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ABSTRACT
In exploratory data analysis, analysts often have a need to identify
histograms that possess a specific distribution, among a large class
of candidate histograms, e.g., find countries whose income distri-
bution is most similar to that of Greece. This distribution could
be a new one that the user is curious about, or a known distri-
bution from an existing histogram visualization. At present, this
process of identification is brute-force, requiring the manual gener-
ation and evaluation of a large number of histograms. We present
FastMatch: an end-to-end approach for interactively retrieving the
histogram visualizations most similar to a user-specified target, from
a large collection of histograms. The primary technical contribu-
tion underlying FastMatch is a probabilistic algorithm, HistSim, a
theoretically sound sampling-based approach to identify the top-k
closest histograms under ℓ1 distance. While HistSim can be used
independently, within FastMatch we couple HistSim with a novel
system architecture that is aware of practical considerations, em-
ploying asynchronous block-based sampling policies. FastMatch
obtains near-perfect accuracy with up to 35× speedup over ap-
proaches that do not use sampling on several real-world datasets.
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1. INTRODUCTION
In exploratory data analysis, analysts often generate and peruse a

large number of visualizations to identify those that match desired
criteria. This process of iterative “generate and test” occupies a
large part of visual data analysis [13, 30, 58], and is often cumber-
some and time consuming, especially on very large datasets that are
increasingly the norm. This process ends up impeding interaction,
preventing exploration, and delaying the extraction of insights.
Motivating Example: Census Data Exploration. Alice is explor-
ing a census dataset consisting of hundreds of millions of tuples,
with attributes such as gender, occupation, nationality, ethnicity,
religion, adjusted income, net assets, and so on. In particular, she
is interested in understanding how applying various filters impacts
the relative distribution of tuples with different attribute values. She
might ask questions like Q1: Which countries have similar distribu-
tions of wealth to that of Greece? Q2: In the United States, which
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professions have an ethnicity distribution similar to the profession
of doctor? Q3: Which (nationality, religion) pairs have a similar
distribution of number of children to Christian families in France?

This example represents a scenario that often arises in exploratory
data analysis—finding matches to a specific distribution. The focus
of this paper is to develop techniques for rapidly exploring a large
class of histograms to find those that match a user-specified target.

Referring to Q1 in our motivating example, a typical workflow
used by Alice may be the following: first, pick a country. Generate
the corresponding histogram. Does the visualization look similar
to that of Greece? If not, pick another, generate it, and repeat. Else,
record it, pick another, generate it, and repeat. If only a select few
countries have similar distributions, she may spend a huge amount
of time sifting through her data, or may simply give up early.

The Need for Approximation. Even if Alice generates all of the
candidate histograms (i.e., one for each country) in a single pass,
programmatically selecting the closest match to her target (i.e., the
Greece histogram), this could take unacceptably long. If the dataset
is tens of gigabytes and every tuple in her census dataset contributes
to some histogram, then any exact method must necessarily pro-
cess tens of gigabytes—on a typical workstation, this can take tens
of seconds even for in-memory data. Recent work suggests that
latencies greater than 500ms cause significant frustration for end-
users and lead them to test fewer hypotheses and potentially iden-
tify fewer insights [49]. Thus, in this work, we explore approximate
techniques that can return matching histogram visualizations with
accuracy guarantees, but much faster.

One tempting approach is to employ approximation using pre-
computed samples [7, 6, 5, 10, 28, 26], or pre-computed sketches
or other summaries [16, 56, 70]. Unfortunately, in an interactive ex-
ploration setting, pre-computed samples or summaries are not help-
ful, since the workload is unpredictable and changes rapidly, with
more than half of the queries issued one week completely absent in
the following week, and more than 90% of the queries issued one
week completely absent a month later [54]. In our case, based on
the results for one matching query, Alice may be prompted to ex-
plore different (and arbitrary) slices of the same data, which can be
exponential in the number of attributes in the dataset. Instead, we
materialize samples on-the-fly, which doesn’t suffer from the same
limitations and has been employed for generating approximate vi-
sualizations incrementally [60], and while preserving ordering and
perceptual guarantees [42, 8]. To the best of our knowledge, how-
ever, on-demand approximate sampling techniques have not been
applied to the problem of evaluating a large number of visualiza-
tions for matches in parallel.

Key Research Challenges. In developing an approximation-based
approach for rapid histogram matching we immediately encounter
a number of theoretical and practical challenges.
1. Quantifying Importance. To benefit from approximation, we
need to be able to quantify which samples are “important” to fa-
cilitate progress towards termination. It is not clear how to as-
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sess this importance: at one extreme, it may be preferable to sam-
ple more from candidate histograms that are more “uncertain”, but
these histograms may already be known to be rather far away from
the target. Another approach is to sample more from candidate
histograms at the “boundary” of top-k, but if these histograms are
more “certain”, refining them further may be useless. Another chal-
lenge is when we quantify the importance of samples: one approach
would be to reassess importance every time new data become avail-
able, but this approach could be computationally costly.
2. Deciding to Terminate. Our algorithm needs to ascribe a con-
fidence in the correctness of partial results in order to determine
when it may safely terminate. This “confidence quantification” re-
quires a statistical test. If we perform this test too often, we spend
a significant amount of time doing computation that could be spent
performing I/O, and we lose statistical power since we are perform-
ing more tests; if we do not perform this test often enough, we may
end up taking many more samples than are necessary to terminate.
3. Challenges with Storage Media. When performing sampling
from traditional storage media, the cost to fetch samples is locality-
dependent; truly random sampling is extremely expensive due to
random I/O, while sampling at the level of blocks is much more
efficient, but is less random.
4. Communication between Components. It is crucial for our over-
all system to not be bottlenecked on any component. In particu-
lar, the process of quantifying importance (via the sampling man-
ager) must not block the actual I/O performed; otherwise, the time
for execution may end up being greater than the time taken by
exact methods. As such, these components must proceed asyn-
chronously, while also minimizing communication across them.

Our Contributions. In this paper, we have developed an end-to-
end architecture for histogram matching, dubbed FastMatch, ad-
dressing the challenges identified above:
1. Importance Quantification Policies. We develop a sampling en-
gine that employs a simple and theoretically well-motivated cri-
terion for deciding whether processing particular portions of data
will allow for faster termination. Since the criterion is simple, it
is easy to update as we process new data, “understanding” when it
has seen enough data for some histogram, or when it needs to take
more data to distinguish histograms that are close to each other.
2. Termination Algorithm. We develop a statistics engine that re-
peatedly performs a lightweight “safe termination” test, based on
the idea of performing multiple hypothesis tests for which simul-
taneous rejection implies correctness of the results. Our statistics
engine further quantifies how often to run this test to ensure timely
termination without sacrificing too much statistical power.
3. Locality-aware Sampling. To better exploit locality of storage
media, FastMatch samples at the level of blocks, proceeding se-
quentially. To estimate the benefit of blocks, we leverage bitmap
indexes in a cache-conscious manner, evaluating multiple blocks
at a time in the same order as their layout in storage. Our tech-
nique minimizes the time required for the query output to satisfy
our probabilistic guarantees.
4. Decoupling Components. Our system decouples the overhead of
deciding which samples to take from the actual I/O used to read the
samples from storage. In particular, our sampling engine utilizes a
just-in-time lookahead technique that marks blocks for reading or
skipping while the I/O proceeds unhindered, in parallel.

Overall, we implement FastMatch within the context of a bitmap-
based sampling engine, which allows us to quickly determine whether
a given memory or disk block could contain samples matching ad-
hoc predicates. Such engines were found to effectively support ap-
proximate generation of visualizations in recent work [8, 42, 60].
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Figure 1: Example visual target and candidate histogram

We find that our approximation-based techniques working in tan-
dem with our novel systems components lead to speedups ranging
from 8× to over 35× over exact methods, and moreover, unlike
less-sophisticated variants of FastMatch, whose performance can
be highly data-dependent, FastMatch consistently brings latency
to near-interactive levels.

Related Work. To the best of our knowledge, there has been no
work on sampling to identify histograms that match user specifi-
cations. Sampling-based techniques have been applied to generate
visualizations that preserve visual properties [8, 42], and for incre-
mental generation of time-series and heat-maps [60]—all focusing
on the generation of a single visualization. Similarly, Pangloss [53]
employs approximation via the Sample+Seek approach [26] to gen-
erate a single visualization early, while minimizing error. M4 uses
rasterization without sampling to reduce the dimensionality of a
time-series visualization and generate it faster [40]. SeeDB [65]
recommends visualizations to help distinguish between two subsets
of data while employing approximation. However, their techniques
are tailored to evaluating differences between pairs of visualiza-
tions (that share the same axes, while other pairs do not share the
same axes). In our case, we need to compare one visualization ver-
sus others, all of which have the same axes and have comparable
distances, hence the techniques do not generalize.

Recent work has developed zenvisage [62], a visual exploration
tool, including operations that identify visualizations similar to a
target. However, to identify matches, zenvisage does not con-
sider sampling, and requires at least one complete pass through the
dataset. FastMatch was developed as a back-end with such inter-
faces in mind to support rapid discovery of relevant visualizations.
Additional related work is surveyed in Section 6.

2. PROBLEM FORMULATION
In this section, we formalize the problem of identifying histograms

whose distributions match a reference.

2.1 Generation of Histograms
We start with a concrete example of the typical database query

an analyst might use to generate a histogram. Returning to our ex-
ample from Section 1, suppose an analyst is interested in studying
how population proportions vary across income brackets for vari-
ous countries around the world. Suppose she wishes to find coun-
tries with populations distributed across different income brackets
most similarly to a specific country, such as Greece. Consider the
following SQL query, where $COUNTRY is a variable:

SELECT income_bracket, COUNT(*) FROM census
WHERE country=$COUNTRY
GROUP BY income_bracket

This query returns a list of 7 (income bracket, count) pairs to the
analyst for a specific country. The analyst may then choose to vi-
sualize the results by plotting the counts versus different income
brackets in a histogram, i.e., a plot similar to the right side of Fig-
ure 1 (for Italy). Currently, the analyst may examine hundreds of
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Table 1: Summary of notation.

Symbol(s) Description
X,Z, VX , VZ , T x-axis attribute, candidate attribute, respective value sets, and relation over these attributes, used in histogram-generating queries (see Definition 1)

k, δ, ε, σ User-supplied parameters (number of matching histograms to retrieve, error probability upper bound, approximation error upper bound, selectivity
threshold (below which candidates may optionally be ignored)

q, ri, r
∗
i , (q̄, r̄i, r̄

∗
i ) Visual target, candidate i’s estimated (unstarred) and true (starred) histogram counts (normalized variants)

d(·, ·) Distance function, used to quantify visual distance (see Definition 2)

ni, n′
i, εi, δi, τi (τ∗

i ) Quantities specific to candidate i during HistSim run: number of samples taken, estimated samples needed (see Section 4), deviation bound (see
Definition 4), confidence upper bound on εi-deviation or rareness, and distance estimate from q (true distance from q), respectively

n∂
i , r∂i , τ∂

i

Quantities corresponding to samples taken in a specific round of HistSim stage 2: number of samples taken for candidate i in round, per-group
counts for candidate i for samples taken in round, corresponding distance estimates using the samples taken in round, respectively

M,A Set of matching histograms (see Definition 3) and non-pruned histograms, respectively, during a run of HistSim
Ni, N , m, f(·;N,Ni,m) Number of datapoints corresponding to candidate i, total number of datapoints, samples taken during stage 1, hypergeometric pdf

similar histograms, one for each country, comparing it to the one
for Greece, to manually identify ones that are similar.

In contrast, the goal of FastMatch is to perform this search
automatically and efficiently. Conceptually, FastMatch will iter-
ate over all possible values of country, generate the correspond-
ing histograms, and evaluate the similarity of its distribution (based
on some notion of similarity described subsequently) to the cor-
responding visualization for Greece. In actuality, FastMatch will
perform this search all at once, quickly pruning countries that are
either clearly close or far from the target.

Candidate Visualizations. Formally, we consider visualizations
as being generated as a result of histogram-generating queries:

DEFINITION 1. A histogram-generating query is a SQL query
of the following type:

SELECT X , COUNT(*) FROM T
WHERE Z = zi GROUP BY X

The table T and attributes X and Z form the query’s template.

For each concrete value zi of attribute Z specified in the query,
the results of the query—i.e., the grouped counts—can be repre-
sented in the form of a vector (r1, r2, . . . , rn), where n = |VX |,
the cardinality of the value set of attribute X . This n-tuple can then
be used to plot a histogram visualization—in this paper, when we
refer to a histogram or a visualization, we will be typically refer-
ring to such an n-tuple. For a given grouping attribute X and a
candidate attribute Z, we refer to the set of all visualizations gen-
erated by letting Z vary over its value set as the set of candidate
visualizations. We refer to each distinct value in the grouping at-
tribute X’s value set as a group. In our example, X corresponds to
income_bracket and Z corresponds to country.

For ease of exposition, we focus on candidate visualizations gen-
erated from queries according to Definition 1, having single cate-
gorical attributes for X and Z. Our methods are more general and
extend naturally to handle (i) predicates: additional predicates on
other attributes, (ii) multiple and complex Xs: additional grouping
(i.e., X) attributes, groups derived from binning real-values (as op-
posed to categorical X), along with groups derived from binning
multiple categorical X attribute values together (e.g., quarters in-
stead of individual months), and (iii) multiple and complex Zs: ad-
ditional candidate (i.e., Z) attributes, as well as candidate attribute
values derived from binning real values (as opposed to categorical
Z). We discuss these extensions in our technical report [51]. The
flexibility in specifying histogram-generating queries—exponential
in the number of attributes—makes it impossible for us to precom-
pute the results of all such queries.

Visualization Terminology. Our methods are agnostic to the par-
ticular method used to present visualizations. That is, analysts may
choose to present the results generated from queries of the form in
Definition 1 via line plots, heat maps, choropleths, and other visual-
ization types, as any of these may be specified by an ordered tuple
of real values and are thus permitted under our notion of a “can-
didate visualization”. We focus on bar charts of frequency counts

and histograms—these naturally capture aggregations over the cat-
egorical or binned quantitative grouping attribute X respectively.
Although a bar graph plot of frequency counts over a categorical
grouping attribute is not technically a histogram, which implies
that the grouping attribute is continuous, we loosely use the term
“histogram” to refer to both cases in a unified way.
Visual Target Specification. Given our specification of candidate
visualizations, a visual target is an n-tuple, denoted by q with en-
tries Q1, Q2, . . . , Qn, that we need to match the candidates with.
Returning to our flight delays example, q would refer to the vi-
sualization corresponding to Greece, with Q1 being the count of
individuals in the first income bracket, Q2 the count of individuals
in the second income bracket, and so on.
Samples. To estimate these candidate visualizations, we need to
take samples. In particular, for a given candidate i for some at-
tribute Z, a sample corresponds to a single tuple t with attribute
value Z = zi. The attribute value X = xj of t increments the jth
entry of the estimate ri for the candidate histogram.
Candidate Similarity. Given a set of candidate visualizations with
estimated vector representations {ri} such that the ith candidate is
generated by selecting on Z = zi, our problem hinges on finding
the candidate whose distribution is most “similar” to the visual tar-
get q specified by the analyst. For quantifying visual similarity, we
do not care about the absolute counts r1, r2, . . . , r|VX |, and instead
prefer to determine whether ri and q are close in a distributional
sense. Using hats to denote normalized variants of ri and q, write

r̄i =
ri

1T ri
q̄ =

q

1Tq

With this notational convenience, we make our notion of similarity
explicit by defining candidate distance as follows:

DEFINITION 2. For candidate ri and visual predicate q, the
distance d(ri,q) between ri and q is defined as follows:

d(ri,q) = ||̄ri − q̄||1 = || ri
1T ri

− q

1Tq
||1

That is, after normalizing the candidate and target vectors so that
their respective components sum to 1 (and therefore correspond
to distributions), we take the ℓ1 distance between the two vectors.
When the target q is understood from context, we denote the dis-
tance between candidate ri and q by τi = d(ri,q).
The Need for Normalization. A natural question that readers may
have is why we chose to normalize each vector prior to taking the
distance between them. We do this because the goal of FastMatch
is to find visualizations that have similar distributions, as opposed
to similar actual values. Returning to our example, if we con-
sider the population distribution of Greece across different income
brackets, and compare it to that of other countries, without normal-
ization, we will end up returning other countries with similar popu-
lation counts in each bin—e.g., other countries with similar overall
populations—as opposed to those that have similar shape or dis-
tribution. A similar metric, using ℓ2 distance between normalized
vectors (as opposed to ℓ1), has been studied in prior work [65, 26]
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and even validated in a user study in [65]. However, as observed
in [12], the ℓ2 distance between distributions has the drawback that
it could be small even for distributions with disjoint support. The
ℓ1 distance metric over discrete probability distributions has a di-
rect correspondence with the traditional statistical distance metric
known as total variation distance [29] and does not suffer from this
drawback, so we prefer it in this work.

2.2 Guarantees and Problem Statement
FastMatch takes samples to estimate the candidate histogram vi-

sualizations. Since FastMatch is approximate, we need to enforce
probabilistic guarantees on the correctness of the returned results.

First, we introduce some notation: we use ri to denote the es-
timate of the candidate visualization, while r∗i (with normalized
version r̄∗i ) is the true candidate visualization on the entire dataset.
Our formulation also relies on constants ε, δ, and σ, which we as-
sume either built into the system or provided by the analyst. We
further use N and Ni to denote the total number of datapoints and
number of datapoints corresponding to candidate i, respectively.

GUARANTEE 1. (SEPARATION) Any approximate histogram ri
with selectivity Ni

N
≥ σ that is in the true top-k closest (w.r.t. Defi-

nition 2) but not part of the output will be less than ε closer to the
target than the furthest histogram that is part of the output. That is,
if the algorithm outputs histograms rj1 , rj2 , . . . , rjk , then, for all
i, max1≤l≤k

{
d(r∗jl ,q)

}
− d(r∗i ,q) < ε, or Ni

N
< σ.

GUARANTEE 2. (RECONSTRUCTION) Each approximate his-
togram ri output as one of the top-k satisfies d(ri, r∗i ) < ε.

The first guarantee says that any ordering mistakes are relatively
innocuous: for any two histograms ri and rj , if the algorithm out-
puts rj but not ri, when it should have been the other way around,
then either

∣∣d(r∗i ,q)− d(r∗j ,q)
∣∣ < ε, or Ni

N
< σ. The intuition

behind the minimum selectivity parameter, σ, is that certain can-
didates may not appear frequently enough within the data to get a
reliable reconstruction of the true underlying distribution responsi-
ble for generating the original data, and thus may not be suitable
for downstream decision-making. In our income example, a coun-
try with a population of 100 may have a histogram similar to the
visual target, but this would not be statistically significant. Overall,
our guarantee states that we still return a histogram that is close to
q, and we can be confident that anything much closer has relatively
few total datapoints appearing in the data (i.e., Ni is small).

The second guarantee says that the histograms output are not too
dissimilar from the corresponding true distributions that would re-
sult from a complete scan of the data. Thus, they form an adequate
and accurate proxy from which insights may be derived. With these
definitions in place, we now formally state our core problem:

PROBLEM 1. (TOP-K-SIMILAR). Given a visual target q, a
histogram-generating query template, k, ε, δ, and σ, display k
candidate attribute values {zi} ⊆ VZ (and accompanying visual-
izations {ri}) as quickly as possible, such that the output satisfies
Guarantees 1 and 2 with probability greater than 1− δ.

3. THE HISTSIM ALGORITHM
In this section, we discuss how to conceptually solve Problem 1.
We outline an algorithm, named HistSim, which allows us to de-
termine confidence levels for whether our separation and recon-
struction guarantees hold. We rigorously prove in this section that
when our algorithm terminates, it gives correct results with proba-
bility greater than 1−δ regardless of the data given as input. Many
systems-level details and other heuristics used to make HistSim
perform particularly well in practice will be presented in Section 4.
Table 1 provides a description of the notation used. All proofs ap-
pearing in this section can be found in our technical report [51].

Algorithm 1: The HistSim algorithm
Input : Columns Z,X , visual target q, parameters k, ε, δ, σ
Output : Estimates M of the top-k closest candidates to q, histograms {ri}

1
2 Initialization.
3 ni, n

∂
i ← 0, ri, r∂i ← 0 for 1 ≤ i ≤ |VZ |;

4

5 stage 1: δupper ← δ
3 ;

6 Repeat m times: uniformly randomly sample some tuple without replacement;
7 Update {ni}, {ri}, {τi} based on the new samples;
8 ∆← {δi} where δi =

∑ni
j=0 f(j;N, ⌈σN⌉,m) for 1 ≤ i ≤ |VZ |;

9 Perform a Holm-Bonferroni statistical test with P-values in ∆; that is:

10 A←
{
i : δi ≤ δ

|VZ |−i+1
and for all j < i, δj ≤ δ

|VZ |−j+1

}
;

11

12 stage 2: δupper ← δ
3 ;

13 do
14 δupper ← 1

2 δ
upper ;

15 ni += n∂
i , ri += r∂i , τi ← d(ri,q) for i ∈ A;

16 n∂
i ← 0, r∂i ← 0 for i ∈ A;

17 M ← {i ∈ A : τi among k smallest};
18 s← 1

2 (maxi∈M τi + minj∈A\M τj);
19 Repeat: take uniform random samples from any i ∈ A;
20 Update {n∂

i }, {r
∂
i }, and {τ∂

i } based on the new samples;
21 εi ← s + ε

2 − τ∂
i for i ∈M ;

22 εj ← τ∂
j − (s− ε

2 ) if s− ε
2 ≥ 0 else∞ for j ∈ A \M ;

23 ∆← {δi} where δi ≥ P
(
d(r∂i , r

∗
i ) > εi

)
for i ∈ A;

24 while max(∆) > δupper ;
25

26 stage 3: Sample until ni ≥ 2
ε2

(
|VX | log 2 + log 3k

δ

)
, for all i ∈M ;

27 Update {ri} based on the new samples;
28 return M , and {ri : i ∈M};
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Figure 2: Illustration of HistSim.

3.1 Algorithm Outline
HistSim operates by sampling tuples. Each of these tuples con-

tributes to one or more candidate histograms, using which HistSim
constructs histograms {r̄i}. After taking enough samples corre-
sponding to each candidate, it will eventually be likely that d(ri, r∗i )
is “small”, and that |d(ri,q) − d(r∗i ,q)| is likewise “small”, for
each i. More precisely, the set of candidates will likely be in a state
such that Guarantees 1 and 2 are both satisfied simultaneously.
Stages Overview. HistSim separates its sampling into three stages,
each with an error probability of at most δ

3
, giving an overall error

probability of at most δ:
• Stage 1 [Prune Rare Candidates]: Sample datapoints uniformly

at random without replacement, so that each candidate is sam-
pled a number of times roughly proportional to the number of
datapoints corresponding to that candidate. Identify rare candi-
dates that likely satisfy Ni

N
< σ, and prune these ones.

• Stage 2 [Identify Top-k]: Take samples from the remaining can-
didates until the top-k have been identified reliably.

• Stage 3 [Reconstruct Top-k]: Sample from the estimated top-k
until they have been reconstructed reliably.

This separation is important for performance: the pruning step (stage
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1) often dramatically reduces the number of candidates that need
to be considered in stages 2 and 3.

The first two stages of HistSim factor into phases that are pure
I/O and phases that involve one or more statistical tests. The I/O
phases sample tuples (lines 6 and 19 in Algorithm 1)—we will de-
scribe how in Section 4; our algorithm’s correctness is independent
of how this happens, provided that the samples are uniform.

Stage 1: Pruning Rare Candidates (Section 3.3). During stage
1, the I/O phase (line 6) takes m samples, for some m fixed ahead
of time. This is followed by updating, for each candidate i, the
number of samples ni observed so far (line 7), and using the P-
values {δi} of a test for underrepresentation to determine whether
each candidate i is rare, i.e., has Ni

N
< σ (lines 7–9).

Stage 2: Identifying Top-k (Section 3.4). For stage 2, we focus
on a smaller set of candidates; namely, those that we did not find to
be rare (denoted by A). Stage 2 is divided into rounds. Each round
attempts to use existing samples to estimate which candidates are
top-k and which are non top-k, and then draws new samples, testing
how unlikely it is to observe the new samples in the event that its
guess of the top-k is wrong. If this event is unlikely enough, then it
has recovered the correct top-k, with high probability.

At the start of each round, HistSim accumulates any samples
taken during the previous round (lines 15–16). It then determines
the current top-k candidates and a separation point s between top-k
and non top-k (lines 17–18), as this separation point determines a
set of hypotheses to test. Then, it begins an I/O phase and takes
samples (line 19). The samples taken each round are used to gener-
ate the number of samples taken per candidate, {n∂

i }, the estimates
{r∂i }, and the distance estimates {τ∂

i } (line 20). These statistics are
computed from fresh samples each round (i.e., they do not reuse
samples across rounds) so that they may be used in a statistical
test (lines 20–23), discussed in Section 3.4. After computing the
P-values for each null hypothesis to test (line 23), HistSim deter-
mines whether it can reject all the hypotheses with type 1 error (i.e.,
probability of mistakenly rejecting a true null hypothesis) bounded
by δupper and break from the loop (line 24). If not, it repeats with
new samples and a smaller δupper (where the {δupper} are chosen
so that the probability of error across all rounds is at most δ

3
).

Stage 3: Reconstructing Top-k (Section 3.5). Finally, stage 3
ensures that the identified top-k, M , all satisfy d(ri, r

∗
i ) ≤ ε for

i ∈M (so that Guarantee 2 holds), with high probability.

Figure 2 illustrates HistSim stage 2 running on a toy example in
which we compute the top-2 closest histograms to a target. At
round n, it estimates r1 and r2 as the top-2 closest, which it re-
fines by the time it reaches round n + m. As the rounds increase,
HistSim takes more samples to get better estimates of the distances
{τi} and thereby improve the chances of termination when it per-
forms its multiple hypothesis test in stage 2.

Choosing where to sample and how many samples to take. The
estimates M and {τi} allow us to determine which candidates are
“important” to sample from in order to allow termination with fewer
samples; we return to this in Section 4. Our HistSim algorithm is
agnostic to the sampling approach.

Outline. We first discuss the Holm-Bonferroni method for testing
multiple statistical hypotheses simultaneously in Section 3.2, since
stage 1 of HistSim uses it as a subroutine, and since the simulta-
neous test in stage 2 is based on similar ideas. In Section 3.3, we
discuss stage 1 of HistSim, and prove that upon termination, all
candidates i flagged for pruning satisfy Ni

N
< σ with probability

greater than δ
3

. Next, in Section 3.4, we discuss stage 2 of Hist-
Sim, and prove that upon termination, we have the guarantee that
any non-pruned candidate mistakenly classified as top-k is no more

than ε further from the target than the furthest true non-pruned top-
k candidate (with high probability). The proof of correctness for
stage 2 is the most involved and is divided as follows:
• In Section 3.4.1, we give lemmas that allow us to relate the

reconstruction of the candidate histograms from estimates {r∂i }
to the separation guarantee via multiple hypothesis testing;

• In Section 3.4.2, we describe a method to select appropriate
hypotheses to use for testing in the lemmas of Section 3.4.1;

• In Section 3.4.3, we prove a theorem that enables us to use the
samples per candidate histogram to determine the P-values as-
sociated with the hypotheses.

In Section 3.5, we discuss stage 3 and conclude with an overall
proof of correctness.

3.2 Controlling Familywise Error
In the first two stages of HistSim, the algorithm needs to perform

multiple statistical tests simultaneously [15]. In stage 1, HistSim
tests null hypotheses of the form “candidate i is high-selectivity”
versus alternatives like “candidate i is not high-selectivity”. In this
case, “rejecting the null hypothesis at level δupper” roughly means
that the probability that candidate i is high-selectivity is at most
δupper . Likewise, during stage 2, HistSim tests null hypotheses
of the form “candidate i’s true distance from q, τ∗

i , lies above (or
below) some fixed value s.” If the algorithm correctly rejects every
null hypothesis while controlling the family-wise error [45] at level
δupper , then it has correctly determined which side of s every τ∗

i

lies, a fact that we use to get the separation guarantee.
Since stages 1 and 2 test multiple hypotheses at the same time,

HistSim needs to control the family-wise type 1 error (false posi-
tive) rate of these tests simultaneously. That is, if the family-wise
type 1 error is controlled at level δupper , then the probability that
one or more rejecting tests in the family should not have rejected
is less than δupper — during stage 1, this intuitively means that the
probability one or more high-selectivity candidates were deemed
to be low-selectivity is at most δupper , and during stage 2, this
roughly means that the probability of selecting some candidate as
top-k when it is non top-k (or vice-versa) is at most δupper .

The reader may be familiar with the Bonferroni correction, which
enforces a family-wise error rate of δupper by requiring a signifi-
cance level δupper

|VZ | for each test in a family with |VZ | tests in to-
tal. We instead use the Holm-Bonferroni method [33], which is
uniformly more powerful than the Bonferroni correction, meaning
that it needs fewer samples to make the same guarantee. In brief, a
level δupper test over a family of size |VZ |works by first sorting the
P-values {δi} of the individual tests in increasing order, and then
finding the minimal index j (starting from 1) where δj > δupper

|VZ |−j+1

(if this does not exist, then set j = |VZ |). The tests with smaller
indices reject their respective null hypotheses at level δupper , and
the remaining ones do not reject.

3.3 Stage 1: Pruning Rare Candidates
To prune rare candidates, we need some way to determine whether

each candidate i satisfies Ni
N

< σ with high probability. To do so,
we make the simple observation that, after drawing m tuples with-
out replacement uniformly at random, the number of tuples corre-
sponding to candidate i follows a hypergeometric distribution [39].
The number of samples to take, m, is a parameter; we observe
in our experiments that m = 5 · 105 is an appropriate choice.1

That is, if candidate i has Ni total corresponding tuples in a dataset
of size N , then the number of tuples ni for candidate i in a uni-
form sample without replacement of size m is distributed accord-
ing to ni ∼ HypGeo(N,Ni,m). As such, we can make use of
1Our results are not sensitive to the choice of m, provided m is not too small (so that
the algorithm fails to prune anything) or too big (i.e., a nontrivial fraction of the data).
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a well-known test for underrepresentation [45] to accurately detect
when candidate i has Ni

N
< σ. The null hypothesis is that can-

didate i is not underrepresented (i.e., has Ni ≥ σN ), and letting
f( · ;N, ⌈σN⌉,m) denote the hypergeometric pdf in this case, the
P-value for the test is given by

∑ni
j=0 f(j;N, ⌈σN⌉,m), where ni

is the number of observed tuples for candidate i in the sample of
size m. Roughly speaking, the P-value measures how surprised we
are to observe ni or fewer tuples for candidate i when Ni

N
≥ σ —

the lower the P-value, the more surprised we are.
If we reject the null hypothesis for some candidate i when the P-

value is at most δi, we are claiming that candidate i satisfies Ni
N

<
σ, and the probability that we are wrong is then at most δi. Of
course, we need to test every candidate for rareness, not just a given
candidate, which is why HistSim stage 1 uses a Holm-Bonferroni
procedure to control the family-wise error at any given threshold.

We now prove a lemma regarding correctness of stage 1.

LEMMA 1 (STAGE 1 CORRECTNESS). After HistSim stage 1
completes, every candidate i removed from A satisfies Ni

N
< σ,

with probability greater than 1− δ
3

The proof is a consequence of the correctness of each individual
test for underrepresentation in conjunction with the correctness of
the Holm-Bonferroni procedure for family-wise error [51].

3.4 Stage 2: Identifying TopK Candidates
HistSim stage 2 attempts to find the top-k closest to the target

out of those remaining after stage 1. To facilitate discussion, we
first introduce some definitions.

DEFINITION 3. (MATCHING CANDIDATES) A candidate is called
matching if its distance estimate τi = d(ri,q) is among the k
smallest out of all candidates remaining after stage 1.

We denote the (dynamically changing) set of candidates that are
matching during a run of HistSim as M ; we likewise denote the
true set of matching candidates out of the remaining, non-pruned
candidates in A as M∗. Next, we introduce the notion of εi-deviation.

DEFINITION 4. (εi-DEVIATION) The empirical vector of counts
ri for some candidate i has εi-deviation if the corresponding nor-
malized vector r̄i is within εi of the exact distribution r̄∗i . That is,
d(ri, r

∗
i ) = ||̄ri − r̄∗i ||1 < εi

Note that Definition 4 overloads the symbol ε to be candidate-
specific by appending a subscript. In Section 3.4.3, we provide
a way to quantify εi given samples.

If HistSim reaches a state where, for each matching candidate
i ∈M , candidate i has εi-deviation, and εi < ε for all i ∈M , then
it is easy to see that the Guarantee 2 holds for the matching candi-
dates. That is, in such a state, if HistSim output the histograms
corresponding to the matching candidates, they would look simi-
lar to the true histograms. In the following sections, we show that
εi-deviation can also be used to achieve Guarantee 1.

3.4.1 DeviationBounds Imply Separation
In order to reason about the separation guarantee, we prove a series
of lemmas following the structure of reasoning given below:
• We show that when a carefully chosen set of null hypotheses

are all false, M contains valid top-k closest candidates.
• Next, we show how to use εi-deviation to upper bound the prob-

ability of rejecting a single true null hypothesis.
• Finally, we show how to reject all null hypotheses while con-

trolling the probability of rejecting any true ones.

LEMMA 2 (FALSE NULLS IMPLY SEPARATION). Consider the
set of null hypotheses {H(i)

0 } defined as follows, where s ∈ R+:

H
(i)
0 =

{
τ∗
i ≥ s+ ε

2
, for i ∈M

τ∗
i ≤ s− ε

2
, for i ∈ A \M

When H
(i)
0 is false for every i ∈ A, then M is a set of top-k candi-

dates that is correct with respect to Guarantee 1.

Intuitively, Lemma 2 states that when there is some reference point
s such that all of the candidates in M have their τ∗

i smaller than
s − ε

2
, and the rest have their τ∗

i greater than s + ε
2

, then we have
our separation guarantee.

Next, we show how to compute P-values for a single null hypoth-
esis of the type given in Lemma 2. Below, we use “PH” to denote
the probability of some event when hypothesis H is true.

LEMMA 3 (DISTANCE DEVIATION TESTING). Let x ∈ R+.
To test the null hypothesis H

(i)
0 : τ∗

i ≥ x versus the alternative
H

(i)
A : τ∗

i < x, we have that, for any εi > 0,

P
H

(i)
0

[
x− τ∂

i > εi
]
≤ P

(
d(r∂i , r

∗
i ) > εi

)
Likewise, for testing H

(i)
0 : τ∗

i ≤ x versus the alternative H
(i)
A :

τ∗
i > x, we have P

H
(i)
0

[
τ∂
i − x > εi

]
≤ P

(
d(r∂i , r

∗
i ) > εi

)
.

We use Lemma 3 in conjunction with Lemma 2 by using s± ε
2

for
the reference x of Lemma 3, for a particular choice of s (discussed
in Section 3.4.2). For example, Lemma 3 shows that when we are
testing the null hypothesis for i ∈ M that τ∗

i ≥ s + ε
2

and we
observe τ∂

i such that 0 < εi = s+ ε
2
− τ∂

i , we can use (any upper
bound of) P

(
d(r∗i , r

∂
i ) > εi

)
as a P-value for this test. That is,

consider a tester with the following behavior, illustrated pictorially:

x τ∂
i

H
(i)
0 : τ∗

i ≤ x

εi

If P
(
d(r∗i , r

∂
i ) > εi

)
≤ δupper , then reject H(i)

0

In the above picture, the tester assumes that τ∗
i is smaller than x,

but it observes a value τ∂
i that exceeds x by εi. When the true value

τ∗
i ≤ x for any reference x, then the observed statistic τ∂

i will only
be εi or larger than x (and vice-versa) when the reconstruction r∂i
is also bad, in the sense that P

(
d(r∗i , r

∂
i ) > εi

)
is very small. If the

above tester rejects H(i)
0 when P

(
d(r∗i , r

∂
i ) > εi

)
≤ δupper , then

Lemma 3 says that it is guaranteed to reject a true null hypothesis
with probability at most δupper . We discuss how to compute an
upper bound on P

(
d(r∗i , r

∂
i ) > εi

)
in Section 3.4.3.

Finally, notice that Lemma 3 provides a test which controls the
type 1 error of an individual H(i)

0 , but we only know that the separa-
tion guarantee holds for i ∈M when all the hypotheses {H(i)

0 } are
false. Thus, the algorithm requires a way to control the type 1 error
of a procedure that decides whether to reject every H

(i)
0 simulta-

neously. In the next lemma, we give such a tester which controls
the error for any upper bound δupper . Our tester is essentially the
intersection-union method [15] formulated in terms of P-values.
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LEMMA 4 (SIMULTANEOUS REJECTION). Consider any set
of null hypotheses {H(i)

0 }, and consider a set of P-values {δi} as-
sociated with these hypotheses. The tester given by

Decision =

{
reject every H

(i)
0 , when max

i
δi ≤ δupper

reject no H
(i)
0 , otherwise

rejects ≥ 1 true null hypotheses with probability ≤ δupper .

3.4.2 Selecting Each Round’s Tests
Each round of HistSim stage 2 constructs a family of tests to

perform whose family-wise error probability is at most δupper . At
round t (starting from t = 1), δupper is chosen to be δ/3

2t
, so that

the error probability across all rounds is at most
∑

t≥1
δ/3
2t

= δ
3

via a union bound (see Lemma 5 for details).
There is still one degree of freedom: namely, how to choose the

split point s used for the null hypotheses in Lemma 2. In line 18,
it is chosen to be s ← 1

2
(max
i∈M

τi + min
j∈A\M

τj). The intuition for

this choice is as follows. Although the quantities r∂i and τ∂
i are

generated from fresh samples in each round of HistSim stage 2,
the quantities ri and τi are generated from samples taken across all
rounds of HistSim stage 2. As such, as rounds progress (i.e., if the
testing procedure fails to simultaneously reject multiple times), the
estimates ri and τi become closer to r∗i and τ∗

i , the set M becomes
more likely to coincide with M∗, and the null hypotheses {H(i)

0 }
chosen become less likely to be true provided an s chosen some-
where in [maxi∈M τi,minj∈A\M τj ], since values in this interval
are likely to correctly separate M∗ and A \M∗ as more and more
samples are taken. In the interest of simplicity, we simply choose
the midpoint halfway between the furthest candidate in M and the
closest candidate in A\M . In practice, we observe that maxi∈M τi
and minj∈A\M τj are typically very close to each other, so that the
algorithm is not very sensitive to the choice of s.Once s is cho-
sen, the {εj} (i.e., the amounts by which the {τ∂

j } deviate from
s ± ε

2
) determine the P-values associated with the {H(i)

0 } which
ultimately determine whether HistSim stage 2 can terminate, as we
discuss more in the next section.

3.4.3 DeviationBounds Given Samples
The previous section provides us a way to check whether the

rankings induced by the empirical distances {τi} are correct with
high probability. This was facilitated via a test which measures our
“surprise” for measuring {τ∂

i } if the current estimate M is not cor-
rect with respect to Guarantee 1, which in turn used a test for how
likely some candidate’s d(r∗i , r

∂
i ) is greater than some threshold εi

after taking ni samples. We now provide a theorem that allows us
to infer, given the samples taken for a given candidate, how to re-
late εi with the probability δi with which the candidate can fail to
respect its deviation-bound εi. The bound seems to be known to the
theoretical computer science community as a “folklore fact” [25];
we give a proof [51] for the sake of completeness. Our proof relies
on repeated application of the method of bounded differences [52]
in order to exploit some special structure in the ℓ1 distance metric.

THEOREM 1. Suppose we have taken ni samples with replace-
ment for some candidate i’s histogram, resulting in the empirical
estimate ri. Then ri has εi-deviation with probability greater than

1 − δi for εi =
√

2
ni

(
|VX | log 2 + log 1

δi

)
. That is, with proba-

bility > 1− δi, we have: ||̄ri − r̄∗i ||1 < εi.

In fact, this theorem also holds if we sample without replace-
ment; we return to this point in Section 4.

Optimality of the bound in Theorem 1. If we solve for ni in The-
orem 1, we see that we must have ni =

|VX | log 4+2 log(1/δi)

ε2i
. That

is, Ω
(

|VX |
ε2i

)
samples are necessary guarantee that the empirical

discrete distribution r̄i is no further than εi from the true discrete
distribution r̄∗i , with high probability. This matches the information
theoretical lower bound noted in prior work [12, 18, 24, 66].

3.4.4 Stage 2 Correctness
We now formally state the correctness of HistSim stage 2 [51].

LEMMA 5 (STAGE 2 CORRECTNESS). After HistSim stage 2
completes, each candidate i ∈ M , satisfies τ∗

i − τ∗
j ≤ ε for every

j ∈ A \M with probability greater than 1− δ
3

.

3.5 Stage 3 and Overall Proof of Correctness
Stage 3 of HistSim, discussed in our overall proof of correctness,

consists of taking samples from each candidate in M to ensure they
all have ε-deviation with high probability (using Theorem 1). This
proof can be found in [51]; it proceeds in four steps:
• Step 1: HistSim stage 1 incorrectly prunes one or more can-

didates meeting the selectivity threshold σ with probability at
most δ

3
(Lemma 1).

• Step 2: The probability that stage 2 incorrectly (with respect to
Guarantee 1) separates M and A \M is at most δ

3
.

• Step 3: The probability that the set of candidates M violates
Guarantee 2 after stage 3 runs is at most δ

3
.

• Step 4: The union bound over any of these bad events occurring
gives an overall error probability of at most δ.

THEOREM 2. The k histograms returned by Algorithm 1 satisfy
Guarantees 1 and 2 with probability greater than 1− δ.

Computational Complexity. Stage 1 of Algorithm 1 shares com-
putation between candidates when computing P-values induced by
the hypergeometric distribution, and thus makes at most maxi∈VZ ni

calls to evaluate a hypergeometric pdf (we use Boost’s implemen-
tation [1]); this can be done in O (maxi∈VZ ni). To facilitate the
sharing, stage 1 requires sorting the candidates in increasing order
of ni, which is O (|VZ | · log |VZ |). Next, each iteration of Hist-
Sim stage 2 requires computing distance estimates τi and τ∂

i for
every i ∈ A, which runs in time O (|A| · |VX |). Each iteration of
stage 2 further uses a sort of candidates in A by τi to determine M
and s, which is O (|A| · log |A|). HistSim stage 2 almost always
terminates within 4 or 5 iterations in practice. Overall, we observe
that the computation required is inexpensive compared to the cost
of I/O, even for data stored in-memory.

4. THE FASTMATCH SYSTEM
This section describes FastMatch, which implements the Hist-

Sim algorithm. We start by presenting the high-level components
of FastMatch. We then describe the challenges we faced while
implementing FastMatch and describe how the components in-
teract to alleviate those challenges, while still satisfying Guaran-
tees Guarantee 1 and Guarantee 2. While design choices presented
in this section are heuristics with practicality in mind, the algo-
rithm implemented is still theoretically rigorous, with results satis-
fying our probabilistic guarantees. In the following, each time we
describe a heuristic, we will clearly point it out as such.

4.1 FastMatch Components
FastMatch has three key components: the I/O Manager, the

Sampling Engine, and the Statistics engine. We describe each of
them in turn; Figure 3 provides an architecture diagram—we will
revisit the interactions within the diagram at the end of the section.
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Figure 3: FastMatch system architecture

I/O Manager. In FastMatch, requests for I/O are serviced at the
granularity of blocks. The I/O manager simply services requests for
blocks in a synchronous fashion. Given the location of some block,
it synchronously processes the block at that location.
Sampling Engine. The sampling engine is responsible for deciding
which blocks to sample. It uses bitmap index structures (described
below) in order to determine the types of samples located at a given
block. Given the current state of the system, it prioritizes certain
candidates over others for sampling.
Statistics Engine. The statistics engine implements most of the
logic in the HistSim algorithm. The only substantial difference be-
tween the actual code and the pseudocode presented in Algorithm 1
is that the statistics engine does not actually perform any sampling,
instead leaving this responsibility to the sampling engine. The rea-
son for separating these components will be made clear later on.
Bitmap Index Structures. FastMatch runs on top of a bitmap-
based sampling system used for sampling on-demand, as in prior
work [8, 43, 42, 60]. These papers have demonstrated that bitmap
indexes [17] are effective in supporting sampling for incremental or
early termination of visualization generation. Within FastMatch,
bitmap indexes help the sampling engine determine whether a given
block contains samples for a given candidate. For each attribute A,
and each attribute value Av , we store a bitmap, where a ‘0’ at posi-
tion p indicates that the corresponding block at position p contains
no tuples with attribute value Av , and a ‘1’ indicates that block
p contains one or more tuples with attribute value Av . Candidate
visualizations are generated by attribute values, so these bitmaps
allow the sampling engine to rapidly test whether a block contains
tuples for a given candidate histogram. Bitmaps are amenable to
significant compression [67, 68], and since we are further only re-
quiring a single bit per block per attribute value, our storage re-
quirements are orders-of-magnitude cheaper than past work that
requires a bit per tuple [8, 42, 60].

4.2 Implementation Challenges
So far, we have designed HistSim without worrying about how

sampling actually takes place, with an implicit assumption that
there is no overhead to taking samples randomly across various
candidates. While implementing HistSim within FastMatch, we
faced several non-trivial challenges, outlined below:
Challenge 1: Random sampling at odds with performance char-
acteristics of storage media. The cost to fetch data is locality-
dependent when dealing with real storage devices. Even if the data
is stored in-memory, tuples (i.e., samples) that are spatially closer
to a given tuple may be cheaper to fetch, since they may already be
present in CPU cache.
Challenge 2: Deciding how many samples to take between rounds
of HistSim. The HistSim algorithm does not specify how many
samples to taken in between rounds of stage 2; it is agnostic to this
choice, with correctness unaffected. If the algorithm takes many
samples, it may spend more time on I/O than is necessary to termi-
nate with a guarantee. If the algorithm does not take enough sam-
ples, the statistical test on line 24 will probably not reject across

many rounds, decaying δupper and making it progressively harder
to get enough samples to meet stage 2’s termination criterion.

Challenge 3: Non-uniform cost/benefit of different candidates.
Tuples for some candidates can be over-represented in the data and
therefore take less time to sample compared to underrepresented
candidates. At the same time, the benefit of sampling tuples corre-
sponding to different candidate histograms is non-uniform: for ex-
ample, those histograms which are “far” from the target distribution
are less useful (in terms of getting HistSim to terminate quickly)
than those for which HistSim chooses small values for εi.

Challenge 4: Assessing benefit to candidates depends on data
seen so far. The “best” choice of which tuples to sample for get-
ting HistSim to terminate quickly can be most accurately estimated
from all the data seen so far, including the most recent data. How-
ever, computing this estimate after processing every tuple (and thus
constantly blocking I/O) is prohibitively expensive.
We now describe our approaches to tackling these three challenges.

Challenge 1: Randomness via Data Layout
To maximize performance benefits from locality, we randomly per-
mute the tuples of our dataset as a preprocessing step, and to “sam-
ple” we may then simply perform a linear scan of the shuffled data
starting from any point. This matches the assumptions of stage 1 of
HistSim, which requires samples to be taken without replacement.
Although the theory we developed in Section 3 for HistSim stage
2 was for sampling with-replacement, as noted in [32, 11], it still
holds now that we are sampling without replacement, as concen-
tration results developed for the with-replacement regime may be
transferred automatically to the without-replacement regime. This
approach of randomly permuting upfront is not new, and is adopted
by other approximate query processing systems [69, 59, 71].

Challenge 2: Deciding Samples to Take Between Rounds
The HistSim algorithm leaves the number of samples to take dur-
ing a given round of stage 2 lines 19 unspecified; its correctness
is guaranteed regardless of how this choice is made. This choice
offers a tradeoff: take too many samples, and the system will spend
a lot of time unnecessarily on I/O; take too few, and the algorithm
will never terminate, since the “difficulty” of the test increases with
each round, as we set δupper ← δupper/2.

To combat this challenge, we employ a simple heuristic; the full
description of which may be found in [51]. In brief, our sampling
policy is informed by the statistical test on lines 20–23 — for each
candidate i, we attempt to choose a number of samples to take n′

i

that will cause this test to reject. We accomplish this by “inverting
the bound” of Theorem 1. We emphasize that this dependency does
not compromise the correctness of our results thanks to the union
bound between rounds of stage 2 (see Theorem 2) and since each
round’s test uses fresh samples to compute the test statistics {τ∂

i }.

Challenge 3: Block Choice Policies
During stage 1 of HistSim, we simply scan each block sequentially,
as we are only trying to detect low-selectivity candidates. Deciding
which blocks to read during stage 2 of HistSim is more difficult
due to the non-uniform cost (i.e., time) and benefit of samples for
each candidate histogram. Due to nonuniform cost, we cannot sim-
ply read in the blocks with the most beneficial candidates, and due
to nonuniform benefit, we cannot simply read in the lowest cost
blocks (e.g., those closest spatially to the current read position).
Instead, we employ a simple policy which we found worked well
in practice for getting HistSim to terminate quickly.

AnyActive block selection policy. Recall that the end of each iter-
ation of stage 2 of HistSim estimates the number of samples {n′

i}
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Figure 4: While the I/O manager processes magenta blocks, the
sampling engine selects blue blocks ahead of time, using looka-
head. Blocks with solid color = read, blocks with squiggles = skip.

necessary from each candidate so that the next iteration is more
likely to terminate. Note that if each candidate satisfied ni = n′

i

at the time HistSim performed the test for termination and before
it computed the {n′

i}, then HistSim would be in a state where it
can safely terminate. Those candidates for whom ni < n′

i we dub
active candidates, and we employ a very simple block selection
policy, dubbed the AnyActive block selection policy, which is to
only read blocks which contain at least one tuple corresponding
to some active candidate. The bitmap indexes employed by Fast-
Match allow it to rapidly test whether a block contains tuples for a
given candidate visualization, and thus to rapidly apply the AnyAc-
tive block selection policy. Overall, our approach is as follows: we
read blocks in sequence, and if blocks satisfy our AnyActive crite-
rion, then we read all of the tuples in that block, else, we skip that
block. We discuss how to make this approach performant below.

Challenge 4: Asynchronous Block Selection
From the previous discussion, the sampling engine employs an Any-
Active block selection policy when deciding which blocks to pro-
cess. Ideally, the {ni} and {n′

i} (number of samples taken for
candidate i and estimated number of samples needed for candidate
i, respectively) used to assign active status to candidates should be
computed from the freshest possible counts available to the sam-
pling engine. That is, in an ideal setting, each candidate’s active
status would be updated immediately after each block is read, and
the potentially new active status should be used for making deci-
sions about immediately subsequent blocks. Unfortunately, this re-
quirement is at odds with real system characteristics. Employing
it exactly implies leaving the I/O manager idle while the sampling
engine determines whether each block should be read or skipped.
To prevent this issue, we relax the requirement that the sampling
thread employ AnyActive with the freshest {ni} available to it. In-
stead, given the current {ni} and fresh set of {n′

i}, it precomputes
the active status for each candidate and “looks ahead”, marking an
entire batch of blocks for either reading or skipping, and communi-
cates this with the I/O manager. The batch size, or the lookahead
amount, is a system parameter, and offers a trade-off between fresh-
ness of active states used for AnyActive and degree to which the I/O
manager must idle while waiting for instructions on which block to
read next. We evaluate the impact of this parameter in our experi-
mental section. The lookahead process is depicted in Figure 4 for
a value of lookahead = 8. While the I/O manager processes a pre-
viously marked batch of magenta-colored lookahead blocks, the
sampling engine’s lookahead thread marks the next batch in blue.
It waits to mark the next batch until the I/O manager “catches up”.

Employing lookahead allows us to prevent two bottlenecks. First,
the sampling engine need not wait for each candidate’s active status
to update after a block is read before moving on to the next block,
effectively decoupling it from the I/O manager. The second bottle-
neck prevented by lookahead is more subtle. A detailed descrip-
tion, with comparisons and pseudocode can be found in our tech-

Table 2: Descriptions of Datasets

Dataset Size #Tuples #Attributes Replications
FLIGHTS 32 GiB 606 million 7 5×

TAXI 36 GiB 679 million 7 4×
POLICE 34 GiB 448 million 10 72×

nical report [51]. Here, we simply provide a high-level idea.The
AnyActive block policy algorithm works by considering each can-
didate in turn, and querying a bitmap index for that candidate to
determine whether the current block contains tuples corresponding
to that candidate. Querying a bitmap actually brings in surround-
ing bits into the cache of the CPU performing the query, and evicts
whatever was previously in the cache line. If blocks are processed
individually, then only a single bit in the bitmap is used each time
a portion is brought into cache. This is quite wasteful and turns
out to hurt performance significantly as we will see in the exper-
iments. Instead, applying AnyActive selection to lookahead-size
chunks instead of individual blocks is a better approach. This ap-
proach has much better cache performance, since it allows an entire
cache-line’s worth of bits to be used. We verify the benefits of these
optimizations in our experiments.

4.3 System Architecture
FastMatch is implemented within a few thousand lines of C++.

It uses pthreads [55] for its threading implementation. FastMatch
uses a column-oriented storage engine, as is common for analytics
tasks. We can now complete our description of Figure 3. When
the I/O manager receives a request for a block at a particular block
index from the sampling engine (via the “block index” message), it
eventually returns a buffer containing the data at this block to the
sampling engine (via the “buffer” message). Once the I/O phase
of stage 1 or 2 of HistSim completes, the sampling engine sends
the current per-group counts for each candidate, {ri}, to the statis-
tics engine. After running a test for whether to move to stage 2
(performed in stage 1) or to terminate (performed in stage 2), the
statistics engine either posts a message of updated n′ (in stage 1)
or {n′

i} (stage 2) that the sampling engine uses to determine when
to complete the I/O phase of each HistSim stage, as well as how to
perform block selection during stage 2.

5. EXPERIMENTAL EVALUATION
The goal of our experimental evaluation is to test the accuracy

and runtime of FastMatch against other approximate and exact ap-
proaches on a diverse set of real datasets and queries. Furthermore,
we want to validate the design decisions that we made for Fast-
Match in Section 4 and evaluate their impact.

5.1 Datasets and Queries
We evaluate FastMatch on publicly available real-world datasets

summarized in Table 2 — flight records [2], taxi trips [3], and po-
lice road stops [4]. The replication value indicates how many times
each dataset was replicated to create a larger dataset. In preprocess-
ing these datasets, we eliminated rows with “N/A” or erroneous val-
ues for any column appearing in one or more of our queries. Details
on the datasets and attributes can be found in our technical report.

We evaluate several queries on each dataset, whose templates
are summarized in Table 3. We had four queries on FLIGHTS,
FLIGHTS-q1-q4, two on TAXI, TAXI-q1-q2, and three on POLICE,
POLICE-q1-q3. For each query, the visual target was chosen to cor-
respond with the closest distribution (under ℓ1) to uniform, out of
all histograms generated via the query’s template, except for q1,
q2, and q3 of FLIGHTS. Our queries spanned a number of in-
teresting dimensions: (i) frequently-appearing top-k candidates:
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Table 3: Summary of queries

Query Z (|VZ |) X (|VX |) k target
F-q1 Origin (347) DepartureHour (24) 10 Chicago ORD
F-q2 Origin (347) DepartureHour (24) 10 Appleton ATW
F-q3 Origin (347) DayOfWeek (7) 5 1/[4, 8, 8, 8, 8, 8]
F-q4 Origin (347) Dest (351) 10 closest r̄i to uniform
T-q1 Location (7641) HourOfDay (24) 10 closest r̄i to uniform
T-q2 Location (7641) MonthOfYear (12) 10 closest r̄i to uniform
P-q1 RoadID (210) ContrabandFound (2) 10 closest r̄i to uniform
P-q2 RoadID (210) OfficerRace (5) 10 closest r̄i to uniform
P-q3 Violation (2110) DriverGender (2) 5 closest r̄i to uniform

FLIGHTS-q1, POLICE-q1 and q2, (ii) rarely-appearing top-k can-
didates: FLIGHTS-q2 and q3, (iii) high-cardinality candidate at-
tribute Z: TAXI-q1 and q2 (|VZ | = 7641), POLICE-q3 (|VZ | =
2110), and (iv): high-cardinality grouping attribute X: FLIGHTS-
q4 (|VX | = 351). The taxi queries in particular stressed our algo-
rithm’s ability to deal with low-selectivity candidates, since more
than 3000 locations have fewer than 10 total datapoints.

5.2 Experimental Setup
Approaches. We compare FastMatch against a number of less
sophisticated approaches that provide the same guarantee as Fast-
Match. All approaches are parametrized by a minimum selectiv-
ity threshold σ, and all approaches except Scan are additionally
parametrized by ε and δ and satisfy Guarantees 1 and 2 with prob-
ability greater than 1− δ.
• SyncMatch(ε, δ, σ). This approach uses FastMatch, but the

AnyActive block selection policy is applied without lookahead,
synchronously and for each individual block. By comparing
this method with FastMatch, we quantify how much benefit we
may ascribe to the lookahead technique.

• ScanMatch(ε, δ, σ). This approach uses FastMatch, but with-
out the AnyActive block selection policy. Instead, no blocks
are pruned: it scans through each block in a sequential fashion
until the statistics engine reports that HistSim’s termination cri-
terion holds. By comparing this with SyncMatch, we quantify
how much benefit we may ascribe to AnyActive block selection.

• Scan(σ). This approach is a simple heap scan over the entire
dataset and always returns correct results, trivially satisfying
Guarantees 1 and 2. It exactly prunes candidates with selectiv-
ity below σ. By comparing Scan with our above approximate
approaches, we quantify how much benefit we may ascribe to
the use of approximation.

Environment. Experiments were run on single Intel Xeon E5-
2630 node with 125 GiB of RAM and with 8 physical cores (16
logical) each running at 2.40 GHz, although we use at most 2 logi-
cal cores to run FastMatch components. The Level 1, Level 2, and
Level 3 CPU cache sizes are, respectively: 512 KiB, 2048 KiB, and
20480 KiB. We ran Linux with kernel version 2.6.32. We report re-
sults for data stored in-memory, since the cost of main memory
has decreased to the point that most interactive workloads can be
performed entirely in-core. Each run of FastMatch or any other
approximate approach was started from a random position in the
shuffled data. We report both wall clock times and accuracy as the
average across 30 runs with identical parameters, with the excep-
tion of Scan, whose wall clock times we report as the average over
5 runs. Where applicable, we used default settings of m = 5 ·105,
δ = 0.01, ε = 0.04, σ = 0.0008, and lookahead = 1024. We
set the block size for each column to 600 bytes, which we found to
perform well; our results are not too sensitive to this choice.

5.3 Metrics
We use several metrics to compare FastMatch against our base-

lines in order to test two hypotheses: one, that FastMatch does

Table 4: Summary of average query speedups and latencies

Query Avg Speedup over Scan (raw time in (s))
Scan(s) ScanMatch SyncMatch FastMatch

F-q1 12.26 27.74× (0.44) 25.53× (0.48) 37.52× (0.33)
F-q2 12.29 3.17× (3.87) 2.73× (4.51) 10.11× (1.21)
F-q3 11.62 4.76× (2.44) 3.14× (3.70) 8.72× (1.33)
F-q4 13.97 5.93× (2.36) 5.76× (2.43) 8.15× (1.71)
T-q1 13.09 4.89× (2.68) 0.32× (40.95) 15.93× (0.82)
T-q2 13.09 6.48× (2.02) 0.37× (35.60) 17.38× (0.75)
P-q1 8.57 5.72× (1.50) 5.14× (1.67) 13.34× (0.64)
P-q2 8.49 14.31× (0.59) 15.48× (0.55) 36.11× (0.24)
P-q3 8.65 9.25× (0.93) 1.53× (5.66) 33.26× (0.26)

indeed provide accurate answers, and two, that the system architec-
ture developed in Section 4 does indeed allow for earlier termina-
tion while satisfying the separation and reconstruction guarantees.

Wall-Clock Time. Our primary metric evaluates the end-to-end
time of our approximate approaches that are variants of FastMatch,
as well as a scan-based baseline.

Satisfaction of Guarantees Guarantee 1 and Guarantee 2. Our
δ parameter (δ = 0.01), serves as an upper bound on the probabil-
ity that either of these guarantees are violated. If this bound were
tight, we would expect to see about one run in every hundred fail to
satisfy our guarantees. We therefore count the number of times our
guarantees are violated relative to the number of queries performed.

Total Relative Error in Visual Distance. In some situations, there
may be several candidate histograms that are quite close to the
analyst-supplied target, and choosing any one of them to be among
the k returned to the analyst would be a good choice. We define the
total relative error in visual distance (denoted by ∆d) between the
k candidates returned by FastMatch and the true k closest visual-

izations as: ∆d(M,M∗,q) =
∑

i∈M d(ri,q)−
∑

j∈M∗ d(r∗j ,q)∑
j∈M∗ d(r∗j ,q)

Note

that here, M∗ is computed by Scan and only considers candidates
meeting the selectivity threshold. Since FastMatch and our other
approximate variants have no recall requirements with respect to
identifying low-selectivity candidates (they only have precision re-
quirements), it is possible for ∆d < 0.

5.4 Empirical Results
Speedups and Error of FastMatch versus others.

Summary. All FastMatch variants we tested show signif-
icant speedups over Scan for at least one query, but only
FastMatch shows consistently excellent performance, typically
beating other approaches and bringing latencies for all queries
near interactive levels; with an overall speedup ranging between
8× and 35× over Scan. Further, the output of FastMatch and
all approximate variants satisfied Guarantees 1 and 2 across
all runs for all queries.
Average run times of FastMatch and other approaches, for all

queries as well as speedups over Scan, are summarized in Table 4.
We used default settings for all runs. The reported speedups are the
ratio of the average wall time of Scan with the average wall time
of each approach considered. Scan was generally slower than ap-
proximate approaches because it had to examine all the data. Then,
we typically observed that ScanMatch and SyncMatch were pretty
evenly matched, with ScanMatch usually performing slightly bet-
ter, except in some pathological cases where it performed very
poorly due to poor cache usage. FastMatch had better performance
than either SyncMatch or ScanMatch, thanks to lookahead paired
with AnyActive block selection. Overall, we observed that each of
FastMatch’s key innovations: the termination criterion, the block
selection, and lookahead, all led to substantial performance im-
provements, with an overall speedup of up to 35× over Scan.
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Figure 5: Effect of ε on query latency

Queries with high candidate cardinality (TAXI-q*, POLICE-q3),
displayed particularly interesting performance differences. For these,
FastMatch shows greatly improved performance over ScanMatch.
It also scales much better to the large number of candidates than
SyncMatch, which performs extremely poorly due to poor cache
utilization and takes around 3× longer than a simple non-approximate
Scan. In this case, the lookahead technique of FastMatch is nec-
essary to reap the benefits of AnyActive block selection.

Additionally, we found that the output of FastMatch and all ap-
proximate variants satisfied Guarantees 1 and 2 across all runs for
all queries. This suggests that the parameter δ may be a loose upper
bound for the actual failure probability of FastMatch.
Effect of varying ε.

Summary. In almost all cases, increasing the tolerance parame-
ter ε leads to reduced runtime and accuracy, but on average, ∆d

was never more than 5% larger than optimal for any query,
even for the largest values of ε used.
Figures 5 and 6 depict the effect of varying ε on the wall clock

time and on ∆d, respectively, using δ = 0.01 and lookahead =
1024, averaged over 30 runs for each value of ε. Because of the
extremely poor performance of SyncMatch on the TAXI queries,
we omit it from both figures.

In general, as we increased ε, wall clock time decreased and ∆d

increased. In some cases, ScanMatch latencies matched that of
Scan until we made ε large enough. This sometimes happened
when it needed more refined estimates of the (relatively infrequent)
top-k candidates, which it achieved by scanning most of the data,
picking up lots of superfluous (in terms of achieving safe termina-
tion) tuples along the way.
Effect of varying lookahead. For most queries, we found that
latency was relatively robust to changes in lookahead. Figure 7
depicts this effect. The queries with high candidate cardinalities
(TAXI-q*, POLICE-q3) were the exceptions. For these queries,
larger lookahead values led to increased utilization at all levels of
CPU cache. Past a certain point, however, the performance gains
were minor. Overall, we found the default value of 1024 to be ac-
ceptable in all circumstances.
Effect of varying δ. We refer readers to the technical report [51]
for a full discussion (including experimental plots) on the effect
of varying δ. In general, we found that increasing δ led to slight
decreases in wall clock time, leaving accuracy (in terms of ∆d)

more or less constant. We believe this behavior is inherited from
our bound in Theorem 1, which is not sensitive to changes in δ.

When approximation performs poorly. In order to achieve the
competitive results presented in this section, the initial pruning of
low-selectivity candidates during stage 1 of HistSim ended up be-
ing critical for good performance. With a selectivity threshold of
σ = 0, stages 2 and 3 of HistSim are forced to consider many ex-
tremely rare candidates. For example, in the taxi queries, nearly
half of candidates have fewer than 10 corresponding datapoints. In
this case, ScanMatch performs the best (essentially performing a
Scan with a slight amount of additional overhead), but it (necessar-
ily) fails to take enough samples to establish Guarantees 1 and 2.
SyncMatch and FastMatch likewise fail to establish guarantees,
but additionally have the issue of being forced to consider many
rare candidates while employing AnyActive block selection, which
can slow town query processing by a factor of 100× or more.

Comparing results for ℓ1 and ℓ2 metrics. So far, we have not
validated our choice of distance metric (normalized ℓ1); prior work
has shown that normalized ℓ2 is suitable for assessing the “visual”
similarity of visualizations [65], so here, we compare our top-k
with the top-k using the normalized ℓ2 metric, for the FLIGHTS
queries. In brief, we found that the relative difference in the total
ℓ1 distance of the top-k using the two metrics never exceeded 4%
for any query, and that roughly 75% of the top-k candidates were
common across the two metrics. Thus, ℓ1 can serve as a suitable
replacement for ℓ2, while further benefiting from the advantages
we described in Section 2. Please see [51] for the full discussion.

6. RELATED WORK
We now briefly survey work that is related to FastMatch.

Approximate Query Processing (AQP). Offline AQP involves com-
puting a set of samples offline, and then using these samples when
queries arrive e.g., [37, 19, 5, 9, 7], with systems like BlinkDB [7]
and Aqua [6]. These techniques crucially rely on the availability
of a workload. On the other hand, online approximate query pro-
cessing, e.g., [31, 34, 48], performs sampling on-the-fly, typically
using an index to facilitate the identification of appropriate sam-
ples. Our work falls into the latter category; however, none of the
prior work has addressed a similar problem of identifying relevant
visualizations given a query.

1272



0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

0.000

0.001

0.002

0.003

flights-q1

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

0.00000

0.00025

0.00050

0.00075

0.00100

flights-q2

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

0.000

0.005

0.010

0.015
flights-q3

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

−0.050

−0.025

0.000

0.025

0.050
∆

d
flights-q4

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

−0.035

−0.030

−0.025
taxi-q1 (SYNCMATCH not shown)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

0.00

0.02

0.04

taxi-q2 (SYNCMATCH not shown)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

−0.01

0.00

0.01

0.02

0.03
police-q1

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

ε (at δ=0.01)

−0.0090

−0.0085

−0.0080

police-q2

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

0.000

0.002

0.004

0.006

police-q3

FASTMATCH SYNCMATCH SCANMATCH

Figure 6: Effect of ε on ∆d
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Top-K or Nearest Neighbor Query Processing. There is a vast
body of work on top-k query processing [35]. Most of this work
relies on exact answers, as opposed to approximate answers, and
has different objectives. Some work tries to bridge the gap between
top-k query processing and uncertain query processing [64, 61, 63,
23, 57, 21, 44, 14], but does not need to deal with the concerns
of where and when to sample to return answers quickly, but ap-
proximately. Some of this work [64, 61, 44, 14] develops efficient
algorithms for top-k or nearest neighbors in a uncertain databases
setting—here, the sampling is restricted to monte-carlo sampling,
which is very different in behavior.

Scalable Visualizations. There has been some limited work on
scalable approximate visualizations, targeting the generation of a
single visualization, while preserving certain properties [42, 56,
60]. In our setting, the space of sampling is much larger—as a
result the problem is more complex. Furthermore, the objectives
are very different. Fisher et al. [27] explores the impact of ap-
proximate visualizations on users, adopting an online-aggregation-
like [31] scheme. As such, these papers show that users are able
to interpret and utilize approximate visualizations correctly. Some
work uses pre-materialization for the purpose of displaying visu-
alizations quickly [41, 46, 50]; however, these techniques rely on
in-memory data cubes. We covered other work on scalable visual-
ization via approximation [26, 53, 40, 56, 70, 65] in Section 1.

Histogram Estimation for Query Optimization. A number of
related papers [20, 36, 38] are concerned with the problem of sam-
pling for histogram estimation, usually for estimating attribute value
selectivities [47] and query size estimation (see [22] for a recent
example). While some of the theoretical tools used are similar, the
problem is fundamentally different, in that the aforementioned line

of work is concerned with estimating one histogram per table or
view for query optimization purposes with low error, while we are
concerned with comparing histograms to a specific target.

Sublinear Time Algorithms. HistSim is related to work on sub-
linear time algorithms—the most relevant ones [12, 18, 66] fall
under the setting of distribution learning and analysis of property
testers for whether distributions are close under ℓ1 distance. Al-
though Chan et al. [18] develop bounds for testing whether distri-
butions are ε-close in the ℓ1 metric, property testers can only say
when two distributions p and q are equal or ε-far, and cannot handle
||p− q||1 < ε for p ̸= q, a necessary component of this work.

7. CONCLUSION
We developed sampling-based strategies for rapidly identifying

the top-k histograms that are closest to a target. We designed a gen-
eral algorithm, HistSim, that provides a principled framework to
facilitate this search, with theoretical guarantees. We showed how
the systems-level optimizations present in our FastMatch architec-
ture are crucial for achieving near-interactive latencies consistently,
leading to speedups ranging from 8× to 35× over baselines.
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