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ABSTRACT
The telco industry is gradually shifting from using mono-
lithic software packages deployed on custom hardware to
using modular virtualized software functions deployed on
cloudified data centers using commodity hardware. This
transformation is referred to as Network Function Virtual-
ization (NFV). The scalability of the databases (DBs) un-
derlying the virtual network functions is the cornerstone for
reaping the benefits from the NFV transformation. This
paper presents an industrial experience of applying shared-
nothing techniques in order to achieve the scalability of a DB
in an NFV setup. The special combination of requirements
in NFV DBs are not easily met with conventional execution
models. Therefore, we designed a special shared-nothing
architecture that is based on cooperative multi-tasking us-
ing user-level threads (fibers). We further show that the
fiber-based approach outperforms the approach built using
conventional multi-threading and meets the variable deploy-
ment needs of the NFV transformation. Furthermore, fibers
yield a simpler-to-maintain software and enable controlling a
trade-off between long-duration computations and real-time
requests.

1. INTRODUCTION
The telco industry is undergoing a dramatic transforma-

tion, referred to as Network Function Virtualization (NFV).
The essence of NFV is a gradual shift from using mono-
lithic software packages deployed on specialized hardware
to using modular virtualized software functions deployed on
cloudified data centers using commodity hardware. For ex-
ample, in cellular networks, the modular software functions
(referred to as Virtual Network Functions or VNFs) include
subscriber identity management, and various types of ses-
sion and policy management [6]. One of the key benefits
of NFV for telco operators is scalability, and furthermore
elasticity, which we define as the ability to match the size
and number of Virtual Machines (VMs) in a data center
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to a specific workload, as well as to change this alloca-
tion on demand. Elasticity is especially attractive to op-
erators who are very conscious about Total Cost of Own-
ership (TCO). NFV meets databases (DBs) in more than
a single aspect [20, 30]. First, the NFV concepts of modu-
lar software functions accelerate the separation of function
(business logic) and state (data) in the design and imple-
mentation of network functions (NFs). This in turn enables
independent scalability of the DB component, and under-
lines its importance in providing elastic state repositories
for various NFs. In principle, the NFV-ready DBs that are
relevant to our discussion are sophisticated main-memory
key-value (KV) stores with stringent high availability (HA)
and performance requirements.

Following the state-of-the-art, these requirements are best
addressed by a shared-nothing cluster of data nodes, where
all database structures are partitioned into shards accord-
ing to some sharding criteria, and each DB node manages
a disjoint set of shards [21]. The underlying observation
of a shared-nothing architecture is that network is one of
the major costs in database processing. Therefore, DB logic
aims at minimizing the operations affecting multiple shards.
In H-Store [10] each shard is managed by a single thread
that executes the operations locally in run-to-completion
mode, which avoids interprocess communication and syn-
chronization. This approach has been refined by systems
like ScyllaDB [24] that uses an event-driven programming
style to support execution on a single-thread. However, this
pure shared-nothing approach is not easy to adapt to NFV
DB requirements, because our system is expected to pro-
vide services which do not fit strict data sharding. For ex-
ample, NFV needs secondary indexes with globally unique
integrity constraints, cross-partition transactions, and con-
sistent replication. All of these require intensive communi-
cation among the DB nodes.

Some recent analysis concluded that the network band-
width will not be the primary bottleneck of a distributed
in-memory database [2]. A recently developed system called
RAMCloud [21] is based on the assumption of low-latency
networking and therefore copes well with inter-node com-
munication. In RAMCloud, each node manages multi-
ple threads that send synchronous Remote Procedure Calls
(RPCs) to maintain secondary indices and replication. Al-
though hash-based sharding is used as a basis for data distri-
bution, a lot of operations involve RPCs across data nodes.
Such a model indeed satisfies a large set of the NFV require-
ments, but as we show later in this paper, it fails to address
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the requirements of variable deployment and to provide a
high throughput in a commodity network.

In this paper, we describe and compare two different sys-
tem designs for the DB. In our first approach, we keep the
multi-threaded architecture of RAMCloud, and break down
the RPC handler functions into multiple steps managed by
a state machine. When an RPC is sent, the sender thread
is suspended. The thread execution is resumed when the
response of the RPC is received. This model provides good
throughput for certain deployments, but it is difficult to
adapt when a different number of cores is available or the
workload changes. Moreover, the implementation becomes
significantly more complex than the original one.

The limitations of the first approach are addressed by
fibers, also known as light-weight, or user-level threads,
which are the basis of our second approach. The new ar-
chitecture is based on the concept of running each partition
of the database in a single threaded process with cooperative
multitasking. Consequently, the database is implemented as
a simple sequential program, where RPCs internally yield
the control while waiting for a response. Such approach
shows very good scalability with respect to the size of the
VMs, while preserving the code simplicity and the original
scale-out properties of RAMCloud.

In this paper, we demonstrate that fibers are an excellent
technique for a high-performance NFV database implemen-
tation. Fiber architecture provides a linear scalability of
throughput and response times of hundreds of microseconds
in a commodity network. Our results show that the fiber
architecture provides a very good throughput per CPU core
on VMs of arbitrary size for any typical NFV workload,
in a lot of cases outperforming the multithreaded solution
several times. Furthermore, the addition of fibers allows
our system to achieve TATP benchmark [18] results compa-
rable to those of one of the best state-of-the-art key-value
databases, which relies on specialized hardware [5].

The rest of the paper is structured as follows. In Section
2, we define the problem by specifying the requirements of
an NFV DB and discuss the limitations of our initial mul-
tithreaded architecture. In Section 3, we describe in detail
our fiber-based architecture. Section 4 includes our exper-
imental results. We survey related work in Section 6 and
conclude in Section 7.

2. PROBLEM DESCRIPTION

2.1 Requirements
Traditionally, the telco industry relied on specialized hard-

ware, where each piece of hardware implemented a specific
network function tightly integrated with the data manage-
ment. This architecture is being substituted by the NFV
architecture shown in Figure 1. The network function is ex-
ecuted in a cloud environment, which enables an elastic de-
ployment because each component, including the database,
scales independently by adding or removing VMs. This ar-
chitecture reduces the TCO because it provides a more effi-
cient resource utilization and runs on commodity hardware.
This transformation preserves the requirements of the telco
applications while it introduces new challenges related to
the deployment in the cloud. We summarize the key char-
acteristics for NFV databases as follows:

Very low latency and high throughput. Specifically,
throughput of tens of thousands of KV operations per second
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Figure 1: NFV architecture.

per CPU core. Note the built-in per core key performance
indicator that expresses the TCO-awareness of operators.
The required latency (round-trip response time) is of hun-
dreds of microseconds for a KV operation from a client to
server in the same data center with a high-speed (10 Gb/s)
network.

Variable deployments and flexible scalability. The
telco industry is very conservative, and therefore NFV is a
gradual transformation that might take more than a decade.
This translates to a requirement of supporting variable size
deployments on a variety of hardware and data centers. On
the one hand, in a trial, a database cluster can be provi-
sioned at low cost on a small cluster of VMs with a few
cores (e.g., one or two cores per VM). As the number of
subscribers handled by the NFV trial grows, the deployment
can scale-out with more VMs. On the other hand, as oper-
ators dare to upgrade or build modern data centers, deploy-
ments may need also to scale-up on physical machines with
more cores. Moreover, regardless of the need for gradual
transformation, this type of scalability is one of the biggest
advantages of NFV, as it enables provisioning resources on-
demand.

High availability. Software and hardware failures can-
not have a significant impact on the service. This can be
achieved by data partitioning (sharding) and replication of
the shards to increase availability (as well as for load balanc-
ing and scalability). Shards of the same table and replicas of
the same shard are spread across DB nodes (see Figure 1).
The DB must detect promptly if any DB node has crashed,
and resume the service using a hot replica of the relevant
data shard. Telco applications are characterized by the very
high availability, even if consistency is sacrificed temporar-
ily.

Indexed data. Telco applications require looking up data
by various fields. For some of the indexed fields, such as the
telephone number or the identifier of a subscriber, unique
integrity constraints must be maintained. Moreover, indices
are replicated for high-availability.

Consistency. Under normal operation mode, applications
expect both availability and consistency, which is important
for providing high quality services. Indexing and replication
must provide a consistent view of the data.
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Mixed workload. In many network functions, the KV
workload is critical and has the high-throughput and low-
latency requirements mentioned above. However, often a
long-duration activity (scan or range query), with a lower
priority is also required. This mix introduces an inherent
trade-off that requires means for controlling it.

These requirements have several implications to the possi-
ble design choices. First, the low latency limits the possibil-
ity for batching in network communication and processing.
Second, to maintain strict consistency, replication and global
index updates must be performed synchronously. This im-
plies that processing of each KV-operation consists of multi-
ple server-to-server RPCs for replication and index updates.
The database must be able to process a lot of RPCs with
very short deadlines.

To support mixed workload, the database nodes must sup-
port concurrent processing of requests. Serial execution of
all tasks is not acceptable because long running tasks would
block the database node for long periods of time. Concur-
rency is also necessary to support synchronous RPCs for
replication and index updates, because otherwise such RPC
would block the data node and potentially create a deadlock.

2.2 Multithreaded asynchronous approach

2.2.1 Summary of RAMCloud architecture
We selected RAMCloud as the base of our DBMS archi-

tecture, because it is a multithreaded key-value store that
aims at very low latency, fault tolerance and scale-out [21].
RAMCloud architecture has two types of servers: a coordi-
nator and multiple masters. The coordinator is a centralized
component that handles all the cluster management proce-
dures and the cluster metadata. The masters contain the
data of the key-value storage and the indexes. Database ap-
plications use a client library that contacts the masters and
the coordinator.

RAMCloud communication among masters, coordinators
and database clients is performed through an RPC abstrac-
tion. RPCs are implemented as an asynchronous send op-
eration and a synchronous blocking wait. Since RAMCloud
is designed for very fast networks with latencies of few mi-
croseconds, the wait procedure is implemented as a busy
wait that polls the network until the response is received.
Parallel RPC requests are also supported by sending mul-
tiple RPCs in parallel, and then waiting for the completion
of all RPCs. A transport layer, which controls the effec-
tive creation, send and receive of network packets, separates
the transport protocol (e.g. TCP, UDP...) from the RPC
abstraction.

The execution model of RAMCloud servers is based on
a single-dispatcher, multiple-worker model. The dispatcher
thread receives the requests from the network and assigns
them to worker threads, which are preallocated in a pool.
The worker implements one handler function for each RPC,
which computes the response. This model enables the uti-
lization of multiple cores for processing requests and also en-
ables the use of blocking waits on RPCs or shared resources,
without compromising the responsiveness of the server. In
addition to that, there are various additional threads that
perform background activities such as log cleaning of the log
based storage, or data migration due to cluster scale-out.

The advantage of this architecture is that it achieves very
low latency, in particular in Infiniband networks. Our goal

is, however, to support deployments on commodity cloud
environments, which have much higher network latencies,
usually, in the range of tens to a few hundreds of microsec-
onds. As a result, the time spent waiting for the completion
of the RPC was several times higher than the time spent
for actual request processing. For example, in one of our
early benchmarks of update operations, we measured that
a worker thread spent about 30 µs for processing the up-
date operation, and 210 µs waiting for the completion of the
replication RPC: 87% of the worker time was wasted just on
busy waits. Other sources of busy waits were spinlocks for
access to shared resources, such as accesses the hash-table
of the key-value store, the log storage or metadata.

A second advantage is that the database code for han-
dling a request in a worker is written as a sequential pro-
gram that computes the response to the RPC. This model is
very convenient, as it hides most of the complexity of RPCs,
which are seen as local function calls. In RAMCloud, opera-
tions follow a sequence of steps that ensure strict consistency
among data tables, backups and indexes, which are located
in different computing nodes. So, a master that receives an
RPC (e.g. write an object) often sends more RPCs to other
masters (e.g. update indexes, replicas...). We also followed
a similar model when we added new features requested by
the applications. Some examples are hot replication, geo-
replication, or publish/subscribe that also require additional
RPCs. The implementation details of these features are out
of the scope of the paper.

2.2.2 Asynchronous RPC handling
Although RAMCloud fits most of our requirements, it

does not target the throughput and the scale-up/down elas-
ticity requirements. As a first prototype, we modify the orig-
inal RAMCloud execution model to remove the busy wait
logic from RPCs, by a mechanism that does not consume
CPU continuously and let other threads use the processor.

A straightforward approach would be to replace busy
waits by waits on condition variables. However, it does
not work well for several reasons. First, the use of syn-
chronization variables introduces overheads in the order of
microseconds, which is considerable, bearing in mind that
the typical request processing time ranges from a few mi-
croseconds to a few tens of microseconds. Second, this solves
only a part of the problem, because although worker threads
yield the CPU, they still remain in the state of blocking wait
and thus are unable to process other requests concurrently.
Therefore, for full utilization of CPU resources we have to
maintain a number of worker threads that is several times
larger than the number of available CPU cores, which fur-
ther increases overheads due to additional contention and
context switching.

Our approach to avoid busy waits is based on relying on
asynchronous RPCs for communication, and rewriting the
request handlers in a state-machine style. We divide each
RPC handler in multiple phases, where each phase is a state.
Each phase finishes when there is a blocking call, such as
replication or a remote index update. RPC always happen
at the end of a phase, we transition the state machine to
the next state and exit the handler routine, releasing the
worker thread for processing other requests. When the RPC
response arrives, we schedule the RPC handler for execution
on a worker thread again. When the worker thread enters
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Figure 2: CPU task allocation.

the handler routine, it continues processing, starting with
the next state.

Sometimes no RPCs are sent at the split points because,
for example, there are no secondary indexes to be updated,
or replication is disabled. In such cases the RPC handler
does not yield the control to the worker thread, but instead
immediately proceeds with the next state. In some other
cases multiple RPCs are sent in parallel, in the cases of
replication to multiple destinations or update of multiple
remote secondary indexes.

2.2.3 Analysis
The asynchronous RPC handling eliminates the CPU

waste on busy waits, improving the efficiency of worker
threads several times. In this design, one worker thread
is able to completely utilize one entire CPU core. With
such a change, we improve the throughput by one order of
magnitude.

Our initial expectation was that it would be sufficient to
create one worker thread per CPU core, as it would reduce
inefficiencies related to context switching and cache pollu-
tion. However, we found a problem related to the special-
ization of threads: It is difficult to find an optimal map-
ping of different types of threads to CPU cores in a way
that achieves full utilization of all the available CPU. For
instance, Figure 2a illustrates the situation, where the dis-
patcher thread, responsible for all network I/O, is the bot-
tleneck, while the CPU cores for worker and background
processing threads are underutilized. The optimal ratio of
the number of threads often depends on the database work-
load. For example, an update of an object with multiple
secondary keys creates much more communication over net-
work to update remote indexes than an update of an ob-
ject without any secondary keys, and therefore needs much
more CPU in the dispatcher thread. This problem is also
detected in the original RAMCloud, e.g. [21] reports a max-
imum worker CPU utilization of 80% in a read workload of
single objects in a one worker configuration.

The number of CPU cores per VM depends on the cus-
tomer deployment, and since we run in a virtualized environ-
ment, the number of CPU cores may even change dynami-
cally. A special challenge for the multithreaded design is an
efficient execution on VMs with very few cores - two or just
one, which is necessary for small deployments or telco envi-
ronments with limited hardware resources. On these deploy-
ments, we were forced to create significantly more threads
than available CPU cores.

Last but not least, the new design introduces a lot of
complexity into the code. We transform the original sim-
ple sequential RPC handlers from RAMCloud into multiple
phases that are connected through a state machine. Also,
the new model adds restrictions in the RPC usage. The
asynchronous model requires identifying all functions that
send RPCs and adapt their code to add split points. In
contrast, RAMCloud RPCs are normal function calls that
can be used anywhere in the code. Finally, the extension
of the solution to other blocking mechanisms which are not
RPCs (in particular, we were interested in synchronization
mechanisms such as mutexes) requires a careful redesign of
the existing code similar to the one described for RPCs.

3. ARCHITECTURE BASED ON FIBERS
The elasticity of database deployment with respect to

available CPU cores is improved by moving from multi-
threaded to single-threaded architecture, in which each
database process is implemented by just one thread. As
shown in Figure 2b, we spawn one database process for each
available CPU core on a database VM, so achieving an op-
timal match between CPU cores and threads. There is no
fixed allocation of CPU to specific tasks, instead each type
of task can take an arbitrary share of the CPU, depending
on the type of the workload. Besides, single-threaded design
completely eliminates data sharing and thus the overheads
resulting from contention on shared data.

The challenge of moving to single-threaded architecture
in our case is managing concurrency in an efficient and con-
venient way. We must handle multiple database requests
concurrently to avoid the process being idle during block-
ing waits on RPCs; the potentially long running tasks must
not block the process for long periods of time. Expressing
all concurrent tasks in the state machine style described in
Section 2.2.2 would require a lot effort and would make the
code complex and difficult to maintain.

We address this challenge by relying on lightweight
threads [25, 32] to express concurrency on top of the sin-
gle operating system thread. In this approach, scheduling
and context switching happens in the user space, and con-
currency is controlled by cooperative multitasking. Context
switches are explicit in the implementation of the tasks, un-
like in case of preemptive multitasking, where the operating
system decides the thread scheduling. To avoid confusion, in
the rest of the paper we will use term fiber to refer to light-
weight threads, and the term thread to refer to the regular
threads managed by the operating system.

Fibers like threads allow expressing the network RPC
management in a natural and sequential code, making it
easy to understand and to maintain. At the same time,
they significantly reduce the cost of context switching and
therefore enable the implementation of concurrency at a
finer level of granularity. With fibers, we can afford yielding
tasks on short-blocking waits that take a few microseconds,
instead of waiting spinlocks that do not release the CPU
for other tasks. We can also periodically yield long running
tasks at the granularity of tens or hundreds of microseconds,
which enables preserving low latency of handling database
requests.

In the remainder of this section we give a short overview
of our fiber framework, the design of different components
of our system on top it, and optimizations that helped to
improve performance.
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3.1 Overview of the fiber framework
We implement our own fiber framework, reusing the im-

plementation of fast context switching from the libfiber [33]
open-source project. To minimize the costs of scheduling,
the framework supports scheduling on only one executor
thread and relies on a simple FIFO policy, which is sufficient
to prevent starvation, and requires very few instructions to
select the next fiber to be executed.

The framework includes only the features that we need for
our project: (a) voluntary fiber yields, (b) suspending and
resuming fibers, (c) sleeping for a specified amount of time,
and (d) polling for network events.

The yield operation is called by long running tasks to
avoid blocking the execution of other concurrent tasks for
a long time. Internally, the yield is a call to the scheduler
to select another active fiber to be executed and a context
switch to that fiber. The current fiber remains active and is
reinserted into the scheduler queue.

The suspend and resume operations are necessary for the
implementation of blocking waits. To enter a blocking wait
a fiber calls suspend operation, which is analogous to yield
with the only difference that the fiber is not rescheduled for
execution. To end the blocking wait, the suspended fiber
must be resumed by another fiber. The resume operation
activates the given fiber by simply inserting it into the sched-
uler queue.

Our microbenchmarks1 show that we spend in total 35 ns
on a fiber yield, and 16 ns of this time is spent on fast
context switching. For comparison, the POSIX function
swapcontext, which performs context switching as used by
the operating system, takes 200 ns on the same machine.
Cache pollution after the context switch is not considered
in the microbenchmark.

The sleep operation is used for various purposes in the
database design. The most common use is for scheduling
activities that need to be executed at regular interval of
times, such as cluster health checks. Fibers cannot use sys-
tem sleep, because it blocks not only the sleeping fiber, but
also the entire executor thread. Therefore, the framework
relies on its own timer-based scheduling for implementing
sleeps. A special maintenance fiber checks the timer list on
its every iteration, and wakes up the sleeping fibers once
their timers expire.

In fibers, we can use only non-blocking read and write
operations for network communication. The fiber frame-
work supports non-blocking network I/O by providing a
centralized facility to poll for network events. The transport
layer uses framework API to register sockets to be polled for
events and the callbacks to handle them. The maintenance
fiber polls all registered sockets on its every iteration using
epoll wait system call, and executes the registered callbacks
to handle the received events.

3.2 Remote procedure calls
Many of our database operations rely on the execution

of a sequence of steps, some of the steps like replication or
index updates being implemented by RPCs to other server
nodes. One of the main advantages of using fibers is that
they enable implementing such operations by a natural se-

1All microbenchmarks mentioned in the paper are executed
on Intel Core i5-4570 machine, running Ubuntu 14.04.

quential code, while still efficiently releasing CPU to other
tasks during the RPCs.

The use of fiber scheduling to release the CPU during
waits is hidden in the implementation of the wait for RPC
completion. Before entering a wait, we save the pointer of
the current fiber in the RPC object and suspend the fiber.
The fiber remains inactive until a response to the RPC is
received. The incoming network events are handled in the
transport functionality executed in the maintenance fiber.
When transport reconstructs a response to an RPC, it re-
sumes the fiber stored in the RPC object. Waiting for com-
pletion of multiple RPCs sent in parallel is implemented
analogously, the only difference is that we count the number
of received responses, and resume the waiting fiber when all
the responses are received.

Some RPCs need to be canceled after a certain timeout.
To implement such RPCs, the waiting fiber, instead of call-
ing suspend, puts itself to sleep for the time specified by
the timeout. We extended the implementation of the re-
sume operation so that it also interrupts the sleeping fibers
by canceling their timer and scheduling them for immedi-
ate execution. Thus, by calling resume on reception of the
RPC response, the transport callback wakes up the waiting
fiber. After returning from sleep the waiting fiber decides
on whether to handle the timeout or successful RPC com-
pletion by checking the state of the RPC.

3.3 Synchronization
The code of the original multithreaded approach relies

mainly on spinlocks for synchronization in performance crit-
ical code. However, the large majority of spinlocks are elim-
inated by relying on cooperative multitasking. The advan-
tage of cooperative multitasking is that the code between
two yields is executed atomically, thus no additional syn-
chronization is necessary to guarantee atomicity of short
critical sections that were previously protected by spinlocks.

Explicit synchronization in the form of light-weight mu-
texes is necessary only in a few cases where we keep long-
term locks in code segments involving blocking waits. For
example, the original code uses a read-write spinlock to con-
trol access to table metadata, which is updated on demand
during reads. This spinlock prevented concurrent updates
to the metadata, in a process which includes an RPC to the
coordinator. In the fiber implementation, metadata is still
updated by an RPC to the coordinator and we keep a light-
weight mutex to prevent parallel requests and modifications
by multiple fibers.

Light-weight synchronization primitives such as mutexes
and condition variables are implemented using the suspend
and resume operations provided by the framework. A fiber
calls suspend to wait for a lock to be released or a condi-
tion to be met, and it is resumed by another fiber which
releases the lock or raises the condition. Every synchroniza-
tion primitive maintains its own list of waiter fibers. Dy-
namic memory allocation is avoided by inlining the nodes
for the waiter list in the structure of the fiber – since a fiber
can wait for one object at a time, we need only one node
per fiber. The state of synchronization primitives can be
accessed and updated very efficiently because, due to co-
operative multitasking, no additional means (spin-locks or
CAS operations) are necessary to guarantee their atomicity.
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3.4 Long running tasks
Although cooperative multitasking reduces the need for

additional synchronization, the disadvantage is that the de-
veloper must identify all the places where explicit fiber yields
are necessary. Such explicit yields are necessary for poten-
tially long running tasks, such as log cleaning or queries in-
volving table scans. Otherwise, the execution of such tasks
until completion without yielding may compromise the la-
tency of deadline sensitive tasks. One example of tasks with
deadlines are KV operations that are expected to be exe-
cuted within a few milliseconds. Also, some internal man-
agement tasks, such as the distributed ping mechanism [21],
which detects when a server fails and initiates the failover
procedure, have time deadlines. If a server does not respond
timely to pings, it may be wrongly identified as failed.

In a lot of cases, it is known which tasks can potentially
take a long time. In the initial phase of the migration to
fibers, we reviewed the code of all known long running tasks
and inserted yields in the end of their loop iterations. In
most of the cases yielding on every iteration is too frequent.
Therefore, we track the time since the last yield, and yield
only when this time exceeds a certain threshold.

It is, however, difficult to identify all the places where
explicit yields are necessary. For this we added a debug-
ging code that reports an error in case a fiber was running
without yielding for several milliseconds. With this check
enabled while running our test suites, we were able to iden-
tify further places where explicit yielding was necessary. For
example, we found that the log cleaner may spend a few mil-
liseconds for sorting a list of objects. Then, we changed the
algorithm to avoid sorting too many objects at once. In gen-
eral, detecting all potentially long-running execution paths
requires a very good test coverage.

3.5 Worker management
The reception of the incoming packets and reconstruction

of request parameters is performed in the transport function-
ality, which is executed by a single maintenance fiber. We
cannot process the requests in the maintenance fiber, how-
ever, because they may involve blocking waits. Therefore,
we rely on dedicated worker fibers for processing requests.
One design issue we have to deal with is to decide on how
many worker fibers to create.

In our initial multi-threaded approach we created the
number of worker threads corresponding to the number of
available CPU cores, but in case of fibers we use only one
CPU core per process, so the only reason to create multiple
worker fibers is to maintain the level of concurrency that is
sufficient to utilize the CPU during blocking waits.

A straightforward approach is to create a new fiber for
every incoming request and destroy it once the request han-
dling finishes. The cost of creating and initializing fibers on
every request is too high compared to the processing time of
simple requests, which is in the range of a few microseconds.
We found that a more efficient solution is to keep a pool
of initialized worker fibers and allocate more fibers dynam-
ically on-demand. The transport layer enqueues received
requests to a shared queue, and the worker fibers wait for
requests in a loop. Due to cooperative multitasking, there is
no contention on the queue accesses and no synchronization
is needed.

Each fiber consumes memory for status structures and its
private stack. Our dynamic policy aims at minimizing the

amount of created fibers simultaneously and its correspond-
ing memory usage, while it allocates enough fibers to keep
the CPU busy. The pool initially starts with no worker,
and the workers are added in two situations. First, the
transport layer creates one new fiber, if after queuing the
requests no idle fiber is available. Second, a worker creates
one new fiber, if after suspending the execution, the worker
finds that there are requests in the queue and no fiber is
ready for execution. This policy ensures that the system
creates a new fiber if there are requests in the queue and
all workers are suspended. In order to control the memory
usage, we set an upper limit to the number of worker fibers
that can be created. This limit is reached only in error sit-
uations causing some servers not to respond to RPCs for a
long time.

The number of workers can be again reduced when the
request queue is empty. When a worker finishes processing a
request and there are no requests to process, the worker adds
itself into the idle worker pool and suspends itself. When
the pool size reaches a certain threshold, we actually destroy
excessive worker fibers.

3.6 Optimizations for locality
The 35 ns spent in a fiber yield that we measured in our

microbenchmarks is only a part of the actual costs of context
switching. The hidden costs, which are more difficult to
quantify, are related to loss of cache locality. Every time
we switch to another task, we switch the execution to a
different code section that accesses a different set of data.
With every concurrent task we increase the pressure on the
processor cache and increase the probability of cache misses.
As a result, in our processing time-breakdown, we observed
a slowdown of various operations after switching to fibers,
although in many cases they were executing exactly the same
code.

We addressed this issue by reducing the number of context
switches. The context switches resulting from the worker
fibers entering the state of blocking wait cannot be avoided.
But, many requests – including very frequent ones such as
object reads or replication – do not involve any blocking
waits. We process multiple such requests in a row without
yielding. Each time that the worker fiber finishes a request,
it checks if another request is available in the shared queue,
and continues processing it without yielding. Nevertheless,
we add a check of how much time the worker has been ex-
ecuting without yielding, and when this time is exceeded,
the fiber yields even if there are more requests in the queue.
The choice of this threshold value depends on the latency
requirements. In our case, we can afford processing without
yielding for a few hundreds of microseconds, which already
allows processing ten or more requests in a row.

Another optimization that we performed for improving
cache locality is worker specialization. Instead of having
only one pool of generic worker fibers, we maintain special-
ized worker fibers for the most common types of requests.
For example, we have a pool of workers for handling only
object replication requests2 and a separate queue for stor-
ing these requests. Such specialization provides performance
improvement in two ways. First, when a specialized worker
thread processes multiple requests without yielding, it exe-
cutes the same code for each request, which improves cache

2Since the object replication does not involve blocking waits,
there is only one worker in this pool.
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locality. Second, the specialization enables preallocation and
precomputation of the state that can be reused for handling
multiple requests of the same type.

After the switch to fibers, we observed in particular a
significant increase in the time spent on network operations.
For example, the time of the kernel call to send a UDP
packet increased from 1.5 µs to 3 µs. These calls involve
multiple layers of the network stack. In the multi-threaded
design, the networking was handled by one thread that was
spending most of this time in the kernel calls, while in our
early design based on fibers the network communication was
intermixed with the processing code.

We managed to restore the original performance of the
transport layer by executing multiple network operations in
a row. After getting an epoll event, we try to read multiple
packets from the socket in a row without yielding until the
socket gets empty or we reach a certain limit on the num-
ber of packets. After reading each packet, we reconstruct
incoming requests and enqueue them for processing. In this
way we also increase the potential of batching in the worker
fibers, because once we switch to a worker fiber, there are
multiple requests in its input queue, so a worker can process
them without yielding.

To achieve grouping of network send operations, we rely
on asynchronous scheduling to postpone their execution.
When a worker fiber sends a reply after handling a request
or sends an RPC to another server, the transport layer does
not perform the send immediately, but instead accumulates
the messages to be sent in a queue. The transport sched-
ules a task to be executed from the maintenance fiber in
its next iteration, which send the accumulated messages by
performing multiple network sends in a row.

Note that we do not introduce any artificial delays for the
purpose of batching. If there is only one packet to be read
from the socket, the maintenance fiber immediately yields
after reading it; if there is only one element in the request
queue, the worker yields after processing just one request.
As a result, the batching effects take place only on high
load, which means that on high load we automatically trade
in some latency for throughput.

3.7 Interaction with third-party code
The assumptions made by the fiber-based design, such

as atomicity of data access between context switches and
absence of blocking operations, can be violated when inter-
acting with code that is not designed to run with fibers.

First, it concerns third-party libraries used for implemen-
tation of the database. For example, the logcabin [14] li-
brary, which we use for implementing fault-tolerance of the
coordinator state, creates additional threads and relies on
mutexes and condition variables for synchronization. One
possible solution is changing problematic third-party code
to comply with fibers. This is, however, error-prone and
creates maintainability problems such as migration to a new
version of a third-party library. Therefore, we follow another
approach – we avoid calling the problematic third-party code
directly from fibers and instead isolate it by executing it on
a separate thread.

Second, the client-side driver of the database, which is
also based on fibers, is used as a library by the applications.
The database API is called in application threads, but the
RPCs from the client to the database are handled by a ded-

icated thread, which relies on fibers for concurrent handling
of multiple asynchronous requests.

So in both cases we have to deal with interaction of fibers
with external threads. In the fiber-based design, data can
be safely accessed from one thread only. Therefore, other
threads interact with the database thread exclusively by
means of scheduling tasks to be executed on the database
thread. The scheduling of tasks relies on a circular queue
that is accessed lock-free by the consumer (the database
thread) and is synchronized on the producer side to support
multiple producers. The maintenance fiber polls the queue
in each iteration and executes the scheduled tasks.

3.8 Reducing CPU usage at low load
One of the requirements of NFV cloud is that a process

uses as much CPU as it actually needs. A process should
take 100% CPU only for short time for handling load peaks,
while in normal operation the CPU usage should reflect the
current load. This requirement is difficult to achieve with
designs that heavily rely on busy waits. The advantage of
fiber-based design is that it enables efficiently yielding con-
trol while waiting or sleeping. The only remaining busy loop
is the code that polls timer and network events, which is lo-
cated in the maintenance fiber. The maintenance fiber also
fills out all the idle time of the process.

The centralization of polling and idle time processing in
the maintenance fiber makes it easier to detect the idle
phases and to release the CPU when possible. When there
are no other fibers scheduled to be executed, the mainte-
nance fiber knows that there is nothing to do until next
network or timer event. Thus the maintenance fiber can re-
lease CPU until the next timer or network event. It achieves
that by computing the time until the next scheduled timer
(if any) and using this time as timeout for a epoll wait call.
The epoll wait suspends the executor thread until the next
network event or the timeout. This is a call to kernel, which
releases CPU in case of long waits.

The epoll wait call must be also interrupted in case
of tasks scheduled from external threads as described in
Section 3.7. For that purpose we rely on a light-weight
inter-process signaling mechanism, called eventfd [13]. The
database thread opens an eventfd object and registers its
file descriptor for polling. An external thread after schedul-
ing a task wakes up the database thread from epoll wait
by writing an event into the eventfd object. According to
our microbenchmarks, this notification mechanism creates
about 1 µs overhead per event. A notification is necessary
only when the database thread is actually in the epoll wait
state, in other cases this overhead is avoided.

4. EXPERIMENTS
We analyze our database in the context of an application

that implements a network function called Mobility Manage-
ment Entity (MME) [23], unless explicitly stated in the ex-
periment. Its responsibility is to maintain mobile IP connec-
tivity sessions used by mobile devices like smart phones [6].
The MME application stores one subscription object, which
is modeled as a tree, for each active subscriber. Each sub-
scriber has a unique identifier, which is used as the primary
key of the session. Moreover, the session has three indexed
fields, and two of them are unique. Note that the unique-
ness constraints are global for the whole database and not
per data node. The protocol of index maintenance, which
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Figure 3: Scale-up. Insert throughput per VM.

is not part of this evaluation, is similar to the one described
in [11]. In all our experiments, we keep a hot replica for each
object and another replica for each one of the three indexes.

The database stores the session object, and this state is
continuously updated. The client MME application keeps a
cache of session data that is used for read requests. When
the client updates the session data, it pushes the change to
the database. Therefore, the database workloads for our ap-
plication contain a negligible amount of read operations. We
use a simulator that generates the workload of the Huawei
MME application. In this paper, we focus on the session
data, which produces most of the workload and requires a
scalable throughput of write operations. We report two use
cases that correspond to the most common workloads. The
“insert” workload simulates the device attach and detach
operations of MME (connecting and disconnecting from the
network). The attach operation of the simulator inserts a
new object for a given user. Later, the object is removed
by the detach operation. Each object insertion and removal
modifies the three secondary indexes. The “update” work-
load modifies fields in the subscriber session status. These
changes modify sections of the tree that are not indexed.
The size of those objects is between 1-4 KB.

During the development of the database, we introduced
some performance optimizations in the storage engine,
which are only available in the fiber version of the system.
Therefore, for a fair comparison of the fiber and multi-thread
architectures, we disable these optimizations in the exper-
iments when we compare both approaches. The optimiza-
tions do not affect the scalability of the system and only
increase the absolute value of the throughput per core.

4.1 Scale-up experiment
We begin by evaluating the ability to support variable de-

ployments, which is the main advantage of the fiber-based
approach against the multithreaded approach in terms of
performance. In particular, the scale-up experiment com-
pares the throughput of both approaches with respect to
the number of available CPU cores per VM.

Setup: We run the tests in a cluster with two physical
servers, where each server has two Intel Xeon E5-2690 v3
processor at 2.6 GHz, with twelve cores each. On each physi-
cal server we use one 10-Gbit Ethernet card. We allocate one
virtual machine on each physical server, preserving NUMA
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Figure 4: Scale-up. Update throughput per VM.
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Figure 5: Scale-up. Throughput per core.

locality for memory and CPU. One of the cores in each vir-
tual machine is reserved for the operating system. Network
communication is based on UDP, using standard Linux net-
work stack in combination with SR-IOV drivers. In the
fiber-based approach, we create a separate database pro-
cess for each available CPU core. In the multithreaded ap-
proach, we reserve one CPU core for the dispatcher thread,
and scale-up by increasing the number of worker threads.
The single-core configuration is an exception, because all
threads must share the same CPU core.

Results: Figures 3 and 4 depict the results for the insert
and update workloads, respectively. We observe that the
multithreaded model scales up to a few cores: two in the case
of inserts and five for updates. Thereafter, the addition of
cores does not provide any additional performance, because
the dispatcher thread gets saturated and is unable to create
enough load to the worker threads.

In contrast, the throughput of the fiber architecture scales
almost linearly. In this architecture, we are able to push the
CPU utilization of each core close to the maximum: We
measured CPU utilization in the range of 95%-100% during
all the experiments from one to eleven cores. The insert
operation is more expensive than the update operation, be-
cause insert modifies eight database structures, which are
distributed in the cluster: the table and its replica, the
three secondary indexes and their three replicas. On the
other hand, an update affects only the table and its replica.

When we plot the same data as performance per core in
Figure 5, we see that the multithreaded solution achieves the
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Figure 6: Scale-out. Aggregated throughput.
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Figure 7: Scale-out. Throughput per core.

best performance when the configuration comes close to the
optimal ratio between the dispatcher and worker threads.
The best ratio for inserts it is 1:1, while for updates it is
rather 1:3, which means that no concrete deployment would
be optimal for all workloads.

The per-core throughput of the fibers approach is much
more stable and is significantly above the multithreaded one.
As expected, the best performance is achieved on single-core
VMs and slowly degrades when adding more cores. There
are multiple reasons for this degradation. First, we scale by
adding more CPU cores, but other resources remain shared:
the network interface, the memory bandwidth, and the last-
level cache. Second, the load is randomly generated, and
the random load variations cannot be fully compensated by
RPC queues, which must be short to maintain low latency.
Finally, in the insert workload the number of RPCs for in-
dex updates increase when increasing number of partitions,
because the chance for an object to be collocated with its
secondary index entries decreases.

4.2 Scale-out experiment
In the scale-out experiment, we test the scalability of the

fiber-based approach with respect to the number of nodes.
In that experiment we do not expect an improvement due
to fibers, because multithreaded solutions already proved
linear scalability in previous evaluations [21], therefore we
evaluate just the fiber-based architecture.

Setup: We test the database in a cluster of Huawei E9000
servers, where we run the database servers and the client
simulators. Each physical server is equipped with two Intel
E5-2620 6-core 2.0 Ghz processors. The servers are inter-
connected by a 10-Gbit network. Each VM has two virtual
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Figure 8: Scale-out. Latency.

CPU cores, which are mapped to two physical cores. We
run a single database process in each VM pinned to one
core, while the other core is left for the operating system.

Results: Figure 6 depicts the total throughput of the
database. We observe that the fiber-based approach pro-
vides linear scalability to the database for both workloads.
As we add more nodes, the system scales linearly from 5 to
85 virtual machines. Such scalability is important for net-
work functions as the workload may vary during a day or
have peaks because of singular events. The insert workload
combines four types of RPCs to update the eight database
structures which are modified. Even with this complexity,
we observe that the described simple FIFO scheduling is
enough to provide a fair time share to all RPCs in the sys-
tem. In more detail, we observe in Figure 7 that the perfor-
mance per core is almost constant. This means that we are
able to scale the operating costs of the data center depending
on the number of clients currently connected. Furthermore,
the system is efficient in terms of CPU usage, because the
insert operation requires less than 80 µs of CPU time to
update all object data, index and replica nodes for any of
the cluster scales tested.

Another significant aspect of our environment is that the
operations must be completed under specific latency con-
straints. For this latency experiment, we configure the client
load at the level that inflicts 50% CPU utilization in the
data nodes, which simulates operation under a normal load.
Here, the database is able to provide responses in 300 and
500 µs on average for the two workloads respectively, as
shown in Figure 8. Note that these numbers are remark-
ably low, considering that the round trip of a ping request
between two idle virtual machines in our cluster is typically
between 80 and 120 µs. One insert operation requires four
round trips, and one update requires two of them. The dif-
ference between the insert and update is because the insert
operation updates all indexes and replicates them, while the
update does not. This means that most of the latency per-
ceived by the client is because of network hardware limits.
The 90th percentile latency results show that the majority
of operations are completed within one millisecond, which
makes the database suitable for the telco applications.

4.3 Evaluation of throughput of TATP
In this section, we put an effort on making our fiber-

based system comparable to other existing approaches. We
use a public standard telco benchmark called Telecommu-
nication Application Transaction Processing (TATP) [18].
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Table 1: TATP results.

System Servers
Total
Cores

GB
per Server Backups Virtualized Network

Total
Throughput

Throughput
per core

Horticulture [22] 10 80 70 0 Y Amazon EC2 ∼ 70 Kop/s ∼1 Kop/s
FaRM [5] 90 1440 256 2 N Infiniband 140000 Kop/s 97 Kop/s

SolidDB [9] 1 8 18 0 N N/A 430 Kop/s 54 Kop/s
SolidDB [9] 1 32 18 0 N N/A 1100 Kop/s 34 Kop/s
Hyper [15] 1 8 30 0 Y Google Cloud 372 Kop/s 46 Kop/s
Hyper [17] 1 20 256 0 N N/A 422 Kop/s 21 Kop/s

NFVDB 5 5 10 1 Y 10-Gbit 380 Kop/s 76 Kop/s
NFVDB 25 25 10 1 Y 10-Gbit 1741 Kop/s 69 Kop/s
NFVDB 85 85 10 1 Y 10-Gbit 5790 Kop/s 68 Kop/s
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Figure 9: TATP. Aggregated throughput.

The TATP benchmark simulates the workload of seven pre-
defined transactions in a database that resembles a typical
Home Location Register (HLR) database in a mobile phone
network. The TATP schema consists of four tables that
store information about the subscribers. Our database sup-
ports a tree model that maps the four tables to a tree, where
the SUBSCRIBER table is the root and each subscriber data
is stored as a single object. The TATP workload is divided
in read transactions (80%), update transactions (16%), and
insert and delete from auxiliary tables (4%). Each atomic
transaction affects a single subscriber.

We compare our performance with other already pub-
lished results in the literature for this benchmark. How-
ever, a direct and fair comparison is difficult because the
system capabilities and configuration, such as the number
of backups, are not homogeneous; the TATP results are not
audited by external parties like TPC ones; and the hardware
varies between experimental setups. So, our comparison is
limited to analyze the order of magnitude of the throughput
reported by each system rather than a close up comparison.

The performance of fibers is depicted in Figure 9, using
the same setup as in the scaleout experiment. We find that
even though the TATP workload is completely different from
the MME simulator, the fiber solution scales linearly, which
means that the fiber architecture provides an approximately
constant throughput independently of the number of avail-
able cores. We summarize our results (labeled as NFVDB)
and other configurations from other papers in Table 1. To
our knowledge, the best performing distributed system is
FaRM, which achieves 97K operations per core using a huge
high-end cluster with Infiniband connections and RDMA
support. Using the off-the-shelf hardware setup described in

Section 4.2, we process up to 76K-68K operations per core.
In small clusters, the performance is 10% better, because
the data is randomly distributed and there is some index
collocation, which reduces the number of RPCs. The ran-
dom collocation effect disappears fast as the cluster grows
and the per core performance stabilizes at about 68K op-
erations per core in large clusters. Although our result is
30% lower in absolute numbers, we should take into account
that the FaRM experiments are executed on physical servers
using Infiniband, while our experiments are executed on vir-
tual machines using a commodity 10-Gbit network. All in
all, the fiber solution is competitive compared to the fastest
state-of-the-art publicly available TATP results for a key-
value database.

Another distributed system, Horticulture, that is built on
top of H-Store, reports approximately 1K operations per
core in a virtualized environment. In this case, our system
is several times faster as we are able to process approxi-
mately with a single core as many operations as their whole
80 core cluster. Regarding single node deployments, we find
two SQL compatible databases: SolidDB reports about 34-
54K and Hyper 21-46K operations per core. Such databases
provide SQL capabilities that we have not studied and that
are not required in our target environments. The best re-
sults, which correspond to a few cores, are comparable to
ours. But the systems with more cores only get half and
one third of our performance, respectively. For single node
systems, scalability is more limited and are not as suitable
for NFV, because they cannot use multiple VMs. Also, note
that our system is able to scale-up and includes the over-
heads of maintaining backups, and network communication
among data nodes and between data nodes and clients.

5. RELATED WORK
Modern distributed databases apply some sharding crite-

ria to divide the data into disjoint sets among the computing
nodes. We find two groups of in-memory systems according
to how each node manages the data: shared-memory and
shared-nothing [26]. The first group uses multiple threads
that collaborate through shared memory. The concurrency
mechanism for those systems relies on locks [19] or lock-
free data structures [4]. Even if locks introduce contention,
some systems as RAMCloud [21] have shown that the con-
tention is minimized when the data structures are designed
with such an objective. However, the resulting system still
needs synchronization in certain places, such as between
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dispatcher and worker threads, which limits the CPU uti-
lization in our RPC-intensive workloads. We overcome this
problem by changing the existing RAMCloud architecture
to a single-threaded.

The second group are systems that apply the shared-
nothing principle and use a single thread to access the data.
H-Store and VoltDB [27, 28] combine this approach with
run to completion, which means that a request is processed
from the start to the end without interruption. In our NFV
case, this approach is not suitable, because some function-
alities like enforcing the global uniqueness constraint in an
index requires sending RPCs to remote nodes. THe Scyl-
laDB [24] solution is to use an event-driven processing that
assigns a handler to each RPC. This solution is similar to
the state machine architecture analyzed in this paper. As we
discussed previously, this programming model changes the
flow of the existing code and adds complexity to the system,
which forced us to discard this solution. The partitioning of
the data may go even beyond the processor, and extend to
the NICs. For example, MICA architecture assigns a data
partition to each core and gives exclusive usage of one NIC
to each CPU core [12]. Such additional resource allocation
is orthogonal to our design and might be combined with it.

The main advantage of fibers compared to the event-
driven approach is that keeping the state of the program
variables and its stack is managed by the fiber framework
and not manually by the programmer [1, 31]. The fiber
framework used in our database is similar to other fiber
frameworks such as Cappricio [32] and StateThreads [25].
The dynamic strategy for controlling the number of fibers
is similar to the one used in Grappa [16] – a framework
for distributed computing, which relies on fibers for efficient
utilization of CPU during remote data accesses.

There are some experiences on the usage of fibers by a
few of the major database vendors [8, 29]. The fibers are
a light-weight replacement for processes to keep the SQL
connection state, because they reduce the cost of context
switching [7]. In our case, we show that fibers are an ideal
complement to the shared-nothing architecture to support
concurrency while avoiding extensive usage of synchroniza-
tion primitives. Moreover, we explore the use of fibers in
a new setting with stringent requirements with respect to
latency and scalability as required in the context of NFV.
Teradata reported some experimental use of fibers [3]. How-
ever, they did not support them due to problems in applying
them to parallel code. Such problem was not present in our
system because of the shared-nothing approach and the work
delegation between processes by RPCs.

6. CONCLUSIONS
This paper describes the evolution of the multitasking ap-

proach of our database: from conventional multithreading
to cooperative multitasking in a shared-nothing architecture
based on fibers. The most significant advantage of the new
architecture is the possibility to fully utilize the CPU in the
elastic NFV setups, which is reflected in our experimental
evaluation: We scale the system throughput with respect to
the number of cores in each node, as well as with respect to
the number of computing nodes in the cluster. Moreover,
additional and less apparent benefits are present too. First,
the database code is simple even though it is a distributed
system. The RPCs do not break the procedural organiza-
tion of code and encapsulate all the complexity of network

error handling. Second, the fiber management offers a more
fine-grained scheduling of tasks, which is not possible with
the preemptive scheduling of the operating system. For ex-
ample, we have more control on when communication is to
be performed. Also, we can improve the memory access lo-
cality of the tasks by sequentially scheduling similar tasks.
Third, the cooperative management reduces the usage of
synchronization primitives because only one thread is access-
ing memory simultaneously. This allowed us to remove a lot
of spinlocks and complex lock-free synchronization patterns.
The overall performance improvement due to this removal
is not huge, because RAMCloud’s code was already care-
fully designed to minimize synchronization overhead. Nev-
ertheless, the removal of synchronization makes the code less
likely to include hard-to-detect bugs resulting from mistakes
of using synchronization primitives. This makes the learn-
ing curve for new developers softer as they do not need to
pay special attention to often sophisticated synchronization
techniques.

In our experience, the biggest disadvantage is that the us-
age of fibers requires that developers become conscious of
the execution time of the code. Long running tasks must be
designed more carefully, because they need some voluntary
yield operations to keep the system responsive. As a rule of
thumb, the majority of loop structures should include a call
to yield if the fiber exceeds its CPU time slice. However, this
is not an important drawback, because it is not difficult to
add the voluntary yields, and a database programmer must
be usually aware of the code performance anyway. Another
disadvantage is that the number of database instances, with
its corresponding coordination structures, increases propor-
tionally to the number of cores instead of to VMs. In large
multicore VM instances, this could be amended by group-
ing the coordination activities of database instances in the
same VM to a single process, and use the fiber architecture
described in the paper to process the main workload. Nev-
ertheless, our contacted customers prefer small VMs with
few cores, because they provide more flexible deployments
and faster recovery time.

As our future work, we would like to explore how to handle
the workload imbalances introduced by the shared-nothing
architecture. In non-virtualized scenarios the imbalance
problems are mainly caused by workload skewness. In vir-
tualized environments, the imbalances may appear because
of further reasons, such as different throughput of hetero-
geneous VMs, or contention on physical computing devices
(e.g. a disk or network cards) that are shared by multiple
VMs.
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[15] T. Mühlbauer, W. Rödiger, A. Kipf, A. Kemper, and
T. Neumann. High-performance main-memory
database systems and modern virtualization: Friends
or foes? In DANAC, pages 4:1–4:4, 2015.

[16] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze,
S. Kahan, and M. Oskin. Grappa: A latency-tolerant
runtime for large-scale irregular applications. In
WRSC, 2014.
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