree-
based methods.

plans consume about 65-85% of the memory required by
those produced by EFREQ. An even greater di�erence was
observed for tree-based plans, with DP-B using up to almost
4 times less memory than the CEP-native ZSTREAM.
Unsurprisingly, the best performance was observed for

plans created using the exhaustive algorithms based on dy-
namic programming, namely DP-LD and DP-B. However,
due to the exponential complexity of these algorithms, their
use in practice may be problematic for large patterns, es-
pecially in systems where new evaluation plans are to be
generated with high frequency. Thus, one goal of the ex-
perimental study was to test the exhaustive JQPG methods
against the nonexhaustive ones (such as GREEDY and II al-
gorithms) to see whether the performance gain of the former
category is worth the high plan generation cost.
For the order-based case, the answer is indeed negative,

as the results for DP-LD and the heuristic JQPG algorithms
are comparable and no signi�cant advantage is achieved by
the former. Due to the relatively small size of the left-deep
tree space, the heuristics usually succeed in locating the
globally optimal plan. Moreover, the II-GREEDY algorithm
generally produces plans that are slightly more memory-
e�cient. This can be attributed to our cost model, which
only counts the partial matches, but does not capture the
other factors such as the size of the bu�ered events. The
picture looks entirely di�erent for the tree-based methods,
where DP-B displays a convincing advantage over both the
basic ZStream algorithm and its combination with the greedy
heuristic method.
Another important conclusion from Figures 3 and 4 is

that methods following the tree-based model greatly out-
perform the order-based ones, both in throughput and mem-
ory consumption. This is not a surprising outcome, as the
tree-based algorithms are capable of creating a signi�cantly
larger space of plans. However, the best order-based JQPG
algorithm (DP-LD) is comparable or even superior to the
CPG-native ZStream in most settings.
Figure 5 depicts the throughput as a function of the pat-

tern size. For lack of space, we only present here the evalu-
ation performed on sequence patterns. The results obtained
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(a)

(b)

Figure 6: Performance metrics as a function of the cost for
order-based and tree-based patterns: (a) throughput; (b)
memory consumption.

for the rest of the pattern sets, as well as the respective
memory consumption measurements, follow similar trends
and are discussed in the extended paper [27]. Although
the performance of all methods degrades drastically as the
pattern size grows, the relative throughput gain for JQPG
methods over native CPG methods is consistently higher
for longer sequences. This is especially evident for the tree-
based variation of the problem (5(b)), where the most ef-
�cient JQPG algorithm (DP-B) achieves 7.6 times higher
throughput than the native CPG framework (ZSTREAM)
for patterns of length 7, compared to a speedup of only 1.2
times for patterns of 3 events. We can thus conclude that, at
least for the pattern sizes considered in this study, the JQPG
methods provide a considerably more scalable solution.
In our next experiment, we evaluated the quality of the

cost functions used during plan generation. To that end,
we created 60 order-based and 60 tree-based plans for pat-
terns of various types using di�erent algorithms. The plans
were then executed on the stock dataset. The throughput
and the memory consumption measured during each execu-
tion are shown in Figure 6 as the function of the cost as-
signed to each plan by the corresponding function (Costord
or Costtree). The obtained throughput seems to be inversely
proportional to the cost, behaving roughly as 1

xc ; c ≥ 1. For
memory consumption, an approximately linear dependency
can be observed. These results match our expectations, as
a cheaper plan is supposed to yield better performance and
require less memory. We may thus conclude that the costs
returned by Costord and Costtree provide a reasonably ac-
curate estimation of the actual performance of a plan.
The above conclusion allowed us to repeat the experiments

summarized in Figure 5 for larger patterns, using the plan
cost as the objective function. We generated 200 patterns
of sizes ranging from 3 to 22. We then created a set of plans
for each pattern using di�erent algorithms and recorded the
resulting plan costs. Due to the exponential growth of the
cost with the pattern size, directly comparing the costs was
impractical. Instead, the normalized cost was calculated for
every plan. The normalized cost of a plan Pl created by
an algorithm A for a pattern P was de�ned as the cost of
a plan generated for P by the empirically worst algorithm
(the CEP-native EFREQ), divided by the cost of Pl.

(a)

(b)

Figure 7: Generation of large plans (selected algorithms):
(a) average normalized plan cost (higher is better); (b) aver-
age plan generation time (logarithmic scale, lower is better).
The results are presented as a function of pattern size.

The results for selected algorithms are depicted in Fig-
ure 7(a). Each data point represents an average normalized
cost for all plans of the same size created by the same algo-
rithm. As we observed previously, the DP-based join algo-
rithms consistently produced signi�cantly cheaper plans (up
to a factor of 57) than the heuristic alternatives. Also, the
worst JQPG method (GREEDY) and the best CPG method
(ZSTREAM) produced plans of similar quality, with the
former slightly overperforming the latter for larger pattern
sizes. The worst-performing EFREQ algorithm was used for
normalized cost calculation and is thus not shown.
Figure 7(b) presents the plan generation times measured

during the above experiment. The results are displayed in
logarithmic scale. While all algorithms incur only negligible
optimization overhead for small patterns, it grows rapidly
for methods based on dynamic programming (for a pattern
of length 22, it took over 50 hours to create a plan using DP-
B). This severely limits the applicability of the DP-based ap-
proaches when the number of events in a pattern is high. On
the other hand, all non-DP algorithms were able to complete
in under a second even for the largest tested patterns. The
join-based greedy algorithm (GREEDY) demonstrated the
best overall trade-o� between optimization time and quality.
Next, we studied the performance of the hybrid throughput-

latency cost model introduced in Section 5.1. Each of the
6 JQPG-based methods discussed in Section 6.1 was evalu-
ated using three di�erent values for the throughput-latency
trade-o� parameter α: 0, 0.5 and 1. Note that for the �rst
case (α = 0) the resulting cost model is identical to the one
de�ned in Section 3 and used in the experiments above. For
each algorithm and for each value of α, the throughput and
the average latency (in milliseconds) were measured.
Figure 8 demonstrates the results, averaged over 500 pat-

terns included in the sequence pattern set. Measurements
obtained using the same algorithm are connected by straight
lines, and the labels near the highest points (diamonds) indi-
cate the algorithms corresponding to these points. It can be
seen that increasing the value of α results in a signi�cantly
lower latency. However, this also results in a considerable
drop in throughput for most algorithms. By �ne-tuning this
parameter, the desired latency can be achieved with min-
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Figure 8: Throughput vs. latency using di�erent values
for the alpha parameter of the cost model.

Figure 9: Throughput for di�erent event selection strate-
gies (logarithmic scale).

imal loss in throughput. It can also be observed that the
tree-based algorithms DP-B and ZSTREAM-ORD achieve
a substantially better throughput-latency trade-o� as com-
pared to other methods.
Finally, we performed a comparative throughput evalua-

tion of the sequence pattern set under three di�erent event
selection strategies: skip-till-any-match, skip-till-next-match
and contiguity (Section 5.2). The results are depicted in Fig-
ure 9 for selected algorithms. Due to large performance gaps
between the examined methods, the results are displayed
in logarithmic scale. For skip-till-next-match, JQPG meth-
ods hold a clear advantage, albeit less signi�cant than the
one demonstrated above for skip-till-any-match. The oppo-
site observation can be made about the contiguity strategy,
where the trivial algorithm following a static plan outper-
forms other, more complicated methods. Due to the sim-
plicity of the event detection process and the lack of nonde-
terminism in this case, the plan set by an input speci�ca-
tion always performs best, while the alternatives introduce a
slight additional overhead of reordering and event bu�ering.

7. RELATED WORK
Systems for scalable detection of complex events have be-

come an increasingly important research �eld during last
decades [16, 21]. Their inception can be traced to earlier
systems for massive data stream processing [3, 8, 11, 12].
Later, a broad variety of general purpose complex event pro-
cessing solutions emerged [4, 6, 10, 15, 18, 30, 34, 36, 42, 45,
51], including the widely used commercial CEP providers,
such as Esper [2] and IBM System S [7].
Various performance optimization techniques are imple-

mented in CEP systems [23]. In [42], a rewriting frame-
work is described, based on unifying and splitting patterns.
A method for e�cient Kleene closure evaluation based on
sharing with postponed operators is discussed in [53], while

in [41] the above problem is solved by maintaining a com-
pact graph encoding of event sequences and utilizing it for
e�ective reuse. RunSAT [20] utilizes another approach, pre-
processing a pattern and setting optimal points for termi-
nation of the detection process. ZStream [36] presents an
optimization framework for optimal tree generation, based
on a complex cost model. Advanced methods were also pro-
posed for multi-query CEP optimization [17, 35, 43, 44, 54].
CEP engines utilizing the order-based evaluation approach

have also adopted di�erent optimization strategies. SASE
[51], Cayuga [18] and T-Rex [15] design e�cient data struc-
tures to enable smart runtime memory management. These
NFA-based mechanisms do not support out-of-order process-
ing, and hence are still vulnerable to the problem of large in-
termediate results. In [6, 30, 45], various pattern reordering
methods for e�cient order-based complex event detection
are described. None of these works takes the selectivities of
the event constraints into account.
Calculating an optimal evaluation plan for a join query

has long been considered one of the most important prob-
lems in the area of query optimization [47]. Multiple authors
have shown the NP-completeness of this problem for arbi-
trary query graphs [13, 24], and a wide range of methods
were proposed to provide either exact or approximate close-
to-optimal solutions [31, 32, 33, 38, 46, 47, 48].
Methods for join query plan generation can be roughly

divided into two main categories. The heuristic algorithms
produce fast solutions, but the resulting execution plans are
often far from the optimum. They are often based on com-
binatorial [25, 47, 48] or graph-based [32, 33] techniques.
The second category, the exhaustive algorithms, provide

provable guarantees on the optimality of the returned solu-
tions. These methods are often based on dynamic program-
ming [38, 46] and thus su�er from worst-case exponential
complexity. Hybrid techniques presenting a trade-o� be-
tween the speed of heuristic approaches and the precision of
DP-based approaches were also proposed [31].
Incorporating join optimization techniques from traditional

DBMSs was already considered in the �elds related to CEP,
such as XPath [22] and data stream processing [12, 23]. To
the best of our knowledge, none of the above works provides
a formal reduction to JQPG.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the relationship between CEP

Plan Generation and Join Query Plan Generation. It was
shown that the CPG problem is equivalent to JQPG for a
subset of pattern types, and reducible to it for other types.
We discussed how close-to-optimal solutions to CPG can be
e�ciently obtained in practice by applying existing JQPG
methods. The presented experimental evaluation results
supported our theoretical analysis. Our future work will tar-
get advanced challenges of applying join-related techniques
in the �eld of CEP, such as handling predicate dependencies
and data uncertainty.
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