
VLDBJourna~3, 53-76 (1994), Fred J. Maryanski, Editor
(~)VLDB

53

A Pattern-Based Object Calculus

Nabil Kamel, Ping Wu, and Stanley Y.W. Su

Received March 11, 1992; revised version received July 2, 1993; accepted July 16, 1993.

Abstract. Several object-oriented database management systems have been im-
plemented without an accompanying theoretical foundation for constraint, query
specification, and processing. The pattern-based object calculus presented in this
article provides such a theoretical foundation for describing and processing object-
oriented databases. We view an object-oriented database as a network of interre-
lated classes (i.e., the intension) and a collection of time-varying object association
patterns (i.e., the extension). The object calculus is based on first-order logic. It
provides the formalism for interpreting precisely and unifor/nly the semantics of
queries and integrity constraints in object-oriented databases. The power of the
object calculus is shown in four aspects. First, associations among objects are ex-
pressed explicitly in an object-oriented database. Second, the "nonassociation"
operator is included in the object calculus. Third, set-oriented operations can be
performed on both homogeneous and heterogeneous object association patterns.
Fourth, our approach does not assume a specific form of database schema. A pro-
posed formalism is also applied to the design of high-level object-oriented query
and constraint languages.

Key Words. Object-oriented databases, association patterns, semantic constraints,
query expressions.

1. Introduction

Many object-oriented (OO) database models (Batory and Kim, 1985; Banerjee et al.,
1987; Fishman et al., 1987; Hull and King, 1987; S u e t al., 1989) and OO database
management systems like Vbase (Ontologic, Inc., 1988), Iris (Fishman et al., 1987),
GemStone (Maier et al., 1986), ORION (Banerjee et al., 1987), 02 (Lecluse et
aL, 1988), and ObjectStore (Object Design, Inc., 1990) have emerged recently for
supporting advanced application areas such as CAD/CAM, office automation, and

Nabil Kamel, Ph.D., is Assistant Professor; Ping Wu, Ph.D., is Research Assistant; and Stanley Y.W. Su,
Ph.D., is Professor, Database Systems Research and Development Center, Computer and Information Sci-
ences Department, E470 CSE, University of Florida, Gainesville, FL, 3261 I--6125.

54

multi-media databases. Unlike the relational approach to databases which was based
on a firm theoretical foundation, that is, the mathematical notion of relations and the
accompanying relational algebra and relational calculus, object-oriented databases
and object-oriented database management systems (DBMSs) are primarily founded
on ideas adopted from object-oriented programming languages. Implementations of
object-oriented DBMSs have been carried out without the accompanying theoretical
foundation. As a result, three major problems have surfaced in 0 0 database
applications.

First, there is no query language for existing O,O database systems. Most of the
existing OO systems provide their own query languages to manipulate the objects
in the database (Shipman, 1981; Zaniolo, 1983; Schaffert et al., 1986; Fishman et
al., 1987; Carey et al., 1988).

Second, most of the reported OO data models do not provide formal constraint
languages for declaratively specifying various semantic constraints found in different
application domains. Like relational databases (Ullman, 1982), object-oriented
databases need such languages to define security and integrity constraints so that
an application world can be modeled accurately. In most of the implemented OO
DBMSs, a rudimentary set of constraints is "hard-coded" to represent the semantics
of a data model. Constraints not captured by the data model have to be implemented
as procedures in application programs. Several researchers have introduced different
constraint representations such as Horn logic clauses (Urban and Delcambre, 1989),
constraint equations (Morgenstern, 1984), and rules based on an associative net
(Shepherd and Kerschberg, 1984). However, no uniform constraint representation
is established for interrelating constraints captured by different data models.

Third, the existing implementations of query processors and query optimizers are
not guided by a well-defined mathematical formalism. Efficiency in object-oriented
DBMS implementations is difficult to achieve without a solid theoretical foundation.

Several research efforts have been undertaken to establish a theoretical foun-
dation for processing OO databases. Two general approaches have been made: the
algebraic approach and the logic approach. The first approach defines the formal
semantics of an OO query model based on object algebras (Manola and Dayal,
1986; Osborn, 1988, 1989; Shaw and Zdonik, 1989; Guo et al., 1991; Straube, 1991).
Among them, only the algebra in Straube (1991) has an accompanying calculus. The
second approach uses logic to formally specify the semantics of the OO paradigm
(Maier, 1986; Chen and Warren, 1989; Kifer and Lausen, 1989; Kifer and Wu,
1989). The most complete work of this approach is represented by F-logic (Kifer
and Wu, 1989). F-logic is a database logic formalism which provides a clean dec-
laration for most of the "object-oriented" features such as object identity, complex
objects, inheritance, methods, etc. In contrast, our model is simpler, (i.e., it contains
fewer linguistic constructs) and lower level in the sense that it does not attempt
to tie the language too strongly to higher-level concepts, such as inheritance. The
language is strongly rooted in first order logic. We rely on the notions of association
and non-association among objects exclusively to specify queries and constraints

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 55

as patterns of associated (or non-associated) objects. This flexibility allows the
language to be used with other navigational models, such as the Entity-Relationship
(E-R), network, and hierarchical data models, none of which adopts the notion of
inheritance (in their purest form).

In this article, we present a pattern-based object calculus for formally describing
and manipulating objects and object association patterns in OO databases. This
object calculus is based on first-order logic. It is the accompanying formalism to
the association algebra reported by Guo et al. (1991) and Su et al. (1993). Its main
feature is the concise yet semantically powerful expressions for specifying queries
and constraints in terms of patterns of object associations. It captures the semantics
of "association" and "nonassociation" relationships explicitly, that is, it identifies
respectively the related and unrelated objects among classes which are associated
with one another in the intensional database. The semantics of nonassociation
cannot be easily expressed in other calculus-based languages. This calculus can also
express set operations on both homogeneous and heterogeneous object association
patterns whereas set operations expressible in the relational calculus can only be
performed on union-compatible (i.e., homogeneous) relations. A calculus expression
specifies a subdatabase that satisfies the expression and the calculus preserves the
closure property (i.e, the output of an expression is association patterns which can
be operated on by another expression). Because of its uniform object association
pattern representation, the object calculus can be used to express formally both
search queries and semantic constraints. Therefore, unlike some implemented
systems in which the query processing subsystem is separated and different from the
constraint enforcement subsystem, a DBMS can be built to use the same semantic
constructs expressed in the calculus for both query and constraint processing. It is
also shown later in this article that the calculus can provide a formal basis for the
design of high-level OO query and constraint languages.

The rest of this article is organized as follows. In Section 2, an OO view of
databases based on objects, classes, and associations is first described and compared
with the relational view of databases. Section 3 presents the main features of
the object calculus including its syntax and formal semantics. The object calculus'
expressive power in formulating queries is presented in Section 4 by examples. Section
5 shows an application of the object calculus for defining semantic constraints. The
status of the system implementation based on the OO view is briefly described in
Section 6. Concluding remarks are given in Section 7.

2. Object-Oriented vs. Relational Databases

In this section, we point out the main differences between the relational and object-
oriented data modeling paradigms as a justification for introducing two important
semantic constructs: the association and the nonassociation operators, in the object
calculus.

56

In the relational model, relations are used to represent entities and associations
in the real world. An entity or association instance (or an object) is represented by a
tuple, and it is distinguished from others by its unique primary key value. The entity
integrity enforces the rule that null values cannot be accepted as the primary key
values. To relate one instance of one relation to an instance in a second relation, an
attribute, called a foreign key, is used in the second relation. Foreign-to-primary-key
matching is used in query processing to identify n;lationships between tuples. It is
carried out by the expensive (i.e., computationally costly)join operation between
relations. Referential integrity guarantees such a match between a foreign key value
and a primary key value. In a relational query, the matchings of keys and foreign
keys must be explicitly specified when traversing a number of relations. We call
this type of query specification and processing attribute-based.

Unlike the relational view, our object-oriented view of a database is based on
the essential characteristics of the object-oriented paradigm. First, an object in
the database represents a real world entity, such as a physical object, an abstract
thing, an event, a process, or whatever is of interest, and each object is assigned
a system-defined, unique object identifier (OLD). The OID allows an object to be
distinguished from other objects. Second, objects having the same structural and
behavioral properties are grouped together to form an object class. Third, a class
can associate (interrelate) with other classes to represent the relationships among
the real world entities. As a result, objects in a class can associate with objects in
other classes. Different association-types between or among object classes have been
recognized in different OO data models. Two of the most commonly recognized
association types are aggregation and generalization. Aggregation association captures
the semantics of "is part of, is composed of," or "has properties of" relationship.
It allows an object to be defined in terms of other objects. In Figure 1, for example,
a Section object can be associated with (or semantically is composed of) a Teacher
object, a (set of) Student object(s) (the cardinality mapping between Section and
Student can be specified), and a Course object. The generalization association
captures the semantics of "is a" or "is a kind of" relationship. Objects in the
subclass inherit the structural and the behavioral properties (operations and rules)
from one or more superclasses. In our discussion, an object is represented using
its OID and it encapsulates all its structural and behavioral properties, such as its
inherited attributes, its associations with other objects, and so on.

An association between two objects is represented by bi-directionally linking
these two objects using OID references which can be easily mapped to some physical
pointers for locating these objects. For this reason, we can simply use the association
operator "*" to specify the existence of an association between two objects. For
example, we use the expression objl* obj2 to denote that an object which is bound to
the object variable objl is associated with another object which is bound to the object
variable obj2. Similarly, we can use the nonassociation operator "!" to explicitly
specify the absence of an association between two objects, (e.g., objl! obj2). The
notion of nonassociation is not included explicitly in the existing relational languages.

VLDB Journal 3 (1) Kameh Pattern-Based Object Calculus 57

Figure 1. University database schema

A: Aggregation / ~ sec~on#
G: genera!i,~don [~ A

room#

A "0 textBook

0
G A G A grade

A

~ GPA department/'~,,-~

mm" I

d b books degree specialty name college

It has to be expressed in a round-about way by a number of other operators.

Different OO data models may capture different association types such as aggre-
gation, generalization, using, composition, etc. The semantics of these association
types in a database can be represented by a set of constraints which govern the
processing of association-type objects in an object-objected DBMS. For this reason,
their semantics do not have to be restated in the expressions of the object calcu-
lus. The object calculus presented in this article is developed for expressing and
processing the common primitives found in most OO models, (i.e., objects, classes,
and association between objects and classes). The semantics of association types
are handled by the underlying DBMS.

To conclude our discussion on the OO view of databases, we consider an example
database in a university environment. Figure 1 is a schema for the university database,
which is modeled using the object-oriented semantic association model (OSAM*) (Su
et al., 1989). The OSAM* data model provides five types of system-defined semantic
associations, although only two types appear in the schema, namely, Aggregation
(A) and Generalization (G). In the schema, class Section has six attributes which
are represented by '~ ' links to domain classes (section#, room#, and textbook)
and entity classes (Teacher, Student, and Course). That is, a Section object instance
is composed of a section number, a room number, a text book and references to
objects of Teacher, Student and Course. Class Person is defined as the superclass of

58

Figure 2. Object-oriented view of a subdaltabase

(a) The intentional view of a subdatabaso

Teacher Section C o u r s e

(b) The extensional view of a subdataba..;e

Teacher and Student. An OO view of a subdatabase consisting of Teacher, Section,
and Course classes is shown in Figure 2. Figure 2(a) is "the intensional (i.e., schema)
view of the subdatabase which shows the classes and their interconnections. Figure
2(b) is the extensional (i.e., instance) view which shows the objects (represented by
OID's) in different classes and their associations (represented by edges). Because
the nonassociations among objects are the complement of associations among the
objects, they are not drawn explicitly in the figure. From the extensional pattern
we know that Teacher t l teaches Section sl, which is opened for Course el. We
also know that Teacher t l does not teach Section s2.

3. Object Calculus

In this section, we first introduce the basic features of the object calculus and then
describe its syntax and semantics in detail.

3.1 Basic Features of the Object Calculus

The underlying philosophy of the object calculus is to provide a formalism for
describing and manipulating objects and object associations. Objects and object
associations are the basic constituent elements used to express the object association
patterns which may have linear, tree, or general network structures. The object
calculus allows object association patterns to be specified by the user as search
conditions which are to be matched against the ,extensional representation of an
OO database.

Database objects are referenced by object variables. An object variable is defined
for a class so that it can be bound to any object in the class. For example, if variable

VLDB Journal 3 (1) Kamei: Pattern-Based Object Calculus 59

sect is defined for class Section and we assume the extension of the database is as
shown in Figure 2(b), then sect can be bound to any one of the objects, sl , s2, s3,
or s4, in class Section.

At the primitive level of OO database representation, two objects can be either
associated or not associated with each other. Suppose variables tchr and sect are
defined for classes Teacher and Section, respectively. If a user is interested in
those teachers who teach some sections (i.e., the associations between the Teacher
instances and the Section instances), then he/she can use the expression tchr * sect

to represent the intended semantics. Here, tchr * sect is a predicate which is an
expression that returns "true" or "false." What the expression means is to: (1)
bind the variables to two objects in their respective classes, (2) return "true" if the
bound objects satisfy the relationship specified by the association operator * in the
predicate, (3) return "false" if the bound objects do not satisfy the relationship
as specified. Again, we assume the database of Figure 2(b), object pairs (tl, Sl),
(t2, s2), and (t3, s3) satisfy the predicate because there are associations between
the paired objects in the database, and all other object pairs make the predicate
evaluate to false. On the other hand, predicate tchr ! sect evaluates to true when the
object bound to tchr is not associated with the object bound to sect in the database.
For example, the following pairs of objects satisfy the above predicate: (tl, s2), (tl,
s3), (tl, s4), (t2, sl), etc. Only three pairs of objects make the predicate evaluate
to false: (tl, Sl), (t2, s2), and (t3, s3).

When bound to the same pair of objects, the predicates varl* var2 and varl!
var2 are complements of each other. That is, if the first predicate is true, the second
is false; and vice versa. A user-issued query is interpreted as a request to output
those database objects that satisfy the specified predicate. In the rest of this section,
we present the detailed syntax and semantics of the object calculus.

3.2 Grammar

We first introduce a concrete syntax for the object calculus. This syntax is similar to
the tuple-oriented relational calculus with the exception of the introduction of an
association pattern into a "well-formed formula" (wff) and the binding of variables
to objects. The Backus-Naur Form (BNF) grammar of the language is given in
Figure 3.

Several points about the BNF are noted below:

. The categories "class," "variable," "attribute," and "asso_name" are defined
to be identifiers (a terminal category with respect to this grammar). They
represent a class name, an object variable name, an attribute name, and an
association name, respectively.

. The category "comparison" represents either a simple scalar comparison
operation (=, < > , > = , etc.) between two scalar values or an object
comparison operation (=, < >) between two object variables. A scalar

60

Figure 3. BNF grammar for the object callculus
r a n g e - d e f i n i ¢ l o n

::= RANGE 0Y variable IS range-leG®

range-icem
: := c l a s s [(e x p r e s s i o n)

e x p r e s s i o n
: := Carge¢- iCem-commal ie¢ [WHERE wff]

¢arget - i¢em-commal is¢
: := targe¢- iCem I Carge¢- i tem , Cexge¢-iCem-conmalis¢

¢arget-iCQm
::= variable . attribuCe I variable

wff
: := a s s o c i a t i o n - p a t t e r n

compar i son
C ~ f)
NOT v f f
wf f AND wff
e l f OR wff
EXISTS v a r i a b l e ~ g f f)
FORALL v a r i a b l e (e l f)
IF wff THEN wff

a s s o c l a t l o n - p a t t e r n
::m c l a s s * [a s s o . n a m e] a s s o c l a t l o n - p a t t e r n

[c l a s s ! l a s s o . n a m e] a s s o c l a t l o n - p a t t e r n
compar i son

: : a ¢arget-itemop t a r g e t - i t e m
op

: : " • I > I <" I >- I " I o

value, in turn, consists of either an attribute value represented by an attribute
reference of the form "variable.attribute" or a scalar literal.

.

.

.

The category "association-pattern" represents either an object of the form
"class" or an association pattern of the form "class1 op class2 op . . .
op classn," where "op" can be either "*[aSsoname]" or "! [asso~ame]", and
"classi" is an object variable for the class. In general, we use the "asso_name"
to designate a specific association between two classes when there are multiple
associations between the classes. To simpli~ the presentation, we assume that
there is only one association between two classes and omit the "asso_name" in
the rest of this article. An expression of class1* class2 ! class3 is the shorthand
for the expression (classl* class2) A N D (class2! class3).

The category wff represents a "well-formed formula." Wffs are discussed in
detail in the following subsections.

For simplicity of descriptions, the following abbreviations are used- -NOT
(-) , AND (A), OR (V), < > (~) , EXISTS (3), NOT EXISTS (~), and
FORALL (V). The logical implication operator IF f THEN g is represented
by f ---~ g.

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 61

3.3 Object Variables

An object variable is defined by means of a statement of the form

RANGE OF x IS X

where x is the name of an object variable that ranges over class X. Hence, the
object variable x represents an object of class X in the database. When there is
no explicit range definition, the default is that if a class name is used as an object
variable name, then the object variable represents an object of the class. Multiple
object variables can be defined for a class as illustrated by the following example.

RANGE OF el IS Employee
RANGE OF e2 IS Employee

Each variable represents a separate scan of instances of Employee class.

3.4 Wff Involving Association Patterns

Based on the BNF grammar, a wff takes one of the following forms: a simple
comparison, an association pattern, logical operations (i.e., with NOT, AND, OR),
quantified expressions (i.e., with the existential quantifier EXISTS and the universal
quantifier FORALL), and the logical implication operation (i.e., IF f THEN g).

A wff is a predicate. As defined in the predicate calculus, a predicate is an
expression that returns a truth value (true or false). When a wff takes the basic
form of a simple comparison, its meaning is apparent.

The meaning of a wff that takes the form of an association pattern is decided by
its domain and interpretation. The domain of an association pattern is the underlying
database, which includes the objects of different classes and the object associations.
The domain of an object variable defined for a class is all the object instances of
the class. An interpretation of a wff is the objects bound to the variable occurrences
in the wff and the associations among these objects. An object variable occurrence
can be bound to any object in its domain. In general, for a given wff, there may be
many different interpretations, thus, resulting in different truth values. A wff is said
to be valid if it yields the value true for every interpretation. Thus, a wff is nonvalid
if and only if there is some interpretation for which the wff yields the value false.
A wff is said to be unsatisfiable if it yields the value false for every interpretation.

Assume that two classes classi and classj have been defined in the database
schema and that there is an association between these two classes. Also assume that
object variable objvari and objvarj range over classi and classj, respectively. The basic
association patterns for the two given classes are objvari* objvarj and objvari! objvarj.
The notions "*" and "!" can be viewed as the two binary predicates, Association(x~y)
and Nonassociation(x,y) respectively, where x and y are object variables. Therefore,
we have the following equivalent expressions:

62

Figure 4. Evaluation of wff expressions

Class1 Class2

(a) A simple database for the basic association pattems.

Interpretation
Value of the wff

objvarl "objvar2 objvarl I objvar2
(sl, t l) true false
(sl, t2) false true
(s2, t l) false true
(s2, t2) true false

(b) The values of the wff's under different interpretation.

objvari* objvarj ~ Association(objvari, objvarj)
objvari ! objvarj _= Nonassociation(objvari, objvarj)

As an example, consider a simple database whose extensional view is shown
in Figure 4(a). The domains of objvarx and objvar2 are {Sl, s2} and {tx, t2},
respectively. The truth values of objvarl* objvar2 and objvarx ! objvar2 under different
interpretations are shown in Figure 4(b).

A quantified wff is evaluated by applying the object variables in the wff to all
the objects in their domains. If the database objects satisfy the semantics of a
quantified wff, then this wff is evaluated to true, and otherwise evaluated to false.

(a) The quantifier FORALL (universal quantifier) stands for the words "for all
... is true." The value of V objvar(wff (objvar)) is true if for all objects
over objvar's domain, the value of wff(objvar)) (with the object bound to all
occurrences of objvar) is true; otherwise, the value of V objvar(wff(objvar)) is
false. The expression wff(objvar) means that the wff has free variable objvar.

(b) The quantifier EXISTS (existential quantifier) stands for the words "there
exists ... such that ... is true." The value of 3 objvar(wff(objvar)) is true if
there is an object over objvar's domain., such that the value of wff(objvar)
(with the object bound to all occurrences of objvar) is true; otherwise, the
value of 3 objvar(wff(objvar)) is false.

We introduce an explicit syntactic form for the logical implication operator. If f
and g are wffs, then the logical implication expression "IF f THEN g" is also defined
to be a wff. As we will see later, this logical implication expression as a wff can be
used widely to express various kinds of constraint rules in knowledge bases.

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 63

3.5 Expressions

An object calculus expression has the following form:

target-list [WHERE f]

A target list consists of a list of "target items" separated by commas, in which each
item is either a simple object variable name such as O or an attribute expression
of the form O.a. The value of the object calculus expression is defined to be all
sets of objects in the target-list and the associations among these objects for which
f evaluates to true. In other words, an object calculus expression returns both
database objects and associations among them.

Objects returned by an object calculus expression may be different from the
original objects in the database, dependent on the form of the target item. When
the target item is in the form of an object variable name such as O, then the
qualifying objects are returned as original database objects. When the target item is
in the form of an attribute expression such as O.a, then all attributes of the returned
objects are stripped from them except for the specified attribute. If more than one
attribute is specified with the same object variable in different target items, say
O.a, O.b, then all these specified attributes are retained foi: the returned objects.
In our OO view of databases, an object encapsulates its structural and behavioral
properties. Therefore, the object's inherited attributes can also be specified in target
items.

Completeness. The notion of completeness for database languages was first defined
for the relational model (Codd, 1972). According to that definition, a language
is relationally complete if databases definable by relational calculus expressions
are retrievable using statements of that language. This notion of completeness
was tightened later by requiring that any database definable by a single relational
calculus expression be retrievable via a single statement of the language (Date,
1982). The same notion of completeness can be applied to any other OO query
language vis-a-vis the object calculus. A more detailed discussion of completeness
can be found in S u e t al. (1993) which defines this notion in the context of the
association algebra.

Safety and Closure of Expressions. A system that allows writing expressions against
finite databases that return infinite results is called unsafe. In the same manner,
an expression written against a finite database that could return an infinite result
is called unsafe. It is possible to write safe expressions within unsafe systems. It is,
however, not possible to write unsafe expressions within safe systems.

Unsafe Systems: Consider the object calculus expression:

RANGE of T IS Teacher
RANGE of P IS Person
T, P WHERE ~(T * P)

64

If the calculus defines the Range statement to range its variable over its entire
domain (e.g., all possible teachers in the universe), then this expression is unsafe
because it will return all possible non-associated teacher-person pairs, even if they
are not in the database. The following is an example of a safe expression written
under the same unsafe system:

RANGE of T IS Teacher
RANGE of P IS Person
RANGE of F IS Faculty
RANGE of S IS Student
T, P WHERE ~(T * P) AND (T * F) AND (P * S)

The above expression is safe because of the further qualification placed on
Teachers and Persons (Teachers must be existing faculty and Persons must be
existing students).

The object calculus eliminates the problem of unsafe expressions by restricting
the meaning of the Range statement to range its variable over only the current
class contents inside the database. For example, the statement:

RANGE of T IS Teacher

will be interpreted as ranging the object variable T over the existing teacher objects in
the database. This interpretation guarantees safety for all object calculus expressions,
and consequently results in a safe system.

Another important property for database systems is the notion of closure. A
database language is called closed if the expressions of the language are always
guaranteed to return results in a compatible form for further operations. In other
words, the expressions of the query language can be nested to any depth. The object
calculus assumes databases consisting of four types of primitive entities: objects,
classes, association links, and non-association links, as shown in Figure 5. Object
calculus expressions operate against databases consisting of only these four primitive
constructs and always return finite databases consisting of the same constructs. The
closure of the object calculus follows directly from this observation.

4. Using Object Calculus to Express Queries

The object-oriented view of an application world can be represented in the form of
a network of classes and associations among these classes. Since an application is
modeled in such an object-oriented fashion, the information about the application
is therefore stored as objects and associations among objects in the database. Users
can query the database by specifying the desired object association patterns in their
queries.

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 65

Figure 5. Basis of closure property
B

A ~ , C

Association link

. Non-~sociation link

The object calculus provides a formalism to formally express queries that are
to be processed against an object-oriented database. A query expression specified
by a predicate is interpreted as identifying those database objects that satisfy the
specified predicate. The subdatabase formed by the qualified database objects can
be output to a user or subject to other system-defined or user-defined database
operations as desired.

In this section, we present several examples on the use of the object calculus
in formulating queries. The basic features of the object calculus are shown through
these examples. All example queries are issued against the university database
modeled in Figure 1. Unless specified otherwise, all object variables share the same
names as the class names on which they range.

Query 1. Display the names of those teachers who teach some sections and the
section#'s for these sections.

Teacher.name, Section.section#
WHERE Teacher * Section

In this query the association operator is used in the WHERE clause. The wff
predicate Teacher * Section evaluates to true for each pair of Teacher object and
Section object that are associated with each other. The calculus expression returns
the names of the qualified Teacher objects and the section# of the qualified Section
objects.

Query 2. Display the "department names for all departments that offer 6000 level
courses that have current offerings (sections). Also, display the titles of these courses

66

and the textbooks used in each section.

Department.name, Course.title, Section.textbook
WHERE Department * Course * Se, ction

AND Course.course# /,= 6000 AND Course.course# i 7000

In this calculus expression, the wff specifies those objects in classes Department,
Course, and Section that are associated with one another in the manner that a
Department object is associated with a Course object, which is in turn associated
with a Section object; also, the Course objects' attribute values of course# must be
in the range between 6000 and 7000. The calculus; expression returns the attribute
values.of those database objects that satisfy the wff.

Query 3. Display the names of those graduate students who are TAs but not RAs.

Grad.name
WHERE (Grad * TA) AND (FORALL RA (Grad!RA))

This query shows the use of nonassociation between objects and the universal
quantifier. The wff in the WHERE clause identifies those objects in the classes
Grad, TA and RA satisfying the condition that those Grad objects associated with
TA objects are not associated with any RA object

Query 4. Display the ssn's of all graduate students (whether they have advisors
or not) and for those graduate students who have advisors, display their advisors'
names.

Grad.ssn, Faculty.name
WHERE Grad * Advising * Faculty OR Grad

This query illustrates the calculus' capability in specifying heterogeneous association
patterns in an expression. The wff in the WHERE clause specifies two different
association patterns: Grad * Advising * Faculty and Grad. These two association
patterns are connected by the logical OR operator to capture the semantics of the
outer-join concept introduced by Codd (1979). The calculus allows heterogeneous
patterns of object associations to be unioned to retain all Grad objects, whether
they are advised by faculty members or not. This is different from the relational set
operations which operate only on union-compatible relations. The logical OR and
AND operators can operate on potentially very complex heterogeneous patterns.

Query 5. Find the faculty member(s) in the Electrical Engineering department who
advise(s) all the EE department's graduate students.

RANGE OF Gradl IS
(Grad WHERE Grad * Student * Department AND Department.name = "EE")
Faculty WHERE FORALL Gradl (Faculty * Advising * Grad1)

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 67

This query first defines a variable that ranges over a set of graduate students whose
major department is the Electrical Engineering department. Then, it searches for
the faculty member(s) who advise(s) all the graduate students in that set. To express
the semantics of this query in the calculus, object variable Grad1 is ranged over
the class Grad to represent the subset of graduate students who are in the EE
department. In addition, the universal quantifier is applied to Grad1 to represent
the semantics of one faculty member advising all the graduate students in Grad1.
This example illustrates the closure property of the object calculus in which Grad1
identifies a subdatabase which in turn becomes an operand of the expression in the
second WHERE clause.

The object calculus can also be used to specify complex nonlinear association
patterns (i.e., tree or lattice structures) in a database by using the logical AND
and OR constructs. For example in Figure 6(a), a complex association pattern is
specified in the database schema level. In the figure, the logical AND branching
from class B specifies that any object in class B must associate with an object in
class C and with an object in class D as well. Likewise, the logical OR branching
from class C specifies that any object in class C must associate with either an object
in class E or an object in class E Figure 6(b) further illustrates this association
pattern with instantiated objects in the database. For such a complex pattern, it
can be expressed in the object calculus as

(A , B , C , E V A , B , C ,F) A (A * B * D * G)

We should clarify one very important point. The primary purpose of the
calculus is not merely for data retrieval, though the previous examples may suggest
so. The fundamental intent of the calculus is to allow the writing of expressions
that identify objects satisfying specified patterns of object associations and perform
system-defined and/or user-defined database operations (e.g., DELETE, UPDATE,
ASSIGN_PROJEC'I~ etc.) on these objects. Therefore, the object calculus provides
a theoretical foundation for writing OO query expressions. It can serve as a template
when designing for OO query languages. To demonstrate this point, we give the
following example to show how an (pseudo) OO query language can be designed
based on the object calculus.

Structurally, the (pseudo) query language has two parts: the subdatabase defi-
nition part and the operation part. In the subdatabase part, by using object calculus
expressions, we specify a subdatabase that satisfies the user-defined semantics. In
the operation part we can specify system-defined or user-defined operations that are
performed on the specified subdatabase. Consider two examples that respectively
employ a system-defined operation and a user-defined operation with respect to the
database schema of Figure 1.

Example 1. Delete those Faculty members who are not currently teaching any
section of a course.

DELETE

68

Figure 6. A complex association pattern in the database

(a)

F

G

(b)

Faculty WHERE FORALL Section (Faculty • 'reacher ! Section)

In this query, the subdatabase is specified by the object calculus expression:

Faculty WHERE FORALL Section (Faculty * Teacher ! Section)

and the system-defined operation DELETE is performed on the Faculty objects that
constitute the subdatabase returned by the calculus expression.

Example 2. Assign projects to those students who are in EE department.

ASSIGN_PROJECT
Student WHERE (Student * Department) AND (Department.name = "EE")

In this query, the object calculus expression:

Student WHERE (Student * Department) AND (Department.name = "EE")

specifies the Student objects as the subdatabase, and the user-defined operation

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 69

ASSIGN_PROJECT is performed on these objects in the subdatabase. Here, we
assume that the user-defined operation ASSIGN_PROJECT is implemented as a
method of the class Student.

5. Using Object Calculus to Express Semantic Constraints

in O 0 Databases

For a database to be an accurate model of an application world, semantic constraints
that identify the invalid or illegal states pertaining to the real world entities and their
relationships need to be captured in the database. Commonly, database constraints
are specified as integrity and security rules. The semantics of these rules are enforced
by the DBMS at all times. If any database object violates a rule, then the database
enters into an illegal state.

We can use object calculus wffs to represent rules. However, the semantics of
a wff used as a rule are somewhat different from those of a wff used as a search
query. In a query expression, a wff is used to identify those database objects which
evaluate the wff to true. In a rule expression, it is used to express a constraint
such that all database objects comply with the constraint. That is, all the concerned
database objects must satisfy the rule. We now give the formal definition. A rule
is said to be satisfied if and only if its object calculus wff expression is evaluated to
true under all interpretations in its database domain. A rule is said to be violated
if and only if its object calculus wff expression is evaluated to false under some
interpretation in its database domain.

A database needs to maintain not only the conventional integrity constraints
supported by existing commercial systems but also many other application-oriented
constraints which can be represented in an object-oriented database by patterns of ob-
ject associations (Su and Alashqur, 1991). Certain association patterns among objects
may need to be maintained in a database at all times. In addition, the existence/non-
existence of some association patterns may depend on the existence/non-existence
of other association patterns. In the following subsections, we describe various types
of constraints that may exist in object-oriented databases and formally specify these
constraints by rules using object calculus expressions. The usage of object variables
is self-explanatory in the following examples; thus the definitions of these variables
are omitted.

5.1 Constraints on Attribute Values

This type of constraint is like the ones in the relational model in that restrictions
are specified on the attribute values. They can be represented simply by first-order
predicates of the object calculus.

Example 1 (unconditional constraint). Every employee's salary must be higher than
$25K.

70

Rule 1: Employee.salary > 25K

Note that this rule is expressed as a wff with a free object variable (i.e., Employee).
The number of interpretations for this wff is equal to the number of Employee
object instances in a given database. For this rule to be satisfied, the wff must be
true in all the interpretations. On the other hand, :if the wtf is false in any of its
interpretations, then the rule is violated. The semantics of this rule can also be
expressed by the following logically equivalent wff with a universal quantifier:

V Employee (Employee.salary > 25K)

That is, given a database, these two rules have the same truth value. Their difference
is that the second expression does not have a free object variable. In the constraint
rules given below, we do not use quantifiers if they are not necessary.

Example 2 (conditional constraint). Employees whose ages are over 45 must have
salaries higher than $35K.

Rule 2: IF Employee.age > 45 THEN Employee.salary > 35K

or equivalently

(Employee.age > 45) V (Employee.salary > 35K)

5.2 Constraints on Association Patterns

Some constraints can be specified in terms of the object association patterns. These
constraints can be classified into two categories. The first category is constraints
that specify nonpermissible extensional pattern(s) of object associations. That is,
the constraints enforce the restrictions that certain association patterns of objects
in some specified classes are not allowed to exist in the database at any point in
time. The second category is constraints that specify that certain object patterns
must (or must not) exist if some other object patterns do (or do not) exist. These
two categories of constraints are illustrated by the following examples using the
university database schema in Figure 1.

5.2.1 Nonpermissiblo Extensional Patterns. This type of constraint states that, if a
database operation results in the formation of nonpermissible extensional pattern,
then the stated constraint is violated.

Example 3. A faculty member must have a Ph.D. degree.

Rule 3: 3Faculty(Faculty.degree ~_z "Ph.D. ")

or equivalently

V Faculty(Faculty. degree = "Ph.D. ")

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 71

If a Faculty instance in the database is updated and the attribute degree has a value
other than "Ph.D.," or a new instance is created with that value, this rule is violated
and some action should be taken by the DBMS to correct the situation.

Example 4. An undergraduate student cannot register in a graduate course (i.e.,
one with a course number greater than 5000).

Rule 4: ~ (Undergrad * Section * Course A Course.course# > 5000)

This rule prohibits an object association pattern specifying that an Undergrad
instance is associated with a Section instance and the Section instance is associated
with a Course instance whose course# is greater than 5000.

5.2.2 Conditional Constraints. This type of constraint explicitly enforces the rela-
tionship between object association patterns. That is, the existence of one association
pattern implies the existence of another association pattern in the database. The
implication construct in the object calculus

IF wff THEN wff

represents precisely the semantics of this kind of constraint, where each wff specifies
an object association pattern. The following examples are constraints of this type.

Example 5. A graduate student who is an RA must have an advisor, that is, if a
Grad instance is associated with an RA instance, it must also be associated with an
Advising instance.

Rule 5: IF Grad * RA THEN 3 Advising(Grad * Advising)

or equivalently

(Grad * R/t) V3Advising(Grad * Advising)

Example 6. TAs who are majoring in the department of Electrical Engineering
cannot teach courses that belong to other departments.

Rule 6:
RANGE OF Dept_l IS Department

RANGE OF Dept_2 IS Department

IF TA • Dept_l /k Dept_l.name = "EE"
THEN --1 (TA • Teacher * Section * Course * Dept_2 A Dept_2.name 5~ "EE")

In this example, we use the alias variables Dept_l and Dept_2 for class Department
so that these two variables can both represent objects of the same class. We also

72

assume that the underlying data model captures tile generalization or superclass-
subclass semantics. Therefore, the TA instances inherit the properties (specifically,
the associations) of the Student instances. We can use the expression, TA * Dept_l,
as a shorthand for TA * Grad * Student * Dept_l.

Example 7. A faculty member who is not an advisor of any graduate student must
teach at least one section.

Rule 7: IF 3Advising(Faculty * Advising) THEN 3Section(Faculty * Section)

or equivalently

3Advising(Faculty • Advising) V 3 Section(Faculty * Section)

This rule will be violated if there is a Faculty instance that is associated with neither
an Advising instance nor a Section instance. In other words, the pattern of an
isolated Faculty instance is not allowed to exist in the consistent database.

From the above examples, one can see that the object calculus can express
many types of constraints for OO databases. It can serve as a theoretical basis for
the design of high-level constraint languages in OO databases with various syntactic
sugar (i.e, syntactic constructs that make the language easier to use).

A constraint language defines a complete rule structure which usually includes
the trigger condition, constraint rule body, and/or corrective action (Date, 1981;
Stonebraker et al., 1987; Su and Alashqur, 1991). The rule body is the most
important part of a constraint language; it specifies the constraint that the database
must comply with. As shown in the above examples, our object calculus can be
used to express well the constraint rules in the rule body. Because not all the
system-defined and user-defined operations will change a database from a legal
status to an illegal status, the constraint rules need not be checked and fired all the
time. The trigger condition specifies when the rule should be checked and enforced.
In addition, some corrective actions can be specified in a rule to cause actions to
be taken if a constraint rule (i.e., the rule body) is violated. As a result, a complete
structure of a rule in a constraint language can have the following structure:

Trigger_condition (<Trigger_time, operat ion> pairs)
Rule_body (the object calculus wff)
Corrective_action (procedures/methods)

An example of a complete rule is given below:

Constraint Rule: After update Grad, TA, or RA, a graduate student cannot be both
a TA and an RA at the same time. If the rule is violated, print a message to warn
the user.

Trigger_condition (After update(Grad), After update(TA), After update(RA))
(IF Grad * TA THEN V RA(Grad] RA)) A

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 73

(IF Grad * RA THEN k/TA(Grad ! TA))

Corrective_action (Message: ("A graduate student cannot be both a TA and an
R~:'))

6. System Implementation Status

An object-oriented knowledge base management system (OSAM*.KBMS) has been
designed and implemented in the Database Systems Research and Development
Center at the University of Florida. In the system, a high-level query language,
called OQL (Alashqur et al., 1989), and a high-level constraint language (Su and
Alashqur, 1991) have been developed based on the object-oriented view of databases
as patterns of object and class associations (although its development had preceded
the development of the object calculus). The OQL is a non-procedural OO query
language. It is an association- or pattern-based query language instead of a more
traditional attribute-based query language. It allows data search conditions of
different degrees of complexity to be specified uniformly and simply as patterns of
object class associations instead of comparing values of keys and foreign keys.

The high-level constraint language has trigger and rule speqification constructs
for declaratively specifying semantic constraints. In a constraint rule, the association
pattern specification is used so that a complex pattern of object associations can be
stated as the condition for activating some operations. In addition to the association
pattern specified in the constraint rule, the activation of a rule also can be made
subject to various trigger conditions and time constraints as explained in the previous
section.

Both OQL and the constraint language have been incorporated in a knowledge
programming language called K (Shyy and Su, 1991; Arroyo, 1992). The processing
of queries and knowledge rules is supported by persistent knowledge bases. In the
present implementation, K programs are translated in C+ + code. During execution,
the translated programs make calls to the knowledge-based management system to
retrieve, store or update the persistent data, to make use of the trigger and rule
processing facility, and to make use of other object management functions. The object
manager is built on top of the commercial system ONTOS which provides all the
needed storage management functions. A prototype system has been demonstrated
in an international conference (Su et al., 1993).

7. Conclusion

In this article, we introduced a pattern-based object calculus which incorporates the
concept of association pattern specification into the first-order predicate calculus.
This incorporation allows complex patterns of object associations to be specified
in wffs, thus greatly increasing the expressive power of the calculus. Specifically,
the greater expressive power of the object calculus over that of the relational

74

calculus can be shown in three aspects. First, based on our OO view of databases,
relationships between objects (or tuples, in the relational model) are expressed
explicitly in the database. Matching of keys and foreign keys in calculus expressions
is not required; thus the expressions for complex queries are simplified. Second, the
"nonassociation" operator, whose semantics are not easily expressible in relational
calculus or other languages, is included explicitly in the object calculus. Third, this
calculus allows set-oriented operations to be performed on both homogeneous and
heterogeneous object association patterns, whereas set operations in the relational
model can only be performed on union-compatible (i.e., homogeneous) relations.
Furthermore, the object calculus can be used in a uniform fashion to express search
queries involving complex object association patterns and to express various kinds of
semantic constraints and deductive rules in OO databases. Expressions of this object
calculus are safe, and the closure property is also preserved. One of the potential
applications of the proposed formalism is that its precise interpretive semantics can
serve as the theoretical foundation for designing high-level OO query languages
and constraint languages.

References

Alashqur, A.M., Su, S.Y.W., and Lam, H. OQL:: An object-oriented Query Lan-
guage. Proceedings of the Fifth International Conference on l~ry Large Databases,
Amsterdam, 1989.

Arroyo, J. The design and implementation of K.I: A next-generation knowledge base
programming language. Master's Thesis, Department of Electrical Engineering,
University of Florida, Gainesville, 1992.

Banerjee, J., Chou, H.-T., Garza, J.E, Kim, W., Woelk, D., Ballon, N., and Kim,
H.-J. Data model issues for object-oriented applications. A C M Transactions on
Office Information Systems, 5(1):3-26, 1987.

Batory, D. and Kim, W. Modeling concepts for VLSI CAD objects. A C M Transactions
on Database Systems, 10(3):322-346, 1985.

Carey, M.J., DeWitt, D.J., and Vandenberg, S.L. A data model and query language
for EXODUS. Proceedings of the ACM SIGMG'D Conference, Chicago, 1988.

Chen, W. and Warren, D.S. C-logic for complex objects. Proceedings o f t h e A C M
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Phila-
delphia, PA, 1989.

Codd, E. Relational completeness of database sublanguages," In: Rystin, R., ed.,
Database Systems, Courant Computer Science Symposia Series, Vol. 6, Englewood
Cliffs, NJ: Prentice-Hall, 1972.

Codd, E. Extending the database relational model to capture more meaning. A C M
Transactions on Database Systems, 4(4):397-434, 1979.

Date, C. Referential integrity. Proceedings of the Seventh International Conference on
l~ry Large Data Bases, Cannes, France, 1981.

VLDB Journal 3 (1) Kamel: Pattern-Based Object Calculus 75

Date, C. An Introduction to Database Systems. 3rd ed. Reading, MA: Addison-Wesley
Publishing Company, 1982.

Fishman, D.H., Beach, D., Cate, H.E, Chow, E.C., Connors, T., Davis, J.W., Derrett,
N., Hoch, C.G., Kent, W., Lyngback, E, Mahbod, B., Neimat, M.A., Ryan, T.A.,
and Shan, M.C. Iris: An object-oriented database management system. ACM
Transactions on Office Information Systems, 5(1):48-69, 1987.

Guo, M., Su, S.Y.W., and Lam, H. An aAssociation algebra for processing object-
oriented databases. Proceedings of the Seventh International Conference on Data
Engineering, Kobe, Japan, 1991.

Hull, R. and King, R. Semantic database modeling: Survey, application, and research
issues. ACM Computing Surveys, 19(3):201-260, 1987.

Kifer, M. and Lausen, G. F-Logic: A higher-order language for reasoning about
objects, inheritance, and scheme. ACMSIGMOD Record, 18(2):134-146, 1989.

Kifer, M. and Wu, J. A logic for object-oriented logic programming (Maier's O-
logic revisited). Proceedings of the ACM-SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, Philadelphia, PA, 1989.

Lecluse, C., Richard, P., and Velez, E 02, an object-oriented data model. Proceedings
of the ACM SIGMOD Conference, Chicago, 1988.

Maier, D. A logic for objects. Proceedings of the Workshop on Foundations of Deduc-
tive Databases and Logic Programming, Washington D.C., 1986.

Maier, D., Stein, J., Otis, A., and Purdy, A. Development of an object-oriented
DBMS. Proceedings of the First OOPSLA Conference, Portland, OR, 1986.

Manola, E and Dayal, U. PDM: An object-oriented data model. Proceedings of the
First International Workshop on Object-Oriented Database Systems, Asilomar, CA,
1986.

Morgenstern, M. Constraint equations: Declarative expression of constraints with
automatic enforcement. Proceedings of the Tenth International Conference on l,~ly
Large Data Bases, Singapore, 1984.

Object Design, Inc. ObjectStore Reference Manual, Object Design, Inc., Burlington,
MA, October, 1990.

Ontologic, Inc., "Vbase, Integrated Object Database," A set of user manuals,
Ontologic, Inc., Billerica, MA., 1988.

Osborn, S.L. Identity, Equality and Query Optimization. In: Dittrich, K.R., ed.,
Advances in Object-Oriented Database Systems, New York: Springer-Verlag, 1988,
pp. 346-351.

Osborn, S.L. Algebraic query optimization for an object algebra. Technical Report
No. 251, University of Western Ontario, 1989.

Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. An introduction to
Trellis/Owl. Proceedings of the First OOPSLA Conference, Portland, OR, 1986.

Shaw, G.M. and Zdonik, S.B. An object-oriented query algebra. Bulletin ofthelEEE
Technical Committee on Data Engineering, 12(3):29-36, 1989.

Shepherd, A. and Kerschberg, L. PRISM: A knowledge-based system for semantic
integrity specification and enforcement in database systems. Proceedings of the

76

ACM SIGMOD Conference, Boston, MA., 1984.
Shipman, D. The functional data model and the data language DAPLEX. ACM

Transactions on Database Systems, 6(1):140-173, 1981.
Shyy, Y.-M. and Su, S.Y.W. K: A high-level knowledge-based programming language

for advanced database application. Proceedings of the ACM SIGMOD Conference,
Denver, Colorado, 1991.

Stonebraker, M., Hanson, E., and Hong, C. The design of the POSTGRESS rule
system. Proceedings of the Third International Conference on Data Engineering Los
Angeles, 1987.

Straube, D.D. Query and query processing in object-oriented database systems.
Ph.D. Thesis, Dept. of Computer Science, University of Alberta, 1991.

Su, S.Y.W and Alashqur, A.M. A pattern-based constraint specification language
for object-oriented databases. Proceedings of COMPCON, San Francisco, 1991.

Su, S.Y.W, Krishnamurthy, V., and Lam, H. An object-oriented semantic association
model (OSAM*). In: Kumara, S., Soyster, A., and Kashyap, R., eds., Artificial
Intelligence: Manufacturing and Practice, Norcross, GA: The Institute of Industrial
Engineers, Industrial Engineering and Management Press, 1989, pp. 463-494.

Su, S.Y.W., Guo, M., and Lam, H. Association algebra: A mathematical foun-
dation for object-oriented databases. IEEE Transactions on Knowledge and Data
Engineering 5(5):775-798, 1993.

Su, S.Y.W, Lam, H., Eddula, S., Arroyo, J., Prasad, N., and Zhuang, R. OSAM*.
KBMS: An object-oriented knowledge base management system for supporting
advanced applications. Proceedings of ACM SIGMOD Conference, Washington
D.C., 1993.

Ullman, J.D. Principles of Database Systems, Reading, MA: Computer Science Press,
1982.

Urban, S.D. and Delcambre, L.M.L. Constraint analysis for specifying perspectives of
class objects. Proceedings of the Fifth International Conference on Data Engineering
Los Angeles, CA., 1989.

Zaniolo, C. The Database Language GEM. Proceedings ofACM SIGMOD Confer-
ence, San Jose, CA, 1983.

