Business Modeling Using SQL Spreadsheets

Andrew Witkowski, Srikanth Bellamkonda, Tolga Bozkaya, Nathan Folkert, Abhinav Gupta, Lei Sheng,
Sankar Subramanian

Oracle Corporation
500 Oracle Parkway, Redwood Shores, CA 94065, U.S.A.
{andrew.witkowski, srikanth.bellamkonda, tolga.bozkaya, nathan.folkert, abhinav.gupta, lei.sheng,
sankar.subramanian}@oracle.com

Abstract between data and formulas which results in unstructured, ill-defined
. L ) models. The two dimensional “row-column” array abstraction is
One of the critical deficiencies of SQL is the lack of support ot well suited for building symbolic models or models of higher

for array and spreadsheet like calculations which are frequent igjimensionality. A significant scalability problem exists when either
OLAP and Business Modeling appllcathns. Appllca_tpns relying the data set is large (can one define a spreadsheet with terabytes of
on SQL have to emulate these calculations using joins, UNIONsgjes data?) or the number of formulas is significant (can one
operations, Window Functions and complex CASE expressionsyrocess tens of thousands of spreadsheet formulas in parallel?). In
The designated place in SQL for algebraic calculations is theg|japorative analysis with multiple spreadsheets, consolidation is
SELECT clause, which is extremely limiting and forces gficult: it is nearly impossible to get a complete picture of the
applications to generate queries with nested views, subqueries apgsiness by querying multiple spreadsheets each using its own
complex joins. This distributes Business Modeling computationqayout and placement of data.
across many query blocks, making applications coded in SQL hard g far Business Modeling users who looked to the RDBMS for
to develop. The limitations of RDBMS have been filled by hejp with these problems have been disappointed as SQL analytical
spreadsheets and specialized MOLAP engines which are good gefuiness has not measured up to that of spreadsheets. It is
formulas for mathematical modeling but lack the formalism of the cympersome and inefficient to perform array-like calculations in
relational model, are difficult to manage, and exhibit scalabilitySQL - a fundamental problem resulting from lack of language
problems. This demo presents a scalable, mathematically rigorougonstrycts to treat relations as arrays and lack of efficient access and
and performant SQL extensions for Relational Business MOde"ngoptimization methods for evaluating formulas over the arrays.
called the SQL Spreadsheet. We present examples of typical |n [1] we have proposed SQL extensions, optimizations and an
Business Modeling computations with SQL spreadsheet angyecution model, called th8QL Spreadsheetyhich makes the

compare them with the ones using standard SQL showingppms suitable for Relational Business Modeling. The salient
performance advantages and ease of programming for the formegatyres of SQL Spreadsheet are:

We will show a scalability example where data is processed in  Rejations can be viewed as n-dimensional arrays.

parallel and will present a new class of query optimizations.  Formulas can be defined over the arrays and can automatically

applicable to SQL spreadsheet. be ordered based on their dependencies.

1 Introduction *  Recursive fo_rmulgs and convergence conditions are supported
thus supporting simultaneous equations.

Spreadsheets have been one of the most successful analytical Evaluation can be order driven supporting sequenced
tools. Data and formulas reside in one place which is convenient for ~ computations like moving averages and cumulative sums.
rapid prototyping and formulas view data using a convenient two*  Formulas are encapsulated in a new SQL query clause that
dimensional array abstractions. Complex business models can be supports partitioning of the data. This allows evaluation of
built with recursive and simultaneous equations and a rich set of ~ formulas independently for each partition providing a natural
business functions is provided for ease of use. Finally, a very parallelization of execution.
flexible user interfaces with graphs and reports is provided. +  Formulas support UPSERT and UPDATE semantics as well as

Spreadsheetsl however, have prob|ems_ There is no Separation correlation between their left and rlght side. This allows us to

simulate the effect of multiple joins and UNIONs using a
Permission to copy without fee all or part of this material Is grahte single access structure.
provided that the copies are not made or distributed for direc  This demo will present typical usage of SQL Spreadsheet for
commercial advantage, the VLDB copyright notice and the title o Relational Business Modeling on a real-life size (GB of data) data
the publication and its date appear, and notice is given that copyingvarehouse.
is by permission of the Very Large Data Base Endowment. To cop .
otherwise, or to republish, requires a fee and/or special permissiong SQL Extensions For SpreadSheetS
from the Endowment.
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

For completeness we summarize the language features of SQL
Spreadsheet presented in [1].



Notation. Our examples are illustrated using an electronic dataright side.
warehouse schema with fact table f(t, r, p, s, ¢) with three For formulas which update a range of cells, the result may
dimensions: time (t), region (r), and product (p), and two measuresdepend on the order in which cells are processed, and for these
sales (s) and cost (c). cases we require explicit specification of the ordering. For example,
in the following formula which specifies that sales of 'vcr’ for all
Spreadsheet clauseROLAP & Business Modeling applications years before 2002 is an average of two preceding years, rows
divide relational attributes into dimensions and measures. To modedhould be processed in ascending order of the time dimension,
that, we introduce a new SQL query clause, calledsipreadsheet expressed as:
claue, which identifies, within the query resultpartition,
dimensionand measurecolumns. The partition (PBY) columns
divide the relation into disjoint subsets. The dimension (DBY) s['ver, t<2002] ORDER BY t ASC =
columns uniquely identify a row within each partition, which we avg(s)cv(p),cv(t)-2<=t<cv(t)]
call acell, and serve as array indexes to the measure columns. The )
measure (MEA) columns identify expressions computed by the SQL spreadsheet can create new rows in the result set thus
spreadsheet. Following this, there is a sequence of formulas, eadifecting SQL UNION operation. A formula with a single cell
describing a computation on cells. Thus the structure of theeference on the left side can operate either in UPDATE or

SPREADSHEET PBY(r) DBY (p, t) MEA (s)

spreadsheet clause is: UPSERT (default) mode. The latter creates new cells within a
partition if they do not exist, otherwise it updates them. UPDATE
<existing parts of a query block> mode ignores nonexistent cells. For example,
SPREADSHEET PBY (cols) DBY (cols) MEA (cols)
<processing options> SPREADSHEET PBY(r) DBY (p, t) MEA (s)
( (
<formula>, <formula>,.., <formula> UPSERT s['tv', 2000] =
) s['black-tv’,2000] + s['white-tv’,2000]

It is evaluated after joins, aggregations, and window functions _) ) ) -
but before final projection and the ORDER BY clause. will create for each region a row with p="tv’ and t=2000 if this cell
Cells are referenced using a familiar array notation. CelliS Not presentin the input stream.

references can designatesimgle cell referencavhen dimensions o )
are uniquely qualified e.g., s[p="dvd’, t=2002], or set of cells where Reference Spreadsheet©LAP applications frequently deal, in

dimensions are qualified by predicates e.g., s[p="dvd’, t<2002]. & single business query, with objects of different dimensionality.
Each formula represents an assignment and contains a left side" €xample, the sales table may have regjorroductf), and
that designate target cells and a right side that contains expressioHg'e®) dimensions, while the budget allocation table has only a

involving cells within the partition. For example, the query: region¢) dimension. To account for that, our query block can have,
in addition to the main spreadsheet, multiple, read-only reference
SELECTr, p, t, s spreadsheets which are n-dimensional arrays defined over other
FROM f query blocks. Reference spreadsheets, akin to main spreadsheets,
SPREADSHEET PBY(1) DBY (p, ) MEA (s) have DBY and MEA clauses indicating their dimensions and
( s[p='ver,t=2002] = s[p=ver t=2000] measures respectively. For example, assume a budget table
+ s[p='ver t=2001], bud_get(r, pr) conta_unlng predlcthrm for sa_les increase for each
s[p="tv", t=2002] =avg(s)[p="tv',1992<t<2002] regionr. The following query predicts sales in 2002 in region ‘west’
scaling them using predictiqr from the budget table.
partitions tablef by region r and defines that sales, within each SELECT . t s
region, of 'vcr’ in 2002 will be the sum of sales in 2000 and 2001, FROM f GROUP by , t
and sales of 'tv’ will be the average of years between 1992 and SprREADSHEET
2002. As a shorthand, a positional notation exists, for example: REFERENCE budget ON (SELECT r, pr FROM budget)
s['dvd’,2002] instead of s[p="dvd’,t=2002]. DBY(r) MEA(p)
The left side of a formula can define calculations which span a DBY (r, t) MEA (sum(s) s)
range of cells. A functioncv() carries the current value of a (
dimension from the left side to the right side thus effectively — S['west’,2002]= prlwest]*s[west’,2001],
serving as a join between right and left side. The ANY operator _Sl'®ast’,2002]= s[east’,2001]+s[ east’,2000]

denotes all values in the dimension. For example: L .
The purpose of a reference spreadsheet is similar to a relational

SPREADSHEET DBY (r, p, t) MEA (s) join, but it allows us to perform, within a spreadsheet clause,

( multiple joins using the same access structures (in our case hash or
s['west',ANY,t>2001]=1.2*s[cv(r),cv(p).cv(t)-1] index structure), thus self-joins within spreadsheet can be cheaper
) than outside of it.

states that sales of every product in 'west’ region for year > 2001
will be 20% higher than sales of the same product in the preceding Ordering The Evaluation Of Formulas. By default, the

year. Region, product and time dimensions on the right sid&,q,ation of formulas occurs in the order of their dependencies,
reference functiorcv() to carry dimension values from left to the and we refer to it as the AUTOMATIC ORDER. For example in



SPREADSHEET PBY(r) DBY (p, t) MEA (s) leveli.e., (y,q,m), g when grouping by quarter level, i.e, (y,q) , and y

( when grouping by (y). The ED form allows us to express such time-
s['dvd’,2002] = s['dvd’,2000] + s['dvd’,2001] series entities as same-period-N-levels-ago. For example, sales of
s['dvd’,2001] = 1000 year-ago of the month level will be sale the same month year ago,

fif the quarter level the same quarter a year ago, etc.: Table 1

I

the first formula depends on the second, and consequently we wi lustrates mapping of ED form of time t to same period year ago

evalugte the Iatter_one_z flrst._ For scenarios where !e_xncograph_lca aga same period quarter agragoand some period month ago
ordering of evaluation is desired we provide an explicit processin 200
option, called SEQUENTIAL ORDER. 9

SPREADSHEET DBY(r,p,t) MEA(s) SEQUENTIAL ORDER Table 1: time_ed table. Mapping between t and yago, gago,
(. ..<formulas>....) mago all expressed in ED form for time.
Cycles and Recursive Models. Similarly to existing t yago gago mago
fsci)rﬁi(lj:heet, our computations may contain cycles, as in the 1999-mo1 | 1998-mo1l  1998-m1b  1998-mi2
s[1] = s[1)/2 1999-m02 | 1998-m02 1998-m1l  1999-mQ1
Consequently we have processing options to specify the number
of iterations or the convergence criteria for cycles and recursion. 1999-m03 | 1998-m03 1998-ml1P  1999-m(2

The ITERATE (n) option requests iteration of the formulas 'n’
times. The optional UNTIL condition will stop the iteration when
the <condition> has been_ met._ The <c_o_ndi_tion> can refgr_e_nce cells 1999-q01 | 1998-q01| 1998-q04
before and after the iteration facilitating the definition of
convergence conditions. A helper functiprevioug<cell>) returns
the value of <cell> at the start of each iteration. For example,

1999-y 1998-y - -
SPREADSHEET DBY (x) MEA (s)

ITERATE (10) UNTIL (PREVIOUS(s[1])-s[1] <= 1)

(s[1] =s[1]/2) Financial applications frequently compute ratios of current
will execute the formula s[1] = s[1]/2 until the convergence measures to measures same-period-N-levels-ago to discover
condition is met, up to a maximum of 10 iterations (in this case if patterns of change. In ANSI SQL this requires multiple self joins of
initially s[1] is greater than or equal to 1024, evaluation of thethe fact table. In SQL Spreadsheet, this has a very elegant and
formulas will stop after 10 iterations). For programming tasks, weefficient representation. For example, the following query computes
export to the formulas current iteration number with a functionratio of current sales to that of year ago ¥agod, quarter ago
ITERATION_NUMBER. (r_gagg and month aga(magq.

Spreadsheet Processing Options and Miscellaneous  SELECT p, ed(y,g.m) t, s
functions. There are other processing options for the SQL FROMf, time_dt
spreadsheet in addition to the ones for ordering of formulas and WHERE f.m =time_dt.m
termination of cycles. For example, we can specify UPDATE/ GROUP BY p, rollup(y,q,m)
UPSERT option as a default for the entire spreadsheet. The option SEEEEARD:SEETC)N
IGNORE NAV allows .us to trgat NULL valges in numerlg (SELECT t, yago, gago, mago FROM time_ed)
operations as 0,.WhICh is convenient for newly inserted cells with DBY(t) MEA(yago, gago, mago)
the UPSERT option. PBY(p) DBY(t) MEA(sUm(s)s, r_yago,r_gqago,r_mago)

. . (
3 SQL Spreadsheet Functionality Examples F1: r_yago[ANY] = sev(t] / s[yago[ev(t)]]

F2: r_qago[ANY] = s[cv(t)] / s[gago[cv()]],

Here is are some examples showing the expressive power of the F3: 1_mago[ANY] = s[cv(t)] / simago[ev(t)]

SQL spreadsheet and its potential for efficient computation )

compared to the alternative in ANSI SQL. The reference spreadsheet serves as a one-dimensional look-up
] ) ) ) table translating, usinime_edtable, timet into the corresponding
Computing Time-series and Parenthood ratiosIn ROLAP  heriod a year, quarter and month ago. Formula F1-F3 calculates the
databases, hierarchical dimensions and cubes are frequentjgsired ratios. An alternative formulation of the query using ANSI
expressed using th&mbedded DimensiofED) form which 5| requires the joing>< time_dt>- f >- f >- f where the first join
encodes in a single column all levels of a dimension. For exampley oyides lookups from the fact to thine_edtable and the three
for a time dimension time_dt(y,q,m) with year, quarter and monthyojigwing outer joins (>-) provide measure values in year, quarter

hierarchy this form is expressed as: and month ago periods. SQL spreadsheet provides a significant
SELECT ed(y,q,m) AS ed_time performance advantage over the ANSI SQL formulation as it
FROM time reduces number of joins. We build a single random access structure
GROUP BY ROLLUP (y,q,m) (hash table in our case) to satisfy all rules. In ANSI SQL we have to

where the functiordreturns m (month) if grouping is by month execute one outer join per rule, which in case of hash joins,



multiplies the number of access structures needed. FIGURE 1. Recursive Model Solving

Densification of Data. Data stored in ROLUP databases is account sums account sums
frequently sparse, i.e., only somg_comblnatlon qf dlme_n3|on values salary 10,400 salary 10,400
are present in fact tables. Densification on a dimensi@ssures capital_g 1,500 capital_g 1,500
that all d values are present in the output for every existing net - > | net 5227

S . . e . tax - tax 3,204
combination of other dimensions. Combinations not present in fact interest - interest 1568
tables, will have null values in the measure columns. Densification

is frequently needed in time-series where all time values must be
present in the output and is used for moving averages, prior-period The above figure shows the input ledger table where salary and

computation, calgndar construction, etc. Assume that for eacgapital gains are given and the output after SQL spreadsheet. It is
productp) and region() we want to ensure that all years present in difficult to state an equivalent ANSI SQL formulation for this
the dimension tabletime_dt are present in the output. The fact problem

table f, is sparse, and may not have all time periods for every
product-region pair. Using our spreadsheet this is expressed as: 4 Spreadsheets Optimization & Execution
SELECTr, p,t, s

FROM f
SPREADSHEET PBY(r, p) DBY (t) MEA (s, 0 as x)

As shown in [1], our implementation of SQL Spreadsheet
contains novel optimizations which include:
e Parallelization of Formulas. The PBY clause provides a

UPSERT x[FOR t IN (SELECT t FROM time_dt)]= 0 partitioning of the data, thus enabling formula computations in

) parallel. If the partitioning is not specified, we infer the

This partitions the data by(r) and within each partition upserts partitioning and parallelization for typical business cases.
all values from the time dimension and assigns to measume *  Pruning of Formulas. The formulas whose results are not
default value 0. An equivalent formulation using ANSI SQL referenced in outer blocks can be removed from the
involves a cartesian product 6tto time_tdand a joinback td, a spreadsheet, thus removing unnecessary computations.
series of operations much less efficient than these required for the  Predicate Pushing. The predicates from other query blocks can
above spreadsheet execution: be moved inside query blocks with spreadsheets, thus

considerably reducing the amount of data to be processed.
Execution methods include a novel algorithm for discovering the
convergence of spreadsheet formulas and two structures for

SELECT fr, f.p, f.t, f.s
FROM f RIGHT OUTER JOIN
( (SELECT DISTINCT r, p FROM f)

CROSS JOIN random-access, symbolic addressing in formulas: a multi-
(SELECT t FROM time_dt) dimensional index and hash table (picked if the index is not
)V - available).

ON (f.r=v.rand f.p = v.p and f.t = v.t) The optimizations, access methods, and run-time rule

convergence algorithm will be demonstrated on a real-life size
Recursive Model Solving.Many financial applications solve a (several GBytes) data warehouse.
set of simultaneous equations and many of them can now be
directly expressed in SQL. For example, an application for personé Demo Content
general ledger containing accounts and their balances specifies that:
1. Net pay is salary minus interest, minus tax (see F1)
2. Taxes are 38% of (salary-interest) and 28% of capital gains (F2[

0 . .
3. We want 30% of netincome as interest (F3) will have 2, 3, 3, and 7 levels. We will present typical Business

This model can be expressed with 3 simultaneous formUIai/lodeling solutions using SQL Spreadsheet and compare their

shown below. The formulas are recursive as formula F1 depends Yrmulations and performance to that of standard SQL. We present

F2,F2 de_pends on F3 and F?’ depe_nds on F1. We solve that mOdt'iarlne-series and parenthood computations and recursive financial
re-executing the formulas until the difference between net pay from

) - S X {;nodels. In addition, we will show sparse matrix multiplication done
previous and current iteration is greater than $1 for a maximum of; . . . . )
1000 iterations directly with SQL. We will demonstrate, using Oracle’s explain

plan facility, optimizations mentioned in Section 4. We will also

The demo will contain several GB data warehouse populated
ith synthetic data. The schema resembles that used for the APB
] benchmark with a fact table and 4 dimensions. The dimensions

SELECT account, s demonstrate an automatic conversion tool between Excel and SQL
FROM ledger Spreadsheet. It stores the Excel data cells in relational tables and
SPREADSHEET IGNORE NAV DBY (acct) MEA (sums s) Excel formulas in relational views with SQL Spreadsheet clause.
ITERATE 1000 UNTIL (PREVIOUS(s['net])-s['net]>1

( 6 References

F1: s['net’]=s['salary’]-s[‘interest’]-s['tax’]

F2: s[tax]=(s['salary]-s[interest])*0.38 [1]  “Spreadsheetin RDBMS for OLAP", SIGMOD 2003, San

. +s[‘capital_gains’]*0.28 Diego, USA

F3: s['interest’]=s['net’]*0.30 ’ ’

) [2] “APB Benchmark Specifications”,
http://www.olapcouncil.org/research/APB1R2_spec.pdf



	Abstract
	1 Introduction
	2 SQL Extensions For Spreadsheets
	3 SQL Spreadsheet Functionality Examples
	Table 1: time_ed table. Mapping between t and yago, qago, mago all expressed in ED form for time.
	1. Net pay is salary minus interest, minus tax (see F1)
	2. Taxes are 38% of (salary-interest) and 28% of capital gains (F2)
	3. We want 30% of net income as interest (F3)
	FIGURE 1. Recursive Model Solving



	4 Spreadsheets Optimization & Execution
	5 Demo Content
	6 References
	[1] “Spreadsheet in RDBMS for OLAP”, SIGMOD 2003, San Diego, USA.
	[2] “APB Benchmark Specifications”, http://www.olapcouncil.org/research/APB1R2_spec.pdf


	Business Modeling Using SQL Spreadsheets

