
Effective Indexing for Approximate Constrained Shortest
Path Queries on Large Road Networks

Sibo Wang1 Xiaokui Xiao1 Yin Yang2 Wenqing Lin3

1Nanyang Technological University 2Hamad Bin Khalifa University 3Qatar Computing Research Institute

{wang0759, xkxiao}@ntu.edu.sg {yyang, wlin}@qf.org.qa

ABSTRACT

In a constrained shortest path (CSP) query, each edge in the road

network is associated with both a length and a cost. Given an ori-

gin s, a destination t, and a cost constraint θ, the goal is to find

the shortest path from s to t whose total cost does not exceed θ.

Because exact CSP is NP-hard, previous work mostly focuses on

approximate solutions. Even so, existing methods are still pro-

hibitively expensive for large road networks. Two main reasons are

(i) that they fail to utilize the special properties of road networks

and (ii) that most of them process queries without indices; the few

existing indices consume large amounts of memory and yet have

limited effectiveness in reducing query costs.

Motivated by this, we propose COLA, the first practical solution

for approximate CSP processing on large road networks. COLA

exploits the facts that a road network can be effectively partitioned,

and that there exists a relatively small set of landmark vertices

that commonly appear in CSP results. Accordingly, COLA in-

dexes the vertices lying on partition boundaries, and applies an

on-the-fly algorithm called α-Dijk for path computation within a

partition, which effectively prunes paths based on landmarks. Ex-

tensive experiments demonstrate that on continent-sized road net-

works, COLA answers an approximate CSP query in sub-second

time, whereas existing methods take hours. Interestingly, even

without an index, the α-Dijk algorithm in COLA still outperforms

previous solutions by more than an order of magnitude.

1. INTRODUCTION
Nowadays, route planning via online mapping/navigation ser-

vices has become an essential part of driving in many places. Most

popular online maps today, such as Google Maps [3], compute

routes based on a single criterion, which is usually either the total

route length or the total travel time. In practice, however, the user

often needs to consider multiple criteria when planning a route. Be-

sides travel distance and time, a common criterion is toll payment.

For example, many cities charge the road user a fee to use high-

ways (e.g., in Tokyo), bridges and undersea tunnels (e.g., in New

York City); additionally, some densely populated metropolitan ar-

eas impose congestion charges (e.g., in London). Another common

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 2
Copyright 2016 VLDB Endowment 21508097/16/10.

consideration is safety. For instance, in 2015, members of the New

York City Council requested that Google Maps reduces the number

of left turns in its suggested routes, since left turns lead to a higher

rate of pedestrian crashes1. Finally, the shortest path is not nec-

essarily the fastest or the most pleasant, e.g., the user may rather

prefer driving through a university campus than on the highway.

Currently, most online navigation systems address the problem by

returning multiple paths, allowing the user to manually modify a

path, and providing multiple options on how the best route is deter-

mined. None of these solutions is ideal since they do not take into

consideration multiple criteria simultaneously.

The constrained shortest path (CSP) [19,24] addresses this prob-

lem by finding the best path based on one criterion with a constraint

on another criterion. For instance, the user may want to compute a

CSP that minimizes total travel time within a budget for toll pay-

ment. In an online navigation system, the constraint can be pre-

sented to the user in the form of a slider bar, which drastically sim-

plifies user-system interactions. We focus on single-constraint CSP,

because (i) tuning multiple parameters burdens the user, e.g., many

parameter combinations may lead to no feasible solution and (ii)

processing single-constraint CSP efficiently is already very chal-

lenging; for existing solutions, a single query may take hours on a

continent-sized road network. Hence, we focus on single-constraint

CSP and leave multiple-constraint CSP as future work.

Specifically, in CSP, each edge is assigned two attributes, which

are used in the optimization objective and constraint respectively.

Without loss of generality, we assume that these two attributes are

edge length and cost, respectively. Given an origin s, a destination

t, and a cost constraint θ, CSP finds the path from s to t that min-

imizes its total length, while satisfying that its total cost does not

exceed θ. Besides online navigation systems, CSP also finds appli-

cations in railroad management, military aircraft management sys-

tems, telecommunications, etc. [29]. The CSP problem has been

proven to be NP-hard [13, 19]. Hence, the majority of existing

work (e.g., [19, 24, 31]) focuses on approximate solutions, which

guarantee that the resulting path length is no longer than α times

of the optimal path length (where α is a user specified approxi-

mation ratio), subject to the cost constraint θ. Although there exist

polynomial-time algorithms for approximate CSP (e.g. [19,24,31]),

as we show in experiments, the current state-of-the-art solutions are

still prohibitively expensive for large road networks. There are two

main reasons for their inefficiency. First, they aim at answering ap-

proximate CSPs on general graphs, rather than specifically on road

networks; consequently, they fail to utilize the latter’s special prop-

erties. Second and more importantly, most of them process queries

without an index. The few known indices are all designed for exact

1http://www.digitaltrends.com/cars/new-york-city-to-google-
reduce-the-number-of-left-turns-in-maps-navigation-directions/

61

CSPs, and they consume large amounts of memory; furthermore,

none of them succeeds at reducing query cost to a practical level.

We thus propose a novel and practical solution COLA for index-

based approximate CSP processing on large road networks. COLA

mainly exploits two important properties of the road network. First,

real road networks are often (roughly) planar, and, thus, can be ef-

fectively split into partitions, each of which contains only a rela-

tively small number of boundary vertices. Accordingly, COLA par-

titions the network, builds an overlay graph on the partitions, and

indexes a set of selected paths between pairs of boundary vertices.

Second, in practice there often exist a relatively small number of

landmark vertices [16] in the road network that commonly appear

in CSP results. Based on this property, we design an index-free

algorithm α-Dijk as a component of COLA for path computation

within a partition, which achieves effective pruning using a land-

mark set. Extensive experiments using real continent-sized road

networks containing tens of millions of vertices show that COLA

answers an approximate CSP query within a second, whereas pre-

vious solutions need several hours. Further, even when an index

is not available (e.g., when the edge lengths or costs change fre-

quently), the α-Dijk module still outperforms existing methods by

over an order of magnitude.

2. BACKGROUND

2.1 Formal Definitions
Let G = (V,E) be a directed road network with a vertex set V

and an edge set E. Each edge e ∈ E is associated with a length

ℓ(e) ≥ 0 and a cost c(e) ≥ 0. For a path P = 〈e1, e2, · · · , ek〉
in G, the length and cost of P are defined as ℓ(P) =

∑k

i=1 ℓ(ei)

and c(P) =
∑k

i=1 c(ei), respectively. Following previous work

[19, 24, 31], we assume that the length of each edge is an integer.

In practice this can be done by measuring the edge length in a suf-

ficiently small unit, e.g., foot or meter, if the edge length represents

travel distance. Similarly, we assume that the cost of each edge

is also an integer. We use ℓmax (resp. cmax) to denote the maxi-

mum length (resp. cost) of an edge in G. Meanwhile, we assume

that ℓmax (resp. cmax) is non-zero; otherwise, the problem can be

trivially regarded as a conventional shortest path problem.

Given an origin vertex s ∈ V , a destination vertex t ∈ V , and a

cost constraint θ, a constrained shortest path (CSP) query asks for

the shortest path P among all paths from s to t with costs no more

than θ. If there exist multiple CSPs with the same length, we break

ties by the cost of the paths. The CSP problem has been proven

to be NP-hard, if both ℓmax and cmax can be arbitrarily large [13,

19]. On the other hand, if either ℓmax or cmax is polynomial to

the number of vertices, there exist polynomial-time solutions for

CSP, e.g., [19, 21]. Nevertheless, as we review in Sections 2.2 and

2.3, these algorithms incur tremendous costs for large graphs, and,

thus, are far from practical. As such, recently much effort has been

devoted to solving approximate versions of the CSP problem. This

paper follows a popular definition called α-CSP, defined as follows.

DEFINITION 1 (α-CSP QUERY). Given an origin s, a des-

tination t, a cost constraint θ, and an approximation ratio α,

an α-CSP query returns a path P , such that c(P) ≤ θ, and

ℓ(P) ≤ α · ℓ(Popt), where Popt is the optimal answer to the exact

CSP query with origin s, destination t, and cost constraint θ. �

EXAMPLE 1. Figure 1 illustrates an example of exact- and α-

CSP on a graph with 5 vertices v1, v2, · · · , v5. The length and cost

for each edge are also shown in the figure. For example, the edge

from v1 to v2 has cost c = 1 and length ℓ = 2. Given origin s = v1,

destination t = v5, and cost constraint θ = 6, the CSP query

Table 1: List of notations.

Symbol Meaning

G = (V, E) Input graph

n,m Numbers of vertices and edges in G

ℓ(e), c(e) Length and cost of an edge e

ℓmax, cmax Maximum length and cost for any edge in G

α Approximation ratio in α-CSP

s, t Query origin and destination vertices

T A partitioning of graph G

Gs, Gt Subgraph in T containing s and t, respectively

G◦ = (V ◦, E◦) Overlay graph of G (refer to Section 3.1)

returns the path Popt = 〈(v1, v3), (v3, v5)〉, since (i) c(Popt) =
6 ≤ θ and (ii) the length ℓ(Popt) = 5 is the smallest among all

paths from v1 to v5 with a cost no more than θ. Meanwhile, for α =
1.2, a valid result for the α-CSP query with the same parameters

s = v1, t = v5 and θ = 6 is Pα = 〈(v1, v2), (v2, v5)〉, since

c(Pα) = 5 ≤ θ, and ℓ(Pα) = 6 ≤ α · ℓ(Popt) = 6. �

v1 v3
l = 4
c = 3

v5
l = 1
c = 3

v2 v4
l = 2
c = 4

CSP (T = 6)

s

D-CSP (D ����T = 6)

t

Figure 1: Example of exact CSP and α-CSP

Two important concepts in solving α-CSP are dominance rela-

tionship and skyline. We define dominance for α-CSP as follows.

DEFINITION 2 (α-DOMINANCE). Let P1 and P2 be two

paths connecting the same origin and destination vertices. P1 α-

dominates P2 iff c(P1) ≤ c(P2) and ℓ(P1) ≤ α · ℓ(P2). �

For instance, consider paths P1 = 〈(v1, v2), (v2, v5)〉 and P2 =
〈(v1, v3), (v3, v5)〉 in the above example. When α = 1.2, P1 α-

dominates P2, since (i) the cost of P1 is c(P1) = 5 ≤ c(P2) = 6,

and (ii) the length of P1 is ℓ(P1) = 6 ≤ α · ℓ(P2) = 1.2× 5 = 6.

Based on the above definition, a set S of paths is called a skyline

set, iff no path in S is α-dominated by another in the same set

S. We say that a path P is a skyline path if P is in a skyline set.

Note that if two paths P1 and P2 have the same cost, it is possible

that they α-dominate each other, in which case we put the path with

smaller length in a skyline set. For exact CSP, we define dominance

relationship and skyline in the same way, by simply fixing α = 1.

Table 1 summarizes common symbols throughout the paper.

2.2 State of the Art
We present the current state of the art for CSP processing. Addi-

tional literature review appears in Section 2.3.

Exact CSP without index. The state of the art index-free solu-

tion for exact CSP problem is the one proposed in [18], which we

call Sky-Dijk because it follows the general idea of Dijkstra’s algo-

rithm [10]. The main difference between Sky-Dijk and Dijkstra’s

algorithm is that the former incrementally maintains a set of paths

at each vertex, rather than a single shortest path. Specifically, Sky-

Dijk maintains a label set L(v) for each vertex v, which contains

the current set of skyline paths from the origin s to v, i.e., those not

dominated by another path in L(v). Similar to Dijkstra’s algorithm,

each L(v) is initialized to empty and updated iteratively.

Meanwhile, akin to Dijkstra’s algorithm, Sky-Dijk maintains a

heap H of paths originating from s, in ascending order of their

62

costs2. Initially, H contains only one trivial path with no edge,

which both starts and ends at the origin vertex s. Then, in each

iteration, Sky-Dijk pops the top path P from H . Let v be the last

vertex in P . If v 6= t, i.e., P has not reached the query destina-

tion, the algorithm enumerates each path P ′ that can be obtained

by appending an edge (v, v′) at the end of P , and checks whether

P ′ exceeds the cost limit θ or is dominated by any path in L(v′). If

so, P ′ is simply discarded; otherwise, Sky-Dijk adds P ′ to both H
and L(v′), and updates L(v′) to eliminate paths dominated by P ′.

The algorithm terminates when H is empty, and returns the path in

L(t) with the minimum length, where t is the destination vertex.

EXAMPLE 2. Consider again the example in Figure 1 with the

same exact CSP query with origin s = v1, destination t = v5, and

cost constraint θ = 6. Sky-Dijk initializes the heap H with a trivial

path P0 from v1 to v1 with no edge, and zero cost / length. Then,

it pops P0 from H , and extends it to obtain paths P1 = 〈(v1, v2)〉
with cost c1 = 1 and length ℓ1 = 2, and P2 = 〈(v1, v3)〉 with

c2 = 3 and ℓ2 = 4. The algorithm adds P1 and P2 to the label set

L(v2) and L(v3) respectively, and both of them to H .

Next, P1 is popped from H , and Sky-Dijk extends it to obtain

paths P4 = 〈(v1, v2), (v2, v3)〉, P5 = 〈(v1, v2), (v2, v4)〉 and

P6 = 〈(v1, v2), (v2, v5)〉, which are added to L(v3), L(v4) and

L(v5) respectively. Note that now L(v3) contains two paths P2

(c2 = 3, ℓ2 = 4) and P4 (c2 = 4, ℓ2 = 3); neither dominates the

other. Meanwhile, note that P6 does not need to be inserted to H , as

it has reached the destination t = v5, and, thus, cannot be extended

further. After that, P2 is popped from H ; extending P2 generates

P7 = 〈(v1, v3), (v3, v5)〉, which is eventually returned as the CSP

result. The algorithm terminates until H becomes empty, at which

time it inspects L(v5), and returns P7. �

The time complexity of Sky-Dijk is O(ℓmaxmn · log(ℓmaxn)),
where m (resp. n) is the number of edges (resp. vertices) in the

graph, and ℓmax is the maximum edge length [18]. Clearly, Sky-

Dijk is a polynomial-time algorithm when ℓmax is polynomial to

n. However, on real road networks, the performance of Sky-Dijk

is very poor, since it does not optimize for such datasets at all.

As shown in [30] and also in our experiments, Sky-Dijk incurs

enormous costs for large graphs, and is clearly impractical.

α-CSP without index. The current state-of-the-art solution for

α-CSP is developed by Tsaggouris and Zaroliagis [31], dubbed as

CP-Dijk in the following. Specifically, given an α-CSP with origin

s, destination t, cost constraint θ, and approximation ratio α, CP-

Dijk applies the same data structures and follows the same steps

as Sky-Dijk, with a single modification: that each label set L(v)
maintains the set of paths that are not n

√
α-dominated (Definition 2)

by another path in L(v), where n is the total number of vertices in

the input graph G. Because n
√
α-dominance is a relaxed condition

of exact (i.e., 1-) dominance, this modification leads to faster query

processing. However, for a large graph, n
√
α is very close to 1 even

for a large α. Consequently, the performance improvement of CP-

Dijk over Sky-Dijk is often negligible, as shown in our experiments.

The time complexity of CP-Dijk is O(κmn · log(κn)), where

κ = log(n · ℓmax/ℓmin)/(α − 1) [31], and ℓmax, ℓmin are the

maximum and minimum non-zero values of an edge length, respec-

tively [31]. As explained before, in terms of practical performance,

CP-Dijk obtains only marginal improvement over Sky-Dijk; never-

theless, CP-Dijk is at least no worse than Sky-Dijk. As discussed

in Section 2.3, other polynomial-time solutions for α-CSP can be

2Note that, similar to the Dijkstra’s algorithm, it suffices to store in
H only the length, cost and the last two vertices for each path. For
ease of presentation we assume H contains full paths.

far more costly. The fact that CP-Dijk is the state-of-the-art for α-

CSP processing reveals that previous research focuses mostly on

asymptotic complexity, not practical performance.

Exact CSP with index. The state-of-the-art for indexed CSP pro-

cessing is CSP-CH [30], which accelerates Sky-Dijk with contrac-

tion hierarchies [15], an indexing technique that has been shown to

be effective for accelerating conventional shortest path processing

on road networks [33]. Similar to [15], in each iteration CSP-CH

removes a vertex from the graph, and substitutes it with new short-

cut edges for the remaining vertices. Each shortcut (u,w) created

during the removal of vertex v represents a path 〈(u, v), (v, w)〉
that is not dominated by any other path from u to w. After that,

CSP-CH answers query with a bidirectional Sky-Dijk search from

both the origin s and the destination t simultaneously, utilizing the

shortcuts to reduce the number of nodes to be traversed.

The problem of CSP-CH is that unlike conventional shortest path

search, in CSP there can be numerous shortcuts (i.e., multiple sky-

line sets) for each removed vertex, leading to a prohibitively large

index size. CSP-CH uses heuristics to alleviate this problem, e.g.,

by adding only a set of selected shortcuts, and by keeping the vertex

in the graph instead of removing it. Such compromises, however,

dramatically decrease the effectiveness of the index. Consequently,

its query processing cost is still impractically high.

α-CSP with index. To our knowledge, we are not aware of any

indexed solution for α-CSP processing. In sum, none of the state-

of-the-art methods optimizes for road networks, applies indexing

effectively, or obtains acceptable query time for large networks.

2.3 Other Related Work
Joksch [21] first studies the CSP problem, and proposes a dy-

namic programming algorithm for exact CSP. Subsequently, Han-

dler and Zang [17] propose two methods for exact CSP process-

ing: one method formulates CSP as an integer linear programming

(ILP) problem, and solves it with a standard ILP solver. This same

methodology is used by Mehlhorn and Ziegelmann [25]. However,

as shown in [25], these ILP-based solutions scale poorly, and in-

cur tremendous processing costs on large road networks. The other

solution in [17] reduces CSP to a k-shortest path problem, and re-

peatedly computes the next shortest path (in terms of total length)

until reaching one that satisfies the cost constraint. Afterwards,

Hansen [18] proposes an augmented Dijkstra’s algorithm [10] for

exact CSP queries and is shown in [28] to outperform the k-shortest

path solution. The state-of-the-art methods for exact CSP are de-

scribed in Section 2.2, for index-free and indexed processing, re-

spectively. Meanwhile, most recently, Sedeno et al. [27] propose

several pruning strategies to improve the efficiency of k-shortest

path search, and is shown to outperform the existing k-shortest

path solutions. However, it does not compare with the Sky-Dijk so-

lution. In our experiment, we include Sedeno et al.’s solution [27]

as one of our competitors.

Regarding α-CSP, Hansen [18] proposes the first solution,

which runs in polynomial time but has a high complexity:

O(m2 n2

α−1
log n

α−1
). Lorenz and Raz. [24] improve the complex-

ity to O(nm · (log log ℓmax

ℓmin

+ 1
α−1

)). However, this solution is

orders of magnitude slower than an exact CSP algorithm based on

k-shortest path, as shown in [23]. Later on, Tsaggouris et al. [31]

propose CP-Dijk based on the conservative pruning technique, i.e.,

the current state-of-the-art for α-CSP as described in Section 2.2.

Delling et al. [9] study a related query, which returns the en-

tire set of skyline paths between two given vertices. Their solution

creates shortcuts similarly as CSP-CH [30], and can be adapted

to answer CSP queries. However, this method is not scalable to

63

large graphs, as shown in [12, 30]. In order to reach an acceptable

processing time, [9] proposes to modify the problem setting by re-

laxing the definition of dominance. However, with this relaxation,

the method can no longer be used to answer CSP or α-CSP queries.

Another related query type is to find the shortest path in terms of

a weighted sum of edge costs [11, 14]. These methods, however,

cannot be used to answer CSP or α-CSP queries.

Finally, we briefly review classic shortest path and distance

queries. One notable class of solutions [8, 20, 22] employ graph

partitioning, as in the proposed method COLA. The representative

is MLD [8], which combines partitioning and contraction hierar-

chy to improve query efficiency. Yu et al. [34] propose CI-Rank,

which first identifies a number of star vertices, and then builds an

overlay graph on these star vertices. The proposed method COLA

differs from CI-Rank in two major aspects. First, in terms of data

structure, the overlay graph in COLA correspond to skyline paths,

rather than simple shortest paths as in CI-Rank. Second, in terms

of algorithm, COLA builds an additional index structure on top of

overlay graph, whereas CI-Rank processes the query directly us-

ing the overlay graph. Another important indexing technique is

2-hop labelling (2HL) [6]. The state-of-the-art 2HL algorithms pre-

compute an order of vertices in the graph, and construct a 2HL in-

dex based on this order, e.g., [4, 7, 32, 35]. None of these methods

applies to CSP or α-CSP. Hence, we omit further discussions on

classic shortest path processing for brevity, and we refer the reader

to a recent survey [5].

3. COLA FRAMEWORK
This section presents the general framework of our proposed so-

lution constrained labeling (COLA). The implementation of several

important components in COLA is described in Section 4. Basi-

cally, COLA partitions the road network and constructs an overlay

graph on top of the partitions. The index structure in COLA is then

built on the overlay graph, whose size is much smaller than the

original graph, leading to much less query processing costs. In the

following, Section 3.1 describes the overlay graph; Section 3.2 ex-

plains the index structure of COLA; Section 3.3 elaborates on query

processing based on the COLA index; Section 3.4 presents several

optimizations that significantly reduce query costs.

3.1 Overlay Graph
Given an input graph G, a partitioning of G consists of a set

T = {G1, G2, · · · , G|T |} of edge-disjoint subgraphs of G, such

that the union of all Gi (1 ≤ i ≤ |T |) equals G. Given T , we

say that a vertex v is a boundary vertex, if v appears in more than

one subgraphs in T . Graph partitioning is a well-studied problem,

and COLA could use any of the existing solutions, e.g., [8, 20, 22].

In our implementation, we use a state-of-the-art approach for road

networks by Delling et al. [8].

We formally define an overlay graph as follows.

DEFINITION 3 (OVERLAY GRAPH). Given an input graph

G, a partitioning T of G, and the query approximation ratio α3, a

graph G◦ = (V ◦, E◦) is an overlay graph of G with respect to T ,

if it satisfies the following three conditions:

1. V ◦ consists of all boundary vertices with respect to T ;

2. For each edge e◦ ∈ E◦ that starts at vertex v and ends at

vertex v′ , there exists a path P in G that goes from v to v′,
such that c(P) = c(e◦) and ℓ(P) = ℓ(e◦);

3Note that the overlay graph and the COLA index both require the
knowledge of α, which we consider as a system parameter. The
choice of α is discussed further in Section 6.4.

3. For any pair of origin and destination vertices s, t ∈ G◦, and

any path P in G from s to t, there exists a path P ◦ in G◦ that

goes from s to t that α-dominates P , i.e., c(P ◦) ≤ c(P) and

ℓ(P ◦) ≤ α · ℓ(P).
�

Intuitively, an overlay graph compresses the input graph by (i)

including only the boundary vertices of the partitions and remov-

ing all other vertices, (ii) using edges to represent paths in G, and

(iii) reducing the number of edges by removing paths that are α-

dominated by others. Note that the above definition does not re-

quire the overlay graph to be minimal, i.e., for the same graph G
and partitioning T , there may be another possible overlay graph

with fewer edges. Hence, there can be different ways to build an

overlay graph, and we explain one such algorithm later in Section

4.2. Besides, for any two vertices v and v′ in the overlay graph G◦,

there can be multiple edges from v to v′, when there are multiple

paths from v to v′ in G.

EXAMPLE 3. Consider the input graph G in Figure 1. Figures

2(a), (b), and (c) show three subgraphs G1, G2 and G3 of G respec-

tively. Clearly, T = {G1, G2, G3} is a partitioning of G, since (i)

the set of edges of each subgraph is disjoint with the other sub-

graphs, and (ii) the union of edges in G1, G2 and G3 constitutes

the set of edges of G. Meanwhile, v2, v3, and v5 are the boundary

vertices w.r.t. T , since they appear in more than one subgraphs.

Assume that α = 1.1, Figure 2(d) shows an overlay graph G◦

w.r.t. T . The set of vertices of G◦ is V ◦ = {v2, v3, v5}, which

consists of the boundary vertices of T . Observe that there is exactly

one path from v2 to v3, i.e. 〈(v2, v3)〉; hence, G◦ contains an edge

e◦1 = (v2, v3) with length ℓ(e◦1) = 1 and cost c(e◦1) = 3. Similarly,

there is exactly one path from v3 to v5; thus, G◦ also includes an

edge e◦2 = (v3, v5) with ℓ(e◦2) = 1 and c(e◦2) = 3. From v2 to v5
there are three paths: P1 = 〈(v2, v3), (v3, v5)〉, P2 = 〈(v2, v5)〉,
and P3 = 〈(v2, v4), (v4, v5)〉. Note that P2 α-dominates P3, and

the two edges in path P1 already exist in G◦. Hence, G◦ only

includes one edge e◦3 from v2 to v5 with length ℓ(e◦3) = ℓ(P2) = 4
and cost c(e◦3) = c(P2) = 4. �

Since the overlay graph can be pre-computed and has a smaller

size than the original graph, it can be used as a low-cost index to

accelerate α-CSP processing, as follows. Given an α-CSP query

q on G with an origin s, a destination t, and a cost threshold θ,

we first identify the subgraphs Gs and Gt in T that contain s and

t, respectively. Then, we construct graph Gq (which we call an

extended graph) by merging Gs, Gt and G◦, i.e., Gq = (Vs∪Vt∪
V ◦, Es ∪Et ∪E◦), where Vs (resp. Es) and Vt (resp. Et) are the

vertex (resp. edge) sets of Gs and Gt, respectively. After that, we

run an α-CSP algorithm on Gq ; its result corresponds to a result

for the original α-CSP query, according to the following lemma4.

LEMMA 1. Let Popt be a result of a CSP query on graph G with

origin s, destination t, and cost constraint θ. Meanwhile, let Gs =
(Vs, Es), Gt = (Vt, Et) be the subgraphs in a partitioning T that

contains s and t, respectively. Then, any result P of an α-CSP with

parameters s, t, α on the extended graph Gq = (Vs ∪ Vt ∪ V ◦,

Es ∪Et ∪E◦) satisfies c(P) ≤ θ and ℓ(P) ≤ α · ℓ(Popt). �

To translate an α-CSP on Gq to an α-CSP on G, we “unfold”

each edge in E◦ into a path in G, which is done according to Con-

dition 2 in Definition 3. Because Gq can be viewed as a compressed

version of G with significantly fewer vertices and edges, searching

for an α-CSP on Gq is expected to be faster than doing so on G.

On the other hand, the speedup using an overlay graph is limited,

since the query processing algorithm is the same, albeit on a smaller

graph. Next we introduce a much more powerful index structure.

4We include all proofs in a technical report [1].

64

3.2 Constrained Labeling Index
The main COLA index is constructed on the overlay graph G◦ =

(V ◦, E◦) described in the previous subsection. For each vertex

v◦ ∈ G◦, the index contains two label sets for v◦: an in-label set

Bin(v
◦) and an out-label set Bout(v

◦). Each entry in Bout(v
◦)

corresponds to a path5 from v◦ to another vertex in G◦. Symmetri-

cally, each label in Bin(v) corresponds to a path from another ver-

tex in G◦ to v◦. The paths in the label sets are carefully chosen such

that given any pair of origin and destination vertices s◦, t◦ ∈ G◦,

and a cost constraint θ, we can construct the α-CSP from s◦ to t◦

subject to θ using only the paths in Bout(s
◦) and Bin(t

◦). In other

words, with the COLA index we do not need to search for the α-

CSP result; instead, we simply combine pre-computed paths in the

label sets to form a result.

Formally, we define the COLA index as follows.

DEFINITION 4 (COLA INDEX). Given an overlay graph G◦,

a COLA index contains label sets Bin(v
◦) and Bout(v

◦) for each

vertex v◦ ∈ G◦ satisfying the following conditions:

1. Each entry in Bin(v
◦) corresponds to a path from another

vertex in G◦ to v◦;

2. Each entry in Bout(v
◦) corresponds to a path from v◦ to an-

other vertex in G◦;

3. For any path P between any two vertices s◦, t◦ ∈ V ◦ (P
may contain vertices in V \ V ◦), the COLA index contains

both an out-label in Bout(s
◦) with cost co and length ℓo and

an in-label in Bin(t
◦) with cost ci and length ℓi such that

co + ci ≤ c(P) and ℓo + ℓi ≤ α · ℓ(P).
�

Condition 3 in the above definition indicates that for any path

P connecting two vertices s◦ and t◦ in the overlay graph, we can

derive another path P ′ by concatenating two paths Po and Pi from

the out-label set of s◦ and in-label set of t◦ respectively, such that

P ′ α-dominates P . Therefore, according to the definition of α-

CSP (Definition 1) and α-dominance (Definition 2), we can obtain

an α-CSP result between s◦ and t◦ by joining the paths from their

label sets, without searching for the result from scratch.

EXAMPLE 4. Consider the overlay graph G◦ in Example 3 with

α = 1.1. Let P ◦
1 = 〈(v2, v3)〉 , P ◦

2 = 〈(v3, v5)〉, and P ◦
3 =

〈(v2, v5)〉. Let P ′
1, P ′

2, and P ′
3 be three trivial paths that go from v2

to v2, v3 to v3, and v5 to v5, with zero cost / length, respectively.

Then Bout(v2) = {P ◦
1 , P

′
1}, Bin(v2) = {P ′

1}, Bout(v3) =
{P ′

2}, Bin(v3) = {P ′
2}, Bout(v5) = {P ′

3}, and Bin(v5) =
{P ◦

2 , P
◦
3 , P

′
3} constitute an instance L of COLA index. To ex-

plain, clearly, L satisfies Conditions 1 and 2 in Definition 4. It

remains to verify that L satisfies Condition 3. Note that in the

input graph G, there are five paths concerning nodes in G◦, i.e.,

P1 = 〈(v2, v4), (v4, v5)〉, P2 = 〈(v2, v3)〉, P3 = 〈(v3, v5)〉,
P4 = 〈(v2, v5)〉, and P5 = 〈(v2, v3), (v3, v5)〉. Consider the first

path P1 = 〈(v2, v4), (v4, v5)〉 with cost c1 = 6 and ℓ1 = 5. P ◦
1 in

Bout(v2) and P ◦
2 in Bin(v5) satisfy that c(P ◦

1) + c(P ◦
2) ≤ c(P1)

and ℓ(P ◦
1) + ℓ(P ◦

2) ≤ α · ℓ(P1). Similarly, we can verify that L
also fulfills Condition 3 for the other four paths. �

One may wonder why we need both an in-label set and an out-

label set, instead of just one of them. For example, given a pair

of origin and destination vertices s◦ and t◦, if the out-label set

Bout(s
◦) of s◦ contains a path that ends at t◦ and satisfies the

cost constraint, we could simply return this path as the α-CSP re-

sult, without checking the in-labels of t◦. The problem with having

5Similar to Sky-Dijk and CP-Dijk, it suffices to store the important
path parameters such as its length, cost and last two vertices. These
details are clarified in Section 5.2 and the full version [1]; for now,
we assume that each entry in a label set is a path for simplicity.

v1 v3
l = 4
c = 3

v2
l =

 2

c = 1

l = 1c = 3

v3 v5
l = 1
c = 3

(a) G1. (b) G2.

v5

v2 v4
l = 2
c = 4

l = 4c = 4

l = 3c = 2
v5v3

l = 1c = 3

l = 4
c = 4

l = 1
c = 3

v2

(c) G3. (d) G◦.

Figure 2: A partition T = {G1, G2, G3} of G in Figure 1 and

the corresponding overlay graph G◦.

only out- (or in-) labels is that we must store for each vertex the

complete set of labels containing skyline paths to (or from) every

other vertex in G◦, leading to a prohibitively large index size. In

contrast, by using both in-labels and out-labels, each label set only

contains path to (or from) a selected subset of vertices, leading to

a significantly reduced index size. This is akin to database normal-

ization, where storing two separate base tables consumes less space

than their join results.

3.3 Query Processing
This subsection clarifies the processing of an α-CSP query with

a pair of origin and destination vertices s, t ∈ G and a cost con-

straint θ, using the overlay graph and the COLA index described in

previous subsections. Note that if both s and t belong to the overlay

graph G◦, we can simply join Bout(s) and Bin(t), and select the

α-CSP result by concatenating a path from Bout(s) and another

from Bin(t), according to Condition 3 in Definition 4. However,

either s or t may not appear in the overlay graph, where the α-CSP

queries with s and t cannot be answered purely by the COLA index

which is built on the overlay graph. Note that we could build the

COLA index on the original graph G instead of the overly graph

G◦. Nevertheless, doing so may lead to a prohibitively large index

size, since G is far larger than G◦.

The main idea of COLA query processing is to build Bout(s)
and Bin(t) during query time, using the COLA index as well as

subgraphs Gs, Gt ∈ T containing s and t, respectively. In partic-

ular, Bout(s) and Bin(t) must satisfy that the α-CSP result can be

obtained by concatenating a path from Bout(s) and another from

Bin(t). Formally, for any path P between s and t, there must exist

paths Po and Pi in Bout(s) and Bin(t) respectively, such that the

concatenation of Po and Pi α-dominates P . Given this property,

the α-CSP result can be obtained by joining Bout(s) and Bin(t)
similarly as the case when s and t are boundary vertices.

The main challenge thus lies in the computation of Bout(s) and

Bin(t). We first focus on the former, initialized to empty. Let Gs ∈
T be the sub-graph containing s. We perform a Dijkstra-like search

from vertex s to every boundary vertex of Gs. This can be done,

for example, using a slightly modified version (i.e., with multiple

destinations) of the CP-Dijk algorithm described in Section 2.2. In

our implementation, we use a novel algorithm α-Dijk, detailed in

Section 4, which is significantly more efficient than CP-Dijk. After

we finish the Dijkstra search, we extract the set of skyline paths

(c.f. Section 2.1) L(v◦) for each boundary vertex v◦ ∈ Gs ∩ G◦.

Then, we join L(v◦) with Bout(v
◦) and add the results to Bout(s).

Specifically, for each path P1 in L(v◦) from s to v◦, and each path

P2 in Bout(v
◦) from v◦ to another boundary vertex (say, w◦ ∈

G◦), we concatenate P1 and P2 into a path P from s to w◦, and

insert P to Bout(s) if the latter does not contain a path that α-

dominates P . After that, we purge from Bout(s) all paths from s
to w◦ that are α-dominated by P . The computation for Bin(t) is

65

symmetric and omitted for brevity. Algorithm 1 summarizes the

COLA query processing algorithm.

EXAMPLE 5. Consider the overlay graph in Example 3, and the

COLA index L in Example 4 with α = 1.1. Given an α-CSP

query from v1 to v5 with cost threshold θ = 7, COLA first checks

whether v1 and v5 are boundary vertices. Since v5 is a bound-

ary vertex, the method directly obtains Bin(v5) = {P ◦
2 , P

◦
3 , P

′
3}.

On the other hand, since v1 is not a boundary vertex, its out-label

set Bout(v1) needs to be computed on the fly. To do this, COLA

initiates a Dijkstra-like search from v1, and computes the set of

skyline paths from v1 to the boundary nodes of v1’s subgraph. In

particular, it retrieves the skyline set from v1 to v2, which con-

tains only P1 = 〈(v1, v2)〉. Then, it joins the skyline set with

Bout(v2), and adds the joined paths into Bout(v1) if they are

not α-dominated by any path in Bout(v1). After that, we have

Bout(v1) = {P1, P1 · P ◦
1 }, where P1 · P ◦

1 denotes the concatena-

tion of P1 and P ◦
1 .

Similarly, COLA retrieves the skyline set from v1 to v3, and

joins paths in the skyline set with Bout(v3). These paths are

P2 = 〈(v1, v3)〉 and P3 = 〈(v1, v2), (v2, v3)〉. Note that P3 is

identical to P1 · P ◦
1 . Hence, P3 is not added to Bout(v1), which

ends up with Bout(v1) = {P1, P1 · P ◦
1 , P2}. By joining Bout(v1)

and Bin(v5), COLA retrieves a skyline set for all paths from v1 to

v5. Finally, it inspects the results, unfolds edges in G◦ whenever

necessary, and returns path P = 〈(v1, v2), (v2, v3), (v3, v5)〉. �

The query processing algorithm described so far contains several

nested-loop join operations, which can be rather expensive for large

label / skyline sets. Next we present effective optimizations that

reduce the cost of such joins.

3.4 Optimizations
First we optimize the join between Bout(s) and Bin(t), which

produces the α-CSP result based on the following observation.

OBSERVATION 1. Let Po and Pi be two arbitrary paths in

Bout(s) and Bin(t) respectively that can be joined, i.e., Po ends at

the starting vertex of Pi. We have the following:

1. If c(Po)+c(Pi) > θ, then joining Po (resp. Pi) with any path

in Bin(t) (resp. Bout(s)) with cost higher than Pi (resp. Po)

cannot lead to an α-CSP result;

2. If c(Po) + c(Pi) ≤ θ , then joining Po (resp. Pi) with any

path in Bin(t) (resp. Bout(s)) with length longer than Pi

(resp. Po) can be discarded. �

Based on the above observation, we accelerate the join be-

tween Bout(s) and Bin(t) through a careful ordering of the la-

bels. Specifically, COLA sorts paths in Bout(s) by the IDs of their

end vertices, breaking ties by total cost (in ascending order). Note

that Bout(s) is a skyline set, meaning that paths with the same end

vertex are also automatically sorted in descending order of their

lengths (otherwise one path would dominate another). Similarly,

COLA sorts paths in Bin(t) firstly by the IDs of their origin ver-

tices, and secondly in ascending of their lengths / descending or-

der of their costs. With such ordering, we propose a novel algo-

rithm LabelJoin (as shown in Algorithm 2), which joins Bout(s)
and Bin(t) with a linear scan of each set.

LEMMA 2. Algorithm 2 correctly computes the α-CSP result

from Bout(s) and Bin(t) in linear time. �

EXAMPLE 6. Consider an α-CSP query from s to t with α =
1.1 and cost threshold θ = 13. Assume that Bout(s) = {P1, P2}
where both P1 and P2 end at w, with c(P1) = 4, ℓ(P1) = 7,

c(P2) = 7, and ℓ(P2) = 4; Bin(t) = {P3, P4, P5} where all

three paths start at w, with c(P3) = 7, ℓ(P3) = 5, c(P4) = 6,

Algorithm 1: COLA

input : s, t, θ, α, G, G◦, Bout(s), and Bin(t)
output: A path for the α-CSP query with the origin s, the destination

t, and cost threshold θ on G

1 Initialize both Bout(s) and Bin(t) to empty;
2 Perform a Dijkstra search from s within its partition Gs to obtain the

set of skyline paths L(vo) from s to each boundary vertex vo in Gs;
3 for each boundary vertex vo ∈ Gs ∩G◦ do

4 Join L(vo) and Bout(vo); / / optimized in Section 3.4
5 for each joined path P from s to wo ∈ G◦ do

6 if c(P) > θ or P is α-dominated by a path in Bout(s) to

wo then

7 Discard P ;

8 else

9 Add P to Bout(s);
10 Delete all paths in Bout(s) from s to wo that are

α-dominated by P ;

11 Compute Bin(t) similarly as Lines 2-9 (see Section 3.3);
12 Join Bout(s) and Bin(t); / / optimized in Section 3.4
13 return the α-CSPs from the above join result;

ℓ(P4) = 6, c(P5) = 5, and ℓ(P5) = 7. Clearly, Bout(s) (resp.

Bin(t)) is sorted in ascending (resp. descending) order of cost.

By Algorithm 2, we first check P1 and P3, to see if the con-

catenated path P ′ = P1 · P3 satisfies the cost constraint. As

c(P ′) = 11 ≤ θ = 13 and P ∗ is empty, the found shortest path

under cost constraint is hence updated to P ∗ = P ′. Afterwards,

the LabelJoin algorithm proceeds to the next path P2 in Bout(s),
and concatenate it with P3. Here, P1 is not further concatenated

with P4 and P5 due to Observation 1.2, i.e., concatenating P1 with

P4 or P5 produces a path with a larger length than P ′.

Consider the concatenated path P ′
1 = P2 ·P3. Note that the cost

of P ′
1 exceeds the cost threshold, and Algorithm 2 proceeds to the

next path, i.e. P4, in Bin(t). Consider P ′
2 = P2 · P4. The cost of

P ′
2 is 13, which satisfies the cost constraint, and the length of P ′

2 is

10, smaller than P ∗. Hence P ∗ is updated to P ′
2. Since there is no

more path in Bout(s), the LabelJoin algorithm stops checking the

labels and returns P ∗ as the result. �

Next, we focus on the join between a skyline set L(v◦) and a

label set Bout(v
◦) in the COLA index (Line 4 of Algorithm 1).

The case for joining L(v◦) with Bin(v
◦) is symmetric and omitted

for brevity. The basic idea for the optimization is not to compute

the complete join results, but only those results that can possibly

lead to an α-CSP result. Specifically, we avoid generating certain

join results based on the following observation.

OBSERVATION 2. Let P be a path from s to w◦ from the join

result of L(v◦) and Bout(v
◦). P cannot possibly lead to an α-CSP

result, if any of the following is true.
1. w◦ cannot possibly reach t on the input graph G;

2. The minimum cost for any path fromw◦ to t exceeds θ−c(P);

3. There exists a path P ′ from s to t satisfying the cost con-

straint, such that the minimum length of any path from w◦ to

t exceeds ℓ(P ′)/α− ℓ(P). �

According to the above observation, before performing any join

operation, we first select a set of end vertices W for the join results

that can possibly lead to an α-CSP result, which is incrementally

pruned using Observation 2. Then, we filter the COLA index, and

use only the labels that reach a vertex in W . Algorithm 3 shows

the algorithm for computing W . Filtering the COLA index before

joining it with the skyline sets can be understood as using a semi-

join to improve join performance in database systems. Note that the

66

Algorithm 2: LabelJoin

input : θ, α, Bout(s), and Bin(t)
output: An α-CSP P ∗ with a cost not larger than θ from s to t

1 Sort the paths in Bout(s) first in ascending order of end vertex ID, and
then in ascending order of cost (i.e., in descending order of length);

2 Sort the paths in Bin(t) first in ascending order of end vertex ID, and
then in ascending order of length (i.e., in descending order of cost);

3 Initialize α-CSP result P ∗ to empty;
4 repeat
5 Scan both Bout(s) and Bin(t) simultaneously, until reaching a

matching pair Po ∈ Bout(s) and Pi ∈ Bout(t);
6 while Po matches Pi, i.e., Po ends at the origin vertex of Pi do

7 if c(Po) + c(Pi) > θ then
8 Set Pi to the next entry in Bout(s);

9 else

10 Update P ∗ to the concatenation of Po and Pi if the
combination of Po and Pi has length smaller than P ∗;

11 Set Po to next entry in Bin(t);

12 until reaching the end of either Bout(s) or Bin(t);
13 return P ∗;

COLA index is constructed before we know the query parameters,

hence, it usually contains a large number of labels not needed for

answering the query at hand.

Algorithm 3 shows the pseudo-code for computing W . W is

initialized with all boundary vertices reachable from both s and t.
Then, we prune those vertices that cannot lead to a path from s
to t within cost threshold θ. After that, the algorithm computes an

upper bound for the length of a path from s to t, and uses it to prune

more vertices in W based on the third condition in Observation 2.

4. αDIJK
In this section, we present α-Dijk, which is used in our query

processing to compute skyline paths. Apart from this, α-Dijk has

three other main uses: (i) for intra-partition search during query

processing in COLA, (ii) for building the COLA index, and (iii) as

a standalone index-free solution for α-CSP.

Similar to CP-Dijk (refer to Section 2.2), α-Dijk is based on Sky-

Dijk with enhanced pruning with the relaxed α-dominance defini-

tion. On the other hand, the pruning strategy of α-Dijk is radically

different from that in CP-Dijk. The intuition is as follows. Imagine

that we have a total “budget” for pruning along a path; the larger

the budget allocated to a vertex, the stronger pruning power it is

allowed to apply to reduce the size of its set of associated paths.

CP-Dijk simply distributes this budget equally to each vertex on the

path. Since the path may have a large number of vertices, each of

them only receives little pruning power, leading to ineffective prun-

ing everywhere. In contrast, α-Dijk concentrates the pruning power

to vertices associated with a large number of paths, and does not al-

locate pruning power at all to vertices with relatively few paths. In

a real road network, there are usually a small number of landmark

vertices that appear frequently in CSPs, which tend to accumulate a

large number of paths. As a result, concentrating the pruning power

to such vertices leads to effective reduction of the total number of

paths to be examined, and thus, accelerates query processing.

Algorithm 4 shows the pseudo-code of α-Dijk. Given an α-CSP

query with an origin vertex s, a destination vertex t, and a cost

threshold θ, α-Dijk first invokes the vanilla Dijkstra’s algorithm to

compute, for each vertex v, the minimum-length path Pℓ(v) and the

minimum-cost path, i.e., the path with the minimum cost (ties bro-

ken by smaller length), Pc(v) from s to v (Line 1). Then it records

the length of Pℓ(v) and Pc(v) as ℓ⊥(v) and ℓ⊤(v) (Line 2), respec-

Algorithm 3: PruneLabel

input : s, t, θ, α, L, Bout, and Bin

output: Bout and Bin with labels filtered

1 Initialize vertex set W with all boundary vertices reachable from both
s and t, according to Bout(s) and Bin(t); / / Pruning condition 1

2 for each vertex w in W do

3 for each vertex vo in Gs do
4 Compute the minimum cost c1 from s to vo in L(vo);
5 Compute the minimum cost c2 from vo to w in Bout(vo);
6 Set cs(w) = c1 + c2;

7 Compute ct(w) similarly as Lines 3-6;
8 if cs(w) + ct(w) > θ then

9 Remove w from W ; / / Pruning condition 2

10 Initialize ℓmax to −∞;
11 for each vertex w in W do
12 for each boundary vertex vo in Gs do

13 Compute the max length ℓ1max from s to vo in L(vo), and

the max length ℓ2max from vo from w in Bout(vo);

14 Set ℓsmax(w) = ℓ1max + ℓ2max;

15 Compute ℓtmax(w) similarly as Lines 12-14;

16 Update ℓmax if ℓsmax(w) + ℓtmax(w) > ℓmax;

17 for each vertex w in W do

18 Compute minimum lengths ℓsmin(w) and ℓtmin(w) similarly as
Lines 12-14;

19 if ℓsmin(w) + ℓtmin(w) > ℓmax then

20 Remove w from W ; / / Pruning condition 3

21 Filter Bout (resp. Bin) by removing paths that do not end (resp.
originate) at a vertex in W ;

22 return Bout and Bin;

tively. Note that ℓ⊥(v) and ℓ⊤(v) are lower- and upper- bounds

on the total path length, respectively. To explain why ℓ⊤(v) is an

upper-bound, consider a path P ′ that has length larger than ℓ⊤(v).
Clearly, P ′ can be α-dominated by Pc(v). Thus, we can keep only

Pc(v) and discard all paths with length larger than Pc(v), meaning

that its length ℓ⊤(v) is the upper bound for total path length.

Next, α-Dijk creates a min-heap H of skyline paths sorted on

path costs similarly as in Sky-Dijk and CP-Dijk, except that in α-

Dijk each heap entry ρ = 〈P, τ 〉 contains both a path P and an

additional pruning surrogate τ ∈ [ℓ/α, ℓ] that facilitates adaptive

allocation of the “pruning budget” as mentioned earlier 6. The heap

H is initialized with a single entry that contains a trivial path that

contains only one vertex s, and a pruning surrogate with value 0

(Line 5). In addition, α-Dijk initializes an list L(v) of heap entries

for each vertex v (Line 4).

After that, α-Dijk iteratively pops the top entry ρ = 〈P, τ 〉 from

H and processes it as follows. Let v be the last vertex in P . α-

Dijk first examines L(v), and retrieves the entry ρ′ = 〈P ′, τ ′〉 in

L(v) with the largest path cost (Line 8). The algorithm guarantees

that the cost of P ′ is smaller than that of P , since H is sorted in

ascending order of path costs. Then, α-Dijk compares the pruning

surrogates τ and τ ′ of the two entries, and prunes ρ iff. τ ′ ≤ τ
(Lines 9-10). Let l(P) be the total length of P and l(P ′) be the

length of P ′, we have:

ℓ(P ′) ≤ α · τ ′ ≤ α · τ ≤ α · ℓ(P),

which means that P ′ α-dominates P (note that the former also has

a lower cost explained above). One may wonder why we prune

6To conserve memory, in our implementation instead of a full path
P each entry only stores its length ℓ, cost c, last vertex v and the
vertex vpred before v. The full path can be reconstructed by using
v and vpred. Details can be found in the full version [1].

67

Algorithm 4: α-Dijk

input : An α-CSP query on G with an origin s, a destination t, and a
cost threshold θ

output: An answer P to the α-CSP query

1 Calculate the minimum-length path Pℓ(v) and minimum-cost path
Pc(v) from s to each vertex v;

2 Let ℓ⊥(v) and ℓ⊤(v) be the length of Pℓ(v) Pc(v), respectively;
3 Creates a min-heap H with entries in the form 〈P, τ〉, sorted in

ascending order of path costs, breaking ties with path lengths;
4 Create an entry list L(v) for each vertex v in G;
5 Insert an entry 〈P = 〈s〉, τ = 0〉 into H;
6 while H is not empty do

7 Pop the top entry ρ = 〈P, τ〉 in H;
8 Let 〈P ′, τ ′〉 be the entry in L(v) with the largest cost;
9 if τ ′ ≤ τ then

10 continue; / / ρ is pruned

11 Insert ρ into L(v);

12 if v 6= s and |L(v)| > logα
ℓ⊤(v)

ℓ⊥(v)
then

13 Modify ρ to set τ = max{ℓ/α, ℓ⊥(v)};

14 for each outgoing edge e = (v, v′) of v do

15 Construct path Pnew by extending P with e;
16 if c+ c(e) ≤ θ then

17 Push 〈Pnew , τ + τ(e)〉 into H;

18 return the length-shortest path in L(t);

based on surrogates rather than the path lengths. The reason is

that the surrogates τ and τ ′ control the amount of pruning at ver-

tex v. To see this, if we set τ ′ = ℓ′/α and τ = ℓ, then P ′ can

prune P whenever the former α-dominates the latter, which indi-

cates that we use the maximum pruning power at v. Conversely,

when τ ′ > ℓ′/α or τ < ℓ, pruning at v is not performed with

full power, i.e., it is possible that P is not pruned even if P ′ α-

dominates P . Note that pruning with full power everywhere leads

to incorrect results, and a counter-example can be found in the full

version [1]. Meanwhile, pruning with the same power everywhere

is inefficient, as explained at the beginning of this subsection. The

use of surrogates enables adaptive pruning, the key idea of α-Dijk.

It remains to clarify how α-Dijk computes the surrogate values.

This is done in Lines 12-13. In particular, if ρ passes pruning, it

is inserted into L(v). At this point, the algorithm adjusts its sur-

rogate τ based on the following heuristic: if the number of entries

|L(v)| > logα
ℓ⊤(v)

ℓ⊥(v)
, then α-Dijk sets τ = max{ℓ/α, ℓ⊥(v)},

which grants ρ the maximum pruning power (Line 13). Otherwise,

α-Dijk sets τ = ℓ, minimizing the pruning capability of ρ. To ex-

plain, observe that logα
ℓ⊤(v)

ℓ⊥(v)
is an upper bound of |L(v)| when we

apply α-dominance in the construction of L(v). Intuitively, if the

size of the current L(v) exceeds this upper bound, then applying

aggressive pruning in L(v) is likely to reduce |L(v)| and help im-

prove query efficiency. On the other hand, if |L(v)| ≤ logα
ℓ⊤(v)

ℓ⊥(v)
,

then pruning entries in L(v) tends to be ineffective, in which case

it is more preferable to omit pruning in L(v) in order to enable

aggressive pruning at other vertices.

After that, for an entry that is not pruned, the algorithm continues

to extend the corresponding path P , by adding one more edge e =
(v, v′) (Lines 14-15). If the resulting path Pnew satisfies the cost

constraint, α-Dijk creates a new entry and inserts it into H . The

surrogate value for Pnew is computed by adding τ and the edge

surrogate value τ (e) (Line 17), obtained as follows. If edge e is an

original edge in the input graph, then τ (e) is simply the length of

e. Otherwise, i.e., e is added during the construction of the overlay

Algorithm 5: Overlay Graph Construction

input : A partition T = {G1, G2, . . . , Gk} of G
output: An overlay graph G◦ = (V ◦, E◦) of G

1 Let E◦ = ∅, and V ◦ be the set of boundary vertices defined by T ;
2 for each subgraph Gi ∈ T do

3 for each boundary vertex v◦ in Gi do
4 Feed v◦ and Gi as input to the single-source α-Dijk, which

outputs an entry list L(v) for each vertex v in Gi;
5 for each boundary vertex v in Gi do
6 Let S = ∅;
7 for each entry ρ in L(v) in ascending order of c(ρ) do

8 Let ρ′ be the last entry inserted into S;
9 if S is empty or ℓ(ρ′) > α · τ(ρ) then

10 Insert ρ into S;

11 else

12 τ(ρ′) = min{τ(ρ′), τ(ρ)}; / / ρ is pruned

13 for each entry ρ in S do
14 Insert an edge e◦ = (v◦, v)) into E◦, with

c(e◦) = c(ρ), ℓ(e◦) = ℓ(ρ), and τ(e◦) = τ(ρ);

15 return G◦ = (V ◦, E◦);

graph which corresponds to a path in the original graph, τ (e) is the

surrogate value corresponding to that path, as we clarify in the next

subsection. Finally, after H depletes, α-Dijk retrieves the entry in

L(t) with the smallest length, and returns the corresponding path

as the the answer to the α-CSP query.

Theoretical Analysis. The following theorem establishes the cor-

rectness of α-Dijk.

THEOREM 1. For each vertex v, let L(v) be the entry list of v
when α-Dijk terminates. Then, for any path P from s to v with a

cost smaller than θ, there exists an entry ρ in L(v) with a cost at

most c(P ′) and a length at most α · ℓ(P ′). �

Next, we discuss the time complexity of our α-Dijk algorithm.

For each vertex v, the number of stored entries in L(v) is bounded

by ℓmax ·n. When adding labels for outgoing edges of each vertex

v, it incurs at most dv · ℓmax · n labels, where dv is the out-degree

of v. To sum up with, there are at most ℓmax · n · m labels added

in the whole procedure. To insert / pop ℓmax ·n ·m entries into the

heap, it requires O(log(ℓmaxn)) time for each operation, ending

up with O(ℓmaxmn · log(ℓmaxn)) time complexity.

5. COLA IMPLEMENTATION

5.1 Overlay Graph Construction
Given a partitioning T = {G1, G2, . . . , Gk} of G, we construct

an overlay graph G◦ = (V ◦, E◦) defined in Definition 3 using α-

Dijk with two minor modifications: (i) there is no cost constraint,

i.e., θ = +∞ and (ii) instead of a path, the algorithm returns the

entry list L(v) for every vertex v. We refer to this modified al-

gorithm as single-source α-Dijk. To simplify our notations, in the

following we use c(ρ), l(ρ) and τ (ρ) to denote the path cost, path

length and pruning surrogate of an entry ρ ∈ L(v), respectively.

Algorithm 5 shows the pseudo-code of our overlay graph con-

struction algorithm. Initially, the algorithm sets V ◦ to the set of all

boundary vertices defined by T , and E◦ to empty (Line 1). After

that, it processes each subgraph Gi (Lines 2-14). In particular, for

each boundary vertex v◦ in Gi, it invokes the single-source α-Dijk

to compute an entry list L(v) for each vertex v in Gi (Line 4). If

v is also a boundary vertex in Gi, then some of the entries in L(v)

68

may be converted into edges between v◦ and v in E◦ (Lines 5-14),

as follows. First, the algorithm creates a set S = ∅ for storing

entries (Line 6). Then, it inspects the entries in L(v) in ascend-

ing order of their costs, and compares each entry ρ with the last

entry ρ′ inserted into S. If ρ′ does not exist (i.e., S is empty) or

c(ρ′) ≤ c(ρ) or ℓ(ρ′) ≤ α · τ (ρ), then the algorithm inserts ρ
into S as an entry to be converted into an edge in E◦ (Lines 9-

10). Otherwise, the path represented by ρ must be α-dominated

by ρ′, and hence, the algorithm omits ρ, and modifies ρ′ to set

τ (ρ′) = min{τ (ρ′), τ (ρ)} (Lines 11-12). The change of τ (ρ′)
is important to ensure that the resulting graph G◦ satisfies Defini-

tion 3. After all entries in L(v) are examined, the algorithm re-

trieves each entry ρ that has been inserted in S, and converts it into

an edge e◦ ∈ E◦ with c(e◦) = c(ρ) and ℓ(e◦) = ℓ(ρ). In addition,

we define the surrogate value of e◦ as τ (e◦) = τ (ρ), which is used

in our COLA index construction, clarified in the next subsection.

Once all subgraphs in T are processed, the algorithm terminates

and returns G◦ = (V ◦, E◦). We have the following theorem.

THEOREM 2. Algorithm 5 correctly constructs an overlay

graph that satisfies Definition 3. �

5.2 Labeling Index Construction
This subsection details the construction of the COLA index. Note

that the index structure is not unique, and there are various ways to

build it. In our implementation, we apply a standard technique in

the literature of 2-hop labeling (e.g., [4, 7,32,35]) for conventional

shortest paths, which introduces a ranking function r of all vertices

in G◦, whose values reflect the relative importance of the vertices.

Then, for each v◦ ∈ G◦, we require that (i) each entry inBin(v
◦) is

a path Pi originating at a vertex w that has the highest rank among

all vertices in Pi, and symmetrically, (ii) each entry in Bout(v
◦) is

a path Po ending at a vertex w that has the highest rank among all

vertices in Po. To reduce memory consumption, in each entry we

can substitute a full path with a tuple 〈v, c, l, vpred〉, where c and

l are the cost and length of the path and v and vpred are the last

and second-to-last vertices, respectively. Similar to conventional

2-hop labeling, the choice of the ordering plays an important role

for the effectiveness of the index. We follow a similar approach as

in previous work [32], and refer the reader to a full version [1] for

details. We further define the rank of a path as follows.

DEFINITION 5 (RANK OF A PATH). Let P be a path in G◦.

The rank r(P) of P is the highest rank among all vertices in P . �

Our index construction algorithm runs in iterations. After finish-

ing i iterations, the labels constructed in Bout and Bin guarantee

that for any path P from u to v (u, v ∈ G◦) whose rank is no more

than i, there exists a label entry ρu ∈ Bout(u) corresponding to a

path P1, and a label entry ρv ∈ Bin(v) concerning a path P2 in G◦

such that c(ρu) + c(ρv) ≤ c(P) and ℓ(ρu) + ℓ(ρv) ≤ α · ℓ(P).
In other words, by concatenating P1 and P2, we find a path that

α-dominates P .

Algorithm 6 shows the procedure for the index construction. We

explain how labels in Bin are computed, and omit the case for Bout

for brevity. In the i-th iteration, the vertex v◦i with r(v◦i) = i is

selected. A modified version of single-source α-Dijk is invoked to

produce a set of label lists L(v◦) for v◦ ∈ G◦. The modification is

that when deriving the lower bound of the length ℓ⊥(v
◦) from v◦i

to v◦, it uses the τ value of a path instead of its length (Line 4). The

reason is that since G◦ is a simplified version of G , the minimum

length path P in G might not be preserved in G◦; meanwhile, the

τ value of a path denotes the lower bound of the minimum length

path that it has pruned, indicating that the τ value of the minimum-

τ path is a lower bound of the length from v◦i to v◦.

Algorithm 6: Index Construction

input : An overlay graph G◦, and a rank for all vertices in G◦

output: a COLA index L

1 Let G◦
1 = G◦;

2 for i = 1, 2, . . . , n do

3 Let v◦i be the vertex whose rank is i;

4 Invoke Algorithm 4 on G◦
i except that (i) to derive ℓ⊥(v◦), it

computes the path P with minimum τ value instead of
minimum-length; and (ii) it outputs the label list L;

5 for w◦ ∈ V ◦ whose L(w◦) is not empty do

6 for each entry ρ ∈ L(w◦) do
7 if ∄ρo ∈ Bout(v◦i), ρi ∈ Bin(w◦) such that

c(ρo) + c(ρi) ≤ c ∧ ℓ(ρo) + ℓ(ρi) ≤ α · ρ(τ) then

8 if ∄ρ′ ∈ Bin(w
◦) that can dominate ρ then

9 Add the path corresponding to ρ into Bin(w◦);

10 Repeat the above procedure with a backward modified α-Dijk and
add entries into Bout;

11 Let G◦
i+1 be the graph by removing ui and its incident edges in

G◦
i ;

12 return Bin, Bout;

When the α-Dijk algorithm finishes, it outputs the label list into

L. For each vertex w◦, it then iteratively selects entries from L(w◦)
to add into Bin(w

◦) (Lines 5-9). Note that our algorithm removes

some redundant labels. For a label entry ρ, we check whether there

exists a label ρ+ ∈ Bout(ui) and a label ρ− ∈ Bin(v) such that

c(ρ+) + c(ρ−) ≤ c(ρ) and ℓ(ρ+) + ℓ(ρ−) ≤ τ (ρ). If so, ρ is

pruned. Meanwhile, if ρ can be α-dominated by an existing label

entry in Bin(w
◦), then it is also pruned. A label that passes pruning

is added into Bin(w
◦).

After the label entries are updated, a backward version of α-Dijk

is performed, and entries are added in to Bout. Then, we update

the input graph of the next iteration by removing vertex ui and its

incident edges. After n iterations, the algorithm terminates and

returns Bout and Bin. We have the following theorem.

THEOREM 3. Algorithm 6 correctly produces a COLA index

that satisfies Definition 4. �

6. EXPERIMENTS
This section experimentally evaluates COLA against the current

state-of-the-art methods. Section 6.1 explains the experimental set-

tings. Sections 6.2 and 6.3 present evaluation results in terms of

query efficiency and indexing overhead, respectively. Section 6.4

provides insights for choosing an appropriate value for α.

6.1 Experimental Settings
All methods are implemented in C++, compiled with full op-

timizations, and tested on a Linux machine with an Intel Xeon

2.6GHz CPU and 64GB RAM. We repeat each experiment 5 times

and report the average results.

Datasets. We use 8 real road networks from the 9th DIMACS Im-

plementation Challenge [2] as shown in Table 2. In the datasets,

each vertex represents a road junction, and each edge represents a

road segment. Among the eight road networks, EU is directed and

the others are undirected. Each edge in the dataset contains two

attributes: the travel time and the travel distance. Following pre-

vious work [27], we use the travel time as the cost, and the travel

distance as the length. The dataset sizes vary from small cities to

the full USA road networks. Table 2 summarizes the properties of

the datasets, where |V |, |E|, |V ◦| and |E◦| are the cardinalities of

69

Table 2: Road networks (K=103, M=106).
dataset |V | |E| |V ◦| |E◦|

New York City (NY) 0.3M 0.7M 4.8K 0.2M

Florida (FLA) 1.1M 2.7M 4.2K 0.2M

Northwest USA (NW) 1.2M 2.8M 4.2K 0.2M

Northeast USA (NE) 1.5M 3.9M 7.0K 0.7M

Great Lakes (LKS) 2.8M 6.9M 10.9K 1.8M

Western USA (W) 6.3M 15.2M 7.8K 1.2M

Europe (EU) 18.0M 42.2M 16.9K 9.3M

Full USA (USA) 23.9M 58.3M 17.7K 9.5M

vertices in the road network, edges in the road network, vertices in

the overlay graph and edges in the overlay graph, respectively.

Query sets. For each dataset, we generate 5 query sets Q1-Q5, each

containing 100 queries. Q1-Q5 are generated as follows. First, we

randomly choose the query origin s and destination t among the

vertices of the road networks. Then, we classify the query into

one of the 5 query sets, based on the length from s to t. Specifi-

cally, we first compute a lower bound for the graph diameter (the

longest length of all shortest paths) using an existing approximate

algorithm [26], which is at most 2 times the value of diameter. Let

dmin be this lower bound. We then generate queries as follows: if

the length of these two nodes is in range [dmin/2,+∞), we add

it into Q5; if the distance is in range [dmin/4, dmin/2), we add it

into Q4; if the distance is in the range [dmin/8, dmin/4), we add it

into Q3, etc. For each query set, we report the average time for the

100 queries. The differences among results for different query sets

reflect the impact of the travel distance.

Next, we clarify the generation of the cost constraint θ. For

each query, we first compute cmin , the minimum cost of any path,

and cmax, the cost of the minimum-length path from s to t; then,

we select θ uniformly at random from [cmin, cmax]. Note that if

θ < cmin, the query cannot return any result; if θ > cmax, the

minimum-length path is always a valid result to the CSP query.

Another important parameter is α, which determines the approx-

imation guarantee of α-CSP queries. We view α as a system pa-

rameter rather than part of the query, since α controls the trade-

off between query accuracy and system efficiency, e.g., space con-

sumption, which is more relevant to the system environment than

individual queries. In order to find a suitable value for α, we per-

formed a set of experiments with varying α. The results shown in

Section 6.4 demonstrate that the value α = 1.1 leads to a good

balance among the space consumption, preprocessing time, query

efficiency and query accuracy. Hence, in the rest of our experi-

ments, we fix α = 1.1.

Methods. We compare COLA against three state-of-the-art meth-

ods: Sky-Dijk [18], CP-Dijk [31] and CSP-CH [30], described in

Section 2.2. Meanwhile, we also include a most recent k-shortest

path based solution [27] as our competitor, dubbed as KSP. Be-

sides, we also include α-Dijk (see Section 4) in our comparisons,

which answers α-CSP queries without an index.

6.2 Query Efficiency
Figure 3 plots the average query execution time (in seconds) for

all methods. For brevity, we only show the results on 4 represen-

tative datasets: NY, LKS, EU, and USA. On these 4 datasets, we

inspect the performance on all 5 query sets Q1-Q5. Note that the

y-axis is in logarithmic scale, and we use error bars to present the

variations of the query performance for COLA and α-Dijk.

The most apparent observation is that regardless of the dataset

or query set, our main proposal COLA consistently outperforms all

other methods by several orders of magnitude. Further, the query
time of COLA is always within one second, even on the largest

network covering the entire USA. Besides, on large directed road

networks, e.g., EU, COLA still outperforms the existing methods

by two orders of magnitude, which demonstrates the effectiveness

of our COLA index on both directed and undirected road networks.

For state-sized networks, COLA always finishes within millisec-

onds. In contrast, the rest of the methods require at least 1 sec-

ond to finish, except for a few settings that involve both a small

dataset and a query set with very close query origin and destina-

tion. For queries with relatively far apart origin / destination pairs,

these methods (except for α-Dijk) can take several hours to process

one query. From these observations, we conclude that COLA not

only outperforms its competitors, but brings down the query pro-

cessing cost from prohibitively high to a practically low. In other

words, COLA makes α-CSP feasible on current hardware.

Besides COLA, the next fastest method is our index-free algo-

rithm α-Dijk, again in all settings. The performance gap between

α-Dijk and the competitors is also notable, often more than an order

of magnitude. Moreover, both COLA and α-Dijk demonstrate small

variation for the query processing time, which is close to the aver-

age. In contrast, as shown in [27, 30],existing CSP algorithms vary

significantly in terms of query time, and may incur much longer

query time than the average. This demonstrates the robustness of

our methods to the input query. Interestingly, our index-free α-Dijk

outperforms the indexed method CSP-CH, which is given the ad-

vantage of large amounts of pre-computations. This suggests that

exact CSP as a query type may not be practical for large networks;

in such situations, it is necessary to relax the query definition.

Comparing the four existing methods, CSP-CH outperforms CP-

Dijk and Sky-Dijk in all settings, and outperforms KSP for queries

with far apart origin / destination pairs. Meanwhile, KSP turns out

to be very efficient when the origin and destination are close. How-

ever, as the distance between the origin and destination increases,

the query efficiency degrades rapidly, due to the exponential growth

in the number of paths from the origin to the destination. In addi-

tion, we observe that the performance improvement of CP-Dijk (for

α-CSP) over Sky-Dijk (for exact CSP) is negligible, in all settings.

This confirms that the CP-Dijk (and also other previous work on

α-CSP, as CP-Dijk is the current state of the art) focuses on theo-

retical improvement in terms of asymptotic complexity rather than

practical performance.

The impact of the distance between the origin s and destination

t becomes apparent, once we compare results for different query

sets. When they are close to each other (e.g., Q1 and Q2), the

query cost for all methods are small, especially on small networks.

As s and t become farther apart, query costs increase rapidly. This

is expected, as the longer the trip is, the more vertices are involved

during CSP processing. An important observation is that COLA’s

performance is robust against varying query sets. This is mainly

due to its use of the overlay network. Specifically, COLA utilizes

the pre-computed distances between boundary vertices of different

partitions, and the number of boundary vertices involved slowly in-

creases with the distance between s and t, compared to the number

of vertices in the network. Besides, the query cost of our α-Dijk al-

gorithm increases slowly, which demonstrates the effectiveness of

its adaptive pruning. On the contrary, the other four existing meth-

ods scale poorly; for large datasets, they usually require hours to

process a single query. Furthermore, on the USA dataset, none of

these four methods can answer queries in Q3-Q5 due to prohibitive

memory consumption (>64GB).

Finally, we compare results on different datasets. As expected,

the larger the network is, the more expensive it is to process a CSP

query. Once again, unlike its competitors, the query cost of COLA

grows slowly with the network size, thanks to its use of the overlay

70

COLACSP-CHKSPSky-Dijk CP-Dijk D-Dijk

10
-3

10
-2

10
-1

10
0

10
1

10
2

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10
-2

10
-1

10
0

10
1

10
2

10
3

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10
-1

10
0

10
1

10
2

10
3

10
4

Q1 Q2 Q3 Q4 Q5

average query time (sec)

10
-1

10
0

10
1

10
2

10
3

10
4

Q1 Q2 Q3 Q4 Q5

average query time (sec)

(a) NY (b) LKS (c) EU (d) USA

Figure 3: Query efficiency vs. Query sets.

COLACSP-CH Overlay Network.-Dijk / Sky-Dijk / CP-Dijk

10
0

10
1

10
2

10
3

NY FLA NW NE LKS W EU USA

space consumption (MB)

Figure 4: Space consumption.

COLACSP-CH

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

NY FLA NW NE LKS W EU USA

total preprocessing time (s)

Figure 5: Total preprocessing time.

network and the constrained labeling index, whose effects become

more pronounced as the dataset becomes larger.

6.3 Index Size and Construction Time
Figure 4 illustrates the memory consumption for all methods, be-

fore running any query. The results for the non-indexed approaches

Sky-Dijk, CP-Dijk, KSP and α-Dijk are simply the size of the road

network. On the other hand, the results for CSP-CH and COLA

indicate their respective index sizes. In addition, we also show the

size of the overlay graph in COLA in the same figure.

The most important observation is that the index size of COLA

is no more than 5GB on the largest dataset USA and such memory

requirement can be easily satisfied on a modern server. Comparing

CSP-CH and COLA, the former uses a smaller amount of memory

than the latter, and yet the index size of CSP-CH is considerable

compared to that of non-indexed methods, i.e., the size of the input

graph. Although COLA requires a larger index, its memory over-

head is affordable, which is more than compensated by its high

query performance as shown in Figure 3. The results also show

that the size of the overlay graphs is negligible, indicating that the

space consumption of COLA is mainly attributed to its constrained

labeling index.

Figure 5 presents the total pre-processing time of CSP-CH and

COLA. Note that the non-indexed methods are not shown as they

do not need pre-processing. Compared to CSP-CH, COLA takes

on average 3x to 4x processing time. Nevertheless, the cost of

pre-processing in COLA is still modest, i.e., within 12 hours on

the largest dataset USA, using a single server. Considering that

existing methods require hours to process even one query, the pre-

processing cost of COLA is worth paying for.

Summarizing the experiments, COLA effectively reduces the

processing time of α-CSP queries from hours to sub-second, with

moderate index size (no more than 5GB). Hence, it is clearly the

method of choice for α-CSP processing. When an index is not

available, we recommend the α-Dijk algorithm, which might be
suitable for applications that do not require fast response. Since

all previous methods are prohibitively expensive and α-CSP has

promising use cases, the proposed methods might become key en-

ablers for new online navigation services based on α-CSP.

6.4 Tuning α

In this set of experiments, we evaluate the impact of α on COLA.

In particular, we measure the query accuracy and space consump-

tion of COLA by varying α from 1.005 to 1.4. Due to space limita-

tions, we show the results for 4 representative datasets.

Figures 6(a)-(b) show the memory consumption, i.e., the index

size, and preprocessing costs of our COLA, on FLA, NE, W, and

USA datasets. As we can observe, when α changes from 1.005 to

1.4, both the space consumption and pre-processing time decrease,

since a larger α tends to help the COLA labels prune more paths,

resulting in a smaller index size.

Note that the impact of α is more pronounced on pre-processing

time than on memory consumption. To explain, the index construc-

tion algorithm requires examining a large number of paths (even

if the paths are added into label sets), and a larger α can help

prune more paths, and hence can help save more preprocessing

time. However, only a subset of the paths traversed are stored in

the index, and hence the pruning effect is less significant in terms

of space consumption than pre-processing time.

Besides, the query time of COLA is relatively insensitive to α.

In particular, when α decreases from 1.4 to 1.005, the query time

of COLA only increases by around 1.5x. To explain, the size of

the COLA index shows a moderate increase when α decreases, and

the label scanning of the query algorithm can exploit cache locality,

making the query time relatively insensitive to α.

In terms of the query accuracy, we use relative error of 1000

random queries as the evaluation. Specifically, given a query q, let

P ∗ be the solution of the exact CSP query and P ′ be an α-CSP,

the relative error of the latter is computed as ℓ(P ′)/ℓ(P ∗) − 1.

Figure 6(d) shows the relative error of COLA on the same datasets.

A higher value of α leads to a larger relative error. Nevertheless, the

relative error is generally smaller than the worst case bound. For

71

WFLA NE USA

10
2

10
3

10
4

1.0 1.1 1.2 1.4

space consumption (MB)

α

10
1

10
2

10
3

10
4

10
5

10
6

1.0 1.1 1.2 1.4

preprocessing time (s)

α

10
1

10
2

10
3

1.0 1.1 1.2 1.4

average query time (ms)

α

0.01%

0.1%

1%

10%

1.0 1.1 1.2 1.4

relative error

α

(a) space consumption (b) preprocessing time (c) query performance (d) relative error

Figure 6: Tuning α for COLA.

example, the relative error of α-Dijk for α = 1.1, is around 3%
on FLA dataset, which is less than a third of the worst case bound,

i.e., 10%. We set α to 1.1 for COLA since it strikes a good balance

among query accuracy, query efficiency, space consumption and

preprocessing time.

7. CONCLUSIONS
We present COLA, a novel and practical solution for approxi-

mate constrained shortest path processing. COLA utilizes impor-

tant properties for real road networks, and applies effective index-

ing which leads to orders of magnitude reduction in query execu-

tion time. Meanwhile, COLA also includes an algorithm, α-Dijk,

which significantly outperforms existing techniques for α-CSP pro-

cessing without an index. As future work, we plan to investigate (i)

how to avoid reconstruction of indices for different values of α and

(ii) α-CSP processing in denser graphs compared to road networks.

8. ACKNOWLEDGMENTS
This research is supported by grants MOE2015-T2-2-069 from

MOE, Singapore and NPRP9-466-1-103 from QNRF, Qatar.

9. REFERENCES
[1] https://sites.google.com/site/colatr2016/.

[2] 9th DIMACS Implementation Challenge. http://www.dis.
uniroma1.it/challenge9/download.shtml.

[3] Google Maps. www.google.com/maps.

[4] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In SIGMOD,
pages 349–360, 2013.

[5] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann,
T. Pajor, P. Sanders, D. Wagner, and R. F. Werneck. Route planning
in transportation networks. CoRR, abs/1504.05140, 2015.

[6] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and
distance queries via 2-hop labels. SIAM J. Comput.,
32(5):1338–1355, 2003.

[7] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Robust
distance queries on massive networks. In ESA, pages 321–333, 2014.

[8] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. F. Werneck.
Graph partitioning with natural cuts. In IPDPS, pages 1135–1146,
2011.

[9] D. Delling and D. Wagner. Pareto paths with sharc. In SEA, pages
125–136, 2009.

[10] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[11] S. Funke, A. Nusser, and S. Storandt. On k-path covers and their
applications. PVLDB, 7(10):893–902, 2014.

[12] S. Funke and S. Storandt. Polynomial-time construction of
contraction hierarchies for multi-criteria objectives. In SOCS, pages
41–54, 2013.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. 1979.

[14] R. Geisberger, M. Kobitzsch, and P. Sanders. Route planning with
flexible objective functions. In ALENEX, pages 124–137, 2010.

[15] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks.
In WEA, pages 319–333, 2008.

[16] A. V. Goldberg and C. Harrelson. Computing the shortest path: A

search meets graph theory. In SODA, pages 156–165, 2005.

[17] G. Y. Handler and I. Zang. A dual algorithm for the constrained
shortest path problem. Networks, 10(4):293–309, 1980.

[18] P. Hansen. Bicriterion path problems. In Multiple criteria decision

making theory and application, pages 109–127, 1980.

[19] R. Hassin. Approximation schemes for the restricted shortest path
problem. Mathematics of Operations research, 17(1):36–42, 1992.

[20] N. Jing, Y. Huang, and E. A. Rundensteiner. Hierarchical encoded
path views for path query processing: An optimal model and its
performance evaluation. IEEE Trans. Knowl. Data Eng.,
10(3):409–432, 1998.

[21] H. C. Joksch. The shortest route problem with constraints. Journal of

Mathematical analysis and applications, 14(2):191–197, 1966.

[22] S. Jung and S. Pramanik. An efficient path computation model for
hierarchically structured topographical road maps. IEEE Trans.

Knowl. Data Eng., 14(5):1029–1046, 2002.

[23] F. A. Kuipers, A. Orda, D. Raz, and P. V. Mieghem. A comparison of
exact and epsilon-approximation algorithms for constrained routing.
In NETWORKING, pages 197–208, 2006.

[24] D. H. Lorenz and D. Raz. A simple efficient approximation scheme
for the restricted shortest path problem. Oper. Res. Lett.,
28(5):213–219, 2001.

[25] K. Mehlhorn and M. Ziegelmann. Resource constrained shortest
paths. In ESA, pages 326–337, 2000.

[26] U. Meyer and P. Sanders. [delta]-stepping: a parallelizable shortest
path algorithm. J. Algorithms.

[27] A. Sedeño-Noda and S. Alonso-Rodrı́guez. An enhanced K-SP
algorithm with pruning strategies to solve the constrained shortest
path problem. Applied Mathematics and Computation, 265:602–618,
2015.

[28] A. J. V. Skriver and K. A. Andersen. A label correcting approach for
solving bicriterion shortest-path problems. Computers & OR,
27(6):507–524, 2000.

[29] O. J. Smith, N. Boland, and H. Waterer. Solving shortest path
problems with a weight constraint and replenishment arcs.
Computers & OR, 39(5):964–984, 2012.

[30] S. Storandt. Route planning for bicycles-exact constrained shortest
paths made practical via contraction hierarchy. In ICAPS, volume 4,
page 46, 2012.

[31] G. Tsaggouris and C. D. Zaroliagis. Multiobjective optimization:
Improved FPTAS for shortest paths and non-linear objectives with
applications. Theory Comput. Syst., 45(1):162–186, 2009.

[32] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou. Efficient route
planning on public transportation networks: A labelling approach. In
SIGMOD, pages 967–982, 2015.

[33] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest
path and distance queries on road networks: An experimental
evaluation. PVLDB, 5(5):406–417, 2012.

[34] X. Yu and H. Shi. Ci-rank: Ranking keyword search results based on
collective importance. In ICDE, pages 78–89, 2012.

[35] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. Reachability queries on
large dynamic graphs: a total order approach. In SIGMOD, pages
1323–1334, 2014.

72

