
A Multi-Purpose Implementation of Mandatory Access

Control in Relational Database Management Systems

Walid Rjaibi Paul Bird

IBM Toronto Software Laboratory
8200 Warden Avenue
Markham, Ontario

Canada
{wrjaibi, pbird}@ca.ibm.com

Abstract

Mandatory Access Control (MAC) implemen-
tations in Relational Database Management
Systems (RDBMS) have focused solely on
Multilevel Security (MLS). MLS has posed
a number of challenging problems to the
database research community, and there has
been an abundance of research work to ad-
dress those problems. Unfortunately, the use
of MLS RDBMS has been restricted to a few
government organizations where MLS is of
paramount importance such as the intelligence
community and the Department of Defense.
The implication of this is that the investment
of building an MLS RDBMS cannot be lever-
aged to serve the needs of application domains
where there is a desire to control access to ob-
jects based on the label associated with that
object and the label associated with the sub-
ject accessing that object, but where the label
access rules and the label structure do not nec-
essarily match the MLS two security rules and
the MLS label structure. This paper intro-
duces a flexible and generic implementation of
MAC in RDBMS that can be used to address
the requirements from a variety of application
domains, as well as to allow an RDBMS to ef-
ficiently take part in an end-to-end MAC en-
terprise solution. The paper also discusses the
extensions made to the SQL compiler compo-
nent of an RDBMS to incorporate the label

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

access rules in the access plan it generates for
an SQL query, and to prevent unauthorized
leakage of data that could occur as a result of
traditional optimization techniques performed
by SQL compilers.

1 Introduction

Mandatory Access Control (MAC) is a means of re-
stricting access to objects based on the sensitivity
(as represented by a label) of the information con-
tained in the objects and the formal authorization (i.e.,
clearance) of subjects to access information of such
sensitivity[8]. A well-known implementation of MAC
is Multilevel Security (MLS), which, traditionally, has
been available mainly on computer and software sys-
tems deployed at highly sensitive government organi-
zations such as the intelligence community or the U.S.
Department of Defense. The Basic model of MLS was
first introduced by Bell and LaPadula[9]. The model
is stated in terms of objects and subjects. An object is
a passive entity such as a data file, a record, or a field
within a record. A subject is an active process that
can request access to objects. Every object is assigned
a classification, and every subject a clearance. Classi-
fications and clearances are collectively referred to as
labels. A label is a piece of information that consists of
two components: A hierarchical component and a set
of unordered compartments. The hierarchical compo-
nent specifies the sensitivity of the data. For example,
a military organization might define levels Top Secret,
Secret, Confidential and Unclassified. The compart-
ments component is nonhierarchical. Compartments
are used to identify areas that describe the sensitivity
or category of the labeled data. For example, a mili-
tary organization might define compartments NATO,
Nuclear and Army. Labels are partially ordered in
a lattice as follows: Given two labels L1 and L2,
L1 >= L2 if and only if the hierarchical component
of L1 is greater than or equal to that of L2, and the

1010



compartment component of L1 includes the compart-
ment component of L2. L1 is said to dominate L2.
MLS imposes the following two restrictions on all data
accesses:

• The Simple Security Property or “No Read Up”:
A subject is allowed a read access to an object
if and only if the subject’s label dominates the
object’s label.

• The *-Property (pronounced the star property) or
“No Write Down”: A subject is allowed a write
access to an object if and only if the object’s label
dominates the subject’s label.

1.1 Problem Statement

MAC implementations in Relational Database Man-
agement Systems (RDBMS) have focused solely on
MLS. MLS has posed a number of challenging prob-
lems to the database research community, and there
has been an abundance of research work to address
those problems. There has also been three commercial
MLS RDBMS offerings, namely, Trusted Oracle[16],
Informix OnLine/Secure[17], and Sybase Secure SQL
Server[20]. Unfortunately, the use of MLS RDBMS
has been restricted to a few government organizations
where MLS is of paramount importance such as the in-
telligence community and the Department of Defense.
In fact, very few commercial organizations need such
type of security. The implication of this is that the in-
vestment of building an MLS RDBMS cannot be lever-
aged to serve the needs of application domains where
there is a desire to control access to objects based on
the label associated with that object and the label as-
sociated with the subject accessing that object, but
where the label access rules and the label structure
do not necessarily match the MLS two security rules
and the MLS label structure (i.e., a hierarchical com-
ponent and a set of unordered compartments). The
question that begs to be asked is therefore the follow-
ing: Do such application domains exist and, if so, what
are they?

We contend that the answer to that question is an
unequivocal yes. Privacy[19] is one example of such
application domain. Generally, a privacy policy indi-
cates for which purposes an information is collected,
whether or not it will be communicated to others,
and for how long that information is retained before
it is discarded. For example, a user cannot access a
customer record for the purpose of sending that cus-
tomer marketing information if that customer did not
agree to receive such information. Access to privacy-
sensitive data can be regarded as analogous to access
to MLS data in the sense that in both cases there is
a tag associated with the object being accessed and
the subject accessing that object. The tag represents
a “purpose” in the case of the former and represents

a “security label” in the case of the latter. Unfor-
tunately, a MAC implementation in an RDBMS that
strictly implements MLS fails to address privacy re-
quirements for the following two main reasons. First,
MLS labels include a hierarchical component that is
not applicable in the case of privacy. Next, the MLS
security properties do not apply in the context of pri-
vacy. For example, to read an object in MLS, the
subject’s compartment component must include that
object’s compartment component (the simple security
property). In privacy, the rule is exactly the opposite.
That is, if an object is tagged with the purposes mar-
keting and purchase, then a user accessing that object
for the purpose of sending marketing information must
be allowed to access that object.

Another application domain is private banking. In
private banking, country laws and regulations often re-
quire to limit the amount of data that can be viewed
by a bank employee. For example, Swiss banking laws
do not allow a Swiss bank employee located in Toronto
to access account information for customers based in
Switzerland. Typically, banking applications code this
fine-grained access control in the application itself, as
opposed to delegating this task to the RDBMS. Un-
fortunately, this application-aware approach has made
enterprise security policies a laborious and complex
task. It also has the drawback of exposing the secu-
rity policies to the application programmers. If each
customer account is tagged with a label indicating the
geographical location of the customer and if each bank
employee can be assigned a label that also indicates
the geographical location of that employee (for exam-
ple, based on the system security context established
when that employee logs on to the database), then an
RDBMS that implements a form of MAC where the
database administrator could define the label struc-
ture and the label access rules could relieve the ap-
plications from implementing such fine-grained access
control policies.

Moreover, the ever increasing enterprise demands
for more security has led to the emergence of label
security products that provide the ability to set up
and control access based upon labels throughout an
entire network from end-to-end. For example, such la-
bel security products have the ability to control the
network to decide whether or not a particular labeled
data row can be transmitted on a particular channel
or be delivered to a particular workstation on that net-
work. An important advantage of such label security
products is their ability to offer a centrally managed
tool for defining label access policies and for assign-
ing access labels to users as well as to other entities
on the network. Traditional implementations of MAC
in RDBMS (i.e., MLS) do not offer the required flex-
ibility to efficiently integrate with such label security
products and to provide pervasive system coverage us-
ing a unified and centrally managed label access policy.

1011



Therefore, there is a need for a flexible and generic
implementation of MAC in RDBMS that can be used
to address the requirements from a variety of appli-
cation domains, including those of MLS, and to ef-
ficiently take part in an end-to-end MAC enterprise
solution.

1.2 Contributions

The contributions made in this paper can be summa-
rized as follows:

1. A methodology to define labels and to set up a
database table such that access to a row in that
table is based upon the label associated with that
row and the label associated with the user access-
ing that row. More specifically, the methodology
introduces a number of extensions to SQL that
would allow a database administrator to:

• Define label types

• Define label access rules and exceptions to
them

• Assign labels and exceptions to database
users

• Attach a label type and a set of label access
rules to a database table

2. Extensions to the SQL compiler component of an
RDBMS to:

• Incorporate the label access rules in the ac-
cess plan it generates for an SQL query

• Prevent unauthorized leakage of data that
could occur as a result of traditional opti-
mization techniques performed by SQL com-
pilers

3. Extensions to the runtime processor component
of an RDBMS to enforce label access rules

4. A method to allow an RDBMS to efficiently take
part in an end-to-end MAC enterprise solution

1.3 Synopsis

Section 2 gives a brief survey of MAC implementations
in RDBMS. Section 3 introduces our methodology for
defining labels and for setting up a database table such
that access to a row in that table is based upon the
label associated with that row and the label associated
with the user accessing that row. Section 4 presents
our extensions to the SQL compiler component of an
RDBMS to incorporate the label access rules in the ac-
cess plan it generates for an SQL query, and to prevent
unauthorized leakage of data that could occur as a re-
sult of traditional optimization techniques performed
by SQL compilers. Section 5 describes our extensions
to the methodology introduced in section 3 in order to

allow an RDBMS to efficiently take part in an end-to-
end MAC enterprise solution. Lastly, section 6 sum-
marizes our results and discusses future work.

2 Related Work

MAC implementations in Relational Database Man-
agement Systems have focused solely on MLS, which
is of paramount importance to a few government or-
ganizations such as the intelligence community or the
Department of Defense. In fact, there has been an
abundance of research within the last two decades or
so in the area of multilevel secure relational databases.
The results of such research can be divided into three
broad areas as follows.

2.1 Multilevel Secure Relational Database

Models

The Sea View model[1] was the pioneering formal mul-
tilevel secure relational database designed to provide
mandatory access control. It extended the concept of
a database relation to include the security labels. A
relation that is extended with the security labels is
called a multilevel relation. The Sea View model also
coined the concept of polyinstantiation, which refers to
the simultaneous existence of multiple tuples with the
same primary key, where such tuples are distinguished
by their security labels. In order to avoid covert chan-
nels, subjects with different security labels are allowed
to operate on the same database relation through
the use of polyinstantiation[1]. The Jajodia-Sandhu
model[2] was derived from the Sea View model. It
was shown in [3] that the Sea View model can re-
sult in the proliferation of tuples on updates and the
Jajodia-Sandhu model addresses this drawback. The
Smith-Winslett model[4] was the first model to exten-
sively address the semantics of an MLS database. The
MLR model[5] is based on the Jajodia-Sandhu model,
and also integrates the belief-based semantics of the
Smith-Winslett model. It was shown in [7] that all the
aforementioned models can present users with some
information that is difficult to interpret. The BCMLS
model[6] addresses those concerns by including the se-
mantics of an unambiguous interpretation of all data
presented to the users.

2.2 Multilevel Secure RDBMS Architectures

Multilevel secure RDBMS architectures schemes can
be divided into two general categories: The Trusted
Subject architecture and the Woods Hole architec-
tures.

The Trusted Subject architecture[10] is a scheme
that contains a trusted RDBMS and a trusted oper-
ating system. The RDBMS is custom-developed to
include all the required security rules, but uses the as-
sociated trusted operating system to make actual disk
data accesses. A benefit of this scheme is that the

1012



RDBMS has access to all levels of data at the same
time, which minimizes retrieval and update process-
ing. However, this scheme results in a special purpose
RDBMS that requires a large amount of trusted code
to be developed and verified along with the normal
RDBMS features.

The Woods Hole architectures assume that an un-
trusted off-the-shelf RDBMS is used to access data and
that trusted code is developed around that RDBMS
to provide an overall secure RDBMS. They can be di-
vided into two main categories: The kernelized archi-
tectures and the distributed architectures[10, 11].

The kernelized architecture scheme uses a trusted
operating system and multiple copies of the RDBMS,
where each copy is associated with some trusted front-
end. Each pair (trusted front-end, RDBMS) is asso-
ciated with a particular security level. The trusted
operating system ensures that data at different secu-
rity levels is stored separately, and that each copy of
the RDBMS gets access to data that is authorized for
its associated security level. A benefit of this scheme
is that data at different security levels is isolated in
the database, which allows for higher level assurance.
However, this scheme results in an additional over-
head as the trusted operating system needs to separate
data at different security levels when it is added to the
database and might also need to combine data from
different security levels when data is retrieved by an
RDBMS copy that is associated with a high security
level.

The distributed architecture scheme uses multiple
copies of the trusted front-end and RDBMS, each as-
sociated with its own database storage. In this archi-
tecture scheme, an RDBMS at security level l contains
a replica of every data item that a subject at level l
can access. Thus, when data is retrieved, the RDBMS
retrieves it only from its own database. Another ben-
efit of this architecture is that data is physically sepa-
rated into separate hardware databases. However, this
scheme results in an additional overhead when data is
updated as the various replicas need to be kept in sync.

2.3 Multilevel Secure Transaction Processing

Although the two MLS security properties described
above prevent direct legal flow of information from a
security level to another nondominated security level,
they are not sufficient to ensure that security is not
compromised since it could be possible for leakage
of information to occur through indirect means via
covert channels. A covert channel can easily be es-
tablished with conventional concurrency control algo-
rithms such as two-phase locking (2PL) and times-
tamp ordering (TO). In both 2PL and TO algorithms,
whenever there is contention for the same data item
by transactions executing at different security levels,
a lower level transaction may be either delayed or sus-
pended to ensure correct execution. In such a scenario,

two colluding transactions executing at high and low
security levels can establish an information flow chan-
nel from a high security level to a low security level
by accessing the selected data item according to some
agreed-upon code[12].

Considerable effort has been devoted to the de-
velopment of efficient, secure algorithms for the ma-
jor schemes of RDBMS architectures described above.
In [13], Keefe et al. present a formal frame-
work for secure concurrency control in multilevel
databases. Lamport[14] offers solutions to the secure
readers/writers problem. While these solutions are se-
cure, they do not yield serializable schedules when ap-
plied to transactions, and they suffer from the prob-
lem of starvation, i.e., transactions that are reading
data items at a low security level may be delayed
indefinitely[18]. In [15], Ammann and Jajodia offer
two timestamp-based algorithms that yield serializable
schedules, but both suffer from starvation. On the
commercial secure RDBMS side, both Trusted Oracle
RDBMS[16] and Informix OnLine/Secure RDBMS[17]
offer concurrency control solutions that are free from
covert channels.

3 Methodology for Setting up MAC in
an RDBMS

The methodology we propose allows a database ad-
ministrator to define labels and to set up a database
table such that access to a row in that table is based
upon the label associated with that row and the la-
bel associated with the user accessing that row. More
specifically, the methodology allows the database ad-
ministrator to:

• Define label types

• Define label access rules and exceptions to them

• Assign labels and exceptions to database users

• Attach a label type and a set of label access rules
to a database table

We now introduce our extensions to SQL to imple-
ment this methodology. The goal of this exercise is
not to describe the blueprint for the implementation.
Rather, we will focus on the new SQL concepts that
must be implemented to support such methodology.
Also, we have chosen not to overload the paper with
the details of the exact syntax of the SQL extensions
proposed, as we believe that such level of details is
more appropriate for a standardization proposal to the
SQL standard committee. However, we will illustrate
the syntax and the concepts introduced via examples.

3.1 Label Component

A label component is a database entity that can be
created, altered and dropped. It is introduced as a

1013



building block for labels (i.e., a label is composed of
one or more label components). The label component
definition specifies the set of valid elements for that
label component. This set of elements can be either
ordered or unordered (the default). In an ordered set,
the order in which the elements appear is important:
The rank of the first element is higher than the rank
of the second element, the rank of the second element
is higher than the rank of the third element, and
so on. To allow database administrators to create,
alter and drop label components, we introduce the
CREATE, ALTER and DROP label component SQL
statements. The CREATE LABEL COMPONENT
SQL statement creates a label component that can
be used to define a label type. The ALTER LABEL
COMPONENT SQL statement permits to add or
drop an element to/from a label component. The
DROP LABEL COMPONENT SQL statement drops
a label component.

Example 1

The following SQL statement creates a label compo-
nent called level and specifies the set of valid values
for this label component.

CREATE LABEL COMPONENT level
OF TYPE varchar(15)
USING ORDERED SET
{“TOP SECRET”, “SECRET”, “CLASSIFIED”}

The following SQL statement creates a label com-
ponent called compartments and specifies the set of
valid values for this label component. Note that the
set specified is unordered.

CREATE LABEL COMPONENT
compartments OF TYPE varchar(15)
USING SET
{“NATO”, “NUCLEAR”, “ARMY”}

The following SQL statement adds a new ele-
ment to the level component and specifies the rank of
this new element within the ordered set.

ALTER LABEL COMPONENT level
ADD ELEMENT “UNCLASSIFIED”
AFTER “CLASSIFIED”

The following SQL statement drops the level
component.

DROP LABEL COMPONENT level

3.2 Label Type

The relationship between a label and a label type
is analogous to the relationship between a data row

and a table schema. As the table schema defines
the set of columns that make up a data row, so the
label type defines the set of label components that
make up a label. To allow database administrators
to create, alter and drop label types, we introduce
the CREATE, ALTER and DROP label type SQL
statements. The CREATE LABEL TYPE creates a
label type by specifying the label components that
make up such label type. The ALTER LABEL TYPE
alters the definition of a label type by adding or
dropping a label component to/from that label type.
The DROP LABEL TYPE SQL statement drops a
label type.

Example 2

The following SQL statement creates a label type
called MLS and specifies its label components.
Note the keyword MULTIVALUED next to the
compartments component. This indicates that the
compartments component can have more than a
single value at a time. This keyword can only be
specified for label components based on an unordered
set (section 3.4 explains the reason behind this choice).

CREATE LABEL TYPE MLS
COMPONENTS level,
compartments MULTIVALUED

The following SQL statement drops the level
component from label type MLS.

ALTER LABEL TYPE MLS DROP level

The following SQL statement drops the MLS la-
bel type.

DROP LABEL TYPE MLS

3.3 Access Labels and Row Labels

We distinguish two types of labels: Access labels and
row labels. Access labels are created and assigned to
database users, which, in conjunction with the label
access rules (section 3.4), determine which labeled
rows these users have access to. To allow database
administrators to create, drop, grant and revoke
access labels, we introduce the CREATE, DROP,
GRANT and REVOKE access label SQL statements.
The CREATE ACCESS LABEL SQL statement
creates an access label based on an existing label type.
The GRANT ACCESS LABEL SQL statement grants
an access label to a database user. The REVOKE
ACCESS LABEL SQL statement revokes an access
label from a database user. The DROP ACCESS LA-
BEL SQL statement drops an access label and revokes
it from any database user to whom it has been granted.

1014



Example 3

The following SQL statement creates an access
label.

CREATE ACCESS LABEL L1

OF LABEL TYPE MLS
level “SECRET”, compartments “NATO”

The following SQL statement grants access label
L1 to database user Joe.

GRANT ACCESS LABEL L1

TO USER Joe

The following SQL statement revokes access la-
bel L1 from database user Joe.

REVOKE ACCESS LABEL L1

FROM USER Joe

The following SQL statement drops access label
L1.

DROP ACCESS LABEL L1

A row label labels a data row in a database ta-
ble. To allow database users to provide a row label
when inserting or updating a row in a database table,
we introduce the ROWLABEL function. ROWLA-
BEL is a means of providing the label value of a data
row.

Example 4

The following INSERT SQL statement shows how the
row label can be provided using the ROWLABEL
function. The statement inserts a row into a database
table called T1 having two columns A and B both of
type integer. We assume that rows in table T1 are
labeled with a label of label type MLS defined above.

INSERT INTO T1 VALUES
(ROWLABEL(“SECRET”, “NATO”), 1, 2)

The following SQL statement shows how the
ROWLABEL function can be used to update the level
component of the row label for the row inserted above.

UPDATE T1 SET
ROWLABEL(level) = “TOP SECRET”
WHERE A = 1 AND B = 2

3.4 Label Access Policy

A label access policy defines the label access rules that
the RDBMS evaluates to determine whether or not a
database user is allowed access to a labeled data row in

a database table. Access rules can be divided into two
categories: Read access rules and write access rules.
Read access rules are applied by the RDBMS when
a user attempts to read a labeled data row (e.g., a
SELECT statement). The RDBMS applies the write
access rules when a user attempts to insert, update or
delete a labeled data row. In both cases, an access rule
is a predicate that puts together the same component
from an access label and a row label and an operator
as follows:

Access Label component-name
<operator>

Row Label component-name

The type of operator allowed depends on the
label component. For label components based on
an ordered set, the operator can be any of the
relational operators {=, <=, <, >, >=, ! =}. For label
components based on an unordered set, the operator
must be one of the set operators {IN, INTERSECT}.
Recall from section 3.2 that a label component based
on an unordered set can be multivalued. That is,
it can contain more than a single value at a time.
Thus, when comparing multivalued label components
we are actually comparing data sets. This is the
reason why the operators supported are set operators,
i.e., inclusion and intersection. Obviously, certain
RDBMS could choose to support additional operators
but we contend that the ones given above would
be the most commonly used. To allow database
administrators to create, alter and drop label policies,
we introduce the CREATE, ALTER and DROP
label policy SQL statements. The CREATE LABEL
POLICY SQL statement creates a label access policy
for a given label type by specifying one or more read
access rules and one or more write access rules. The
ALTER LABEL POLICY SQL statement permits the
addition or dropping an access rule to/from a label
access policy. The DROP LABEL SQL statement
drops a label access policy.

Example 5

The following SQL statement creates a label ac-
cess policy that implements the two MLS properties
introduced in section 1 above (i.e., “No Read Up”
and “No Write Down”).

CREATE LABEL POLICY mls-policy
LABEL TYPE MLS
READ ACCESS RULE rule1

ACCESS LABEL level >= ROW LABEL level
READ ACCESS RULE rule2

ROW LABEL compartments IN
ACCESS LABEL compartments

WRITE ACCESS RULE rule1
ACCESS LABEL level <= ROW LABEL level

1015



WRITE ACCESS RULE rule2
ACCESS LABEL compartments IN
ROW LABEL compartments

The following SQL statement drops read access
rule rule2 from label access policy mls-policy.

ALTER LABEL POLICY mls-policy
DROP READ ACCESS RULE rule2

The following SQL statement drops label access
policy mls-policy.

DROP LABEL POLICY mls-policy

3.5 Exceptions

Exceptions are introduced to provide the flexibility
for some database users to bypass one or more access
rules. For example, in an MLS context, it is often
the case that some special users are allowed to write
information to lower security levels even though
this is in contradiction with the *-security property.
Thus, exceptions are introduced to allow the database
administrator to grant a database user an exception
to bypass one or more access rules in a particular
label access policy. To allow database administrators
to grant and revoke exceptions, we introduce the
GRANT and REVOKE exception SQL statements.
The GRANT EXCEPTION SQL statement grants
a database user an exception to bypass one or more
access rules in a label access policy. The REVOKE
EXCEPTION SQL statement revokes a previously
granted exception from a database user.

Example 6

The following SQL statement grants an excep-
tion to database user Joe so that he can bypass the
write access rules in label access policy mls-policy.

GRANT EXCEPTION
ON WRITE ACCESS RULE rule1, rule2
FROM LABEL POLICY mls-policy
TO USER Joe

The following SQL statement revokes the above
exception from user Joe.

REVOKE EXCEPTION
ON WRITE ACCESS RULE rule1, rule2
FROM LABEL POLICY mls-policy
FROM USER Joe

3.6 Labeled Tables

A labeled table is a database table that contains
labeled data rows. When the database administrator

creates a labeled table he/she specifies the label type
and the label access policy to be used for that table.
The label type determines the structure of the label
to be used to label the table’s data rows and the label
access policy determines the access rules to be used
for enforcing access to that labeled table. To allow
database administrators to create labeled tables, we
extend the CREATE TABLE SQL statement by a
new optional clause to specify the label type and the
label access policy.

Example 7

The following SQL statement creates a database
table T1 and specifies the label type and the la-
bel access policy. Note that in our examples so
far we have used MLS-like label types and label
access policies because they are well understood
by the database research community. But it is
obvious that one can follow the methodology given
in this paper to define any label type and any la-
bel access policy, and attach them to a database table.

CREATE TABLE T1 (A integer, B integer)
LABEL TYPE MLS
LABEL POLICY mls-policy

When creating such table, the RDBMS internally
adds a third column to store the label associated with
each row in this table. The choice of the column’s
type depends on the label type. For example, if the
label type is made up of a single component of type,
say varchar(15), then the column’s type would be
varchar(15). If the label type is made up of more
than a single column then the column’s type must
be an Abstract Data Type (ADT). ADTs have been
introduced in SQL’99[21] and are supported by most
commercial RDBMS. Alternatively, the RDBMS
could choose not use an ADT and store the different
label components in separate columns.

4 Extensions to the SQL Compiler
Component in an RDBMS

When a labeled table is accessed, the RDBMS needs
to enforce two levels of access control. The first level
is the traditional Discretionary Access Control (DAC)
which is implemented by all commercial RDBMS[21].
That is, the RDBMS verifies whether the user at-
tempting to access the table has been granted the re-
quired privilege to perform the requested operation on
that table. A discussion of this level of access con-
trol is beyond the scope of this paper. The second
level is MAC. That is, for each data row accessed, the
RDBMS verifies whether the user is allowed access to
that row based on the label associated with the row
and the user’s access label.

1016



4.1 Enforcing MAC on Labeled Tables

There are two possible ways that MAC can be enforced
when a labeled table is accessed. The first possibility is
for the SQL compiler to modify any query that refers
to a labeled table in order to incorporate the access
rules from the label access policy associated with that
table in the form of regular predicates. Next, the SQL
compiler compiles the modified query and generates an
access plan for the query in the normal fashion. The
main advantage of such an approach is its simplicity.
However, it has a major drawback: The access plan
generated for a query that refers to a labeled table
cannot be reused by other users because it is depen-
dent on the access label of the user who issued the
query. Note that some commercial RDBMS cache the
access plan generated for an SQL query so that it can
be reused the next time the SQL query is submitted.
This has some performance benefits as it eliminates
the need to recompile the query. Another drawback of
this approach is that it could result in unauthorized
leakage of data if special care is not taken by the SQL
compiler. This will be detailed further in section 4.2.

The second possibility is to not modify a query that
refers to a labeled table. Rather, the SQL compiler
inserts logic into the access plan that implements the
access rules from the label access policy associated
with any labeled table referred to in the query. Thus,
when the access plan is executed, the access rules from
the label access policy associated with a labeled table
are evaluated for each data row when that labeled
table is accessed. The general processing algorithm to
be inserted in the access plan for a labeled table is as
follows.

Begin

Fetch the user’s access label (e.g., from a

system catalog table)

if (SELECT access)

{

for each row accessed

{

if (read access rules do not permit access)

{

Skip row

}

}

}

else

{

// INSERT, UPDATE, or DELETE access

for each row

{

if (INSERT or UPDATE)

{

if (the row label provided is not valid with

respect to the label type associated with

the labeled table)

Reject INSERT or UPDATE

}

if (write access rules do not permit access)

Reject INSERT, UPDATE or DELETE

}

}

End

This second approach addresses the two shortcomings
of the previous approach (ı.e., query modification).
That is, it allows the cached access plan to be reused
because the access label of the user who issued the
query is acquired at runtime, and it is more secure as
it will be demonstrated in section 4.2.

4.2 Predicates Evaluation Sequence

SQL compilers have traditionally been guided by per-
formance reasons in selecting the order in which the
predicates contained in a query are evaluated. For ex-
ample, more selective predicates are often evaluated
first to narrow down the set of rows to be passed on to
a subsequent join because join operations are costly. If
the method chosen to enforce MAC on a labeled table
is based on query modification to incorporate the ac-
cess rules in the form of regular predicates, then special
care must be taken in selecting the order in which the
predicates on that table are evaluated to avoid unau-
thorized leakage of labeled data rows. For example,
suppose that a query has a predicate on a labeled ta-
ble that involves a User-Defined Function (UDF). Fur-
ther suppose that this UDF takes the whole data row
as an input parameter and that the UDF source code
makes a copy of the data row outside the database (or
sends it as an e-mail to some destination). Now, sup-
pose that some data row R cannot be returned to the
user who issued the query because this would violate
the access rules from the label access policy associated
with this labeled table. If the predicate involving the
UDF is evaluated prior to evaluating the predicates
that implement the access rules then data row R will
be consumed by the UDF and consequently leaked to
an unauthorized user.

If the RDBMS chooses the query modification
method to enforce MAC on a labeled table, then it
must ensure that the predicates that implement the
access rules are evaluated before any other predicate
so that no labeled row leakage could occur. The alter-
native approach that is not based on query modifica-
tion evaluates the access rules immediately after the
row is accessed, and before any predicate is evaluated.
It is therefore more secure than the query modification
approach. It also allows the SQL compiler to continue
to select the order in which predicates are evaluated
in the usual way.

1017



4.3 Index-Only Access Methods

When selecting an access plan, SQL compilers choose
between three methods of accessing the data in a
database table: Scanning the entire table sequentially,
locating specific table rows by first accessing an index
on the table, or accessing just an index on the table
if all the required columns are part of the index key.
This latter method is known as index-only access. SQL
compilers usually rely on the statistics available about
the table and the indices to choose between those three
access methods. If an index only plan is selected then
the label column is not available and therefore the ac-
cess rules from the label access policy associated with
the table cannot be evaluated. MLS RDBMS extended
the primary key on an MLS relation with the secu-
rity label column in order to allow the simultaneous
existence of multiple tuples with the same (non ex-
tended) primary key (i.e., polyinstantiation)[1]. We
borrow this idea from the MLS work to extend every
index created on a labeled table (including the primary
key) with the row label column(s). This would allow
SQL compilers to continue to choose index only access
methods when this is appropriate, and for the access
rules from the label access policy associated with the
table on which the index is created to be evaluated.

5 Methodology for an End-to-end
MAC Enterprise Solution

The ever-increasing enterprise demands for more secu-
rity has led to the emergence of label security products
that provide the ability to set up and control access
based upon labels throughout an entire network from
end to end. For example, such label security prod-
ucts have the ability to control the network to decide
whether or not a particular labeled data row can be
transmitted on a particular channel or be delivered to
a particular workstation on that network. Cryptek[22]
is an example of such a label security product. An
important advantage of such label security products is
their ability to offer a centrally managed tool for defin-
ing label access policies and for assigning access labels
to users as well as to other entities on the network.
We contend that a MAC implementation in RDBMS
should offer the flexibility to integrate with a label se-
curity product for the following reasons:

1. Eliminate the need for the system administrator
to define the label access rules in more than a
single location (i.e., both in the RDBMS and in
the label security product)

2. Eliminate the need for the system administrator
to assign access labels to users in more than a
single location

3. Allow the access to a labeled data row in the
database to be based on more sophisticated la-

bel access rules that a particular implementation
of MAC in an RDBMS may not allow to express

We will now show how the methodology described
earlier in this paper could be extended to allow an
RDBMS to take part in such an end-to-end MAC
scheme by providing the flexibility to integrate with
a label security product.

5.1 Integration Approach

Recall from section 3.6 that we have extended the
CREATE TABLE SQL statement with an optional
clause to specify the label type and the label access
policy. We further extend this SQL statement such
that the LABEL POLICY clause could either specify
the name of a label access policy defined within the
RDBMS, or a label access policy defined externally
to the RDBMS (i.e., within a label security product).
The keyword EXTERNAL is introduced to support
this latter possibility as shown below.

CREATE TABLE T1 (A integer, B integer)
LABEL TYPE some-label-type
LABEL POLICY EXTERNAL

When a data row in such a table is accessed,
the RDBMS needs to supply the ID of the user
making the access together with the data row label
and the table name to the label security product
through a well-defined interface. The label security
product evaluates the label access rules based on the
information received from the RDBMS and returns a
response to the RDBMS through that same interface.
The response could be a Boolean flag indicating
whether or not the access should be allowed.

The SQL compiler will now need to take into
account where the label access rules are defined when
inserting logic into an access plan to enforce MAC on
a labeled table. Thus, a more general description of
the algorithm to be inserted in the access plan for a
labeled table is as follows.

Begin

if (policy defined within RDBMS)

{

Fetch the user’s access label (e.g., from a

system catalog table)

}

if (SELECT access)

{

for each row accessed

{

if (policy defined within RDBMS)

{

if (read access rules do not permit access)

{

Skip row

1018



}

}

else

{

response = callLabelSecurityProduct(userid,

rowlabel, table-name)

if (response is No)

{

Skip row

}

}

}

}

else

{

// INSERT, UPDATE, or DELETE access

for each row

{

if (INSERT or UPDATE)

{

if (the row label provided is not valid with

respect to the label type associated with

the labeled table)

Reject INSERT or UPDATE

}

if (policy defined within RDBMS)

{

if (write access rules do not permit access)

Reject INSERT, UPDATE or DELETE

}

else

{

response = callLabelSecurityProduct

(userid, rowlabel, table-name)

if (response is No)

{

Reject INSERT, UPDATE or DELETE

}

}

}

}

End

Clearly, the calls to the label security product,
which is external to the RDBMS, would cause a
performance degradation. In the next section, we
will show how this performance degradation could be
minimized.

5.2 Performance Improvement

To minimize the performance degradation that could
result from the calls to the label security product, a
caching technique could be used. Before making the
call to the label security product, the RDBMS would
first check the cache to see if a similar call was made
earlier, and if so fetches the response directly from the
cache. The cache structure could look as follows.

Userid RowLabel Table Access Resp.

Joe L T Read Yes
Bob L’ T Write No

Table 1: Label security product responses cache

To ensure that the cache entries are always valid,
the label security product must signal to the RDBMS
through a well-defined interface any changes to the la-
bel access rules associated with a database table, or to
the access labels assigned to a database user. When
such a signal is received, the RDBMS invalidates the
cache entries that are affected by the change in la-
bel access rules or user access labels. For example,
if the label access rules associated with table T have
changed, then all cache entries for table T must be in-
validated. Similarly, if the access label for user Joe has
changed or has been revoked, then all cache entries for
user Joe must be invalidated.

6 Conclusion and Future Directions

This paper has introduced a flexible and generic im-
plementation of MAC in RDBMS that can be used to
address the requirements from a variety of application
domains, as well as to allow an RDBMS to efficiently
take part in an end-to-end MAC enterprise solution.
This implementation differs from traditional MAC im-
plementations in RDBMS, which have focused solely
on MLS, and thus cannot be leveraged to serve the
needs of application domains where there is a desire
to control access to objects based on the label asso-
ciated with that object and the label associated with
the subject accessing that object, but where the label
access rules and the label structure do not necessarily
match the MLS two security rules and the MLS label
structure (i.e., a hierarchical component and a set of
unordered compartments). Moreover, such implemen-
tations do not offer the flexibility to integrate with an
external label security product and therefore cannot
take part in an end-to-end MAC enterprise solution.

There are a number of additional problems re-
lated to implementing a generic MAC solution in an
RDBMS that have not been addressed in this paper.
These will be the subject of our future work. For ex-
ample, triggers could cause labeled data rows to flow
from a labeled table to a nonlabeled table if the subject
of a trigger is a labeled table but the target of that trig-
ger is a nonlabeled table. Without proper flow control
measures, triggers could cause unauthorized leakage of
information to occur. Also, there needs to be a mech-
anism to accommodate views based on labeled tables.
For example, if a view is based on a join between two
labeled tables how would the row label of a join re-
sult row be selected. Should the RDBMS make the
decision about how to combine labels? or should the
RDBMS offer the flexibility that would allow database
administrators to provide the rules for combining two
labels from the same label type?

1019



Acknowledgements

Some of the ideas expressed in this paper were gen-
erated when the first author was a Research Staff
Member at the IBM Zurich Research Lab (ZRL). The
first author would like to thank Dr. Michael Waidner,
manager Network Security & Cryptography, for giving
him the opportunity to start up the database security
research activity at ZRL. The first author would also
like to thank his wife Hue Phan Dam for her valuable
comments on an earlier version of this paper and for
her help with the examples.

Trademarks

IBM and Informix are registered trademarks of
International Business Machines Corporation in the
United States, other countries, or both. Other com-
pany, product and service names may be trademarks
or service marks of others.

Disclaimer

The views expressed in this paper are those of the
authors and not necessarily of IBM Canada Ltd. or
IBM Corporation.

References

[1] D. E. Denning. The Sea View Security Model. In
Proc. of the IEEE Symposium on Security and Pri-

vacy, Oakland, California, USA, 1988.

[2] S. Jajodia, R. Sandhu. Toward a Multilevel Secure
Relational Data Model. In Proc. of ACM SIGMOD,
Denver, Colorado, USA, 1991.

[3] S. Jajodia, R. Sandhu. Polyinstantiation Integrity in
Multilevel Relations. In Proc. of the IEEE Symposium

on Security and Privacy, Oakland, California, USA,
1988.

[4] K. Smith, M. Winslett. Entity Modeling in the MLS
Relational Model. In Proc. of the 18th VLDB Con-

ference, Vancouver, BC, Canada, 1992.

[5] R. Sandhu, F. Chen. The Multilevel Relational Data
Model. Transactions on Information and System Se-

curity, Vol. 1, No. 1, 1998.

[6] N. Jukic, S. V. Vrbsky. Asserting Beliefs in MLS Re-
lational Models. SIGMOD Record, Vol. 26, No. 3,
1997.

[7] N. Jukic, S. V. Vrbsky, A. Parrish, B. Dixon, B. Jukic.
A Belief-Consistent Multilevel Secure Relational Data
Model. Information Systems, Vol. 24, No. 5, 1999.

[8] Trusted Computer Security Evaluation Criteria, DoD
5200.28-STD. US Department of Defense, 1985.

[9] E. Bell, L. J. LaPadula. Secure computer systems:
Unified exposition and multics interpretation. Tech-
nical Report MTR-2997, The Mitre Corporation,
Burlington Road, Bedford, MA 01730, USA.

[10] M. D. Abrams, S. Jajodia, H. J. Podell. Information
Security An Integrated Collection of Essays. IEEE

Computer Society Press, Los Alamitos, CA, USA,
1995.

[11] S. Castano, et al. Database Security. ACM Press,
New York, NY, USA, 1995.

[12] V. Atluri, S. Jajodia, T. F. Keefe, C. MaCollum,
R. Mukkamal. Multilevel Secure Transaction Pro-
cessing: Status and Prospects. Database Security,
X: Status and Prospects, Chapman & Hall 1997, eds.
Pierangela Samarati and Ravi Sandhu.

[13] T. F. Keefe, W. T. Tsai, T. F. Keefe, J. Srivastava.
Multilevel Secure Database Concurrency Control. In
Proc. IEEE sixth International Conference on Data

Engineering, Los Angeles, CA, USA, 1990.

[14] L. Lamport. Concurrent Reading and Writing. In
Comm. ACM, Vol. 20, No. 11, 1997.

[15] P. Ammann, S. Jajodia. A Timestamp Order-
ing Algorithm for Secure, Single-Version, Multi-
level Databases. Database Security, V: Status and

Prospects, C.E. Landweher, ed., Amsterdam, Holland,
1992.

[16] Oracle Corporation. Trusted Oracle Administrator’s
Guide. Redwood City, CA, USA, 1992.

[17] Informix. Informix OnLine/Secure Administrator’s
Guide. Menlo Park, CA, USA, 1993.

[18] E. Bertino, S. Jajodia, L. Mancini, I. Ray. Ad-
vanced Transaction Processing in Multilevel Secure
File Stores. IEEE Transactions on Knowledge and
Data Engineering, Vol. 10, No. 1, 1998.

[19] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. Hippo-
cratic Databases. In Proc. of the 28th International

Conference on Very Large Databases, Hong Kong,
China, 2002.

[20] Sybase Inc. Building Applications for Secure SQL
Server, Sybase Secure SQL Server Release 10.0.
Emeryville, CA, USA, 1993.

[21] ISO/IEC 9075:1999. Information-Technology-
Database Languages-SQL-Part 1: Framework
(SQL/Framework), 1999 .

[22] Cryptek. www.cryptek.com.

1020


