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ABSTRACT
The web contains countless semi-structured websites, which can
be a rich source of information for populating knowledge bases.
Existing methods for extracting relations from the DOM trees of
semi-structured webpages can achieve high precision and recall
only when manual annotations for each website are available. Al-
though there have been efforts to learn extractors from automat-
ically generated labels, these methods are not sufficiently robust
to succeed in settings with complex schemas and information-rich
websites.

In this paper we present a new method for automatic extrac-
tion from semi-structured websites based on distant supervision.
We automatically generate training labels by aligning an existing
knowledge base with a website and leveraging the unique structural
characteristics of semi-structured websites. We then train a classi-
fier based on the potentially noisy and incomplete labels to predict
new relation instances. Our method can compete with annotation-
based techniques in the literature in terms of extraction quality.
A large-scale experiment on over 400,000 pages from dozens of
multi-lingual long-tail websites harvested 1.25 million facts at a
precision of 90%.
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1. INTRODUCTION
Knowledge bases, consisting a large set of (subject, predicate,

object) triples to provide factual information, have recently been
successfully applied to improve many applications including Search,
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Question Answering, and Personal Assistant. It is critical to contin-
uously grow knowledge bases to cover long tail information from
different verticals (i.e., domains) and different languages [23], and
as such, there has been a lot of work on automatic knowledge ex-
traction from the Web [10, 9, 15, 14, 6].

Among various types of Web sources, we argue that semi-structured
websites (e.g., IMDb, as shown in Figure 1) are one of the most
promising knowledge sources. The Knowledge Vault project [10]
reported that after applying automatic knowledge extraction on DOM
trees of semi-structured websites, texts, web-tables, and semantic
web annotations, 75% of the extracted facts and 94% of the high-
confidence facts were covered by DOM trees. This is not surpris-
ing: semi-structured websites are typically populated by data from
large underlying databases, thus containing richer information than
webtables and web annotations; the underlying databases often fo-
cus on factual information, making it more suitable as knowledge
sources than free texts.

Despite the huge opportunities, automatic knowledge extraction
from semi-structured sources has not received the attention it de-
serves from the research community. Unlike natural language text,
semi-structured sources provide (arguably) more structure, but in a
different way, with fewer well-developed tools for tasks like named-
entity recognition and entity linking. Unlike webtables [5], semi-
structured data lack the table structure (rows and columns) that
helps identify entities and relations. Semi-structured sources also
present challenges for automatic extraction because the structure,
or layout, differs from website to website, so the extraction model
trained for one website cannot be used for another. Even between
webpages that are generated from the same template, pages may
differ due to missing fields, varying numbers of instances, condi-
tional formatting, and ads and recommendation strategies.

Traditional DOM extraction typically uses wrapper induction:
given a website, wrapper induction asks for manual annotations,
often on only a handful of pages, and derives the extraction pat-
terns, usually presented as XPaths, that can be applied to the whole
website [21]. Although wrapper induction has been quite mature
in terms of extraction quality, obtaining precision over 95% [17],
it requires annotations on every website, an expensive and time-
consuming step if one wishes to extract from many websites.

In order to create an automated process requiring no human an-
notation, distant supervision has been proposed for text extrac-
tion [25]. In this process, training data are generated automatically
by aligning sentences with existing seed knowledge bases using
simple heuristics; that is, if a sentence mentions two entities of a
triple in the knowledge base, the sentence is annotated to assert the
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relation in the triple. Although the training data can be noisy, the
large number of annotations on a large corpus of texts still enables
learning fairly robust extraction models.

Unfortunately, distant supervision does not easily apply to semi-
structured websites. This is mainly because the unit for annota-
tion changes from a sentence to a webpage, normally containing
much more information. The sheer volume of text on a webpage
first poses efficiency challenges: a single web page may contain
mentions of hundreds of entities, which can match to thousands
of potential candidate entities; examining relations between ev-
ery pair of candidate entities can be very expensive. Even worse,
the large number of entities mentioned in a webpage may cause
many spurious annotations, leading to low-quality extraction mod-
els. Indeed, a recent attempt to apply distantly supervised extrac-
tion on semi-structured data obtained quite low accuracy: Knowl-
edge Vault trained two distantly supervised DOM extractors but
their accuracy is only around 63% [11].

In this paper, we present CERES1, a knowledge extraction frame-
work that improves the distant supervision assumption for DOM
extraction. The key underlying idea is to best leverage the unique
characteristics of semi-structured data to create fairly accurate an-
notations. First, we focus on detail pages, each of which describes
an individual entity, and propose an automatic annotation algorithm
that proceeds in two steps: it first identifies the topic entity, which
is the primary subject of a page, and then annotates entities on the
page that are known (via the seed KB) to have relationships with
that entity. This reduces the annotation complexity from quadratic
to linear and drops a significant number of spurious annotations.
Second, we leverage the common structure between key-value pairs
within a webpage, and across webpages in a website, to further im-
prove annotation quality.

Our new extraction method significantly improves extraction qual-
ity. On the SWDE dataset [19], which has been used as a bench-
mark for DOM extraction, we are able to obtain an average ac-
curacy of over 90% in various verticals, even higher than many
annotation-based wrapper induction methods in the literature. Large-
scale experiments on over 400,000 pages from dozens of multi-
lingual long-tail websites harvested 1.25 million facts at a precision
of 90%, with the ratio of 1:2.6 between annotated popular entities
and extracted entities that include many long-tail entities.

Our paper makes the following contributions.

1. We describe CERES, an end-to-end distantly supervised knowl-
edge extraction framework that can apply to semi-structured
websites independent of domains and web sources.

2. We propose an advanced distant supervision annotation pro-
cess for semi-structured web sources by leveraging the unique
structural characteristics of such data.

3. In addition to showing the efficacy of our technique on a
benchmark dataset, we include an evaluation on dozens of
real-world long-tail websites containing multi-valued predi-
cates to show applicability of our method in the wild.

We note that this approach can be combined with a manual-
annotation-based approach: When entering a new domain for which
no KB exists, we can use an annotation-based extractor on a few
prominent sites to populate a seed KB, and then use the KB for
distantly supervised extraction on other sites.

The rest of the paper is structured as follows. Section 2 for-
mally defines the problem and overviews our solution. Section 3

1Ceres is the Roman goddess of the harvest.

describes data annotation and Section 4 describes training and ex-
traction. Section 5 presents our experimental results. Section 6
reviews related work and Section 7 concludes.

2. PROBLEM DEFINITION AND SOLUTION
OVERVIEW

We introduce the problem in this section and illustrate the chal-
lenges (Section 2.1). We then review distant supervision (Sec-
tion 2.2), and give an overview of our solution (Section 2.3).

2.1 Problem definition
KB: We assume a setting in which we have an existing seed knowl-
edge base (KB) populated with at least some facts corresponding
to a given ontology. Facts are represented by triples of the form
(s, r, o), where s is the subject of the relationship, r is the relation
predicate according to our ontology, and o is the object of the rela-
tionship. For example, a triple expressing the relationship between
the film Do the Right Thing and its director Spike Lee would be (Do
the Right Thing, directed by, Spike Lee). Some predicates partici-
pate in a single triple with a subject, specifying a unique value (such
as a birth date), while others are multi-valued and may participate
in many triples with one subject, such as the predicate indicating
an actor has acted in a film. The ontology defines the semantics of
the relation predicates. Our goal is to further populate the KB with
facts obtained from semi-structured websites.

Semi-structured website: A semi-structured website W consists
of a set of detail pages that have been generated from a template
or a set of templates, with the pages from the same template shar-
ing a common structure and placement of information. Each detail
page contains one or more facts about a particular entity, called the
topic entity of the page. An example of a semi-structured website
is the Internet Movie Database (IMDb)2, which contains thousands
of pages about movies, with each page giving information such as
the title, director, writer, release date, and stars of a particular film.
An example page is shown in Figure 1. In this paper we are only in-
terested in extraction from detail pages, not website entry pages or
search pages; we consider it likely that every entry in an entry page
corresponds to some detail page that provides more information.

While each page on a semi-structured website is expected to
share a common structure, there may be minor differences from
page to page. Some pages may be missing some fields, either be-
cause that field does not exist (such as date of death for a person
who is still living) or because the database underlying the website
lacks the information. There may also be variations in structure
because of variations in the number of instances of a predicate (for
example, most films on IMDb have only a single director, but some
films have multiple directors). In order to extract from a semi-
structured website, an extractor must be robust to these changes in
the placement of facts.

We represent each webpage as a DOM Tree3; a node in the tree
can be uniquely defined by an absolute XPath, which for brevity
we simply refer to as an XPath [28]. XPaths representing the same
predicate on a semi-structured website tend to be similar but may
have some differences. Figure 2 shows an example of XPaths rep-
resenting the “Acted In” predicate on IMDb. The upper path is from
Oprah Winfrey’s page whereas the lower path is from Ian McKel-
lon’s. On Winfrey’s page, a “Producer” section exists in the sec-
tion corresponding to the Actor section on McKellon’s page, push-
ing her film performances down, altering the second-to-last index.

2www.imdb.com
3See https://www.w3.org/DOM/
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Figure 1: A cropped portion of the detail page from imdb.com
for the film Do the Right Thing. Labels indicate some of the
annotation challenges.

Figure 2: Example of XPaths corresponding to the acted in
predicate on two IMDb pages. They differ at two node indices,
and the second path corresponds to the producer of predicate
from the first page.

Both performers act in many films, with the final index indicating
the placement of the node in the film list. Notably, the upper XPath
from McKellon’s page does exist on Winfrey’s page as well, but it
represents her “producer of” relationship with the film Selma.

Problem Definition: Our goal is to identify the DOM nodes of a
detail page containing facts corresponding to particular predicates
in our ontology.

DEFINITION 2.1 (DOM EXTRACTION). Let W be a semi-
structured website and K be a seed knowledge base on a partic-
ular vertical. DOM extraction extracts a set of triples fromW such
that the subject and object of each triple is a string value on a page
in W , and the predicate appears in K and indicates the relation
between the subject and object as asserted by the webpage.

A successful extraction shall extract only relations that are as-
serted by the website (high precision) and extract all relations that
are asserted (high recall). We consider only predicates in the on-
tology, for which we can obtain training data from K. Note that
we resort to existing work to verify the accuracy of the website’s
claims [12] and to tackle the problem of entity linkage between the
extracted data and existing entities in the knowledge base [13]. We
observe that most entity names correspond to full texts in a DOM
tree node, so for simplicity we leave identifying entity names as

substrings of texts in a DOM node or concatenation of texts from
multiple DOM nodes to future work.

Finally, we clarify that even in the same website, semi-structured
webpages may be generated by very different templates; for exam-
ple, on IMDb, movie pages and people pages appear quite different.
We first apply the clustering algorithm in [17] to cluster the web-
pages such that each cluster roughly corresponds to a template, and
then apply our extraction algorithm to each cluster.

2.2 Review of distant supervision
The key challenge in extracting knowledge from the semi-structured

web without human intervention is to automatically generate train-
ing data for each website; distant supervision has been proposed for
this task. Distantly supervised relation extraction is a process that
first aligns a knowledge base to an unannotated dataset to create
annotations, and then uses the annotations to learn a supervised ex-
traction model. Distant supervision was initially proposed for rela-
tion extraction from natural language text and in that context relies
on the distant supervision assumption: if two entities are known
(via the seed KB) to be involved in a relation, any sentence con-
taining both entities expresses that relation [25]. Because this is
obviously not true in all cases, much of the work in distantly su-
pervised extraction has been devoted to learning effectively despite
the noisy labels generated by this assumption.

The distant supervision assumption is harder to apply in the DOM
setting for three reasons. First, unlike natural language text, where
the basic unit of analysis is a sentence that usually consists of no
more than a few dozen words and mentions only a few entities,
in DOM extraction the basic unit of analysis is a web page. Web
pages may contain thousands of text fields, and many real-world
use cases will mention hundreds or thousands of entities, which
poses challenges both at annotation time and at extraction time.

To understand the difficulties in successfully annotating relation
mentions in this setting, consider the IMDb page of prolific voice
actor Frank Welker4. Welker’s credits list over 800 films and TV se-
ries in which he has performed. The page also lists Welker’s place
and date of birth, characters he has portrayed, television episode
titles, and various other entities and attributes, which may exist in
our KB. This single page contains legitimate mentions of several
thousand entities which may have relationships with Frank Welker,
with some of them mentioned multiple times.

Second, the situation is further complicated by the fact that strings
appearing on a web page may correspond to multiple entities in our
KB, sometimes many entities. For example, the word “Pilot” is the
name of thousands of television episodes, since it is used for the
first episode of a series. In addition, other strings may incidentally
match entities in our KB; for example, Welker’s page has a section
labeled “Biography”, which also happens to be the title of a TV
series. Other sections of the page may reference entities unrelated
to the topic entity; for example, the detail page about the film Do
the Right Thing shown in Figure 1 also mentions information about
Crooklyn, including several of its cast members.

The result of this setting is that a single web page may contain
strings corresponding to tens of thousands of entities in our KB, and
hundreds or thousands of those matches may even be correct. The
distant supervision assumption would have us check our KB for
relationships involving all pairs of entity mentions, and if a relation
was found, would have us produce an annotation for that predicate
for those fields of the page. This approach is both computationally
challenging, due to the immense number of potential entity pairs,

4http://www.imdb.com/name/nm0919798/
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Figure 3: CERES architecture.

as well as likely to produce noisy annotations due to the spurious
matches made likely by the huge number of potential entities.

Finally, because the distant supervision assumption does not in-
corporate the knowledge that a detail page contains many relation-
ships involving the same subject (the topic entity of the page), it in-
volves labeling pairs of nodes as expressing a triple. At extraction-
time, it will then be necessary to consider all pairs of nodes con-
taining potential entity mentions as targets for extraction. However,
unlike in NLP, pre-trained NER systems are not available in the
DOM setting, and thus it is not obvious how to select these nodes.
Considering all possible pairs of nodes on a page is computation-
ally infeasible, while relying on the KB for entity matching, as we
do at annotation-time, would limit the ability to produce extractions
involving previously unknown entities.

2.3 Overview of our approach
We propose CERES, a new method for automatically extracting

information from semi-structured webpages. CERES makes use
of an existing knowledge base to automatically label facts on the
webpages that can be mapped to known facts in our KB. These an-
notations are then used to train a probabilistic extractor that extracts
additional facts from the webpages. Our process thus involves an
annotation step, a training step, and an extraction step, as shown
in Figure 3. There are three key differences between our approach
and a traditional approach to distant supervision.

First, we rely on a modification of the distant supervision as-
sumption, which we term the Detail Page Distant Supervision As-
sumption.

DEFINITION 2.2 (DETAIL PAGE DS ASSUMPTION). Letw be
a detail page, and (s, r, o) ∈ K be a knowledge triple. If s is the
topic entity for w and w contains object o, it is assumed that at
least one mention of o on w expresses the relation r.

According to this assumption, we use a two-step annotation pro-
cess in which we first attempt to identify the topic entity of a page,
and then annotate relations.

Second, text allows great flexibility in expression, with sentences
structured differently from document to document. In contrast,
webpages in a semi-structured website are expected to share a com-
mon structure. As we annotate, we consider both local evidence
within a page, and global evidence across pages to improve anno-
tation quality.

Third, traditional distantly supervised extraction relies on NER
techniques to identify entities, and uses syntax and lexical fea-
tures to predict relations between every pair of entities in the same
sentence. As we extract knowledge from a detail page, we con-
sider only relations between the topic entity and other entities on
the page. We use the (possibly noisy) annotations to train a ma-
chine learning model that classifies a DOM node, represented by
an XPath, on a webpage, and outputs a relation between the topic
entity and the entity represented by the node (either a predicate
present in the training data or an “OTHER” label indicating that
there is not a relation present in our ontology).

We admit that in this way we will not be able to extract relations
between non-topic entities, such as the directed by relation between
the Crooklyn movie and its director in Figure 1. However, we be-
lieve such relations, if important, are likely to be covered by another
detail page with the subject as the topic entity (i.e., the webpage for
the Crooklyn movie).

3. AUTOMATIC ANNOTATION
The purpose of the annotation process is to produce a set of ex-

amples that will be used to train a supervised extractor. With that
in mind, we place a high value on maintaining the precision of our
annotations even if it prevents us from annotating some pages. To
maintain high precision, we base our annotation process on three
observations.

1. Consistency: Detail pages on a website often have roughly
the same format, with information expressed in a similar way
across pages.

2. Informativeness: Each detail page typically provides multi-
ple attributes of an entity, and the values are typically fairly
diverse among entities (i.e., it seldom happens that all entities
across the website share the same object for a predicate).

3. Uniqueness: An entity is typically described by a single de-
tail page or at most a couple of detail pages (some with more
data in particular aspects).

These observations will guide us in our annotation process. We
re-state the two key differences from annotation in traditional dis-
tant supervision. First, we will identify the topic entity for each
page, before annotating all objects of predicates shown on the page.
Second, in both steps we will harness the semi-structured nature of
the data by relying on global information gathered across all pages
of a website in addition to the local information on each page.

3.1 Topic Identification
Given a set of n webpages w1, ..., wn from a semi-structured

website W , our first step is to identify the topic entity of each page
when it applies.

3.1.1 Local Topic Candidate Identification
Local candidate identification proceeds in two steps: it first iden-

tifies all entities on the page, and then finds the one that is most
likely to be the topic entity. Our intuition is that since the purpose
of the detail page is to state facts about the topic entity, more strings
on the page should bear a relation to the topic entity than to other
entities.
Step 1. Entity identification. We begin this process by attempting
to identify all entities that may be listed on the page. Each text
field on the webpage is matched against the KB using fuzzy string
matching process presented in [18]. This yields a set of all entities
in the KB that may be mentioned on the page. We will refer to
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this set of m potential entities on wi as the pageSet. As noted
previously, this could contain thousands or tens of thousands of
entities, each of which is a potential topic entity of the page.

According to our Uniqueness observation, we automatically com-
pile a list of strings appearing in a large percentage (e.g., 0.01%) of
triples and do not consider them as potential topics. In addition, we
discard strings with low information content, such as single digit
numbers, years, and names of countries.
Step 2. Topic candidate identification. For each entity sj in
pageSet, we then look in the KB to get a set of entities that are the
object of a relation in which sj , j ∈ [1,m], is the subject; we will
refer to this set as entitySetj . We then compute the Jaccard simi-
larity between pageSet and entitySetj for each ej ∈ pageSet:

J(pageSet, entitySetj) =
|pageSet ∩ entitySetj |
|pageSet ∪ entitySetj |

(1)

The initial topic candidate ci for page wi is then the entity in
pageSet with maximum Jaccard similarity:

ci = argmax
j

J(pageSet, entitySetj) (2)

Note that if the topic entity of a page does not appear in our
KB, we cannot hope to have identified it at this point, but given the
volume of text on a typical webpage, it is likely that there was a
spurious match against some entity in the KB. Even if the topic is
in our KB, it is possible that another entity was identified as the
candidate topic if we had little information about the true topic in
the KB. This motivates us to further apply a filtering step before
assigning topics leveraging global formatting patterns.

3.1.2 Global topic identification
Our global topic identification step leverages the three observa-

tions we have made on semi-structured websites.
Step 1. Topic filtering by uniqueness: According to our Unique-
ness observation, if one entity is identified as the topic of many
pages, it is unlikely to be the true topic. For example, if the word
“Help” appears on every page and happens to match an entity in
our KB, it may be identified as a candidate topic for many pages
where the real topic does not exist in the KB. To counteract this
problem, we discard any topic identified as a candidate topic of a
large number of pages (e.g., ≥ 5 pages).
Step 2. Finding the dominant XPath: Our consistency observa-
tion tells us that the text field containing the name or identifier of
the topic entity should be in roughly the same location from page
to page. We use this intuition to examine all candidate topics to try
to deduce the areas of the page where they are most likely to occur.

For each page wi, the XPaths to all mentions of topic candidates
are collected (note that the candidate topic may appear in multiple
text fields on the page). For all candidate topics across the entire
website W , we produce counts of how often each path appears.
These paths are then ranked in descending order by count. If a path
is highly ranked, there are many pages in which the candidate topic
is found at that location on the page.

We then re-examine each page wi and find the highest-ranked
path that exists on the page. For all potential entities j mentioned in
that text field, the entity with the highest score J(pageSet, entitySetj)
as previously calculated is taken as the topic entity of the page.
Step 3. Webpage filtering by informativeness. Finally, accord-
ing to our informativeness observation, we only consider webpages
with a predetermined minimum number of relation annotations (e.g.,
≥ 3); otherwise no topic is chosen for that page and it is discarded
from the annotation process.

Parameter setting. We note that at a few places we need to set
parameters such as when to discard a topic if it is identified as the
topic entity for many pages, and when to discard a webpage if the
number of annotations is too small. Our goal is to filter obvious
noise and expect our learning algorithm to be robust to remaining
noise. So we set such parameters according to our empirical obser-
vations and tend to set a small value.

3.2 Relation annotation
Topic identification finds a topic for a set of webpages; at this

point, we have retrieved from the KB all triples related to the topic
entity and located all potential mentions of their objects on the
page. The next step is to annotate those object mentions with the
relations the webpage asserts.

If an object has only one mention on the page, and participates
in only one triple with the topic entity, we can simply label that
mention with the relation in the triple. However, that is often not
the case. A traditional approach to distant supervision would have
us annotate all object mentions with all predicates they represented;
however, the DOM setting again presents challenges and opportu-
nities that motivate a more thoughtful process.

There are two potential problems. First, the object may partici-
pate in multiple relations with the topic, and all of these relation-
ships may be represented on the page. If there is frequent overlap
between two predicates (e.g., writers and directors of movies are
often the same person), and they are mentioned in close proximity
on the page, it will be hard to train a model to distinguish them.

Second, the object may have relationships with entities other
than the topic. Even though the majority of the information on a
detail page is about the topic entity, there are often relevant entities
shown at the side or bottom of the pages as recommendations. Such
relevant entities often share common objects with the topic entity;
for example, in Figure 1, the Comedy genre applies to both the topic
movie Do the Right Thing, and to a recommended movie Crooklyn.
However, other genres that apply to Crooklyn may not apply to the
topic movie and blindly extracting them may cause mistakes.

Since we emphasize precision over recall for annotation, we an-
notate no more than one mention of each object for a predicate. We
try to harness local and global information to derive the correct an-
notation. In case the information for some predicates is duplicated
on a page, we may miss labeling these true instances; however, this
is acceptable since there is little benefit to extract the same triple
twice. We compare our relation annotation approach with the tra-
ditional approach in our experiments (Section 5.4).

3.2.1 Local evidence for filtering
We first seek local evidence to resolve the ambiguity when an

object may have multiple mentions on the webpage or may par-
ticipate in multiple relations. Our intuition is that when multiple
objects exist for a predicate, webpages are likely to put all these
objects together on the page, such as in a list of names.

Given the DOM node for a (pred, obj) pair, we find other objects
for the same predicate. We identify their closest ancestor nodes that
do not contain another mention of the same object, and choose the
ancestor whose subtree contains the highest count of objects we
find for the predicate. In case of a tie, we resort to global evidence,
as we describe shortly.

EXAMPLE 3.1. In Figure 1, Spike Lee’s name appears in both
the director and writer sections of the page. It is not visible in the
figure, but Lee also appears in the cast list of the film as well. Let us
assume our KB contains triples representing all these relationships,
as well as the film’s relationship with several other actors. When we
attempt to annotate Lee’s “acted in” relationship, we will choose
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the mention in the cast list because it is in the same section of the
page as other objects of the “acted in” predicate.

3.2.2 Global evidence via clustering
Recall that in the topic identification step, we follow the consis-

tency observation and rank XPaths by how frequently they contain
candidate topics, and prefer those with higher count. The consis-
tency observation applies to relations as well; however, since some
multi-valued predicates are often represented in long lists and tend
to occur in parts of the page with a higher variety of formatting than
the page topic, the XPaths of relation candidates may be sparser
than they are for topic candidates. For this reason, we instead clus-
ter the XPaths of all potential object mentions of a predicate across
pages, and prefer those XPaths that appear in larger clusters.

We use an agglomerative clustering approach, where in each it-
eration we find two nodes with the closest distance, and merge the
clusters they belong to, until we reach the desired number of clus-
ters. The distance function between two DOM nodes is defined as
the Levenshtein distance [22] between their corresponding XPaths.
The desired number of clusters is set to the maximum number of
mentions of a single object in a webpage, such that all mentions of
an object on a page can be placed into separate clusters.

This clustering step is only used in two cases: 1) the local ev-
idence is insufficient to make an annotation decision; and 2) the
same object appears as a value of a predicate in more than half of
the annotated pages (recall the informativeness observation). It al-
lows us to maintain high precision in our annotations, while still
ensuring that we make annotations on the majority of pages.

EXAMPLE 3.2. In Figure 1, the genres for the film are men-
tioned twice, once correctly and once in a section describing a dif-
ferent movie in a recommendation; this occurs frequently on IMDb.
Both sections contain two genres, so there is a tie from local ev-
idence. After clustering all potential Genre mentions across all
IMDb pages, we find that the mentions at the top of the page fall
into a larger cluster, since all pages have the correct genres listed
in a similar location. The mentions lower down in the page fall into
a smaller cluster, since the genres of related films only sometimes
have perfect overlap with the topic film. As a result, we annotate
the mentions on the top of the page and discard those at the bottom.

4. TRAINING AND EXTRACTION
We treat DOM extraction as a probabilistic multi-class classifi-

cation problem where the input is a DOM node and the output is
the probability of the node indicating a particular relation; in other
words, the classes consist of all predicates in our ontology, along
with an “OTHER” class. A caveat is that the DOM node that con-
tains the topic entity is considered as expressing the “name” rela-
tion for the topic. The challenges we face in training such an ML
model mainly come from the automatically generated training data,
which can be oftentimes noisy and incomplete.

4.1 Training Examples
Our annotation process produces positive training labels, but does

not explicitly produce negative labels. For each webpage that has
received annotations, we select randomly r unlabeled DOM nodes
to use as negative examples (our “OTHER” class) for each positive
example; in our experiments we used r = 3.

Since our annotations are incomplete and it is possible that some
unlabeled nodes actually do express a relation, we thus shall not
select the negative labels completely randomly. If we have labeled
multiple positive examples of a predicate on a page, and they dif-
fer only in indices of their XPaths, we consider it likely that they

belong to a list of values, such as the list of cast members for a
film. When generating negative examples, we exclude other nodes
that differ from these positives only at these indices, since they are
likely to be part of the same list.

4.2 Training
Presumably we can train any ML model, such as logistic regres-

sion, random forest and SVM. We experimented with several clas-
sifiers, but ultimately found the best results by modeling the prob-
ability of a relation given a node belonging to class k as a multino-
mial logistic regression problem:

Pr(Y = k | X) =
eβk0+β

T
k X

1 +
M∑
i=1

eβi0+β
T
i X

where X is a vector of features representing the node, βk is the set
of weights associated with relation class k ∈ {1, . . . ,M}, and βk0
is a class-specific intercept term. We harness the DOM structure to
create two types of features to represent each node.
Structural features: We extract features relating to the attributes
of neighboring nodes of the target node, as presented by Gulhane
et al. in the Vertex project [17]. Specifically, we examine the
node itself, ancestors of the node, and siblings of those ancestors
(up to a width of 5 on either side) for the following HTML ele-
ment attributes: tag, class, ID, itemprop, itemtype, and
property. For each attribute of these nodes, we construct fea-
tures as a 4-tuple consisting of (attribute name, attribute value,
number of levels of ancestry from the target node, sibling number).
Node text features: In addition to the structural features, we gen-
erate features based on the texts of nearby nodes. We automatically
compile a list of strings that appear frequently on the website and
check if any of these strings appears nearby the node being classi-
fied; if so, a feature is created consisting of the word and the path
through the tree to the node containing the string.

4.3 Extraction
In extraction, we apply the logistic regression model we learned

to all DOM nodes on each page of the website. When we are able to
identify the “name” node on a page, we consider the rest of the ex-
tractions from this webpage as objects and use the text in the topic
node as the subject for those extracted triples. Our probabilistic
extractor outputs a confidence value for each extraction; varying
the confidence threshold required to make an extraction allows a
trade-off between precision and recall.

5. EXPERIMENTAL EVALUATION
Three experiments show the success of our techniques in several

different verticals and settings. First, we show that our technique
achieves state-of-the-art results on multiple verticals and is com-
petitive with top systems trained on manually annotated data. Sec-
ond, we show the advantages of our full annotation process over a
baseline via experiments on IMDb, a complex website with many
relationships. Third, to demonstrate the performance of our system
on real-world data, we extracted over a million facts from dozens
of long-tail websites in the Movie vertical.

5.1 Data sets

5.1.1 SWDE
To evaluate the performance of our approach across a range of

verticals, we employed a subset of the Structured Web Data Extrac-
tion dataset (SWDE) [19] as our testbed. SWDE comprises ground

1089



Table 1: Four verticals of the SWDE dataset used in evaluation.
Vertical #Sites #Pages Attribute

Book 10 20,000 title, author, ISBN-13, publisher,
publication_date

Movie 10 20,000 title, director, genre, rating
NBA Player 10 4,405 name, height, team, weight
University 10 16,705 name, phone, website, type

Table 2: Common entity types and predicates in the KB used
to distantly supervise experiments for the Movie vertical.

Entity Type #Instances #Predicates

Person 7.67M 15
Film 0.43M 19
TV Series 0.12M 9
TV Episode 1.09M 18

truth annotations of 4–5 predicates for 8 verticals with 10 websites
in each vertical and 200–2000 pages for each site. In our evalua-
tion, we used four verticals, namely Movie, Book, NBA Player, and
University, which all have named entities and have sufficient over-
lap between sites such that a KB constructed from one site should
contain at least some of the same entities as the others. An overview
of the dataset is provided in Table 1.

For the Movie vertical, we use a seed knowledge base derived
from a download of the IMDb database that powers the IMDb web-
site, with an ontology based on Freebase [3]. Table 2 gives a sum-
mary of this KB, which contains 85 million triples. For the rest
of the three verticals, we arbitrarily chose the first website in al-
phabetical order from each vertical (abebooks.com for Books,
espn.com for NBA Player, and collegeboard.com for Uni-
versity), and used its ground truth to construct the seed KB. We
randomly selected half of the pages of each website to use for an-
notation and training and used the other half for evaluation; the
confidence threshold was set at 0.5.

5.1.2 IMDb
To evaluate our approach on complex websites that provide in-

formation for many relations, we crawled IMDb5 in May 2017,
obtaining two sets of webpages: one consisting of 8,245 semi-
structured pages about movies, and the other consisting of 1,600
semi-structured pages about people.

The seed KB is the same as used for the SWDE Movie vertical
described in Section 5.1.1. A ground truth set was generated us-
ing the Vertex++ extractor described in Section 5.2, and manually
spot-checked to ensure correctness. As with SWDE, half of the
pages were used for annotation and training and the other half for
evaluation, with a 0.5 confidence threshold.

5.1.3 CommonCrawl movie websites
The SWDE dataset validated our ability to obtain information

from major websites well-aligned to our seed KB. However, to
build a comprehensive KB, we need to obtain information also
from smaller niche sites from all over the world. To evaluate our
approach more broadly, we extracted knowledge from a range of
movie websites in CommonCrawl6.

The CommonCrawl corpus consists of monthly snapshots of pages
from millions of websites [1] on the Web. We started with a few
well-known sites, including rottentomatoes.com, boxofficemojo.com,

5Express written consent must be obtained prior to crawling IMDb;
see http://www.imdb.com/conditions
6http://commoncrawl.org/

and themoviedb.org. Based on a Wikipedia list of the largest global
film industries by admissions, box office, and number of produc-
tions7, we then issued Google searches for terms corresponding to
these countries, such as “Nigerian film database”, and recorded re-
sulting sites that had detail pages related to movies. We also issued
a few additional searches related to specific genres we thought may
not be well-represented in mainstream sites, including “animated
film database” and “documentary film database”. After compiling
our list of sites, we then checked CommonCrawl8 and kept all sites
with more than one hundred pages available. Our final list contains
a broad mix of movie sites, including sites based around national
film industries, genres, film music, and screen size. Most are in
English, but the set also includes sites in Czech, Danish, Icelandic,
Italian, Indonesian, and Slovak.

In general, most websites contain a diversity in their pages re-
flected in their use of distinct templates for different entity types.
For example, in a given site such as Rotten Tomatoes, movie pages
often appear structurally similar to each other, whereas they differ
significantly from celebrity pages. Recall from Section 2.1 that we
apply the clustering algorithm described in [17] in an attempt to
recover the inherent groups of templates. Our extraction approach
is then run atop these individual clusters.

In our experience, we observed that the clustering algorithm does
not always succeed in identifying the different page types. For
example, out of the 73,410 Rotten Tomatoes pages we obtained,
71,440 were placed into a single cluster, including almost all of the
semi-structured pages as well as unstructured pages. Note that this
is a challenge for our process, since our method will have to learn
an extractor capable of working on multiple very different page
types, including unstructured pages.

We used the same knowledge base created for the SWDE Movie
vertical as the seed KB. Since we do not have labels for Common-
Crawl, we create the ground truth by sampling 100 extracted triples
from each site and manually checking their correctness. A triple
is considered to be correct if it expresses a fact asserted on the
page from which it was extracted. We do not attempt to verify the
real-world accuracy of the webpage’s assertion, nor do we confirm
which text fields on the page provided the extraction. Note how-
ever that the ground truth cannot tell us which triples we failed to
extract from the website (i.e., recall).

5.2 Experimental setup
Implementations: We implemented our proposed technique, a
distantly supervised extraction approach, together with three base-
lines.

1. VERTEX++: We implemented the Vertex wrapper learning
algorithm [17], which uses manual annotations to learn ex-
traction patterns, expressed by XPaths. We further improved
the extraction quality by using a richer feature set. Training
annotations were manually crafted by one of the co-authors
to ensure correctness. Note that because of the access to pre-
cise training annotations, VERTEX++ presumably should ob-
tain better results than distantly supervised approaches.

2. CERES-BASELINE: This baseline operates on the original
Distant Supervision Assumption; that is, annotations are pro-
duced for all entity pairs on a page that are involved in a

7https://en.wikipedia.org/wiki/Film_industry
8For each site, we scanned the CommonCrawl indices for all monthly
scrapes prior to January 2018 and downloaded all pages for the site from
the scrape with the largest number of unique webpages. Note that these
scrapes do not necessarily obtain all pages present on a site, so the retrieved
pages represent only a subset of the full site.
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Table 3: Comparing with state-of-the-art DOM extraction sys-
tems, CERES-FULL obtains highest F-measure on two verti-
cals. Bold indicates the best performance. (F-measures of prior
work are directly taken from the papers.)

System Manual
Labels Movie NBA Player University Book

Hao et al. [19] yes 0.79 0.82 0.83 0.86

XTPath [7] yes 0.94 0.98 0.98 0.97
BigGrams [26] yes 0.74 0.90 0.79 0.78

LODIE-Ideal [15] no 0.86 0.9 0.96 0.85

LODIE-LOD [15] no 0.76 0.87 a 0.91a 0.78

RR+WADaR [29] no 0.73 0.80 0.79 0.70

RR+WADaR 2 [30] no 0.75 0.91 0.79 0.71

WEIR [4] no 0.93 0.89 0.97 0.91

Vertex++ yes 0.90 0.97 1.00 0.94

CERES-Baseline no NAb 0.78 0.72 0.27

CERES-Topic no 0.99 a 0.97 0.96 0.72

CERES-Full no 0.99 a 0.98 0.94 0.76

aF1 of distantly supervised systems is calculated based on predicates that
were present in the ontology of the KB used for annotation. The KB for
CERES-Topic and CERES-Full did not include Movie.MPAA-Rating be-
cause lacking seed data. LODIE-LOD did not include University.Type,
NBAPlayer.Height, and NBAPlayer.Weight.
bCould not complete run due to out-of-memory issue.

triple in the seed KB. The extraction model is the same as
that described in Section 4.2. However, since there is no con-
cept of a page topic in this setting, our annotation must iden-
tify a pair of subject-object nodes for a relation; to produce
features for the pair, we concatenate the features for each
node. Note that at extraction time, because we do not know
the topic of a page, we need to examine all possible pairs
of DOM nodes, which is computationally infeasible; thus,
we identify potential entities on the page by string matching
against the KB.

3. CERES-TOPIC: This method applies the algorithm described
in Section 3.1 for topic identification, but then annotates all
mentions of an object with all applicable relations, bypassing
the relation annotation process described in Section 3.2.

4. CERES-FULL: This is the method proposed by the paper,
applying the algorithms from both Section 3.1 and 3.2 for
annotation, and techniques in Section 4 for extraction.

We implemented our algorithms in Python. We used the logis-
tic regression implementation provided by Scikit-learn using the
LBFGS optimizer and L2 regularization with C=1 [31], and used
Scikit-learn’s agglomerative clustering implementation for the clus-
tering step. We set parameters exactly as the examples given in the
texts. All experiments were run on an AWS m4.2xlarge instance
with 32 GB of RAM memory.
Evaluation: Our primary metrics for evaluation are precision, re-
call, and F1 score, the harmonic mean of precision and recall.

precision =
tp

tp+ fp
recall =

tp

tp+ fn

where tp is the number of true positive extractions, fp is the num-
ber of false positives, and fn is the number of false negatives.

5.3 Results on SWDE
Table 3 compares CERES-FULL with our baselines, and the

state-of-the-art results on SWDE in the literature. Among those

Table 4: Comparing with the supervised extractor VERTEX++,
our distantly supervised system CERES-FULL obtains compa-
rable precision and recall across all extractions on the SWDE
dataset. Bold instances indicate CERES-FULL beats VER-
TEX++.

Vertical Predicate Vertex++ CERES-Full

P R F1 P R F1

Movie
Title 1.00 1.00 1.00 1.00 1.00 1.00
Director 0.99 0.99 0.99 0.99 0.99 0.99
Genre 0.88 0.87 0.87 0.93 0.97 0.95
MPAA Rating 1.00 1.00 1.00 NA NA NA

Average 0.97 0.97 0.97 0.97 0.99 0.98

NBAPlayer

Name 0.99 0.99 0.99 1.00 1.00 1.00
Team 1.00 1.00 1.00 0.91 1.00 0.95
Weight 1.00 1.00 1.00 1.00 1.00 1.00
Height 1.00 1.00 1.00 1.00 0.90 0.95

Average 1.00 1.00 1.00 0.98 0.98 0.98

University

Name 1.00 1.00 1.00 1.00 1.00 1.00
Type 1.00 1.00 1.00 0.72 0.80 0.76
Phone 0.97 0.92 0.94 0.85 0.95 0.90
Website 1.00 1.00 1.00 0.90 1.00 0.95

Average 0.99 0.98 0.99 0.87 0.94 0.90

Book

Title 0.99 0.99 0.99 1.00 0.90 0.95
Author 0.97 0.96 0.96 0.72 0.88 0.79
Publisher 0.85 0.85 0.85 0.97 0.77 0.86
Publication Date 0.90 0.90 0.90 1.00 0.40 0.57
ISBN-13 0.94 0.94 0.94 0.99 0.19 0.32

Average 0.93 0.93 0.93 0.94 0.63 0.70

systems, Hao et al. [19], XTPATH [7], BIGGRAMS [26], and VER-
TEX++ use manual annotations for training; LODIE-IDEAL and
LODIE-LOD [15] conduct automatic annotation (LODIE-IDEAL
compares between all web sources in a vertical and LODIE-LOD
compares with Wikipedia); RR+WADAR [29, 30] and WEIR [4]
applied unsupervised learning.

As with these prior works, metrics in Table 3 follow the method-
ology of Hao et al. [19] in evaluating precision and recall on the
SWDE dataset. Because their system can extract only one field per
predicate per page, they base their metrics on page hits for each
predicate, giving credit for a page if at least one text field contain-
ing an object for that predicate is extracted. For fair comparison, we
restrict our system to making one prediction per predicate per page
by selecting the highest-probability extraction. We also present full
results showing precision and recall across all mentions in Table 4.

The CERES-FULL automatic annotation process annotated a
large percentage of pages when there was good overlap with the
KB, producing at least one annotation on 75% of pages for Movie,
97% for NBAPlayer, 74% for University, and 11% for Book. Most
of the compared systems do not report number of annotations, but
XTPath allows up to 10% of data to be used in training, while Ver-
tex++ required two pages per site. CERES-FULL achieved the best
results on two of the four verticals, and overall obtained better re-
sults than most other system, even those using manual annotations.

CERES-BASELINE performed poorly across all verticals. In the
movie vertical, where we used a large seed KB constructed from
IMDb, DB-BASELINE produced too many annotations and ran out
of memory, even with 32 GB of RAM. CERES-TOPIC performed
similarly to CERES-FULL. However, we note that many of the
predicates in SWDE, such as University.Phone and Book.ISBN-
13, have little ambiguity; as we will see soon in Section 5.4, CERES-
TOPIC performs worse in a more complex setting.
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Figure 4: Extraction F1 vs. # of ISBNs overlapping w. the seed
KB (potential number of annotated pages): lower overlap typ-
ically corresponds to lower recall. We omit acebooks.com site,
which serves as the basis for the KB. An undefined F1 (when no
extraction is produced) is shown as zero.

Figure 5: Extraction F1 improves with higher number of anno-
tated pages used in the learning process for the SWDE Movie
vertical. Note the log scale of the x-axis.

Table 4 compares CERES-FULL with VERTEX++ in detail on
full extractions. We observe that CERES-FULL obtains extraction
quality comparable to VERTEX++ most of the cases, and some-
times even higher precision. In particular, on predicates such as
Movie.Genre and University.Phone, which frequently have two
or more values, we achieve recall over 0.95, even higher than the
state-of-the-art annotation-based supervised extractor.

CERES-FULL performed best on the verticals where more an-
notations were produced, particularly the Movie and NBAPlayer
verticals (note that we did not extract MPAA Rating because our
KB does not contain any triple with this predicate). In contrast, we
obtained our lowest F-measure on the Book vertical. This is be-
cause in the Book vertical there is very little overlap between the
seed KB, built from the ground truth for acebooks.com, and the
other websites. As shown in Figure 4, four of the sites had 5 or
fewer pages representing books existing in our KB. However, even
when we are able to annotate at most 5-20 webpages out of the
1000 pages, CERES-FULL still obtained high precision on these
sites. Figure 5 shows that in the Movie vertical, a similar pattern
emerges if a limitation is placed on the number of annotated pages
that are used for learning the extractor model.

False positive extractions largely fell into two categories. First,
the system sometimes extracted a node adjacent to the correct node,
such as extracting the string “Author:” for the Book.Author pred-
icate. The annotations were correct, but the features of the nodes
were too similar for the classifier to distinguish. One could imag-
ine applying similar global filtering according to the Informative-

Table 5: On IMDb, CERES-FULL obtains much higher extrac-
tion quality than CERES-TOPIC.

Domain Predicate CERES-Topic CERES-Full

P R F1 P R F1

Person

name 1.0 1.0 1.0 1.0 1.0 1.0
alias 0.06 1.0 0.11 0.98 1.0 0.99
place of birth 0.96 0.87 0.91 1.0 0.93 0.96
acted in 0.41 0.64 0.50 0.93 0.65 0.77
director of 0.48 0.92 0.63 0.95 0.95 0.95
writer of 0.32 0.56 0.41 0.89 0.69 0.78
producer of 0.48 0.24 0.32 0.8 0.44 0.57

All Extractions 0.36 0.65 0.46 0.93 0.68 0.79

Film/TV

title 1.0 1.0 1.0 1.0 1.0 1.0
has cast member 0.93 0.46 0.62 1.0 0.49 0.66
directed by 0.80 0.99 0.88 0.93 0.98 0.95
written by 0.99 0.67 0.80 0.99 0.89 0.94
release date 0.37 0.14 0.20 1.0 0.63 0.77
release year 0.74 0.96 0.84 0.91 1.0 0.95
genre 0.80 1.0 0.89 1.0 0.99 0.99
(TV) episode number 1.0 1.0 1.0 1.0 1.0 1.0
(TV episode) season number 0.98 1.0 0.99 0.87 1.0 0.93
(TV episode) series 0.50 0.01 0.02 1.0 1.0 1.0

All Extractions 0.88 0.59 0.70 0.99 0.65 0.78

Table 6: Accuracy of the automated annotations on 20 pages
from IMDb Person and Film domains. Recall is measured as
the fraction of facts from KB that were correctly annotated.
Comparing with CERES-TOPIC, CERES-FULL has higher pre-
cision at the cost of slightly low recall.

Domain Predicate CERES-Topic CERES-Full

P R F1 P R F1

Person

alias 0.19 1.00 0.33 1.00 0.71 0.83
place of birth 0.84 0.55 0.67 0.90 0.45 0.60
acted in 0.63 0.99 0.77 0.98 0.83 0.90
director of 0.26 0.99 0.41 0.88 0.36 0.51
writer of 0.33 0.99 0.5 0.77 0.81 0.79
producer of 0.45 0.98 0.61 0.55 0.91 0.68

All Annotations 0.46 0.99 0.60 0.93 0.78 0.83

Film/TV

has cast member 0.83 0.88 0.86 0.99 0.80 0.89
directed by 0.47 0.74 0.58 0.88 0.71 0.79
written by 0.68 0.52 0.59 0.90 0.36 0.51
release date 0.53 0.59 0.56 1.0 0.56 0.72
release year 0.27 0.75 0.39 1.0 0.71 0.83
genre 0.55 0.82 0.66 0.96 0.82 0.88
(TV) episode number 0.45 0.25 0.32 1.0 0.20 0.33
(TV episode) season number 0.89 0.40 0.55 0.88 0.35 0.50
(TV episode) series 0.44 0.42 0.43 1.0 0.42 0.59

All Annotations 0.53 0.80 0.61 0.96 0.71 0.83

ness observation on extractions. Second, we still make annotation
errors: in one website in the University vertical, all pages of the
site listed the two potential University.Type values (“public” and
“private”) in a search box on every page. This produced incorrect
annotations and bad resulting extractions. Ignoring certain areas of
the pages like search box is likely to alleviate the problem.

5.4 Results on IMDb
The IMDb dataset is a challenging testbed that demonstrates why

our annotation scheme is critical to obtaining high extraction qual-
ity when extracting for complex domains. Recall that our KB is
constructed based on a download of IMDb data, so there is overlap
between our KB and IMDb’s website. Note, however, that the seed
KB includes only a subset of facts found on the website (notably,
it only contains links between people and movies if the person is
a "principal" member of the film such as a lead actor or highly-
billed writer or producer.) For example, for the pages in our web
crawl, about 14% of has cast member facts on the webpages are
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Table 7: Accuracy of topic identification on the IMDb dataset.

Domain P R F1

Person 0.99 0.76 0.86
Film/TV 0.97 0.88 0.92

present in the KB, along with 9% of producer of, 38% of director
of and 58% of genre. This means that the KB is biased toward
certain types of entities. This can complicate extraction in the case
that this bias correlates with presentation on the webpage; however,
this approximates the case of a seed KB containing only “popular”
entities in a setting where we want to extract all entities, including
those in the long tail. The relationship of the KB and dataset meant
that we had strong keys connecting an IMDb page to a KB entity
for most, but not all, of the pages, giving us ground truth to evaluate
our topic identification step on this subset of pages.

One challenging aspect of IMDb is that many of the predicates,
such as has cast member and director of, are multi-valued and
consist of long lists of values (often 20 or more). Multi-valued
predicates are a challenging and little-explored topic in semi-struc-
tured extraction, with most prior unsupervised and semi-supervised
extractors restricting the problem to single-valued extractions [4,
19, 15, 18, 17]. In addition, IMDb contains many sections of the
page that could easily produce false annotations (and thus extrac-
tions). For example, all People pages include a “Known For” sec-
tion listing the person’s four most famous films; however, this sec-
tion does not correspond to a particular predicate, so any system
that learns to extract it will produce erroneous extractions.

We compare the extraction quality of CERES-FULL with CERES-
TOPIC in Table 5, and compare their annotation quality in Table 6.
As shown in Table 7, we were very successful in identifying page
topics. CERES-FULL annotation has decent precision (96% on
Film/TV, 93% on Person), though sometimes lower recall (71%
and 78%); this is because our annotation algorithms strive for high
precision. Based on the slightly noisy annotations, we are able to
train a robust extractor model, achieving an extraction F1 of 11%
higher than CERES-Topic on Film/TV, and 72% higher on Person.

On this website, CERES-FULL obtains very high precision (99%
on Film/TV pages, 93% on Person pages) and reasonable recall
(65% and 68%). The fairly low recall is mainly dominated by false
negatives for acted in and has cast member, which contribute a
large number of triples (non-weighted recall among all predicates
is 81% and 90% instead). Lower recall on these predicates, as well
as producer of and writer of, is partially due to the fact that these
are multi-valued predicates. For the acted in predicate, the recall
loss is exacerbated by the fact that our seed KB only contains actors
when associated IMDb character information is available, which is
represented with a specific feature on the website. Lower precision
on producer of and writer of is also due to the challenging nature
of these predicates, whose objects are frequently only present in
extraneous fields of the page such as a “Projects in Development”
section, causing incorrect annotations. While our results are imper-
fect, the significant accuracy gain over CERES-TOPIC shows the
advantages of our technique.

In contrast, CERES-TOPIC obtains much lower annotation pre-
cision than CERES-FULL, though the recall is slightly higher. The
very noisy annotations lead to low quality extractors: for 7 predi-
cates, the extraction precision is below 50%. In particular, CERES-
TOPIC fails on Person pages, where there is significant ambiguity
as films are mentioned in sections like “Known For” and “On Ama-
zon Video” as well as the filmography.

Figure 6: Extraction precision vs. number of extractions on the
CommonCrawl dataset at various confidence thresholds; the
orange bar indicates a 0.75 threshold yielding 1.25 million ex-
tractions at 90% precision.

5.5 Results on CommonCrawl movie sites
Figure 6 shows the precision and number of extractions from de-

tail pages of all 33 movie websites at different thresholds for the
extraction confidence; for example, a confidence threshold of 0.75
yields 1.25 million extractions at 90% precision. Table 8 shows a
detailed breakdown of the 33 sites using an confidence threshold of
0.5; at this threshold, CERES-FULL extracted nearly 1.7 million
triples off a basis of 440,000 annotations, obtaining a 4:1 extrac-
tion to annotation ratio and 83% precision. We highlight several
successes by our extraction on CommonCrawl.

• Our movie websites are carefully selected to include long-
tail movie websites. The only exceptions are themoviedb.org
and rottentomatoes.com, which provide general film infor-
mation, and where we obtain extraction precisions of 100%
and 91%, respectively. For the rest of the websites, we obtain
a precision over 80% on half of them. As shown in Table 9,
for 6 out of the top-10 most extracted predicates, our overall
precision is above 90%.

• CERES-FULL obtains greater than 90% precision on some
of the foreign-language sites in Italian (filmitalia.org), Dan-
ish (danksefilm.com), and Czech (kinobox.cz).

• CERES-FULL was able to obtain high precision on sites
when we can annotate only on a few tens of webpages, such
as kmdb.or.kr and moviecrow.com.

• Precision increases monotonically with respect to confidence,
allowing for a trade-off between precision and recall.

• CERES-FULL is able to extract triples that include entities
not present in the seed KB. At 0.5 confidence, the ratio be-
tween annotated topic entities and extracted entities is 1:3.22,
where most newly extracted entities are long tail entities.

• One notable instance of an inability to extract being a good
thing occurred on boxofficemojo.com. Despite contributing
over 74,000 pages to our dataset, the pages in the Common-
Crawl scrape did not include any detail pages about movies,
instead consisting almost entirely of daily box office charts.
We consider the fact that our system did not produce erro-
neous extractions from this site to be a success.

Comparison with Knowledge Vault [10]: Knowledge Vault trained
two DOM extractors to extract knowledge from the Web using
Freebase as the seed KB, and the precision when applying a thresh-
old of 0.7 is 0.63 and 0.64 respectively [11]. Because there are
no broken-out details provided about the performance, we cannot

1093



Table 8: CERES obtains an average of 83% precision on long-tail multi-lingual movie websites from CommonCrawl when using a
0.5 confidence threshold.

Website Focus # of Pages # of Annotated Pages # of Annotations Total Extractions Ratio of Extracted
to Annotated Pages

Ratio of Extraction
to Annotation Precision

themoviedb.org General film information 32,143 10,182 113,302 347,690 1.87 3.07 1.00
blaxploitation.com Blaxploitation films 670 274 553 1,182 2.40 2.14 1.00
danksefilm.com Danish films 2,100 403 1,712 13,146 2.98 7.68 0.98
archiviodelcinemaitaliano.it Italian films 1,573 617 2,734 13,135 2.52 4.80 0.98
filmitalia.org Italian films 2,847 909 4,247 10,074 1.96 2.37 0.96
kmdb.or.kr Korean films 1,351 29 137 389 3.14 2.84 0.95
britflicks.com British films 1,464 721 3,944 4,306 1.32 1.09 0.92
rottentomatoes.com Film reviews 73,410 18,685 82,794 410,012 2.86 4.95 0.91
moviecrow.com Indian films 569 84 271 912 2.70 3.37 0.91
nfb.ca Canadian films 39,780 2,130 9,802 67,428 5.28 6.88 0.91
kinobox.cz Czech films 37,988 2,940 16,820 60,337 5.58 3.59 0.90
samdb.co.za South African films 1,424 10 25 281 6.60 11.24 0.88
dianying.com Chinese films 15,789 1,333 3,998 48,302 8.22 12.08 0.84
giantscreencinema.com IMAX films 370 50 333 856 3.00 2.57 0.83
myanimelist.net Animated films 5,588 644 3,513 55,904 7.00 15.91 0.80
hkmdb.com Hong Kong films 6,350 741 3,491 43,486 4.19 12.46 0.75
bollywoodmdb.com Bollywood films 1,483 167 671 3,132 4.14 4.67 0.72
soundtrackcollector.com Movie soundtracks 4,192 1,446 6,714 24,032 2.38 3.58 0.70
spicyonion.com Indian films 5,898 752 2,375 7,439 2.89 3.13 0.70
shortfilmcentral.com Short films 32,613 2,610 5,188 87,100 12.47 16.79 0.69
filmindonesia.or.id Indonesian films 2,901 577 2,198 9,178 3.83 4.18 0.67
the-numbers.com Financial performance 74,767 23,173 141,145 430,594 2.23 3.05 0.65
sodasandpopcorn.com Nigerian films 3,401 190 423 3,862 13.16 9.13 0.62
christianfilmdatabase.com Christian films 2,040 712 5,420 33,127 2.20 6.11 0.59
jfdb.jp Japanese films 1,055 69 341 1,683 2.42 4.94 0.58
kvikmyndavefurinn.is Icelandic films 235 49 185 868 3.96 4.69 0.57
laborfilms.com Labor movement films 566 124 445 4,969 4.38 11.17 0.45
africa-archive.com African films 1,300 300 892 2,150 2.31 2.41 0.42
colonialfilm.org.uk Colonial-era films 1,911 48 212 1,605 20.00 7.57 0.29
sfd.sfu.sk Slovak films 1,711 61 140 1,727 20.05 12.34 0.21
bcdb.com Animated films 912 17 44 0 0.00 0.00 NA
bmxmdb.com BMX films 924 1 1 0 0.00 0.00 NA
boxofficemojo.com Financial performance 74,507 2 4 0 0.00 0.00 NA

Total - 433,832 70,050 414,074 1,688,913 3.22 4.08 0.83

Table 9: Number of annotations, extractions, and precision for
the 10 most extracted predicates on the CommonCrawl dataset
at a 0.5 confidence threshold.

Predicate #Annotations #Extractions Precision

film.hasCastMember.person 78,527 441,368 0.98
person.actedIn.film 86,273 379,848 0.96
film.hasGenre.genre 40,359 175,092 0.90
film.hasReleaseDate.date 25,213 132,891 0.41
film.wasDirectedBy.person 25,159 85,244 0.94
person.directorOf.film 14,893 67,408 0.72
person.createdMusicFor.film 7,065 61,351 0.25
person.hasAlias.name 4,654 59,051 0.99
film.wasWrittenBy.person 18,643 58,645 0.93
person.writerOf.film 8,665 36,871 0.52

All Predicates 414,194 1,688,913 0.83

conduct a side-by-side comparison. However, we believe CERES
obtained significantly higher precision because (1) we obtained an
average precision of 0.94 on mainstream websites in SWDE, even
with quite limited training data on some domains, and (2) on long-
tail multi-lingual websites in CommonCrawl, which present signif-
icant challenges for extraction, we obtained an average precision of
0.83 (at a 0.5 threshold). In addition, unlike Knowledge Vault, we
allow extracting facts where the subjects and objects are not present
in the seed database. On the limited set of CommonCrawl websites,
we already extracted knowledge for 155K new entities.

5.5.1 Discussion
On the other hand, we also observe low accuracy in extracting

some of the long-tail websites. We next discuss where our algo-
rithm may fall short and potential improvement directions.

Disjoint webpages or non-detail pages: Many websites contain
pages generated by different templates, or even non-detail pages.
Ideally, our clustering algorithm shall be able to separate them.
Unfortunately, a strict implementation of Vertex clustering algo-
rithm [17] sometimes does not obtain ideal results; for example, for
sodasandpopcorn.com, so 36% of bad extractions occurred
on these pages. This causes confusion at the extraction time. In-
deed, we manually removed non-detail pages in our evaluations;
including them would increase the extraction count by 200,000,
but reduce the precision to 0.74. A robust clustering algorithm is
critical to apply our algorithm to the whole web.

Semantic ambiguity: About a third of all mistakes happen in pres-
ence of semantic ambiguity for predicates. For example, spicyon
ion.com and filmindonesia.or.id list all films that a per-
son is involved in, without distinguishing the role of the person
like writer, director, or actor; the-numbers.com contains long
lists of the date and box office receipts for every day the film was in
theaters, instead of just release dates; christianfilmdatab
ase.com and laborfilms.com contain a list of all genres on
every page, rather than just genres for the topic movie. Ideally in
such cases we shall make no annotation, but because an area of the
webpage contains a superset of values for a multi-valued predicate,
our method will wrongly annotate and learn to extract that area.

Template variety: Some websites, such as colonialfilm.org.
uk and bollywoodmdb.com, may change the order of the pred-
icates on the webpage, with the predicate indicated by an adjacent
string. CERES-FULL may fail to learn the correct pattern when
the text features are not strong enough; this category accounted for
23% of errors.

Over-represented or under-represented types and predicates:
Most of the websites contain information solely about movies, but
our KB contains over a million TV episodes (vs. 430K movies).
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Topic identification may wrongly match movies to episodes, such
as in websites like dianying.com, colonialfilm.org.uk,
myanimelist, and samdb.co.za, accounting for 5% of to-
tal error. On the other hand, for relations such as sound editor
and camera operator, which do not exist in the seed KB, we
do not necessarily make annotation mistakes but can make extrac-
tion mistakes when the XPaths are very similar. This happened on
kvikmyndavefurinn.is, jfdb.jp, and sfd.sfu.sk.

We leave for future work to investigate how many of these afore-
mentioned mistakes can be solved by applying knowledge fusion [10,
11] on the extraction results.

6. RELATED WORK
Relation extraction has been an active area of research in the

Natural Language Processing community for decades. A recent
overview of this area can be found in a survey by Grishman [16].
Here we focus on techniques applicable to the semi-structured Web.

Wrapper induction: Early work for extracting semi-structured
data was based on a supervised learning scheme called wrapper in-
duction [21, 36, 17, 27]. The goal of wrapper induction is to learn
wrappers (or rules) for relations of interest based on a sample of
annotated data for a site. They work under the assumption that the
observed HTML-formatted data is an instance of a database-backed
template or schema, and the goal is to partially uncover these tem-
plates. Wrappers are often able to produce extractions with high
precision and often high recall. However, they suffer from three
problems: 1) they work only at the site-level and require human
annotation effort for each site, 2) most wrappers were not designed
to handle noisy annotations, so they tend to over-generalize in the
presence of noise in the training data, and 3) they are often brittle
— they tend to break with even minor changes in a site’s structure.

Subsequent approaches aimed to alleviate some of these short-
comings. For example, in order to reduce annotation effort, Zhai et
al. [36] used an active learning strategy to seek annotations from
human editors when existing wrappers fail to extract. Dalvi et
al. [9] proposed a generic framework to enable existing wrapper
techniques to be resilient to noisy annotations. Their method searches
the space of wrappers induced by subsets of (noisy) annotations and
aims to identify one that ranks high on wrapper quality while also
taking repeating patterns and schema size into account.

Moreover, most wrappers were designed to work at the site level
(except for [34]) requiring manual labor to create annotations for
each site to be processed. A recent approach by Hao et al. [19]
promises to extract data for all sites in a vertical by only requir-
ing that annotations be made for all pages of one site in that verti-
cal. This approach entails accurate labeling for all pages of a site,
for example by manually crafting regular expressions to extract at-
tribute values of interest. Such demands of high-quality, site-wide
labeling may not be easily fulfilled and thus can be a severe limi-
tation. In general, although wrappers result in high quality extrac-
tions, they are not scalable given the annotation requirements.

Automatic extraction: Recent research activity has focused on de-
vising unsupervised approaches for extraction, also known as au-
tomatic extraction. The underlying assumption is that the HTML
pages are a result of a small number of database-backed templates,
and thus mining patterns in the DOM tree structure of web pages,
the content and contexts should help uncover the templates. Ap-
proaches in this category [2, 8, 35, 15] aim to either discover tem-
plates from a set of pages or find recurring patterns from a page
to extract unseen relation instances from other pages. Although
these approaches do not require any supervision, their major down-
side is that, typically, their extracted content requires an additional

non-trivial post-processing step such as identification of attribute
values, clustering, or ontology alignment.

Seed KB based extraction: Approaches in this category align at-
tribute values in KB to text values on webpages to create annota-
tions for learning wrappers. Gulhane et al. [18] exploit the redun-
dancy in the attribute value content across websites in a vertical to
make extractions from a new site in the vertical. They follow an
iterative approach in which, at each iteration, some pages of a new
site are annotated based on matching attribute values with the KB,
and these annotated pages are used to learn wrappers for extract-
ing from rest of the pages in the site. The LODIE project [15] is
another example where annotations are generated based on match-
ing attribute values on a page to dictionaries of attribute values
pre-assembled from across the Linked Open Data cloud. Owing
to their use of wrappers, both approaches require accurate anno-
tations, which can be unrealistic to expect for complex sites com-
monly found on the web.

An alternate approach is that used by DIADEM [14], which,
rather than assuming a KB, identifies extractable fields using a
well-defined ontology and a set of recognizers corresponding to
each entity type as well as predicate labels. Unlike CERES, this re-
quires manual work to define these recognizers for each predicate
and for each language.

Distant supervision based extraction: More recently, research
methods (including this work) have employed the distant supervi-
sion paradigm [25] for leveraging information in a KB as a source
of supervision for creating potentially noisy annotations. However,
these methods are mainly designed for unstructured data. Knowl-
edge Vault (KV) [10] is an exception however, which takes advan-
tage of the DOM tree structure to predict relations for co-occurring
entities on a page. KV requires the input pair of entities to exist
in the KB, and hence cannot discover new entities. CERES, on
the other hand, is able to discover new entities which is immensely
useful for improving a KB’s coverage.

Finally, for unstructured data, the strong distant supervision as-
sumption has been relaxed to accommodate cases when a pair of
entities may not hold for any relation in the KB [33], or may have
multiple overlapping relations [20]. Most recently, data program-
ming [32] and heterogeneous supervision [24] are proposed to unite
diverse, possibly conflicting sources of supervision such as annota-
tions by humans, supervision from a KB, or any labeling function.
These annotation heuristics could be applied to our approach.

7. CONCLUSIONS
We have presented a new method for distantly supervised rela-

tion extraction from semi-structured websites. By using an entity-
linking step in our annotation process to identify detail page topic
entities, followed by a clustering process to identify the areas of
pages corresponding to each predicate, we produce highly accu-
rate annotations that can be used to train a supervised extractor.
Experiments on the SWDE dataset demonstrate the state-of-the-art
results on our system in multiple verticals, and a large-scale ex-
traction project on hundreds of thousands of webpages shows the
real-world usefulness of our approach.

While we believe this work offers an important step in the direc-
tion of truly automatic extraction from the web, additional work is
necessary to scale the process to extract from the whole web across
multiple domains. This will involve methods to effectively iden-
tify semi-structured pages and correctly group them into template-
based clusters, expansion of the topic identification process to deal
with non-named-entities, and methods to automatically identify the
domain of a website.
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