
VLDB Journal, 4, 157-191 (1995), Peter M.D. Gray, Editor 157
(~)VLDB

Data Model for Extensible Support of Explicit
Relationships in Design Databases

Joan Peckham, Bonnie MacKellar, and Michael Doherty

Received August 5, 1992; revised version received, February 14, 1994; accepted June 15,
1994.

Abstract. We describe the conceptual model of SORAC, a data modeling system
developed at the University of Rhode Island. SORAC supports both semantic
objects and relationships, and provides a tool for modeling databases needed for
complex design domains. SORAC's set of built-in semantic relationships permits
the schema designer to specify enforcement rules that maintain constraints on the
object and relationship types. SORAC then automatically generates C+ + code to
maintain the specified enforcement rules, producing a schema that is compatible
with Ontos. This facilitates the task of the schema designer, who no longer has to
ensure that all methods on object classes correctly maintain necessary constraints.
In addition, explicit specification of enforcement rules permits automated analy-
sis of enforcement propagations. We compare the interpretations of relationships
within the semantic and object-oriented models as an introduction to the mixed
model that SORAC supports. Next, the set of built-in SORAC relationship types
is presented in terms of the enforcement rules permitted on each relationship type.
We then use the modeling requirements of an architectural design support system,
called ArchObjects, to demonstrate the capabilities of SORAC. The implementa-
tion of the current SORAC prototype is also briefly discussed.

Key Words. Database constraints, semantic and object-oriented data modeling,
relationship semantics, computer-aided architectural design.

1. Introduction

The management of design activities in large projects is a multi-level, multi-faceted
task (Sathi et al., 1985). Computer tools are needed for the planning, scheduling,

Joan Peckham, Ph.D., is Assistant Professor, Department of Computer Science and Statistics, University
of Rhode Island, Kingston, RI 02881, joan@cs.uri.edu; Bonnie MacKellar, Ph.D., is Assistant Professor,
Math and Computer Science Department, Western Connecticut State University, Danbury, CT 06810,
mackella@wcsud.ctstateu.edu; Michael Doherty, M.S., is Ph.D. candidate, Computer Science Department,
University of Colorado, Boulder, CO 80309, doherty@cs.colorado.edu.

158

monitoring, and analysis of these projects. Methodologies developed for other
domains often do not scale well to the complexities inherent in large design envi-
ronments. Here we describe the use of semantic modeling to design object-oriented
databases needed to support design systems. To illustrate the techniques, we show
how the prototype Semantic Objects, Relationships,, and Constraints (SORAC) sys-
tem at the University of Rhode Island can be used to specify and automatically
generate an object-oriented database for the support of the ArchObjects architectural
design system (MacKellar and Ozel, 1991).

A data model with a rich set of built-in relationship types is needed to model
the complex and non-standard relationships of the ArchObjects system, because
the standard semantic models are inadequate for such applications. For example,
relationships that are usually supported by semantic data models include IS-A, aggre-
gation, association, and classification (Peckham and Maryanski, 1988). Relationship
types needed in design systems include is-part-of, role, and alternate (MacKellar
and Peckham, 1992). Also, much of the information that needs to be represented
in a design database is procedural in nature. However, many semantic data models
do not provide support for data encapsulation. Their emphasis is on the description
of the static structure of the database, and the associated dynamic structure is often
not addressed.

Another alternative is to construct an object-oriented database. Object-oriented
data models (OODMs; Kim, 1990; Zdonik and Maier, 1990) have become very
popular for modeling design applications due to their ability to represent procedural
knowledge as a part of an object class definition. Through the use of a sound
programming language paradigm, object-oriented models can support the design
of objects and methods necessary for the support of complex relationships. This is
adequate for the development of unique relationships. However, with the exception
of IS-A, the canonical object-oriented data models currently do not offer relationships
with built-in semantics. Thus, the developer of a design database would be required
to construct ad hoc relationships in support of the application, even when the
relationships are of established types. As Rumbaugh (1987) pointed out, this buries
the relationship in the code and makes it much more difficult to describe and to
understand the structure of the system.

Both semantic and object-oriented data models are lacking in their support for
the analysis of the semantics of complex relationships. Built-in relationships are
useful in that they provide a vehicle for the careful analysis of database semantics.
Since semantics can take the form of intra-object and inter-object constraints, they
can have wide-ranging effects on the database. Design tools that support analysis
and modification of these semantics can prevent errors in the logical design of
complex schema.

Another problem arises when attempting to construct a data model for the
support of design databases. While the relationships necessary for these systems
possess an agreed upon structure and set of core semantics, they are not completely
standard. Even the semantics of frequently used design relationships can easily

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 159

vary from application to application. Thus, the relationships presented to the data
modeler should be generic in nature, but extensible through a menu of semantics
to provide the exact relationship desired. We illustrate such relationship types in
later sections.

Sathi et al. (1985) chronicled the difficulties involved in the development of
constructs for the design of complex applications and provided a framework for
several representation layers. These layers represent a mapping from the specific
domain design interface providing constructs for the design of a particular application
to the more general implementation layer, which contains the low level data structures
used for semantic knowledge representation.

For example, in the architectural domain, a part relationship may be used to
model the association between objects and their components. This relationship is
presented to the database designer on the domain layer, and then mapped to the
semantic layer, which contains a more generic model of objects and relationships
that is not application dependent. HAS-PART may be represented internally as an
association of part components, where association has a specific, but more generic,
meaning and structure. Additional generic semantics expressing the structure and
behavior of the relationship can also be expressed here. An example is a cardinality
constraint of 1-N on the links of the HAS-PART relationship, specifying the maximum
number of objects of one type that may be related to an object of another type.

This information is then mapped to the epistemological layer, where a description
of the generic semantics of the modeling constructs is provided. The exact definitions
of cardinality and inheritance semantics, for example, are given here. The update
behavior of the relationships, indicating how the system will maintain constraints
under changes, can also be given on this level. On the logical level, this information
is then translated into a set of assertions about the general structure and behavior of
the relationships, which is then mapped to the implementation of the system. These
layers parallel the levels of the SORAC system, from the upper level application-
dependent design layer to the low level object-oriented implementation of the
database (Section 6).

Sathi et al. (1985) also addressed the insufficiency of standard relationships for
particular application domains and the need for conflict resolution in a complex design
to assure system consistency and correctness (Peckham et al., 1995). They provided
early documentation of the need for active semantics describing the propagation
of activity in a complex set of interconnected relationships, and the ability of
relationships to provide availability of information at a distance, from one location
to another in the system, issues that we consider important and have addressed in
our research.

Rumbaugh (1987) argued strongly for the explicit incorporation of relationships
within the object-oriented data modeling paradigm and provided a paradigm for
the support of relationships using a C+ + type of language. Batory and Kim (1985)
identified several relationships, and the associated semantics that are necessary for
the design of VLSI CAD (computer aided design) objects. This was one of many

160

articles documenting the necessity for the extension of semantic modeling constructs
to manage design databases. Using a particular design database application, Foo
and Takefuji (1990) described the relationships and update semantics needed for
the maintenance of their VLSI design database.

Eastman et al. (1991) developed EDM, a data model for engineering product
databases. This employs several design oriented, built-in relationships with semantics
expressed as constraints in the form of logical expressions. Using these constructs,
high-level semantics can be expressed over several relationships to address both
local and global schema design, and design integration.

Nguyen and Rieu (1991) addressed the issue of semantic complexity in design
objects in their data model SHOOD. Their data model includes only IS-A and part
relationships, and they separate semantics from structure to implicitly model other
kinds of relationships. Our approach is to permit a greater variety of structural
relationships which the schema modeler can define and tailor to a specific domain.
Although their work has many of the same goals as ours, they do not present a
detailed view of update actions implied by the object semantics.

In another OODB, called ADAM (Diaz and Gray, 1991), relationships are
defined as objects, permitting encapsulation of relationship semantics that are
viewed in terms of structural dynamic aspects. This refers to the ways in which state
changes may occur, including method definitions and derived data. Once defined as
objects, relationships may be incorporated into an IS-A hierarchy, permitting users
to create specialized relationships. Since user-defined semantics are supported in
this approach, it is very compatible with the ideas presented in this article.

Kim (1989) investigated the semantics of composite objects extensively. In his
system, ORION, bi-directional relationships are only provided at the implementation
level, in terms of backwards pointers. References are distinguished initially on the
basis of non-composite vs. composite references. A composite reference is similar
to a part relationship. Non-composite references can have no additional semantics
associated with them, whereas composite references may be exclusive or shared,
and dependent or independent. Kim's view of composite object semantics has
much in common with our view of part relationship semantics. ORION does
not, however, provide built-in semantics for other types of relationships, such as
collections, derivation relationships, or specialized relationships such as adjacency.
In our model, relationships play a central role and are as important as objects.

Our work is related to that in the active database community. Morgenstern
(1984) provided equations for the expression of database constraints, and algorithms
for the mapping of the constraints to database actions maintaining the constraints.
Gehani and Jagadish (1991) provided facilities for the specification of constraints
and triggers upon objects in their object-oriented ciatabase, Ode. The constraint
construct includes actions to be performed upon violation of the constraint, thus
including the update semantics we advocate. Relationships are not used as a
construct for expression of update semantics; the semantics are encoded within the
involved objects.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 161

Albano et al. (1991) addressed the modeling of objects, relationships, and
constraints through the use of of an object-oriented language employing an object
and relationship data model. They have identified the update actions to be monitored
due to the possibility that those actions may violate particular constraints. Support
for the maintenance of constraints is provided through an exception mechanism.

A major problem in object-oriented databases is to correctly specify operations
on the objects that will not violate integrity constraints. This is the motivation
behind our view that a schema designer should explicitly specify actions to support
relationship semantics. Constraint analysis is an approach in which constraints are
explicitly specified using a formal language (Urban, 1989; Urban and Delcambre,
1990). CONTEXT (Urban et al., 1992) is a tool for the explanation of constraints to
assist the schema designer in specifying propagation actions. The schema designer
must specify the operation; CONTEXT then identifies constraints that would be
affected by the operation, along with possible propagation actions. In SORAC,
the schema designer directly specifies the database actions through the selection of
built-in enforcement rules, and then interacts with a schema checker to determine
schema correctness and consistency. An advantage to Urban's constraint analysis
method is that the database semantics are expressed in a declarative manner and
can be stored as part of the database for future reference. In SORAC, database
semantics are expressed through update rules that can be maintained in a similar
way, although we do not currently do this.

Other approaches to the problem include the following: Ceri and Widom
(1990) and Widom and Finkelstein (1990) provided specification and analysis of
update semantics over relational constructs using extensions to SQL. Although
explicit relationships are not used, this can be viewed as the implicit definition
of relationships between relational tables through the expression of constraint and
update expressions. In the similar approach of Bouzeghoub and Metals (1991),
a semantic model was used to capture the database constraints, and map them
automatically to implemented update rules in an object-oriented database. However,
in their system, update rules are not directly specified, but are inferred from the
constraints.

This article presents the SORAC data modeling tool for the definition of complex
objects and relationships. In Section 2, we compare the capabilities of semantic and
object-oriented data models in the context of databases for support of design systems.
In Section 3, we employ the ArchObjects architectural design system (MacKeUar
and Ozel, 1991; MacKellar, 1992) for examples of the types of relationships that are
frequently needed for design databases. In Section 4, we describe several SORAC
relationship types, which we believe are necessary for architectural design systems,
ArchObjects in particular and design databases in general. In Section 5, we show
how an illustrative subset of the ArchObjects relationships can be constructed using
the relationships developed in Section 4. In Section 6, the implementation of
SORAC is briefly described. The result illustrates the advantages of the integration
and augmentation of object-oriented and semantic modeling techniques to meet the

162

data modeling challenges provided by current advanced applications.

2. Relationships

2.1 Interpretations of a Relationship

There are several ways that a relationship between the Objects of a database schema
can be viewed. For example, we can think of a relationship as a pathway for the flow
of information or data. This is clearly illustrated by the Cactus system (Hudson and
King, 1988). In this system, object and relationship specifications include names,
types, and a direction for the values that flow between related objects.

In our view, a relationship is also a construct over which constraints specifying
the relative states of objects can be expressed. For example, existence constraints
and cardinality constraints express the relative existence and the relative number
of objects, respectively, that may be related to an object of another type. SORAC
enforcement rules enforce constraints and are thus associated with relationships:

Definition 1. An enforcement rule specifies the exact operational means for the
maintenance of a database constraint.

A relationship can also reflect the sharing and organization of the data, thus
facilitating the proper association and sharing of operations among the objects of
the database schema. This is clearly illustrated by the usual expression of IS-A
within most object-oriented data models. In the Pu:chObjects system, the database
schema organizes design objects using several types of hierarchies (Figure 1). As
described in Section 3, ArchObjects also organizes design objects according to
another relationship, called <has_role>, that represents functional role(s).

2.2 Semantic Versus Object-Oriented Relationships

Several authors have compared and contrasted semantic and object-oriented data
models (Hull and King, 1987; Kim, 1990). The focus is usually on the structural
modeling capabilities of the semantic models, as opposed to the integral structural and
operational modeling capacity of the object-oriented models. Each is characterized
by a different relationship style that affects the modeler's ease of relationship
specification.

Semantic data modeling systems have tended to present relationships between
database objects using a more explicit construct than object-oriented systems. Figure
2 is an example of a semantic presentation of a relationship, in which OT1 and OT2
represent object types, and the line connecting these two types expresses a relationship
between them. Thus, in this graphical mode of expression, relationships are modeled
as edges and object types are modeled as nodes. In the Entity-Relationship model
(Chen, 1976), relationships are also differentiated from objects, but they are similar
since relationships can hold data.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 163

Figure 1. Building component hierarchy

S
These semantic presentations are convenient since the relationship provides a

good receptacle for inter-object constraints and inter-object activity. In addition,
bi-directional relationships are easily represented. This paradigm is also convenient
since it provides a basis for the clear presentation of hierarchical and deeply nested
structures. For example, consider the architectural design hierarchy presented in
Figure 1. There are several object types and relationship types present. Since the
semantics of each relationship is very different, this can be a confusing structure to
analyze. Viewing the relationship as a separate, typed construct provides a powerful
mechanism for the specification, analysis, and understanding of the update behavior
of the database.

Semantic data models also present collections of built-in relationships having
clearly specified semantics. These semantics can include relationship structure,
constraints, and enforcement rules. When the modeler defines a relationship to be
of a given (built-in) relationship type, (s)he is automatically specifying the semantics
as well. Some recent extensions (Dogac et al., 1986; Barsalou et al., 1991; Doherty
et al., 1993) include the automatic generation of code that will maintain enforcement
rules associated with relationship constraints.

In the object-oriented modeling paradigm (Kim, 1990; Zdonik and Maier, 1990),
object types and their associated methods are the basic constructs for defining the
structure and behavior of database objects. The use of IS-A to support inclusion
polymorphism, in which a type's methods can be applied to all of its subtype's
instances, provides a powerful structural and procedural paradigm for modeling

164

Figure 2. Semantic relationship

complex applications. However, with the exception of IS-A, the object-oriented
models do not have built-in relationship types. As a result, many authors (Kim et
al., 1989; Zdonik, 1990) have argued for the augmentation of the object-oriented
models with other built-in types.

The canonical object-oriented data models do permit definition of complex nested
objects; related object types can be defined as attributes within a new object type
representing the relationship. For example, in Figure 21, we have given a C+ + type of
definition of a Door class containing attributes l a t ch and opener. Latch and opener
are two attributes which are of types Latch* and 0pening_Mechanism*, respectively.
The * defines a pointer to objects of type Latch and 0pening_Mechanism.

The Door type, through its implementation, serves as the container of the seman-
tics of the relationship between the three types, Door, Latch, and 0pening_Mechanism.
This technique can be used to model hierarchical situations. For example, a part
relationship hierarchy can be defined on each level in the same way that Door
was defined above. C+ + code implementing each type in the hierarchy would be
written, including the semantics managing the part links just below it.

There are, however, three disadvantages associated with this relationship rep-
resentation. First, it is difficult to clearly represent propagated inter-object activity
within the database. In this representation, we have code representing separate
levels of the hierarchy, but no clear representation of the hierarchy as a whole.
Second, many times it is more natural and consistent with the real world to think
of relationships as different from objects. Objects usually correspond to real world
objects; relationships usually represent abstract connections between objects. Third,
the code for inter-object behavior is written for each individual type that is created.
There is no reuse of the semantics relating types to each other.

This analysis of the semantic and object-oriented presentations of relationships
indicates that each modeling technique has strengths and weaknesses. The differ-
entiated object and relationship presentation of the semantic model is convenient
for representing and analyzing deeply nested structures and the inter-object activity
upon these global structures. The object-oriented presentation of relationships is
convenient for the specification of complex object types as well as the definition of
methods. However, the object-oriented model is lacking in that it does not provide
strong support for global analysis of the inter-object activity within the database.
Each is capable of expressing relationship structures, but for some purposes the
expression is awkward.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 165

Figure 3. Door class definition

Class Door: public opening

{
public:

/*Constructors*/

Door() ;

Door(Latch *initial_latch, Opening_Mechanism *initial_opener) ;

/*Destructor*/

-Door() ;

/*Attributes*/

private: /*The private attributes latch and opener*/

Latch *latch;

OpeningMechanism *opener;

Public:/*The public access methods for Latch and Opening_Mechanism*/

Latch *Get_latch() ;

Opening_Mechanism *Get Opening_Mechanism() ;

void Has_Latch (Latch *new latch) ;

void Has_Opening_Mechanism(OpeningMechanism *new opener) ;

In the next sections, we discuss the modeling of the ArchObjects architectural
design system and illustrate the role that semantic modeling techniques can play in
object-oriented data modeling systems. In the current implementation, ArchObjects
is based on a set of standard relationships, but in reality the semantics of these
relationships are embedded into individual methods defined upon the various types.
It is very difficult to ensure correctness and consistency of updates with this type of
ad-hoc implementation. Therefore, the idea of built-in semantic relationships, as
defined in earlier semantic models, is quite desirable. This would free the schema
designer and method writers from worrying about maintaining the semantics of such
relationships.

The reasons for adding built-in relationship semantics are as follows:

1. To support reuse of relationship semantics. The same relationships are used
over and over. We don't want to have to keep building the same semantics
into individual methods, but would rather have them enforced automatically.

2. To facilitate evaluation and enforcement of complex constraints, both at the
trigger level and at the rule evaluation level.

166

3. To allow analysis of relationship interactions during schema design. Explicit
representation of relationships facilitates automated schema design tools that
check for correctness of a schema design and tools that enforce consistency
of the complex constraint set.

SORAC is a modeling tool that imposes a semantic object/relationship view on
an object-oriented DBMS (database management system). By requiring the schema
designer to specify the enforcement rules for each relationship type, the designer is
forced to clearly specify relationship behaviors. SORAC supports the designer in this
task by automatically generating the underlying class definitions and enforcement rule
methods. To demonstrate the capabilities of semantic object/relationship modeling,
a data model for ArchObjects was developed.

3. ArchObjects

This section presents an overview of the ArchObjects system and explains the
data modeling capabilities necessary for the definition of an integrated object-
oriented database to support the system. ArchObjects is an intelligent design
assistant that functions in the domain of architecture. Design verification services
are provided by evaluating the design against a set of design codes, particularly
legally required rules such as fire code. Relationships between objects function as a
central organizing concept within the knowledge representation which is essentially
object-oriented, both structurally and in terms of behavior. The original Prolog
implementation did not have explicit support for relationships or behavior across
relationships; this discrepancy between our conceptual model of ArchObjects and
its actual implementation caused numerous problems and inefficiencies. It was
decided that further development of this system would be facilitated if it took place
within an object-oriented data model that provides built-in support for relationship
semantics. Correctly maintaining semantic choices would then be the responsibility
of the data model rather than individual method programmers. SORAC presents
an ideal environment for accomplishing this goal, by supporting built-in, customized
relationships.

The current version, ArchObjects2 (Roberts, 1993), is an intermediate step. It
implements part of the SORAC model in C+ +. In particular, it includes relationships
as first class objects, support for queries on relationships, and enforcement rules.
Although this version was not generated by SORAC, it is very similar to the type
of schema that would be produced. The motivation for this version, in fact, was to
verify that the type of schema produced by SORAC would be suitable for a design
system such as ArchObjects. We have, in addition, generated a preliminary schema
for ArchObjects using SORAC (Vora, 1992). This schema is not as complete as
ArchObjects2 and does not include query support, but it verifies that SORAC is
capable of generating this type of schema.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 167

3.1 ArchObjects Conceptual Model

ArchObjects stores a semantic representation of each architectural object. One
problem inherent to the design domain is that representations of objects that are
otherwise perceived as similar may vary quite a bit. This means that representation
schemes that depend heavily on standardized sets of attributes for objects of the
same type will not be suitable for representing this type of data. Object instances are
much more complex and detailed than the object types of which they are members.
Thus, there is a need to define the semantics of relationships between instances of
design objects and to support these semantics within the data model.

The set of relationships in ArchObjects consists of:
• <has_ins tance> : An object instance is connected to its type through this

link. The instance inherits attributes and methods from the type.
• <has spec> : This is a relationship between two object types, and means

the same thing as IS-A.
• <has_a t t r> : This relationship asserts that a particular value is associated

with a particular object. In ArchObjects, attributes are atomic.
• <has_geometry> : This is a binary relationship between a design object and

its geometry. It is discussed in more detail below.
• <has_member> : This is a relationship between a set or collection object,

and the individual objects that comprise the set.
• <has_part> : This models the fundamental hierarchical relationship of design

objects. For example, a single floor may be composed of a set of rooms.
Each room has a set of walls as components, and at least one entrance. An
entrance may include a door assembly, which is composed of a frame and a
door.

• <has_role> : This is a hierarchical relationship between a design object and
a description of its role in the design. The object, in addition to having a
primary type, also has a particular role inherited from the role type. Such
functional components cannot be easily incorporated into the primary object
type hierarchy since the functionality may cut across several object types.
For example, not all doorways function as protected exits (i.e., fire exits)
and, in addition, other objects such as windows may in certain circumstances
function as exits. Therefore, a separate type hierarchy based on functionality
is part of the knowledge representation. As with <has_instance>, methods
and attributes are inherited via this relationship.

• <adj acent_to> : This is a relationship between an object and the parts that
are adjacent to it in the design. Two objects are said to be adjacent if they
do not participate in a <has_part> relation, and the distance between them
is less than a specified threshold.

rel (R, adjacent, Obj i :Thing, Obj2 :Thing) IF

(distance(Objl, Obj2) <dMAX AND
NOT (has_part (Obj i, Obj 2) OK has_part (Obj 2, Obj i))

168

• <connected_to> : This relationship is similar but requires that two objects
have overlapping volumes

rel (R, connected, Obj i :Thing, Obj 2 :Thing) IF

(Volume(Objl fq Obj2) > VMI N)

The semantics of these relationships are considered to be standard across the system
although, in the first version, these semantics were implemented in an ad hoc fashion
within object type methods.

Geometric classes and symbolic classes exist in separate class hierarchies. Each
object instance has a symbolic aspect and a geometric aspect. The part hierarchy
in the geometric model is strongly isomorphic to the part hierarchy of the semantic
model in the sense that

1. each object 0bj I participates in at most one: <has_geometry> relationship
with a geometry object, and

2. has_part(Objl, Obj2) if and only if has_part(ObjlGeom, Obj2Geom).

From a logical design perspective, the geometric model forms a complete subsystem
which is capable of functioning in isolation from the semantic model. Separating
the two models at this point simplifies the design and results in a consistent system
organization (Dube and MacKellar, 1992). Since relationships are central concepts,
database update actions are expressed at the lowest level as insertions or deletions
of relationships between objects. For example, a method call to create a new
instance of a type would generate a series of low level database update actions to
insert a room instance, connect a wallset instance to the room instance, and set the
maximum height attribute to a default value of 12 feet.

We have found that it is quite difficult for the :schema designer to keep track
of all possible relationship interactions without an automated modeling tool such
as SORAC. Instead of hand-coding the relationship semantics and hoping for
correctness, the data model should present a menu of supported semantics to the
schema designer. Schema design tools can then analyze the designer's choices for
consistency and the system can then generate code to maintain the enforcement
rules.

3.2 ArchObjects2 Implementation

To address the concerns presented in the previous section, we undertook a project to
update ArchObjects and port the symbolic model to C+ + and the SORAC paradigm
(Roberts, 1993). Since this project was begun before the SORAC implementation
was completed, we do not automatically generate the schema. Instead, we produced
by hand the type of implementation that SORAC would have generated so that we
could test the behavior of the enforcement rules. In fact, one of the goals of this
implementation was to investigate update rules with an eye towards including them
as an integral part of the planned solid model (Dube and MacKellar, 1992).

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 169

Figure 4. ArchObjects2 relationship classes
class HasPart : public Root {

System * const SystemPtr;

const int HasPartId;

Object * const CompositePtr;

Object * const ComponentPtr;

...details omitted...

protected:

HasPart (Object ~, Object ~);

~HasPart ();

public:

static HasPart * create (Object ~,

Object ~);

int destroy (); // Destruction control

...details omitted... };

class HasPart13 : public HasPartO {

int Side;

int FromLeft;

HasPart13 (Object ~ a, Object ~ b, int i)

: HasPartO (a,b), Side (i) {}

int validSection (const Wall ~, const Wall Section ~);

public:

static HasPart13 * create (Object ~ a, Object ~ b);

...details omitted...};

class ProtectedExit : public RoleO{ // ProtectedExit class

public:

ProtectedExit (const System ~ s, const int i) :

RoleO(s, "ProtectedExit", i, 0) {}

...details omitted...};

// Basic HasPart abstract class

// Address of System object

// HasPart's unique id

// composite object

// component object

// Initialize parameters

// Disconnect from PartTable

// Conditional creation

// Wall/WallSection class

The objective was to translate the relationships described in the definition of
ArchObjects to a SORAC database that includes:

• Architectural object classes,

• Application-specific has-part and has-role relationship classes,

• Enforcement rules to maintain existing constraints, and

• Basic facilities for processing queries over current design contents that include
provision for querying over specific architectural objects.

170

3.2.1 Relationships. Since a major feature of SORAC is its emphasis on built-in
relationships, the manner in which relationships were implemented was a critical
aspect of the implementation. C++ provides direct support for the <has a t t r> ,
<has_ins'e>, and <has spec> relationships that are required by ArchObjects. There
are no native C+ + constructs for representing either the < h a s p a r t > or <has roZe>
relationships. Thus, the corresponding base relationship classes from SORAC were
duplicated; relationship classes derived from these provide constraints and behavior
details that are appropriate for particular relationship instances. Figure 4 shows
part of the base HasPart class, and two derived relationship classes, one for part
relationships between a wall and a wall section, and the other for a role relationship
between objects and the role "Protected Exit."

3.2.2 ArchObjects2 Application Module. While a separately compiled symbolic
framework contains the relevant built-in features of SORAC, individual applica-
tions are constructed by creating an application module through the use of derived
classes. The architectural classes selected for inclusion in the application module
are familiar objects that could be used to provide a :simple design for a one story
building. Classes include DoorAssembly, Building, Floor, Ceiling, Door, Door-
Frame, WindowFrame, and TrapDoor, as well as the derived relationship classes.
The principal information embodied within an object class is the definition of data
members, and the enforcement rules to enforce creation (insertion) and deletion
constraints that are specific to objects of that type.

Most constraint enforcement occurs when <has pazg> relationships are created.
One example is the Wall/WallSection part relationship shown in Figure 4. When
this relationship is established, the user must supply information indicating the side
of the wall to which the wall section is attached, and the distance from the left end
of the wall to the beginning of the wall section. This information will be stored
in data members associated with the relationship class. As part of the creation
process, the WallSection's size and location are used to ensure that the proposed
WallSection does not overlap with those previously reJated to the wall.

Another example of an enforcement rule is provided by the Roorn/WallSection
part relationship. When an internal WallSection is created, it must be associated
with a Room. This is an example of a creation constraint. A related deletion
rule is required to maintain the constraint, which specifies that, if the <has part>
relationship is deleted, then the WallSection must also be removed. Another rule
specifies that if a Room object is deleted, all part relationships in which it participates
are deleted as well. This results in a cascading set of deletions from the Room
object, to the part relationship object, and finally to the WallSection object. When
update rules are buried inside methods, as in the first ArchObjects, this type of
propagation behavior is very difficult to foresee. Explicit representation of update
rules makes it much easier for the schema designer to catch this behavior.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 171

Figure 5. Definition of DECK object class

IS-PART~~IS.PART,.OF

4. SORAC: A Semantic Object/Relationship Model

SORAC is a prototype data modeling system that accepts semantic object and
relationship definitions, and maps them automatically to C+ + implementing an
ONTOS (1991) database that maintains the specified constraints and update seman-
tics. SORAC's conceptual model is semantic in that it includes built-in relationship
types to be chosen by the data modeler. For example, since a part relationship
is frequently employed for design applications, a predetermined relationship type
having the structure and semantics of this relationship is offered by SORAC. The
structure of an IS-PART-OF relationship is shown in Figure 5. The relationship
connects a DECK type with the associated DECKING, BEAMS, JOISTS, and
PIERS types. IS-PART-OF identifies the built-in relationship used. As outlined in
this section, a menu of optional enforcement rules is provided to the designer who
then specifies the exact semantics of the relationship.

SORAC provides two schema design interfaces: Architectural Relationships and
Constraints (ARAC; Vora, 1992) and Database Schema Design Tool (DSDT; Dong,
1992), as well as a database generation component, Object Interface Language (OIL;
Doherty et al., 1993). ARAC and DSDT permit the designer to model the schema
using object types, relationships, constraints, and enforcement rules as the primary
modeling constructs. The output from each interface is OIL code, which is then
used to map the specification to an ONTOS object-oriented database, including code
implementing the enforcement rules. More detail of the SORAC implementation
is given in Section 6.

4.1 Relationship Semantics

We define the semantics of a relationship as structure, cardinality, existence, noti-
fication, and selection rules:

• S tructure: Specifies the relationship connections between the types involved
in the relationship. For example, IS-PART-OF is a relationship between an
owning type and one or more part types.

172

• Cardinality: Specifies the maximal possible instances (objects) of a given type
that can be connected to another type over a relationship link. For example,
IS-A has cardinality 1-1, thus exactly one supertype object is connected to a
subtype object over an IS-A link.

• Existence: Specifies the relative presence of objects over relationship links. For
example, the existence semantics of an IS-PART-OF relationship between
BEAMS and DECK types might state that every DECK object must be
connected to a BEAMS object through IS-PART-OE

• Notification: Specifies that the system must notify the end user of all actions
taken by the system to maintain an enforcement rule. For example, if the
end user deletes a DECK object, and the system responds by deleting all of
its parts, then the end user is notified.

• Selection: Specifies related objects that are presented to the end user upon
querying an object. For example, if a DECK object is queried, then the
related part objects connected via the IS-PART-OF relationship would be
displayed as well.

• Inheritance: Specifies how objects may reuse definitions from related types.
Examples are given in Sections 4.1.2 and 5.3.

For each relationship type, some of these semantics are built-in and others are
given as options. These relationship types, along with their various options, are to
be used as constructors of relationships for individual systems. The schema modeler
interacts with the system by selecting a relationship type with built-in semantics.
Then optional semantics are chosen from a menu to model the exact characteristics
of the domain. Later, we will show how these relationship types can be used to
define relationships needed for the ArchObjects system. In this article, we will not
dwell on the expression of cardinality constraints and the supporting enforcement
rules. (For good coverage of this material in the context of the Entity-Relationship
model, see Dogac et el., 1986).

The following sections outline the relationship semantics defined and imple-
mented by the SORAC group. There are two general relationship enforcement
rules always supported for all relationships. The general relationship insertion rule
states that, for a relationship to be correctly inserted, both participating instances
must have already been inserted. The general relationship deletion rule states that
if either participating object instance is deleted, the relationship instance must also
be deleted.

4.1.1 HAS-ATTRIBUTE Semant ics . The fundamental HAS-ATTRIBUTE relation-
ship is supported by the relational and semantic models in the form of aggregation.
When the attribute is of a subrange or system built-in type, then the semantics
are straightforward. We need only to specify the behavior of the system upon the
change of an attribute to an out of range value.

Also needed are additional semantics to specify correct behavior when an
attribute is used to refer to other objects in the database. Also, if inverse relationships

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 173

are maintained, an SDM-like construct (Hammer and MacLeod, 1981) should be
provided to permit the definition of a bi-directional relationship of the HAS-
ATFRIBUTE type. That is, the user can specify an inverse relationship through an
option. For example, suppose we have a DOOR type that has an Opener attribute
of type OPENING-MECHANISM, where OPENING-MECHANISM is an object
type. We can define the following to specify the inverse of the relationship Opens
between a door and its opener.

DOOR Opens-i:HAS-ATTRIBUTE Opener:OPENING-MECHANISM

To be consistent with our philosophy of specifying update behavior at modeling
time, we must offer additional supporting semantics indicating the behavior of the
objects related through the HAS-AITRIBUTE relationship. The possibilities were
discussed and outlined by Peckham et al. (1989), and thus are not repeated here.
Briefly, cardinality, existence, notification, and selection semantics can be offered
as in Section 4.1.3 for the IS-PART-OF relationship.

The built-in attribute relationship was not implemented in the SORAC prototype.
In both ARAC and DSDT, attributes are implemented directly as C+ + class variables.
However, a built-in HAS-ATTRIBUTE relationship is interpretable by SORAC's
database generation component, OIL. In ArchObjects2, attributes were mapped
directly to C+ + attributes.

4.1.2 IS-A Relationship Semantics. The IS-A relationship is central to both semantic
and object-oriented data models. However, as is the case with many other "standard"
relationship types, the semantics of IS-A are not fixed. One of the problems occurs
with inheritance. For example, in some semantic interpretations of IS-A, if a
revolving door IS-A door, and door has attribute color, then this attribute is also
inherited by the revolving door. Thus, if the door object is defined to be blue,
then we can also view the revolving door object as having the color blue. Multiple
inheritance results when we permit a type to have more than one supertype. If two
supertypes of an object both have the same attribute, then techniques for resolution
of the names of inherited attributes must be developed.

Due to the various approaches that can be taken with respect to the semantics
of IS-A, we approach this relationship just as we do the others that follow. We
define a generic IS-A having the core semantics that are essential in any IS-A
relationship, and include a menu of semantics which can be additionally imposed
upon the relationship.

IS-A has the usual graph structure supporting single and multiple inheritance.
The following semantics can be additionally imposed.

1. Inheritance Semantics:

(a) Multiple inheritance (MI): If the modeler chooses this option, multiple
inheritance will be supported with built-in attribute resolution facilities.

174

We will not elaborate upon the means of resolution, but assume a valid
technique (e.g., that of Stefik and Bobrow, 1986).

(b) Inheritance suppression (IS): This descriptor is used within a subtype
definition to specify the attributes that are not inherited from the
supertype.

2. Cardinal#y/Existence Semantics:

(a) Strict mandatory subtype membership (SMSM): This means that every
object that is an instance of the supertype must also be an instance
of exactly one of the subtypes. In the; absence of this selection, this
condition is not required. Upon insertion of the supertype object, the
subtype object must also be clearly indicated (Hammer and MacLeod,
1981). Deletion of the subtype object requires deletion of the supertype
object.

(b) Mandatory subtype membership (MSM): This means that every object
that is an instance of the supertype type, must also be an instance of
one or more of the subtypes. This is similar to the SMSM choice,
except that we are permitting membership in at least one and possibly
more that one subtype. Update semantics as in SMSM above are also
included.

See Section 5.1 for the definition of the ArchObjects <has_spec> relation-
ship using SORAC's IS-A semantics. The SORAC DSDT design interface has
implemented semantics similar to MSM and SMSM, providing four choices for con-
nections and rules between subtype and supertype. SORAC ARAC has implemented
a more refined set of semantics for inheritance permitting the designer to suppress
inheritance of attributes and/or inheritance of relationships. This means that we
can specify on the type level if a subtype object will inherit the relationship links
specified for its supertype object(s). For example, if REVOLVING-DOOR IS-A
DOOR and DOOR is connected to PROTECTED-EXIT via a role relationship,
we can specify that REVOLVING-DOOR will not inherit this relationship (cannot
serve as a protected exit).

4.1.3 IS-PART-OF Relationship Semantics. The IS-PART-OF relationship is neces-
sary for the support of design databases. However, the semantics for this relationship
are not universally established (Kim, 1990; Geller, 1991; Halper et al., 1992). Again,
we define a generic built-in relationship having semantics that describe the struc-
ture and cardinality of the IS-PART-OF relationship. Other semantics are given as
options.

The structure of the IS-PART-OF relationship is shown in Figure 5. DECK is
an owning object type that represents an object constructed from objects of part
types DECKING, BEAMS, JOISTS, and PIERS. The cardinality of the relationship

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 175

between DECK and each part type is Ni, where Ni C [1, .., cx:~] and is user specified,
meaning that each part object may be part-of at most Ni owning objects. The
IS-PART-OF relationship is used whenever the exact number and types of parts of
a design object are known. The collection relationship described next can be used
if the exact components of the design object are not known in advance.

During most of the initial design phases, many of an object's parts may not be
described. The rules that determine which part relationships (with possibly empty
objects) must be instantiated are given by the existence and notification semantics.

1. Existence Semantics:
(a) The following rules can be chosen in support of a constraint stating

that a part object must belong to at least one owning object.

DELETION:
i. Mandatory Deletion (DM): Upon deletion of the owning object,

all part objects associated with it are deleted. Upon deletion of
an IS-PART-OF relationship instance between an owning and a
part object, the part object is deleted.

ii. Conditional (DC): Upon deletion of the owning object (or a
relationship instance between an owning object and a part object),
all part objects which are not participating as a part of any other
IS-PART-OF or COLLECTION relationship are deleted.

iii. Blocking (DB): The deletion of an owning object (or a relationship
instance between an owning object and a part object), is denied
if it will leave a dangling part object.

INSERTION:
i. Mandatory (IM): Upon insertion of a part object, the associated

relationship link to an owning object must also be established.

(b) The following rules can be chosen in support of a constraint specifying
that an owning object may not exist without all of its parts.

DELETION:
i. Mandatory Deletion (ODM): Upon deletion of one of the parts

of an owning object (or one of the relationship instances between
an owning object and a part object), the owning object is also
deleted.

ii. Blocking (ODB): Upon the user's attempt to delete a part of an
owning object (or an IS-PART-OF relationship instance), the user
is notified that this action is not permitted.

iii. Conditional Deletion (ODC): Upon the user's attempt to delete
a part object (or relationship instance between an owing and part
object), the user is asked if the associated owning object should
also be deleted. If so, the part and owning objects are deleted,
otherwise, the deletion of the part object (relationship) is not
permitted.

176

INSERTION:

i. Blocking (IB): Upon insertion of an owning object, information
indicating relationship links with parts existing in the database
must also be supplied. Otherwise the insertion is denied.

ii. Conditional (IC): Upon insertion of an owning object, relationship
links with all parts will be established with data present in the
database if identified. When this information is not supplied for
all parts, part object stubs will be created for later specification.

2. Notification Semantics (DPN): Upon insertion/deletion of an owning or part
object (or deletion of an IS-PART-OF relationship instance), the user should
be notified of any propagated activity resulting from the action.

3. Selection Semantics: Mandatory Selection (MS): Whenever an owning object
is queried, then the part objects are also returned. In the absence of this
choice of semantics, the owning object will be selected, with only references
to the part objects.

The database modeler, on choosing an IS-PART-OF relationship, automatically
gets the generic semantics. In addition, the modeler can choose selection semantics,
insertion and deletion semantics for each existence constraint desired, and notification
semantics for any of the insertion/deletion semantics that specify propagated actions.

The existence and notification semantics were implemented by the ARAC
interface, and were also included in ArchObjects2. Selection semantics are not
currently supported by the SORAC system due to the lack of an implemented query
interface. If implemented, selection semantics could be associated with a whole
IS-PART-OF instance, or with individual part links. Automatic generation of a
query interface that fully supports semantic relationships is an interesting problem
that we have not yet fully investigated.

4.1.4 COLLECTION Relationship Semantics. The COLLECTION relationship is
used to specify objects consisting of collections or sets of objects of a given type. If
a collection consists of objects of many types, then it is assumed that a supertype
encompassing all of the classes included is defined through generalization before
the collection type is defined. Another alternative is to have the modeling system
perform this task automatically on behalf of the modeler when the collection object
is defined. The modeler will, of course, have to enumerate the types included and
provide a name for the new generalized type.

The semantics of the collection relationship will differ depending upon the needs
of the particular application. For example, there are some modeling circumstances
in which we might not wish to delete the collection object if it becomes empty
through deletion of its members (Kim, 1990). An example of this is a builder's
definition of a deck in which a PIERS object represents a collection of actual
resources used for piers. We might temporarily take the pieces of lumber away
from the deck for a more immediate project, but we will eventually build the deck,

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 177

thus, lumber will be assigned to the deck at a later date. In this case, we wish the
empty PIERS object to remain, even though the details of its resources are not yet
available.

The cardinality of the collection relationship is always M.'N, where M,N E 1..oo.
This means that, for each collection object, there may be up to M member objects,
and each member object may be in up to N collections.

1. Existence Semantics:
(a) Member Deletion: The following rules can be chosen in support of a

constraint specifying that a collection object may not exist without at
least one member in the collection.

i. Mandatory Collection Deletion (MCD): This means that upon
removal (through object deletion or relationship instance removal)
of all of the members of the collection object, the collection object
is deleted.

ii. Conditional Collection Deletion (CCD): This means that the user
may decide whether to permit the empty collection remain or to
delete the collection. The system notifies the user of the situation
and permits a run time choice of the appropriate action. (This
makes the above stated constraint soft, as empty collections may
actually occur.)

iii. Blocking (BCD): The user is not permitted to remove (through
object deletion or relationship instance removal) the last remaining
member of a collection. This should not be chosen with the BMD
rule.

(b) Collection Deletion: The following rules can be used to support a con-
straint stating that member objects cannot exist without the associated
collection object.

i. Mandatory Member Deletion (MMD): Upon deletion of the col-
lection object (or removal of a relationship instance), all member
objects associated with it are deleted.

ii. Conditional Member Deletion (CMD): Upon deletion of the col-
lection object (or removal of a relationship instance), all member
objects that are not part of any other existing IS-PART-OF or
COLLECTION relationship are also deleted.

iii. Blocking (BMD): (This should not be chosen in conjunction with
the BCD rule). The end-user is denied the ability to delete a
collection object that has remaining members.

2. Notification Semantics:
(a) Notification (DCN) This means that upon the deletion of the last object

in the collection, the user is notified that it is the last object. The system
proceeds as the deletion semantics specify, but the user is notified of
any additional actions.

178

Notice that, if none of the above options are chosen, the system will permit
collection objects to be empty, even though there are no remaining members in
the collection. This is because there are no actions implied when the last member
is removed. The semantics of the COLLECTION relationship type were fully
implemented by the ARAC schema design interface.

4.1.5 Derivation Semantics. Derivation semantics are used whenever an attribute
of an object is derived from attributes of other (domain) objects. It is convenient
to specify these interdependencies among objects as relationships, since the ma-
nipulation of domain objects affects other objects that have values derived from
them. The relationship semantics (enforcement rules) specify exactly how derived
attributes are correctly computed when updates to domain objects occur. In ARAC,
derivations are specifiable over all relationship types.

1. Update Semantics:

(a) Virtual (V): The attribute value is never stored. It is computed upon
access by the user. Appropriate messages are sent to the user in the
absence of data needed to compute the derived value.

If this option is not selected, the attribute is stored and updated in the database
whenever modifications to the domain values occur, whenever domain objects are
inserted, or whenever a relationship link to a domain object is instantiated. In
this case, one of each of the following sets of semantics must also be chosen to
determine how the database will behave whenever referenced values are inserted,
deleted, or modified.

1. Existence Semantics:

(a) Deletion:

i. Null (NL): Upon deletion of one of the domain objects, the derived
attribute is set to null.

ii. Deletion Denial (DL): The user is denied permission to delete a
domain object. The derived object or the derivation relationship
link between the domain object and the derived object must first
be removed.

2. Notification Semantics:

(a) Notification (MDN): Upon modification of a domain attribute or dele-
tion of an object containing a domain attribute the user is notified of
a possible effect upon the derived attribute.

5. Example of Constructed Relationships for ArchObjects

We now show how the relationship modeling needs of ArchObjects can be satisfied
by the built-in SORAC relationship types of Section 4. Of particular interest is

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 179

the combination of generic and add-on semantics needed to model this application.
Some of these semantics were implemented in ArchObjects, to test the functionality
of this approach.

5.1 <has_spec> Relationship

The <has_spec> relationship represents specialization. For example, ifA <has_spec>
B, then B is a specialization of A. The <has_spec> relationship is one-to-many,
transitive, and is defined only between types. Inheritance occurs along this relation-
ship, and each object of type A must be connected to an object of type B through
this link.

To model this relationship, we use the inverse of SORAC's IS-A relationship type.
For example, we can establish a <has spec> relationship between COMPONENT
and FLOOR, CEILING, and WALL types:

COMPONENT <has_spec>: I S - - A -1 (SMSM) FLOOR, CEILING, WALL

As explained above, the option SMSM indicates that each COMPONENT object
must be an instance of exactly one subtype. That is, a component must be exactly
one of a floor, a ceiling, or a wall. This mode of relationship specification permits us
to specify different levels of a <has_spec> hierarchy with different characteristics,
such as SMSM versus MSM. However, in most systems, the specialization hierarchy
has uniform characteristics throughout the system. Thus, we can also define the
<has_spec> relationship in the following way:

Relationship <has_spec> : IS - - A -1 (SMSM)
COMPONENT <has_spec> FLOOR, CEILING, WALL

This permits the definition of the <has_spec> relationship between other sets
of object types without repeating the specification of <has_spec> in terms of IS-A.
This feature is available in the DSDT design interface.

5.2 <has_part> Relationship

Here is a collection of ArchObjects relationship classes specifying the parts of a
room class:

Room <has_part> Wallset

Room <has_part> Floor

Room <has_part> Ceiling

Room <has_part> Openingset

Room <has_part> Elementset.

If we assume that Wall, Floor, Room, Ceiling, and Element have been previ-
ously defined as object types, the SORAC specification of this structure will be as
follows:

180

ELEMENTSET COLLECTION (CMD) ELEMENT
WALLSET COLLECTION (CMD, CCD) WALL
OPENINGSET COLLECTION (CMD, CCD) OPENING

ROOM <has_part> : IS-PART-OF -1 (DC,IC) WALI_SET
ROOM <has_part> : IS-PART-OF -1 (DC, IC) FLOOR
ROOM <has_part> : IS-PART-OF -1 (DC, IC) CEILING
ROOM <has_part> : IS-PART-OF -1 (DC, IC) OPENINGSET
ROOM <has_part> : IS-PART-OF -1 (DC) ELEMENTSET

Here we have used SORAC's IS-PART-OF to construct the ArchObjects <has_part>
relationship to model a room and its components. E:Lementset is an arbitrary and
possibly empty set of architectural components of a room. The inverse notation for
the IS-PART-OF relationship is important since the insertion and deletion semantics
on the owning and part types are not necessarily symmetric. As specified above,
ROOM is the owning type, and WALLSET, FLOOR, CEILING, OPENINGSET,
and ELEMENTSET are the part types. Specifying that the type of an <has_part>
link is IS-PART-OF -1 (DC, IC) explicitly states the exact enforcement rules of the
relationship. The update rules implemented in ArchObjects2 support this approach
(Section 3.2.3).

5.3 <has_role> Relationship

As discussed in Section 3, there are two distinct IS-A hierarchies in the ArchObjects
system representing design objects and their functional roles. For example, design
information such as dimensions and location would make up an instance of type
CORRIDOR. However, the corridor object may seIve as a means of egress and,
thus, have data associated with it in its role as a means of egress. The object type
CORRIDOR participates in an IS-A hierarchy of design object types. Similarly, there
are many role types (e.g., MEANS-OF-EGRESS COMPONENT) that participate
in an IS-A hierarchy of which the most general type is FUNCTION. Thus, we have
two somewhat orthogonal hierarchies describing objects and roles (Figure 6).

To model the associations between the objects and their functional roles, we
need a means by which we might draw horizontal arcs from one hierarchy to the
other. For example, if we know that objects of type CORRIDOR might serve as a
means of egress, we could define an association or reference relationship between
CORRIDOR type and MEANS-OF-EGRESS COMPONENT, thereby indicating
the potential for relationship links on the instance level.

However, this approach is quickly foiled by the complexity of the design en-
vironment. Consider an example such as REVOLVING-DOOR ASSEMBLY. A
revolving door is a specialization of a door, but may not legally serve as a protected
exit. For simplicity, we would like to draw a horizontal line between DOOR AS-
SEMBLY and PROTECTED-EXIT but, since all properties of DOOR ASSEMBLY
are inherited by REVOLVING-DOOR ASSEMBLY, we cannot. Also, we notice
that many objects participate in several roles. These subsets of all role types are

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 181

Figure 6. Physical object and role type hierarchies

Physical Object Type Hierarchy Functional Role Type Hierarchy

r h.i,diu]
t component

omponent) nent

Relationship Line Style

<has_spec:> :

not particularly well organized through the use of the IS-A hierarchy, thus forcing
the definition of several horizontal associations between a given object type and
several role types.

One solution to this problem is the combined use of the collection and the
attribute relationship types. For a given object type, we consider all possible roles in
which an object of that type might participate. We then define a HAS-ATtRIBUTE
relationship using the most specialized role supertype that characterizes these roles
as follows:

DOOR<has_role>:HAS-A'ITRIBUTE Role:MEANS-OF-EGRESS-COMPONENT

Thus, we have associated the type DOOR with the role types in which the DOOR
might potentially participate. We have named the horizontal link <has_role>, and
defined it to be of type HAS-ATI'RIBUTE. Additional semantics (Section 4.1.1)
might also be specified with the HAS-ATTRIBUTE relationship type. For the
<has_role> relationship, we must choose semantics that do not force an individual
door object to participate in any role. The relationship is there to support the
potential for a door to participate in the relationship. Notice also that if we wish to
define a different collection of functional roles for the type REVOLVING-DOOR
ASSEMBLY, we can first suppress the inheritance of the Role attribute from DOOR,
and then tailor a role set for the revolving door that eliminates the protected exit
role.

182

In contrast to the general SORAC semantics, the ARAC interface does not
require use of an attribute relationship to model this connection between the
part and role hierarchies. A built-in HAS-ROLE relationship is available, and
additional inheritance semantics permit the suppression of relationship semantics
from supertype to subtype in an IS-A hierarchy. This was the approach taken in
ArchObjects2 as well.

5.4 <has_geometry> Relationship

In the ArchObjects system, there is a special relationship used between the types
representing the physical components of a design (e.g., FLOOR, DOOR ASSEM-
BLY), and objects representing the geometry of the objects. To model this situation,
all objects representing physical components are defined to be subtypes of supertype
PHYSICAL-COMPONENT The supertype has an attribute, Solid-Model-Set, that
is a collection of SOLID-MODEL.

SOLID-MODEL-SET Collection:COLLECTION (MMD,MCD) SOLID-MODEL
PHYSICAL-COMPONENT <has_geometry>:

HAS-A'ITRIBUTE Solid-Model-Set: SOLID-MODEL-SET
The following outlines the semantics of the has_geometry> relationship as

defined.
• A PHYSICAL-COMPONENT object can have zero or one geometries, but

the collection object should not be present in the case of zero geometries,
thus the MCD option is chosen.

• A SOLID-MODEL-SET cannot exist without the corresponding PHYSICAL-
COMPONENT object. Thus, semantics enforcing the deletion of the SOLID-
MODEL-SET upon deletion of the PHYSICAL-COMPONENT should be
chosen for the HAS-ATTRIBUTE relationship. The MMD option takes care
of removing the SOLID-MODEL objects. Semantics prohibiting the inser-
tion of SOLID-MODEL-SETS (unless they are attached to a PHYSICAL-
COMPONENT object) should also be chosen with the has-attribute relation-
ship.

In addition to the above, a PHYSICAL-COMPONENT's parts can be derived from
the parts of the corresponding SOLID-MODEL-SET This can be specified using
the derivation relationship.

6. SORAC Implementation

In this section, we describe the implementation of the current SORAC prototype,
with emphasis on the underlying support supplied by OIL (Doherty et al., 1993).
OIL provides programmable support for semantic relationships in an object-oriented
data model. This is accomplished by permitting the definition of high level object
and relationship semantics, and then by mapping these semantics to object-oriented
code in a well established and predictable manner.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 183

The SORAC system has two application schema design interfaces (ASDIs),
Architectural Relationships and Constraints (ARAC) and Database Schema Design
Tool (DSDT). Each ASDI permits the high level design of objects and relationships,
and then automatically generates OIL output. Through translation of semantics
into OIL, SORAC provides automatic generation of databases having complex
relationship semantics, including those needed for systems like ArchObjects.

The following criteria motivated the design of the system.

• The conceptual constructs in the designer's schema appear as addressable
entities in the user's view of the database. In particular, relationships must
be available as both modeling constructs and database objects.

• The semantics of standard system defined relationships and arbitrary user-
defined relationships are equally supported. As illustrated by the ArchObjects
examples given above, design systems for different domains require different
sets of standard relationships. In addition, it is generally necessary to allow
the designer to define new relationships to handle unanticipated special cases.

• The specification and implementation of the enforcement rules that maintain
inter-object constraints must not violate object-oriented encapsulation. The
implementation of data objects should not be influenced by the relationships
in which they may potentially participate.

• The mapping from the conceptual schema to the implementation should be
automatic.

• A tool should be available to check the schema semantics for correctness,
completeness, and consistency before they are mapped to the implementation.

To provide this functionality, OIL maps relationship specifications, expressed in
the OIL language, to code that implements a monitor construct. This allows objects
to monitor the activities of related objects and thereby maintain the semantics of
relationships.

6.1 Overview of SORAC System

The organization of the SORAC system is shown in Figure 7. The ASDI represents
ARAC and DSDT, and can be viewed as a replaceable module that supports the
specific semantics of a particular database domain. The ASDI outputs a schema
definition as a set of OIL object type declarations. The OIL compiler generates
C + + code compatible with the ONTOS object-oriented database management
system (Andrews and Sinkel, 1991; ONTOS, 1991), and this code is processed by
ONTOS utilities and the native C+ + compiler to generate the required database.
The support of relationship behavior is implemented as an extension to the ONTOS
Client Library.

The prototype OIL compiler and the SORAC extensions to the ONTOS ODBMS
have been implemented on a SUN Sparc station. ARAC and DSDT both have been

184

Figure 7. SORAC system

SORAC
Library

i °nto I
Library

ASDI
(ARAC

or
DSDT)

Ontos
Utilities

C++
Compiler

, i

Database

I oo ,,er i

integrated with the SORAC system. A query language for SORAC databases has
not yet been defined but the database implementation has been tested through a
textual interface that allows the user to construct and send messages to any object in
the database. Some query language issues have been explored in the ArchObjects2
implementation.

A schema checker that uses semantic information from the ASDIs to interact with
the designer to assure correct and consistent schema has been developed (Peckham
1994; Qian, 1994). A graph theoretic representation of the objects, relationships,
and enforcement rules is used with properties such as the transitivity of update
actions to discover awkward, incorrect, and/or incomplete schema structures such as
cycles and conflicting updates. These structures are then presented to the database
designer to aid in refinement of the schema specifications.

6.2 OIL Interface

The OIL interface supports the SORAC data model in which a relationship is
viewed as an interactive object. The semantics of a relationship are defined by the
constraints that the relationship places on the behavior of the participating objects.
The interactive nature of relationships in the SORAC data model allows these
constraints to be modeled as behavior of the relationship, rather than behavior of
the participating objects. The relationships are mapped to objects in the implemented
database yielding the benefits of relationships as modeling constructs (Rumbaugh,
1987).

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 185

Figure 8. ARAC DoorHasLatch relationship

ARAC Specification:

Kelationship: DoorHasLatch
Relationship Type: Has_Part
Composite Object: Door
Part Object: Latch
Enforcement Rules for Deletion of Composite Object:

DM (Mandatory Deletion)

0IL Specification:

object DoorHasLatch
{participants

{object Door composite;
object Latch part;}

monitor (composite.delete) // Mandatory Deletion constraint
{updateif (part != NULL) delete part;}}

The OIL language is based on C+ + with the addition of participants and monitors.
A list of participants and a set of monitors is what distinguishes a relationship from
a data object. The participants list defines the object types that may participate
in the relationship and the roles that those object types play in the relationship.
Monitors implement the constraints that define the semantics of the relationship.
The monitor construct enhances the object-oriented model by allowing relationships
to act in response to the operations applied to participant objects. These operations
act as triggers that cause the monitor to execute the enforcement rules maintaining
the constraints. The syntax and implementation of monitors are derived from the
propagator (Laffra and van den Bos, 1991) which demonstrates that inter-object
constraints can be implemented in a manner that does not violate encapsulation.
By defining monitors as properties of relationship objects, the SORAC data model
combines the benefits of relationships as modeling constructs with the encapsulation
of the propagator.

The enforcement rules which define the operation of a monitor are taken from
Peckham (1994), where they are defined for the analysis of schema correctness.
Since the behavior defined by a monitor's enforcement rules is directly mapped
to the behavior of a relationship object, any correctness guarantees made through
analysis of the enforcement rules can be assumed for the resulting database. Since
the mapping is automatic, the possibility of incorrect translation from the data
definition to the database schema is avoided.

186

Figure 9. DSDT DoorHasOpener Relationship

DSDT Spec i f i c a t i on :

Rela t ionship : DoorHasOpener

Participants:
Source: Door
Destination: OpeningMechanism

Constraints:
Existence: OpeningMechanism depends on Door
Cardinality: l_to_l

OIL Specification:

object DoorHasOpener
{participants

{object Door source;
object OpeningMechanism destination;}

monitor (source.delete) // existence constraint
{delete destination;}

monitor (destination.delete) // existence constraint
{reject;}

monitor (self.insert) // cardinality constraint
{if (source.ParticipatesIn("DoorHasOpener")) reject;
if (destination.ParticipatesIn("DoorHasOpener")) reject;}}

6.3 Implementation of Enforcement Rules

The following examples illustrate the specification of relationships in the ARAC
and DSDT ASDIs, and the OIL code that the interfaces generate. The ARAC
definition of a part relationship named DoorHasLatch between a Door and a Latch
is first shown in Figure 8. Since ARAC was developed to support architectural
design systems, a built-in and generic has-part relationship type is provided. The
maintenance of an existence constraint between the Door and the Latch is assured
through the optional choice of the DM enforcement rule. The OIL code that
is generated by ARAC directs the generation of lower level code implementing a
monitor which triggers on a Delete message to the Door and maintains the constraint
by deleting the related part, as well as the relationship.

The definition of the Door and Latch object types can be specified independently
of the HasPart relationship, since the semantics of the relationship are encapsulated
in the definition of the relationship. Implementation details, such as inverse pointers
and triggers, are automatically generated by the OIL compiler and the SORAC library
extensions. The OIL interface thus provides an intermediate layer of abstraction,
which allows for the expression of complex objects and relationships without the
details required by a typical object-oriented implementation.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 187

Figure 9 shows the DSDT definition of a DoorHasOpener relationship. The OIL
code that is generated shows the meaning of the DSDT existence and cardinality con-
straints. The existence constraint, specifying that OpeningMechanism depends upon
Door, is maintained by deleting the related OpeningMechanism object whenever
a Door object is deleted and denying the independent deletion of OpeningMech-
anism objects associated with Door objects. The one-to-one cardinality constraint
is maintained by monitoring the instantiation of relationship instances and denying
the instantiation whenever there is more than one Door object associated with a
given OpeningMechanism object, and vice versa.

7. Conclusion

In this article, we developed a model that augments the object-oriented model with a
group of core semantic relationships, from which domain specific relationship types
can be derived. This was done in the context of ArchObjects, an intelligent design
database operating in the domain of architecture. Design databases are a good
example of the need for incorporating semantic relationships. On the one hand, the
object-oriented model is a very natural way to represent a design, because inheritance
and specialization allow knowledge to be stated at the highest possible level. On the
other hand, much of the understanding of a design in a domain-like architecture is
based on the relationships between objects. It is clear that these relationships are
more than mere references between objects. In fact, much of the meaning of the
design model is conveyed through an understanding of the relationship semantics.
Therefore, the relationship semantics should be made explicit, rather than buried in
method code. Furthermore, certain relationships seem to be fundamental in a given
design domain, and are used over and over throughout the model. The <has_part>
relationship is a good example of this. It is much simpler if the semantics of these
relationships are handled by built-in enforcement rules, rather than re-implemented
again and again. It is even more desirable if this set of semantics is not fixed, but
can be tailored to the domain by the schema designer.

Future additions to this work include the augmentation of interrelationship
semantics. There are possibly many ways in which semantics may be specified over
subsets of relationships. These needs should be documented, and a manageable set
of these semantics should be formulated to resolve and clearly specify interactions
among relationships. We also plan to investigate tools for maintaining and browsing
through the update rules, so that the database semantics are accessible once the
database has been built. In addition, we are also investigating the role of relationships
and enforcement rules in real time database applications (Prichard, 1994) and in
forming complex views in design domains.

Further work in the development of query primitives capable of operating over
the defined relationships of a given database is also of interest. For example, if a
<has_role> relationship has been defined to be of type HAS-ATTRIBUTE then, at
design time, we know the structure, the semantics, and the name of this relationship.

188

The design interface should be capable of generating code for the support of query
primitives, which can easily operate over the role relationship. In this way, we have
generated a schema with built-in update support, as well as meaningful querying
tools. Techniques for the generation of this type of support should be carefully
investigated and prototypes should be developed to provide a basis for the analysis
of the possible approaches.

The area of design is heavily based on relationships that often have a very specific
meaning and behavior. Therefore, relationships se, rve as an important organizing
paradigm in such systems. In this article, we address the limitations of the traditional
object-oriented model in the area of relationship modeling by providing a core set
of semantic relationships, "menus" of choices for additional behavior, and a means
for defining new relationship types derived from the core set. This is done in
the context of ArchObjects, which serves as an example of how domain-specific
relationships may be derived from the core relationship types. Therefore, this
approach can be seen as beneficial in the area of architectural modeling. It is
highly likely that other complex domains, such as geographic information systems
or molecular design systems, could benefit as we]tl from a model that integrates
semantic and object-oriented modeling.

Acknowledgments

This research was partially supported by URI Proposal Development Grant 537116.
The work was done while Bonnie MacKellar was at the Department of Computer
and Information Science, New Jersey Institute of Technology, Newark, NJ, and
while Michael Doherty was at the University of Rhode Island, Kingston, RI. The
authors would like to acknowledge the help of Zhenghong Dong, Marsha Roberts,
and Falguni Vora, who contributed much in the conception and implementation of
the SORAC and ArchObjects prototypes.

References

Albano, A., Ghelli, G., and Orsini, R. A relationship mechanism for a strongly typed
object-oriented database programming language. Proceedings of the Seventeenth
International Conference on l&ly Large Databases; Barcelona, Spain, 1991.

Andrews, T. and Sinkel, K. Ontos: A persistent database for C+ +. In: Gupta,
R. and Horowitz, E., eds., Object-Oriented Databases with Applications to CASE,
Networks, and VLSICAD. Prentice Hall, Englewood Cliffs, NJ, 1991, pp. 387-406.

Barsalou, T., Keller, A., Siambela, N., and Wiederhold, G. Updating relational
databases through object-based views. Proceedings of the 1991 ACM SIGMOD,
Denver, CO, 1991.

Batory, D. and Kim, W. Modeling concepts for VLSI CAD objects. ACM TODS,
10(3):322-346, 1985.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 189

Bouzeghoub, M. and Metais, E. Semantic modeling of object oriented databases.
Proceedings of the Seventeenth International Conference on Very Large Data Bases,
Barcelona, Spain, 1991.

Ceri, S. and Widom, J. Deriving production rules for constraint maintenance. Pro-
ceedings of the Sixteenth VLDB Conference, Brisbane, Australia, 1990.

Chen, P. The entity-relationship mode: Towards a unified view of data. TODS,
1(1):9-36, 1976.

Diaz, O. and Gray, EM.D. Semantic-rich user-defined relationships as a main
constructor. In: Meersman, R., Kent, W., and Khosla, S., eds., Object Oriented
Databases: Analysis, Design, and Construction (DS4). New York: North-Holland,
1991, p. 207-224.

Dogac, A., Ozkarahan, E., and Chen, E An integrity system for a relational database
architecture. Technical Report 86-03, Department of Computer Engineering,
Middle East Technical University, 06531, Ankara, Turkey, 1986.

Doherty, M., Peckham, J., and Wolfe, V.E Implementing relationships and con-
straints in an object-oriented database using monitors. Proceedings of the First
International Conference on Rules in Database Systems, Edinburgh, Scotland, 1993.
In: Workshops in Computing Series, Springer-Verlag, 1993.

Dong, Z. Design of a user interface for database schema design and analysis. M.S.
Thesis proposal, Computer Science and Statistics, The University of Rhode
Island, January 1992.

Dube, T. and MacKellar, B. Modeling 3-D building designs with semantic rela-
tionships. Third Eurographics Workshop on Object-Oriented Graphics, Champery,
Switzerland, 1992.

Eastman, C., Bond, A., and Chase, S. A data model for design databases. Proceedings
of the First International Conference on Artificial Intelligence and Design, Edinburgh,
Scotland, 1991.

Foo, S. and Takefuji, Y. Databases and cell selection algorithms for VLSI cell
libraries. IEEEComputer, 23(2):18-30, 1990.

Gehani, N. and Jagadish, H.V. Ode as an active database: Constraints and triggers.
Proceedings of the Seventeenth International Conference on Very Large Databases,
Barcelona, Spain, 1991.

Geller, J. Propositional representation for graphical knowledge. International Journal
of Man-Machine Studies, 34:97-131, 1991.

Halper, M., Geller, J., and Perl, Y. Part relations for object-oriented databases.
Proceedings of the Eleventh International Entity-Relationship Conference, Karlsruhe,
Germany, 1992.

Hammer, M. and McLeod, D. Database description with SDM: A semantic database
model. ACM Transactions on Database Systems, 6(3):351-386, 1981.

Hudson, S.E. and King, T. The Cactis project: Database support for software
environments. IEEE Transactions on Software Engineering, 14(6):00-00?, 1988.

Hull, R. and King, R. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3):201-260, 1987.

190

Kim, W., Bertino, E., and Garza, J.E Composite objects revisited. Proceedings of
theACMSIGMOD, Portland, OR, 1989.

ICam, W. Introduction to Object-Oriented Databases, Computer Systems Series, Cam-
bridge, MA: MIT Press, 1990.

Kim, W and Lochovsky, E, eds., Object-Oriented Concepts, Databases, andApplica-
tions. New York: Frontier Series, ACM Press, 1989.

Laffra, C. and van den Bos, J. Propagators and concurrent constraints. OOPS
Messenger, 2:68-72, 1991.

MacKellar, B. and Ozel, E ArchObjects: Design codes as constraints in an object-
oriented KBMS.ArtificiaI Intelligence in Design, Oxford: Butterworth/Heinemann,
1991, p. 115-134.

MacKellar, B. A constraint-based model of design object versions. Proceedings of the
Third International Conference on Data and Knowledge Systems for Manufacturing
and Engineering, Lyon, France, 1992.

MacKellar, B. and Peckham, J. Representing design objects in SORAC: A data
model with semantic objects, relationships and constraints. In: Gero, J.S., ed.
Artificial Intelligence in Design, The Netherlands: Academic Publishers, 1992, pp.
201-219.

Morgenstern, M. Constraint equations: Declarative expression of constraints with
automatic enforcement. Proceedings of the Tenth International Conference on Very
Large Databases, Singapore, 1984.

Nguyen, G.T and Rieu, D. Representing design objects. Artificial Intelligence in
Design, Oxford: Butterworth/Heinemann, 1991, pp. 367-386.

ONTOS Developer's Guide. Burlington, MA: Ontologic, Inc., 1991.
Peckham, J. and Maryanski, E Semantic data models. ACM Computing Surveys,

20(3):153-189, 1988.
Peckham, J., Maryanski, E, Beshers, G., Chapman, H., and Demurjian, S.A.

Constraint-based analysis of database update propagation. Proceedings of the
Tenth International Conference on Information Systems, Boston, MA, 1989.

Peckham, J., Maryanski, E, and Demurjian, S. Towards the correctness and consis-
tency of update semantics in semantic database schema. IEEE Transactions on
Knowledge and Data Engineering, 1995, to appear.

Prichard, J., Peckham, J., Cingiser, L., and Wolfe, V.E RTSORAC: Design of a real-
time object-oriented database system. Fifth International Conference on Database
and Expert Systems Applications, Athens, 1994.

Qian, X. A constraint-based database schema checking system. M.S. Thesis, The
University of Rhode Island, Kingston, RI, 1994.

Roberts, M. C+ + Implementation of ArchObjects Symbolic Framework. Depart-
ment of Computer and Information Science, New Jersey Institute of Technology,
1993.

Rumbaugh, J. Relations as semantic, constructs in object-oriented language. ACM
OOPSLA Proceedings, 1987.

VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 191

Sathi, A., Fox, M.S., and Greenberg, M. Representation of activity knowledge for
project management. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 5:00-00?, 1985.

Stefik, M. and Bobrow, D.G. Object-oriented programming: Themes and variations.
AIMagazine, 6(4):40-62, 1986.

Urban, S. ALICE : An assertion language for integrity constraint expression. Pro-
ceedings of COMPSAC '89, Orlando, FL, 1989.

Urban, S. and Delcambre, L.M. Constraint analysis : Identifying design alterna-
tives for operations on complex objects. Transactions on Knowledge and Data
Engineering, 2(4):391-400, 1990.

Urban, S., Karadimce, A., and Nannapaneni, R. The implementation and evaluation
of integrity maintenance rules in an object-oriented database. Proceedings of the
Eighth IEEE Data Engineering Conference, Tempe, AZ, 1992.

Vora, E ARAC: A data modeling interface for architectural design systems. M.S.
Thesis, Computer Science and Statistics, The University of Rhode Island, 1992.

Widom, J. and Finkelstein, S.J. Set-oriented production rules in relational database
systems. Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Atlantic City, NJ, 1990.

Zdonik, S. Fundamentals of object-oriented databases, introduction. In: Zdonik,
S. and Maier, D., eds., Readings in Object-OrientedDatabase Systems, San Mateo,
CA: Morgan Kaufman, 1990, pp. 1-36.

