
ed
is
r
r
s of
ne
). In
is

e
wn

or
ical
It is
in
e
and

an

nt

ally

ted

ed

hat
f

al

as
to
a

for
ta

QL

Business Modeling Using SQL Spreadsheets

Andrew Witkowski, Srikanth Bellamkonda, Tolga Bozkaya, Nathan Folkert, Abhinav Gupta, Lei Sheng,
Sankar Subramanian

Oracle Corporation
500 Oracle Parkway, Redwood Shores, CA 94065, U.S.A.

{andrew.witkowski, srikanth.bellamkonda, tolga.bozkaya, nathan.folkert, abhinav.gupta, lei.sheng,
sankar.subramanian}@oracle.com
Abstract
One of the critical deficiencies of SQL is the lack of support

for array and spreadsheet like calculations which are frequent in
OLAP and Business Modeling applications. Applications relying
on SQL have to emulate these calculations using joins, UNION
operations, Window Functions and complex CASE expressions.
The designated place in SQL for algebraic calculations is the
SELECT clause, which is extremely limiting and forces
applications to generate queries with nested views, subqueries and
complex joins. This distributes Business Modeling computations
across many query blocks, making applications coded in SQL hard
to develop. The limitations of RDBMS have been filled by
spreadsheets and specialized MOLAP engines which are good at
formulas for mathematical modeling but lack the formalism of the
relational model, are difficult to manage, and exhibit scalability
problems. This demo presents a scalable, mathematically rigorous,
and performant SQL extensions for Relational Business Modeling,
called the SQL Spreadsheet. We present examples of typical
Business Modeling computations with SQL spreadsheet and
compare them with the ones using standard SQL showing
performance advantages and ease of programming for the former.
We will show a scalability example where data is processed in
parallel and will present a new class of query optimizations
applicable to SQL spreadsheet.

1 Introduction

Spreadsheets have been one of the most successful analytical
tools. Data and formulas reside in one place which is convenient for
rapid prototyping and formulas view data using a convenient two-
dimensional array abstractions. Complex business models can be
built with recursive and simultaneous equations and a rich set of
business functions is provided for ease of use. Finally, a very
flexible user interfaces with graphs and reports is provided.

Spreadsheets, however, have problems. There is no separation

between data and formulas which results in unstructured, ill-defin
models. The two dimensional “row-column” array abstraction
not well suited for building symbolic models or models of highe
dimensionality. A significant scalability problem exists when eithe
the data set is large (can one define a spreadsheet with terabyte
sales data?) or the number of formulas is significant (can o
process tens of thousands of spreadsheet formulas in parallel?
collaborative analysis with multiple spreadsheets, consolidation
difficult: it is nearly impossible to get a complete picture of th
business by querying multiple spreadsheets each using its o
layout and placement of data.

So far Business Modeling users who looked to the RDBMS f
help with these problems have been disappointed as SQL analyt
usefulness has not measured up to that of spreadsheets.
cumbersome and inefficient to perform array-like calculations
SQL -- a fundamental problem resulting from lack of languag
constructs to treat relations as arrays and lack of efficient access
optimization methods for evaluating formulas over the arrays.

In [1] we have proposed SQL extensions, optimizations and
execution model, called theSQL Spreadsheet,which makes the
RDBMS suitable for Relational Business Modeling. The salie
features of SQL Spreadsheet are:
• Relations can be viewed as n-dimensional arrays.
• Formulas can be defined over the arrays and can automatic

be ordered based on their dependencies.
• Recursive formulas and convergence conditions are suppor

thus supporting simultaneous equations.
• Evaluation can be order driven supporting sequenc

computations like moving averages and cumulative sums.
• Formulas are encapsulated in a new SQL query clause t

supports partitioning of the data. This allows evaluation o
formulas independently for each partition providing a natur
parallelization of execution.

• Formulas support UPSERT and UPDATE semantics as well
correlation between their left and right side. This allows us
simulate the effect of multiple joins and UNIONs using
single access structure.

This demo will present typical usage of SQL Spreadsheet
Relational Business Modeling on a real-life size (GB of data) da
warehouse.

2 SQL Extensions For Spreadsheets

For completeness we summarize the language features of S
Spreadsheet presented in [1].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

ay
ese
le,

l
ws
on,

hus
l
or
a

E

l

ty.

a
e,
ce
ther
eets,
d

able

t’

nal
e,
h or
per

es,
Notation. Our examples are illustrated using an electronic data
warehouse schema with fact table f(t, r, p, s, c) with three
dimensions: time (t), region (r), and product (p), and two measures:
sales (s) and cost (c).

Spreadsheet clause. ROLAP & Business Modeling applications
divide relational attributes into dimensions and measures. To model
that, we introduce a new SQL query clause, called thespreadsheet
clause, which identifies, within the query result,partition,
dimensionand measurecolumns. The partition (PBY) columns
divide the relation into disjoint subsets. The dimension (DBY)
columns uniquely identify a row within each partition, which we
call acell, and serve as array indexes to the measure columns. The
measure (MEA) columns identify expressions computed by the
spreadsheet. Following this, there is a sequence of formulas, each
describing a computation on cells. Thus the structure of the
spreadsheet clause is:

<existing parts of a query block>
SPREADSHEET PBY (cols) DBY (cols) MEA (cols)
<processing options>
(
 <formula>, <formula>,.., <formula>
)

It is evaluated after joins, aggregations, and window functions
but before final projection and the ORDER BY clause.

Cells are referenced using a familiar array notation. Cell
references can designate asingle cell referencewhen dimensions
are uniquely qualified e.g., s[p=’dvd’, t=2002], or set of cells where
dimensions are qualified by predicates e.g., s[p=’dvd’, t<2002].

Each formula represents an assignment and contains a left side
that designate target cells and a right side that contains expressions
involving cells within the partition. For example, the query:

SELECT r, p, t, s
FROM f
SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
 s[p=’vcr’,t=2002] = s[p=’vcr’,t=2000]
 + s[p=’vcr’,t=2001],
 s[p=’tv’, t=2002] =avg(s)[p=’tv’,1992<t<2002]
)

partitions tablef by region r and defines that sales, within each
region, of ’vcr’ in 2002 will be the sum of sales in 2000 and 2001,
and sales of ’tv’ will be the average of years between 1992 and
2002. As a shorthand, a positional notation exists, for example:
s[’dvd’,2002] instead of s[p=’dvd’,t=2002].

The left side of a formula can define calculations which span a
range of cells. A functioncv() carries the current value of a
dimension from the left side to the right side thus effectively
serving as a join between right and left side. The ANY operator
denotes all values in the dimension. For example:

SPREADSHEET DBY (r, p, t) MEA (s)
(
 s[’west’,ANY,t>2001]=1.2*s[cv(r),cv(p),cv(t)-1]
)

states that sales of every product in ’west’ region for year > 2001
will be 20% higher than sales of the same product in the preceding
year. Region, product and time dimensions on the right side
reference functioncv() to carry dimension values from left to the

right side.
For formulas which update a range of cells, the result m

depend on the order in which cells are processed, and for th
cases we require explicit specification of the ordering. For examp
in the following formula which specifies that sales of ’vcr’ for al
years before 2002 is an average of two preceding years, ro
should be processed in ascending order of the time dimensi
expressed as:

SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
 s[’vcr’, t<2002] ORDER BY t ASC =

avg(s)[cv(p),cv(t)-2<=t<cv(t)]
)

SQL spreadsheet can create new rows in the result set t
effecting SQL UNION operation. A formula with a single cel
reference on the left side can operate either in UPDATE
UPSERT (default) mode. The latter creates new cells within
partition if they do not exist, otherwise it updates them. UPDAT
mode ignores nonexistent cells. For example,

SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
 UPSERT s[’tv’, 2000] =
 s[’black-tv’,2000] + s[’white-tv’,2000]
)

will create for each region a row with p=’tv’ and t=2000 if this cel
is not present in the input stream.

Reference Spreadsheets.OLAP applications frequently deal, in
a single business query, with objects of different dimensionali
For example, the sales table may have region(r), product(p), and
time(t) dimensions, while the budget allocation table has only
region(r) dimension. To account for that, our query block can hav
in addition to the main spreadsheet, multiple, read-only referen
spreadsheets which are n-dimensional arrays defined over o
query blocks. Reference spreadsheets, akin to main spreadsh
have DBY and MEA clauses indicating their dimensions an
measures respectively. For example, assume a budget t
budget(r, pr) containing predictionspr for sales increase for each
regionr. The following query predicts sales in 2002 in region ‘wes
scaling them using prediction pr from the budget table.

SELECT r, t, s
FROM f GROUP by r, t
SPREADSHEET

REFERENCE budget ON (SELECT r, pr FROM budget)
DBY(r) MEA(p)

DBY (r, t) MEA (sum(s) s)
(
 s[’west’,2002]= pr[’west’]*s[’west’,2001],
 s[’east’,2002]= s[’east’,2001]+s[’east’,2000]
)

The purpose of a reference spreadsheet is similar to a relatio
join, but it allows us to perform, within a spreadsheet claus
multiple joins using the same access structures (in our case has
index structure), thus self-joins within spreadsheet can be chea
than outside of it.

Ordering The Evaluation Of Formulas. By default, the
evaluation of formulas occurs in the order of their dependenci
and we refer to it as the AUTOMATIC ORDER. For example in

y
e-
s of
go,

1
o

nt
ver

of
and
tes

k-up

the
I

er
ant
it

ture
to
s,
SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
 s[’dvd’,2002] = s[’dvd’,2000] + s[’dvd’,2001]
 s[’dvd’,2001] = 1000
)

the first formula depends on the second, and consequently we will
evaluate the latter one first. For scenarios where lexicographical
ordering of evaluation is desired we provide an explicit processing
option, called SEQUENTIAL ORDER.

SPREADSHEET DBY(r,p,t) MEA(s) SEQUENTIAL ORDER
(. ..<formulas>....)

Cycles and Recursive Models. Similarly to existing
spreadsheet, our computations may contain cycles, as in the
formula:

s[1] = s[1]/2
Consequently we have processing options to specify the number

of iterations or the convergence criteria for cycles and recursion.
The ITERATE (n) option requests iteration of the formulas ’n’
times. The optional UNTIL condition will stop the iteration when
the <condition> has been met. The <condition> can reference cells
before and after the iteration facilitating the definition of
convergence conditions. A helper functionprevious(<cell>) returns
the value of <cell> at the start of each iteration. For example,

SPREADSHEET DBY (x) MEA (s)
 ITERATE (10) UNTIL (PREVIOUS(s[1])-s[1] <= 1)
(s[1] = s[1]/2)

will execute the formula s[1] = s[1]/2 until the convergence
condition is met, up to a maximum of 10 iterations (in this case if
initially s[1] is greater than or equal to 1024, evaluation of the
formulas will stop after 10 iterations). For programming tasks, we
export to the formulas current iteration number with a function
ITERATION_NUMBER.

Spreadsheet Processing Options and Miscellaneous
functions. There are other processing options for the SQL
spreadsheet in addition to the ones for ordering of formulas and
termination of cycles. For example, we can specify UPDATE/
UPSERT option as a default for the entire spreadsheet. The option
IGNORE NAV allows us to treat NULL values in numeric
operations as 0, which is convenient for newly inserted cells with
the UPSERT option.

3 SQL Spreadsheet Functionality Examples

Here is are some examples showing the expressive power of the
SQL spreadsheet and its potential for efficient computation
compared to the alternative in ANSI SQL.

Computing Time-series and Parenthood ratios.In ROLAP
databases, hierarchical dimensions and cubes are frequently
expressed using theEmbedded Dimension(ED) form which
encodes in a single column all levels of a dimension. For example,
for a time dimension time_dt(y,q,m) with year, quarter and month
hierarchy this form is expressed as:

SELECT ed(y,q,m) AS ed_time
FROM time
GROUP BY ROLLUP (y,q,m)

where the functionedreturns m (month) if grouping is by month

level i.e., (y,q,m), q when grouping by quarter level, i.e, (y,q) , and
when grouping by (y). The ED form allows us to express such tim
series entities as same-period-N-levels-ago. For example, sale
year-ago of the month level will be sale the same month year a
of the quarter level the same quarter a year ago, etc.: Table
illustrates mapping of ED form of time t to same period year ag
yago, same period quarter agoqago and some period month ago
mago.

Financial applications frequently compute ratios of curre
measures to measures same-period-N-levels-ago to disco
patterns of change. In ANSI SQL this requires multiple self joins
the fact table. In SQL Spreadsheet, this has a very elegant
efficient representation. For example, the following query compu
ratio of current sales to that of year ago (r_yago), quarter ago
(r_qago) and month ago (r_mago).

SELECT p, ed(y,q,m) t, s
FROM f, time_dt
WHERE f.m = time_dt.m
GROUP BY p, rollup(y,q,m)
SPREADSHEET
 REFERENCE ON
 (SELECT t, yago, qago, mago FROM time_ed)
 DBY(t) MEA(yago, qago, mago)
PBY(p) DBY(t) MEA(sum(s)s, r_yago,r_qago,r_mago)
(
 F1: r_yago[ANY] = s[cv(t)] / s[yago[cv(t)]],
 F2: r_qago[ANY] = s[cv(t)] / s[qago[cv(t)]],
 F3: r_mago[ANY] = s[cv(t)] / s[mago[cv(t)]]
)

The reference spreadsheet serves as a one-dimensional loo
table translating, usingtime_edtable, timet into the corresponding
period a year, quarter and month ago. Formula F1-F3 calculates
desired ratios. An alternative formulation of the query using ANS
SQL requires the joinsf >< time_dt>- f >- f >- f where the first join
provides lookups from the fact to thetime_edtable and the three
following outer joins (>-) provide measure values in year, quart
and month ago periods. SQL spreadsheet provides a signific
performance advantage over the ANSI SQL formulation as
reduces number of joins. We build a single random access struc
(hash table in our case) to satisfy all rules. In ANSI SQL we have
execute one outer join per rule, which in case of hash join

Table 1: time_ed table. Mapping between t and yago, qago,
mago all expressed in ED form for time.

t yago qago mago

1999-m01 1998-m01 1998-m10 1998-m12

1999-m02 1998-m02 1998-m11 1999-m01

1999-m03 1998-m03 1998-m12 1999-m02

..

1999-q01 1998-q01 1998-q04 -

...

1999-y 1998-y - -

nd
It is

et

a
in

ot
e

an
us

e
for

lti-
ot

le
ze

ed
PB
ns
s
eir
ent
cial
e
n
o
QL
and
.

multiplies the number of access structures needed.

Densification of Data. Data stored in ROLUP databases is
frequently sparse, i.e., only some combination of dimension values
are present in fact tables. Densification on a dimensiond assures
that all d values are present in the output for every existing
combination of other dimensions. Combinations not present in fact
tables, will have null values in the measure columns. Densification
is frequently needed in time-series where all time values must be
present in the output and is used for moving averages, prior-period
computation, calendar construction, etc. Assume that for each
product(p) and region(r) we want to ensure that all years present in
the dimension table,time_dt, are present in the output. The fact
table f, is sparse, and may not have all time periods for every
product-region pair. Using our spreadsheet this is expressed as:

SELECT r, p, t, s
FROM f
SPREADSHEET PBY(r, p) DBY (t) MEA (s, 0 as x)
(
 UPSERT x[FOR t IN (SELECT t FROM time_dt)]= 0
)

This partitions the data by (p,r) and within each partition upserts
all values from the time dimension and assigns to measurex a
default value 0. An equivalent formulation using ANSI SQL
involves a cartesian product off to time_tdand a joinback tof, a
series of operations much less efficient than these required for the
above spreadsheet execution:

SELECT f.r, f.p, f.t, f.s
FROM f RIGHT OUTER JOIN
 ((SELECT DISTINCT r, p FROM f)
 CROSS JOIN
 (SELECT t FROM time_dt)
) v
 ON (f.r = v.r and f.p = v.p and f.t = v.t)

Recursive Model Solving.Many financial applications solve a
set of simultaneous equations and many of them can now be
directly expressed in SQL. For example, an application for personal
general ledger containing accounts and their balances specifies that:
1. Net pay is salary minus interest, minus tax (see F1)
2. Taxes are 38% of (salary-interest) and 28% of capital gains (F2)
3. We want 30% of net income as interest (F3)

This model can be expressed with 3 simultaneous formulas
shown below. The formulas are recursive as formula F1 depends on
F2, F2 depends on F3 and F3 depends on F1. We solve that model
re-executing the formulas until the difference between net pay from
previous and current iteration is greater than $1 for a maximum of
1000 iterations.

SELECT account, s
FROM ledger
SPREADSHEET IGNORE NAV DBY(acct) MEA (sums s)
ITERATE 1000 UNTIL (PREVIOUS(s[‘net’])-s[‘net’]>1
(
F1: s[‘net’]=s[‘salary’]-s[‘interest’]-s[‘tax’]
F2: s[‘tax’]=(s[‘salary’]-s[‘interest’])*0.38

+s[‘capital_gains’]*0.28
F3: s[‘interest’]=s[‘net’]*0.30
)

FIGURE 1. Recursive Model Solving

The above figure shows the input ledger table where salary a
capital gains are given and the output after SQL spreadsheet.
difficult to state an equivalent ANSI SQL formulation for this
problem.

4 Spreadsheets Optimization & Execution

As shown in [1], our implementation of SQL Spreadshe
contains novel optimizations which include:
• Parallelization of Formulas. The PBY clause provides

partitioning of the data, thus enabling formula computations
parallel. If the partitioning is not specified, we infer the
partitioning and parallelization for typical business cases.

• Pruning of Formulas. The formulas whose results are n
referenced in outer blocks can be removed from th
spreadsheet, thus removing unnecessary computations.

• Predicate Pushing. The predicates from other query blocks c
be moved inside query blocks with spreadsheets, th
considerably reducing the amount of data to be processed.

Execution methods include a novel algorithm for discovering th
convergence of spreadsheet formulas and two structures
random-access, symbolic addressing in formulas: a mu
dimensional index and hash table (picked if the index is n
available).

The optimizations, access methods, and run-time ru
convergence algorithm will be demonstrated on a real-life si
(several GBytes) data warehouse.

5 Demo Content

The demo will contain several GB data warehouse populat
with synthetic data. The schema resembles that used for the A
[2] benchmark with a fact table and 4 dimensions. The dimensio
will have 2, 3, 3, and 7 levels. We will present typical Busines
Modeling solutions using SQL Spreadsheet and compare th
formulations and performance to that of standard SQL. We pres
time-series and parenthood computations and recursive finan
models. In addition, we will show sparse matrix multiplication don
directly with SQL. We will demonstrate, using Oracle’s explai
plan facility, optimizations mentioned in Section 4. We will als
demonstrate an automatic conversion tool between Excel and S
Spreadsheet. It stores the Excel data cells in relational tables
Excel formulas in relational views with SQL Spreadsheet clause

6 References

[1] “Spreadsheet in RDBMS for OLAP”, SIGMOD 2003, San
Diego, USA.

[2] “APB Benchmark Specifications”,
http://www.olapcouncil.org/research/APB1R2_spec.pdf

account sums

salary 10,000
capital_g 1,500
net -
tax -
interest -

account sums

salary 10,000
capital_g 1,500
net 5,227
tax 3,204
interest 1,568

	Abstract
	1 Introduction
	2 SQL Extensions For Spreadsheets
	3 SQL Spreadsheet Functionality Examples
	Table 1: time_ed table. Mapping between t and yago, qago, mago all expressed in ED form for time.
	1. Net pay is salary minus interest, minus tax (see F1)
	2. Taxes are 38% of (salary-interest) and 28% of capital gains (F2)
	3. We want 30% of net income as interest (F3)
	FIGURE 1. Recursive Model Solving

	4 Spreadsheets Optimization & Execution
	5 Demo Content
	6 References
	[1] “Spreadsheet in RDBMS for OLAP”, SIGMOD 2003, San Diego, USA.
	[2] “APB Benchmark Specifications”, http://www.olapcouncil.org/research/APB1R2_spec.pdf

	Business Modeling Using SQL Spreadsheets

