
Efficient Mining of XML Query Patterns for Caching 

Liang Huai Yang          Mong Li Lee          Wynne Hsu 

 School of Computing 
National University of Singapore 

{yanglh, leeml, whsu}@comp.nus.edu.sg 

 
Abstract 

As XML becomes ubiquitous, the efficient 
retrieval of XML data becomes critical. Research 
to improve query response time has been largely 
concentrated on indexing paths, and optimizing 
XML queries. An orthogonal approach is to 
discover frequent XML query patterns and cache 
their results to improve the performance of XML 
management systems. In this paper, we present 
an efficient algorithm called FastXMiner, to 
discover frequent XML query patterns. We 
develop theorems to prove that only a small 
subset of the generated candidate patterns needs 
to undergo expensive tree containment tests. In 
addition, we demonstrate how the frequent query 
patterns can be used to improve caching 
performance. Experiments results show that 
FastXMiner is efficient and scalable, and caching 
the results of frequent patterns significantly 
improves the query response time. 

1. Introduction 
Since its inception in 1998, XML has emerged as a 
standard for data representation and exchange on the 
World Wide Web. The rapid growth of XML repositories 
has provided the impetus to design and develop systems 
that can store and query XML data efficiently. Given that 
XML conforms to a labeled tree or graph, the basic 
features in query languages such as XPath [7] or XQuery 
[8] are regular path expressions and tree patterns with 
selection predicates on multiple elements that specify the 
tree-structured relationships.  

For example, for a query book [title="XML", 
year="2000"] // author [lastname="Buneman"], a query 

engine has to find matches for a book element which has 
the children title with content "XML" and year with 
content "2000",  and the book element also has a 
descendent author which contains a child lastname with 
content "Buneman". Processing such XML queries can be 
expensive because it involves navigation through the 
hierarchical structure of XML, which can be deeply 
nested. Current research to improve query response times 
has been focused on indexing paths [9, 13, 16] and 
optimizing various classes of XML queries [2, 5]. 

Caching has played a key role in client-server 
databases, distributed databases and Web-based 
information systems because network traffic and slow 
remote servers can lead to long delays in the delivery of 
answers. Work on semantic/query caching examines how 
user queries, together with the corresponding answers can 
be cached for future reuse  [6, 11]. The advantage of this 
is that when a user refines a query by adding or removing 
one or more query terms, many of the answers would 
have already been cached and can be delivered to the user 
right away. This avoids the expensive evaluation of 
repeated or similar queries.   

Traditional caching strategies typically consider the 
contents in a cache as belonging to a priority queue. The 
LRU (and its many variations) is a well-established 
replacement strategy that evicts the least recently accessed 
objects from the cache when it is full. The recent move 
towards intelligent web caching tries to adapt to changes 
in usage patterns by constructing predictive models of 
user requests by mining web log data [4, 18]. 

In this paper, we examine how the query performance 
in XML management systems can be improved by 
caching XML query results. The results to frequent XML 
queries are cached in anticipation of future retrievals. This 
entails the discovery of frequent query patterns [24]. 
Mining these patterns requires more than simple tree 
matching as the XML queries contains special characters 
such as the wildcard “*” and relative path “//”. The 
matching process can be expensive since the search space 
is exponential to the size of the XML schema.  

Motivated by the need to reduce expensive tree 
matching, we develop theorems to prove that only a small 
subset of the generated candidate patterns needs to 
undergo costly tree containment tests. We present an 
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efficient algorithm called FastXMiner, to discover 
frequent XML query patterns, and demonstrate how these 
query patterns can be incorporated into a query caching 
system for XML data. Experiment results show that 
FastXMiner is efficient and scalable, and that utilizing the 
frequent query patterns in caching strategy increases the 
cost-saving ratio and reduces the average query response 
time.  

The rest of the paper is organized as follows. Section 2 
discusses some concepts used in mining query patterns. 
Section 3 describes our approach to mine frequent query 
patterns efficiently. Section 4 shows how the discovered 
query patterns can be exploited in caching. Section 5 
presents the results of our experiments. Section 6 
discusses the related work, and we conclude in Section 7. 

2. Preliminaries 
In this section, we define some of the basic concepts used 
in query pattern tree mining. 

2.1  Query Pattern Tree 

XML queries can be modelled as trees. We call them 
query pattern trees. Consider the example BOOK DTD 
tree in Figure 1(a). A query to retrieve the title, author and 
price of books where books/section//title has value “XML 
Schema” would have the query pattern tree as shown in 
Figure 1(b). In addition to element tag names, a query 
pattern tree may also consist of wildcards “*” and relative 
paths “//”. The wildcard “*” indicates the ANY label (or 
tag) in DTD, while the relative path “//” indicates zero or 
more labels (descendant-or-self).  
 
 
 
 
 
 
 
 
       (a) Example BOOK DTD        (b) A Query Pattern Tree. 

Figure 1. A DTD and a XML Query Pattern Tree. 

Definition 1 (Query Pattern Tree): A query pattern tree 
is a rooted tree QPT = <V, E>, where V is the vertex set, 
E is the edge set. The root of the pattern tree is denoted by 
root (QPT). For each edge e = (v1, v2), node v1 is the 
parent of node v2. Each vertex v has a label, denoted by 
v.label, whose value is in {“*”, ”//”} ∪ tagSet, where the 
tagSet is the set of all element and attribute names in the 
schema. 

Definition 2 (Rooted Subtree): Given a query pattern 
tree QPT = <V, E>, a rooted subtree RST = <V’, E’> is a 
subtree of QPT if it satisfies the following conditions:  
(1) Root (RST) = Root (QPT), and  

(2) V’⊆ V, E’ ⊆ E.  
We call an RST a k-edge rooted subtree if it has k edges. 

2.2 Tree Inclusion 

In order to decide if a RST is included in some QPT, we 
need to define the semantics of tree inclusion. Several 
definitions of tree inclusion exist including subtree 
inclusion [20], tree embedding [25] and tree subsumption 
[14]. The most relevant definition for this work is the 
subtree inclusion, which states that a subtree t’ is included 
in some tree t if and only if there exists a subtree of t that 
is identical with t’. However, this definition is too 
restrictive for XML query pattern trees where handling of 
wildcards and relative paths are necessary. 

Consider the two trees T1 and T2 in Figure 2. Let (p,q) 
denote that a node p in T1 is mapped to a node q in T2. 
Since we are dealing with rooted subtrees, we can carry 
out a top-down matching. Here, (book,book) is mapped 
first. Next, we check that each subtree of book in T1 
matches with some subtree of book in T2. This requires 
that the subtree rooted at section of T1 (denoted as 
subtree(section)) has to be matched against the subtrees 
rooted at ‘//’ and author of T2. We need to consider 
whether ‘//’ indicates zero or many nodes in the path:  
Case 1: ‘//’ means zero length.  

Then subtree(section) must be included in either  
subtree(title) or subtree(image) of T2, which is not the 
case here. 

Case 2: ‘//’ means many nodes.  
This implies that section has been mapped to some 
‘unknown’ node in T2. From all the possible subtrees 
of section, only one subtree, i.e., subtree(figure),   
must be included by subtree(‘//’).  

It is obvious that subtree(author) of T1 is included in 
subtree(author) of T2. The inclusion of T1 in T2 is shown 
in Figure 2 via dashed lines. We conclude that T2 includes 
T1, denoted as T1 ⊆ T2. Note that if we have applied an 
exact subtree inclusion definition, then T1 would not be 
included in T2.  
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Figure 2. Example of Tree Inclusion. 

Before we define our concept of tree inclusion, we 
first introduce the notion of the partial order relationship 
≤ of labels in QPTs.  

Definition 3 (Partial Ordering of Labels): Given two 
labels x and x’, if x=x’, then we say x ≤ x’. For any label 
x ∈ tagSet, we define x ≤ * ≤ //, that is, a node with label 
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x matches a wildcard, which in turn matches a node with 
label //. 

Definition 4 (Extended Subtree Inclusion): Let 
subtree(p) and subtree(q) be two subtrees with root nodes 
p and q respectively. Let children(v) denotes the set of 
child nodes of v. Then we can recursively determine if 
subtree(p) is included in subtree(q), denoted by subtree 
(p) ⊆ subtree (q), as follows: 

p ≤ q and satisfies: 
(1) both p and q are a leaf nodes; or 
(2) p is a leaf node and q = ‘//’, then ∃q’∈children(q) 

such that subtree(p)⊆ subtree(q’); or 
(3) both p and q are non-leaf nodes, and one of the 

following holds: 
i. ∀p’∈children(p), ∃q’∈children(q) such that 

subtree(p’)⊆subtree(q’); or 
ii. q=’//’ and ∀p’∈children(p), we have 

subtree(p’) ⊆ subtree(q); or 
iii. q=’//’ and ∃q’∈children(q) where subtree(p) 

⊆ subtree(q’); 

In addition, a DTD may contain recursions such as part 
has (sub)part(s). Consider the test for whether a path 
“a/b/b” is included in “a/b//c”. If we do not know that 
there exists a path “a/b/b//c”, then we cannot conclude 
that the first path is included in the second path. This is 
because it is possible for a DTD declaration to include 
“a/b/d/e/c” or “a/b/b/f” but not “a/b/b//c”. In order to 
handle these situations, we need to take into account the 
DTD and perform some expansions of the QPTs. 
Interested readers are referred to [24] for the details. 

Clearly, performing such extended subtree inclusion 
test is expensive. Below, we describe an efficient 
algorithm for mining query pattern trees that aims at 
minimizing the number of tree containment tests. 

2.3  Query Pattern Tree Mining Problem 

Given a set of query pattern trees D={QPT1, …., QPTN}, 
mining the frequent query pattern implies discovering the 
frequent rooted subtrees (RSTs) in the query pattern trees. 
A rooted subtree RST matches a query pattern tree QPT 
in D (or RST occurs in D) if there exists a QPT that 
includes the RST. The total occurrence of an RST in D is 
denoted by freq(RST), and the support level supp(RST) is 
given by freq(RST)/|D|, where |D| denotes the number of 
QPTs in database D. We say that RST is σ-frequent in D 
if supp(RST) ≥ σ for some positive number σ.  

Frequent Query Pattern Mining Problem: Given a 
query pattern tree database D={QPT1,….,QPTN}, and a 
positive number 0 < σ ≤ 1 called the minimum support, 
find F, the set of all σ-frequent rooted subtrees, that is, 
rooted subtrees RST such that supp(RST) ≥ σ. 

Consider the query pattern trees and a 3-edge rooted 
subtree RST in Figure 3. RST occurs in QPT1 and QPT2 

with a frequency and support of freq(RST)=2 and 
supp(RST)=2/3 respectively. 

Transaction IDs (TID) are often used to expedite the 
mining process [3]. Here we associate each query pattern 
tree QPT with a unique TID, denoted as QPT.TID. This 
will be used in our mining algorithm to reduce the 
expensive tree inclusion test. 
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Figure 3. Example of a Frequent Query Pattern Tree. 

3. Mining Query Pattern Trees 
Mining frequent query patterns is expensive because of 
the potentially large number of candidate RSTs that can 
be generated, and the expensive tree containment tests 
that these candidate RSTs need to undergo. The work in 
[24] describes an Apriori-based algorithm XQPMiner that 
exploits the underlying schema to avoid the exhaustive 
enumeration of candidate RSTs. In this section, we build 
upon this work, and present a novel strategy to further 
reduce the costly tree inclusion tests.  

We utilize a tree-encoding scheme to partition 
candidate RSTs into equivalence classes that are further 
divided into three groups. We prove that only the group 
that contains single-branch candidate RSTs needs to be 
matched against the XML query patterns in the database. 
This leads to a large reduction in the number of tree 
inclusion tests required. Subsequent experimental studies 
show that this technique dramatically improves the 
efficiency of the mining process.  

Based on the above result, we develop an efficient 
frequent query pattern mining algorithm called 
FastXMiner (see Figure 4). In the algorithm, the notation 
RSTk denotes a k-edge rooted subtree; Fk is a set of 
frequent k-edge rooted subtree; and Ck is a set of k-edge 
candidate RST. Edges correspond to items in traditional 
frequent itemset discovery. The size of frequent RSTs is 
increased by adding one edge at a time. In our 
implementation, we associate each RSTk with a list of 
TIDs, denoted as RSTk. tidlist, which indicates this RSTk 
is included in which QPTs. Similarly, |RSTk.tidlist| is the 
number of TIDs in RSTk.  

FastXMiner initially enumerates all the frequent 1-
edge RSTs by scanning the database D once. In the 
subsequent passes, we generate the frequent (k+1)-edge 
RSTs from the frequent k-edge RST in two phases. In the 
first phase, the algorithm FastRSTGen (more details on 
this in Section 3.3) is called to generate the candidate set 
Ck+1 by using the previously found frequent set Fk. Any 
unqualified candidate RSTs is pruned. The frequency for 
each candidate RST is counted, and those RSTs that do 



not satisfy the minimal support criteria are pruned. The 
candidate set Ck+1 contains all the RSTs to be matched 
with the QPTs in the database. 

In the second phase, the algorithm Contains is called 
to determine if RSTk+1 is included in the pattern tree t. 
This test is based on the extended tree inclusion 
definition. Details of the Contains algorithm are given in 
[24].  

Algorithm FastXMiner (D, minSupp) 
Input: D—pattern tree transaction database 
           minSupp—the minimum support 
Output: Sets of frequent RSTs 
1.F1={frequent 1-edge rooted subtrees in D}; 
2.support= minSupp*|D|; 
3.for (k=1; Fk≠φ; k++) do  
4.    Fk+1=φ; Ck+1=φ; 
       //generate frequent rooted subtrees 
5.    FastRSTGen (Fk, support, Fk+1, Ck+1);  
6.    for each transaction t∈D do  
7.     for each single-branch candidate RSTk+1∈Ck+1 do 
8.             if Contains (t, RSTk+1) then       //prune 
9.                 RSTk+1.tidlist←t.TID;  
10.  Fk+1←{RSTk+1∈Ck+1 | |RSTk+1.tidlist|≥ support}; 
11.return {Fi | i = 1, …, k-1}; 

Figure 4. Algorithm FastXMiner. 

The following subsections will describe the theory 
behind FastXMiner. 

3.1   Candidate Generation 

The first step of FastXMiner is to enumerate all the 
frequent RSTs in D. To facilitate this process, we 
construct a global query pattern tree G-QPT by merging 
the query pattern trees in the database. Figure 5(a) shows 
the global query pattern obtained from the query pattern 
trees in Figure 3. 

The nodes in the G-QPT can be numbered using a pre-
order traversal. Since each QPT∈D is contained in G-
QPT, each node in QPT has the same number as the 
corresponding node in G-QPT (see Figure 5). A hash 
table is provided for the lookup of the mapping of each 
node and its label. This numbering scheme not only 
reduces the amount of memory usage during mining, but 
also simplifies the representation of the query pattern 
trees. For example, QPT1 can now be represented as 

<1><2></2><3></3><8></8></1> 
By removing the brackets and replacing each end tag with 
–1, the above representation can be further compacted to 
“1, 2, -1, 3, -1, 8, -1”. Note that the last end tag can be 
omitted. This string-encoding scheme is often used to 
facilitate tree comparison [25]. 

Definition 5 (Order of String Encodings): Any two 
string encodings Se1 and Se2 can be transformed into the 
corresponding strings S1 and S2 by removing all the –1 

from Se1 and Se2. We denote the order of Se1and Se2 by 
using S1, S2, that is, Se1≤ Se2 iff S1 ≤ S2. 
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Figure 5. Numbering Scheme for G-QPT and QPT. 

Definition 6 (Prefix of a RST): A prefix of an RST’s 
string encoding S is defined as the list of nodes up to the 
ith node in S, and is denoted as prefix(S,i). Here, –1 is not 
considered as a node. To simplify discussion, we will also 
use prefix(RST, i) to refer to prefix(S, i). 

After obtaining the global query pattern tree, the RST 
enumeration problem is now reduced to the problem of 
enumerating the RSTs in a G-QPT. Starting with all the 
possible 1-edge RSTs, we use the G-QPT to 
systematically guide the generation of 2-edge RSTs level-
wise by expanding the rightmost branch, from which 3-
edge RSTs are obtained, and so on. Figure 6 shows a 2-
edge RST R and the set of corresponding 3-edge RSTs 
generated based on the G-QPT in Figure 5. 
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Figure 6. G-QPT-Guided Enumeration. 
We introduce the equivalence relation =prefix to 

partition the RSTs into equivalence classes. Given two k-
edge rooted subtrees RST1

k and RST2
k, let s1 and s2 denote 

their respective string encodings. Then RST1
k =prefix RST2

k 
if the equation prefix(s1,k) = prefix(s2,k) holds. Based on 
the numbering scheme and the rightmost expansion 
method, we derive the following lemma.  

Definition 7  (Rightmost Branch Expansion): Given a 
k-edge rooted subtree RSTk, the (k+1)-edge RST set 
formed by expanding the rightmost branch of RSTk is 
denoted as rmbe(RSTk). 

Lemma 1: rmbe(RSTk) is an equivalence class based on 
the relation =prefix, which shares the same prefix 
Pk+1=prefix(RSTk, k+1). The equivalence class is denoted 
as [Pk+1].      □ 

Example: Consider the prefix P3 = “1,2,-1,3”. There are 4 
rooted subtrees in the G-QPT in Figure 5(a) that share this 
prefix: RST1

3, RST2
3, RST3

3, RST4
3 (see Figure 6). These 

RSTs form the equivalence class (EC)[P3]. 



We next investigate the basic properties for the RST 
enumeration. Lemma 2 states that the string encodings of 
any RST1

k=prefix RST2
k can at most differ by two. 

Lemma 2: For any two k-edge rooted subtrees RST1
k and 

RST2
k that belong to the same equivalence class [Pk], if s1 

and s2 are their respective encodings, then 1 ≤ diff(s1, s2) 
≤ 2, where diff() is a string comparison function. 
Proof: Let Pk denote the k-prefix of this EC, and let the 
rightmost branch to be n1,n2,..,nm. Assume RST1

k and 
RST2

k are expanded at nodes ni and nj with nodes x and y 
respectively, i,j∈{1,…,m}∧i≠j. Since the expansion is on 
the rightmost path, the string encodings of RST1

k and 
RST2

k are Pk{,-1}m-i,x{,-1}i and Pk{,-1}m-j,y{,-1}j. It is 
easy to see that if ni=nj, then diff(s1,s2)=1;else, 
diff(s1,s2)=2.             □ 

The Apriori property [3] states that two frequent k-
itemset with the same (k-1)-itemset prefix can be joined to 
produce a k-itemset candidate. This property also holds 
here.  

Definition 8 (Join of two RSTs): Given two k-edge 
RSTs RST1

k and RST2
k which share the same prefix, the 

join result of RST1
k and RST2

k is denoted as RST12
k+1, that 

is, RST12
k+1 = RST1

k  RST2
k, where RST12

k+1 is a k+1-edge 
RST candidate. 

Theorem 1 (Join Result Encoding): Suppose RST1
k and 

RST2
k satisfy RST1

k =prefix RST2
k. If Pk is their k-prefix, 

then their string encodings are s1= Pk{,-1}m-i,x{,-1}i and 
s2= Pk{,-1}m-j, y{,-1}j  respectively. The string encoding 
of RST12

k+1 must be one of the following form: 
Case 1: i = j. If x < y, then we have Pk{,-1}m-i,x,-1,y{,-

1}i. Otherwise we have Pk{,-1}m-i,y,-1,x{,-1}i. This 
preserves the numbering order. 

Case 2: i > j. Pk{,-1}m-i,x,-1{,-1}i-j,y{,-1}j. 
Case 3: j > i. The string encoding is symmetric to case 

i>j, i.e., Pk{,-1}m-j,y,-1{,-1}j-i,x{,-1}i. 
Proof: Since RST1

k and RST2
k are two k-edge RSTs in the 

same equivalence class, Lemma 2 holds. If diff (s1,s2) = 1, 
i.e., i = j, then this indicates that RST1

k and RST2
k have 

been expanded at the same node ni. The join of RST1
k and 

RST2
k is tantamount to inserting a rightmost node of RST1

k 
into the node ni of RST2

k. To preserve the numbering 
order, we insert the rightmost node of an RST with 
smaller number into the node ni of the other RST. This 
proves Case 1. 

If diff (s1, s2) = 2, then this corresponds to Cases 2 and 
3. Here, we provide the proof for Case 2. The proof for 
Case 3 is similar. From the string encodings of RST1

k and 
RST2

k, we know that RST1
k and RST2

k are derived by 
expanding the nodes ni and nj respectively in Pk, where ni 
and nj are two nodes in the rightmost path n1,n2,…,nm of 
Pk. From the numbering scheme, the node x which is 
added as a child of ni has a larger number than the node y 
which is added as a child to nj (Figure 7). The effect of 

joining RST1
k and RST2

k is equivalent to adding node y of 
RST2

k to node nj of RST1
k.         □ 

n1
n j
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y
nm

P k
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Figure 7. Join of kRST1 and kRST2 . 

Theorem 1 allows us to simplify the join of two RSTs. 
We only need to compare the two RST’s string encodings 
and find the first position where they differ. The string 
encoding of a new candidate RST can be obtained by 
inserting the node with the (smaller) number n plus –1 ({ 
,n,-1}) into the position of the other string encoding. This 
method avoids the expensive tree comparisons needed in 
the traditional candidate generation.  
Example: Consider the joins of RST1

3 and RST2
3, RST1

3 
and RST4

3 in Figure 8. Their respective string encodings 
are given by s1=1,2,-1,3,4,-1.-1, s2=1,2,-1,3,5,-1,-1 and 
s4=1,2,-1,3,-1,8,-1. These encodings have in common the 
prefix P3=1,2,-1,3, and can be rewritten as s1=P3,4,-1.-1, 
s2=P3,5,-1,-1, s3=P3,-1,8,-1. We have diff(s1,s2) = 1. Since 
the smaller differing node 4 is found in s1, we insert {,4,-
1} into s2 before node 5, and obtain the string encoding s12 
of  RST1

3  RST2
3: P3,4-1,5,-1,-1. On the other hand, we 

have diff(s1,s4)=2. We find the first differing node(≠–1) 4 
in s1. By inserting {,4,-1} before the respective position of 
s4, we get the string encoding s14 of  RST1

3  RST4
3: P3,4,-

1,-1,8,-1. 
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Figure 8. Joining RSTs. 

Lemma 3: After sorting the string encodings of [Pk] in 
ascending order, the resulting [Pk]={RST1

k,RST2
k,…, 

RSTN
k } is an ordered list. For all i<j and i,j∈{1,…,N}, let 

RSTij
k+1 = RSTi

k  RSTj
k. Then prefix(RSTij

k+1,k+1)= 
prefix(RSTi

k,k+1) holds, and JR(RSTi
k)= {RSTij

k+1| 
RSTij

k+1= RSTi
k  RSTj

k, j=i+1,…,N} is the result of 
rightmost branch expansion of RSTi

k except the rightmost 
leaf node. 
Proof: Let si be the string encodings of RSTi

k, and let 
RSTi

k and RSTj
k ∈[Pk], i<j. Accordingly, we have si<sj. 

Given the numbering scheme in the G-QPT, it is obvious 
that the differing node with the smaller number lies in si. 
Suppose node y has a parent node ni in Pk, and the 
corresponding differing node in sj is x whose parent node 
in Pk is nj. We have reduced this problem to the case 
shown in Figure 7. From Theorem 1, we know that 
prefix(RSTij

k+1,k+1) = prefix(RSTi
k,k+1). Consequently, 



any RSTij
k+1 (∈{RSTij

k+1| RSTij
k+1 = RSTi

k  RSTj
k, 

j=i+1,…,N}) also belongs to the same equivalence class 
[prefix(RSTi

k,k+1)]. 
Let rmln(RSTi

k) denote the rightmost leaf node of 
RSTi

k, and Pk=prefix(RSTi
k,k). According to Lemma 1, all 

the RSTs RSTj
k (j=i+1,…,N) have the same prefix Pk as 

RSTi
k. When RSTi

k joins with RSTj
k, the RSTij

k+1 obtained 
corresponds to a rightmost node expansion. Since { RSTj

k 
| j=i+1,…,N} contains all the possible nodes of the 
rightmost branch of  RSTi

k except the leaf node 
rmln(RSTi

k), we have  JR(RSTi
k)={ RSTij

k+1| RSTij
k+1= 

RSTi
k  RSTj

k, j=i+1,…,N}, which is the result of the 
rightmost branch expansion of RSTi

k except the rightmost 
leaf node.                                                                          □ 

Corollary 1: Let [Pk]={ RST1
k  , RST2

k,…, RSTN
k } be an 

ordered list. Then the join result set JR(RSTi
k)={ RSTij

k+1| 
RSTij

k+1= RSTi
k  RSTj

k, j=i+1,…,N} is in ascending 
order.                                                                □ 

Example: Consider the equivalence class EC in Figure 6. 
[P3]={ RST1

3, RST2
3, RST3

3, RST4
3} is already sorted. 

Since prefix(RST12
4,4) = prefix(RST13

4,4) = 
prefix(RST14

4,4) = prefix(RST1
3,, 4) holds, it can be shown 

that prefix(RST23
4,4) = prefix(RST24

4,4) = prefix(RST2
3,4) 

and prefix(RST34
4,4) = prefix(RST3

3,4) also holds. 

The join result from Lemma 3 causes the RSTs to 
grow horizontally. All the RSTs of [RSTi

k] can be 
generated when it is combined with the vertical growth, 
that is, the rightmost leaf node expansion. Let nrml= 
rmln(RSTi

k) be the rightmost leaf node of RSTi
k, the result 

of rightmost leaf node expansion is given by rmlne(RST).  

Lemma 4: Let nrml=rmln(RSTi
k), and RSTi

k = P,nrml{,-1}m. 
Suppose n1,…,nc are the children of nrml in ascending 
order. We have rmlne(RSTi

k)={P,nrml,ni,-1{,-1}m | 
i=1,…,c}, and rmlne(RSTi

k) is in ascending order.      □ 

Consider the prefix tree P3 in Figure 6. Expanding the 
rightmost leaf node (node 3) of P3 will generate the 
candidates RST1

3 and RST2
3. Since RST1

3 and RST2
3 are 

obtained by adding nodes 4 and 5 to rmln(P3) 
respectively, they are in ascending order. 

Based on the results of Lemma 3 and Lemma 4, the 
following theorem produces an equivalence class of RST. 

Theorem 2: Given a k-edge RSTi
k ∈[Pk]={RST1

k  , 
RST2

k,…, RSTN
k} sorted in ascending string encodings, let 

rmlne(RSTi
k)={RSTir

k+1| RSTir
k+1is the rightmost leaf node 

expansion of RSTi
k} and JR(RSTi

k)={RSTij
k+1| RSTij

k+1= 
RSTi

k  RSTj
k, j=i+1,…,N}. Then [prefix(RSTi

k,k+1)]= 
rmlne(RSTi

k)∪JR(RSTi
k) holds.  

Proof: Lemma 1 shows that rmbe(RSTi
k) forms the 

equivalence class [prefix(RSTi
k,k+1)] by expanding the 

right most branch of RSTi
k.    Lemma 3 states JR(RSTi

k) is 
the result of rightmost branch expansion of RSTi

k except 
the rightmost leaf node. Lemma 4 gives the result of 
rightmost leaf node expansion rmlne(RSTi

k). This 

concludes the proof of Theorem 2: [prefix(RSTi
k, k+1)] = 

rmlne(RSTi
k)∪JR(RSTi

k) holds.        □ 

Corollary 2: From Lemma 4 and Corollary 1, the 
equivalence class [prefix(RSTi

k,k+1)]=rmlne(RSTi
k) 

∪JR(RSTi
k) obtained in Theorem 2 is in ascending order, 

and generates all the candidate RSTs without repetition. □ 

Example: Figure 9 illustrates the application of Theorem 
2 to the G-QPT in Figure 5. Note that the equivalence 
class generated is already in ascending order. 

Theorem 2 essentially partitions the RSTs in an 
equivalence class into two categories: (a) JR(RSTi

k), the 
set of RSTs generated by joining RSTs, and (b) 
rmlne(RSTi

k), the set of RSTs generated by the rightmost 
leaf node expansion.  

Lemma 5: Suppose RST1, RST2∈[Pk] are contained in 
the same QPT. Let RST12=RST1 RST2. Then RST12 is 
also contained in the QPT. Let [Pk]={ RST1

k, RST2
k,…, 

RSTN
k } and the join result JR(RSTi

k)={ RSTij
k+1| RSTij

k+1= 
RSTi

k  RSTj
k, j=i+1,…,N}. We have ∀ 

RSTij
k+1∈JR(RSTi

k), RSTij
k+1.tidlist = RSTi

k.tidlist∩ 
RSTj

k.tidlist.                                                   □ 

Lemma 5 removes the need to match the RSTs 
generated by joins, that is, RSTij

k+1∈JR(RSTi
k), with the 

QPTs in the database. Next, we examine the RSTs in the 
equivalence class [prefix(RSTi

k,k+1)] that have been 
generated by the right-most leaf node expansion 
rmlne(RSTi

k). This set of RSTs can be divided into single-
branch RSTs and multi-branch RSTs. The former are 
RSTs with one leaf node, while the latter are RSTs with 
multiple leaf nodes. 

Lemma 6: By associating transaction IDs with the QPTs, 
only single-branch RSTs in rmlne() need to be matched 
with the QPTs in the database. The frequency count for 
the remaining k+1-edge RSTs is computed from the 
intersection of the tidlists of corresponding k-edge RSTs. 
Proof: Let [RSTi

k]=JR(RSTi
k)∪rmlne(RSTi

k). Given a 
multi-branch (k+1)-edge RSTk+1∈rmlne(RSTi

k), we obtain 
m k-edge RSTs by removing one leaf node from each 
branch at a time. Since the rightmost branch expansion 
enumerates all the candidates, so these RSTs must be in 
some equivalence class. The join result of any two of 
these RSTs produces the (k+1)-edge RSTk+1 itself. Let 
RSTk+1= RSTi

k  RSTk, where RSTk is produced by 
removing one leaf node from RSTk+1, such that the 
deleted leaf node is not the rightmost leaf node of RSTk+1. 
If RSTk∈Fk, then RSTk+1.tidlist can be computed via 
RSTk+1.tidlist= RSTi

k.tidlist∩ RSTk.tidlist. In contrast, for 
a single-branch (k+1)-edge RSTk+1∈rmlne(RSTi

k), only 
one k-edge RST exists. Hence, it must be matched against 
QPTs in the DB.          □ 

Lemma 6 further reduces the number of RSTs to be 
matched. Consider Figure 9 where RST3 (“1,3,-1,6,7,-1,-



1”) is in the rightmost leaf node expansion of RST2 (“1,3,-
1,6,-1”). RST3 is a 2-branch RST. By removing its leaf 
node 3, we obtain the RST (“1,6,7,-1,-1”), which is in 
equivalence class [“1,6”]. However, this result cannot be 
applied to a single branch RSTk+1∈rmlne(RSTi

k). Since a 
single branch RSTk+1 cannot be the join result of two k-
edge RSTs, it has to be matched against the QPTs in the 
DB. 
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Figure 9. Generating Equivalence Classes. 

3.2   Pruning RSTs 

Next, we examine how infrequent RSTs can be pruned 
early. This is achieved by applying the Apriori property: 
If a subset of an itemset is not frequent, then the itemset 
itself cannot be frequent. The frequent itemsets of size k-1 
serve as filters for candidate itemsets of size k: If a k-edge 
RST is frequent, then all its (k-1)-edge RSTs must be 
frequent. 

Lemma 7: Let s be the string encoding of RSTk. Then all 
the RSTk-1 can be generated by deleting “n,-1” from s 
each time found when scanning s, where n≠-1. 
Proof: By recognizing that each “n,-1” in s represents a 
leaf node of RSTk, we know that the string encoding s’ 
produced by deleting “n,-1” from s is a (k-1)-edge RST. 
By scanning s once and each time producing a (k-1)-edge 
RST when found a “n,-1”, all RSTk-1 are produced.         □ 

To facilitate this checking, we employ a prefix tree to 
index the previously generated frequent RSTs. The prefix 
tree behaves like a hash tree. That is, the RSTs stored in 
the tree are indexed using the string encoding (with the -
1’s removed) described in the previous section. The 
lookup time of the prefix tree is about O(L), where L is 
the length of the string encoding. 

Figure 10 shows an example prefix tree of some RSTs 
generated from G-QPT in Figure 5. Note that nodes at 
depth k in the prefix tree stores the string encoding of 
frequent k-edge RST.  

1

2 3 6 8

3 6 8 4 5 6 8 7 8 ⊥

1,2,-1,3,-1
1,2,-1,6,-1

1,2,-1,8,-1

1,3,4,-1,-1
1,3,5,-1,-1

1,3,-1,6,-1
1,3,-1,8,-1

1,6,-1,8,-1
1,6,7,-1,-1

 
Figure 10. Example Prefix Tree. 

Algorithm FastRSTGen (Fk, Support, Fk+1,Ck+1) 
Input: Fk -frequent k-edge RSTs,    
           Support = minSupp*|D| 
           Fk+1,Ck+1- are used for return result; 
Output: Candidate set Ck+1 and part of Fk+1 
1.Ck+1=φ; Fk+1=φ; 
2.for each equivalence class E∈Fk do 
3.    for each RSTi

k ∈E do 
4.        RMLNE = rmlne (RSTi

k); 
5.        for each rst∈RMLNE do 
6.             if (IsSingleBranch (rst)) 
7.                 Ck+1←rst;    
8.             else if exists k-edge RSTk of rst in prefix tree  
                           and RSTk≠ RSTi

k then 
9.                       rst.tidList=RSTk.tidList∩ RSTi

k.tidList; 
10.                       if (|rst.tidList|≥ Support) 
11.                          Fk+1←rst;                 
12.      for RSTj

k ∈E, i<j do 
13.          RSTk+1= RSTi

k  RSTj
k;     

14.          RSTk+1.tidList= RSTi
k. tidList∩ RSTj

k.tidList; 
15.          if (|RSTk+1.tidList|≥ Support) 
16.               Fk+1←RSTk+1;              
17.return; 

Figure 11. Algorithm FastRSTGen. 

3.3   Algorithm FastRSTGen 

The theorems in sections 3.1 and 3.2 essentially partition 
the candidate RSTs in an equivalence class into two 
categories. The first category of RSTs does not need to be 
matched against the QPTs in the database, while the 
second category of RSTs are the single-branch RSTs that 
need to be matched against the QPTs in the database.  

Figure 11 shows the candidate generation algorithm 
FastRSTGen. Lines 4-11 process the RSTs obtained by 
the rightmost leaf node expansion of RSTi

k. Lines 6-7 
handle the single-branch RSTs that will be returned as 
Ck+1 to be matched against the QPTs in the database. 
Lines 8-11 prune the non-single-branch rst based on the 
results of Lemmas 5 and 6. That is, if there exists a k-edge 
RSTk of rst that is different from RSTi

k, then rst.tidList 
will be computed from the intersection of RSTk.tidlist and 
RSTi

k.tidList. If rst meets the minimum support criteria, 
then rst is frequent and will be added to Fk+1. Lines 12-16 
compute the set JR(RSTi

k).Each join result RSTk can be 



computed  from the tidlists, and added to Fk+1 if it is 
frequent. 

4. Caching Query Pattern Trees 
Frequent QPTs captures the frequent queries issued in the 
past and they form the ideal candidates for caching. 
However, many of these queries have overlaps in the 
answer sets. To fully utilize the limited cache space, we 
propose the following rewriting heuristic: 

Rewriting heuristic: Let F be the set of frequent 
QPTs. Given a new incoming QPT, we find the most 
similar frequent pattern tree QPTi0 in F. If the difference 
between QPT and QPTi0 is within certain threshold, then 
the rewritten query is mQPT=merge(QPT,QPTi0). The 
relevant answers to QPT will be presented to the user, 
while the query result to mQPT will be cached.  

Once the query has been rewritten, we can incorporate 
the discovered frequent query patterns with existing cache 
replacement policy. We first differentiate the frequent 
query patterns from the infrequent ones since the former 
are more likely to be issued subsequently. When cache 
replacement is needed, answers to infrequent query 
patterns are replaced first. If the space for admitting the 
new query result is still not sufficient, then the cached 
results corresponding to some frequent query patterns will 
be replaced according to the existing replacement policy.  

Assuming the query result set to be replaced is 
{q1,q2,…,qr}, and pi is the predicted probability of future 
accessing of qi, ci is its execution cost of query qi, and si is 
its size. The benefit for keeping an incoming query qi 
result in cache is: pici/si. Therefore, replacement will only 
occur if  

pc/s ≥ ∑
=

r

j
jjj scp

1
)/( .  

Figure 12 outlines a new replacement policy called 
FQPT_LRU that incorporates frequent QPTs into the least 
recently used (LRU) replacement policy. The most 
recently used (MRU) policy can be similarly adapted. 
 

Algorithm FQPT_LRU 
1.  Replace query results that do not correspond to 

any frequent query patterns. 
2. If there is sufficient space for the results of new 

query, then admit query, else replace those cached 
results related to frequent query patterns 
according to LRU. 

Figure 12. Algorithm FQPT_LRU. 

5. Performance Study 
In this section, we evaluate the performance of 
FastXMiner and demonstrate the effectiveness of our 
strategy to cache the frequent query patterns found. The 
mining algorithms were implemented in C++ and the 
caching system was in Java.  We carried out experiments 

on a Pentium IV 2.4 GHz with 1 GB RAM, running under 
Windows XP. 

5.1  Efficiency of FastXMiner 

Here, we compare the performance of FastXMiner with 
XQPMiner, a G-QPT schema guided enumeration method 
[24]. We record the response times of both algorithms 
when the minimum support varies. We also investigate 
their scalability by varying the number of QPTs in the 
database. 

The datasets used are SigmodRecord, Shakespears’ 
Play (SSPlay for short) and DBLP whose schemas are 
SigmodRecord.DTD, SSPlay.DTD and DBLP.DTD. A 
DTD graph is converted into a DTD tree by introducing 
some “//” and “*” nodes, from which the G-QPT is 
obtained. To generate the QPTs of queries, we first 
enumerate all the RSTs of the G-QPT. Then we use the 
Zipfian and uniform distributions to produce the 
transaction file of QPTs from the RSTs.  

Different datasets have different characteristics (see 
Table 1). The number of nodes in G-QPT, the maximum 
depth and fanout of G-QPT give an indication of how 
many rooted subtrees the G-QPT will have. The total 
number of RSTs in a G-QPT affects the mining process 
since they have to be matched and pruned against the 
QPTs in the database. A RST with “//”consumes more 
time to compare with QPTs than a RST without “//”. In 
contrast, the average number of nodes, maximum depth 
and fanout of QPTs reflect the complexity of the dataset. 
All the datasets follow the default Zipfian distribution 
except when specified. 

Table 1. Characteristics of Datasets Used. 
                 Datasets DBLP DBLP - 

Uniform 
SSPlay Sigmod

Record 
Num. of 
nodes 

98 98 67 11 

Max depth 8 8 6 5 
Num. of // 13 13 0 0 

 
 

G-
QPT 

Max fanout 12 12 9 4 
Ave # of 
nodes 

7.4 9.2 7.5 5.5 

Max depth 8 8 6 5 

 
QPT 

in 
DB Max fanout 12 12 9 4 

 

5.1.1 Effect of Minimum Support  

We first investigate the effect of minimum support on the 
performance of FastXMiner and XQPMiner. Each of the 
datasets consist of 200,000 QPTs. Figure 13 shows the 
results. We observe that the response time for FastXMiner 
is barely affected by the decrease in minimum support, 
while that for XQPMiner grows rapidly. For example, for 
the DBLP (uniform) dataset, the time taken by XQPMiner 
at 2% minimum support is about 6 times more than that at 
0.1%. In contrast, the time needed for FastXMiner at 
support 2% is only about 1.2 times more than that at 0.1%. 
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(c) DBLP, 200K, Zipf 
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(d) DBLP, 200K, Uniform 

Figure 13. Effect of Varying Minimum Support. 
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Figure 14. Effect of Varying G-QPT Size. 

 
 
This is because with decreasing minimum support, 
XQPMiner needs to match an increasing number of 
candidate RSTs against the QPTs in the database while 
FastXMiner is able to avoid a large number of these 
matches.  

We also note from the above experiment that as the 
number of nodes in the G-QPT increases, FastXMiner 
outperforms XQPMiner significantly. Figure 14 shows the 
response time (in log10) of the two methods for varying 
sizes of G-QPT at minimum support 0.1%. FastXMiner is 

DBLP minsupp=0.5%,Zipf

0
10
20
30
40
50
60
70

100 200 300 500 1000
Number of QPTs in DB (x1000)

Ti
m

e(
x1

00
0s

)

FastXMiner
XQPMiner

 
Figure 15. Effect of Varying Number of QPTs. 

 

faster than XQPMiner by  6~8 times for the 
SigmodRecord DTD, 18~132 times faster for the SSPlay 
DTD, and 53~273 times faster for the DBLP DTD. 

5.1.2  Scalability  

Next, we investigate the impact of the number of 
transactions (or QPTs) in the database on response time. 
The number of QPTs ranges from 100,000 to 1 million.  
Figure 15 shows the results for the DBLP dataset. 
FastXMiner has excellent scale-up as compared to 



XQPMiner. For 1 million QPTs, FastXMiner needs only 
26 minutes while XQPMiner needs more than 20 hours. 
This confirms the effectiveness of our approach to reduce 
the set of RSTs to be matched against the database. 

5.2 Effectiveness of Caching Frequent QPTs 

In this section, we demonstrate how the frequent query 
patterns discovered can be used to improve caching 
performance. The XML caching system is implemented in 
Java. We use the index scheme [19] to populate the SQL 
Server 2000 with the DBLP data and create the 
corresponding indexes. The system accepts tree-patterns 
as its queries, and utilizes structural join method[3] to 
produce the result. Note that a tuple here refers to a tree, 
instead of a row. No optimization techniques are used.  

To improve the XML query execution speed, we 
extract the data of dblp/inproceedings, and add two more 
elements: review and comments. These two attributes are 
used to store the rarely retrieved data and relatively large 
amounts of text (about 1-2KB). The adapted XML data 
file size is 81.2MB with 3 levels. 

Two sets of experiments that investigate the effect of 
varying number of queries and varying cache size are 
carried out using 4 replacement policies, namely, 
traditional LRU and MRU, FQPT_LRU and 
FQPT_MRU. The latter two policies are obtained by 
incorporating frequent query patterns into LRU and MRU 
respectively.  

Table 2 shows the probabilities used to generate the 
XML queries for the DBLP data. These queries fall into 
two categories: frequent queries and infrequent queries. 

Table 2. Probabilities of Queries. 
Probability Query types 

0.04 Infrequent query patterns 
0.16 6 group of frequent query patterns 

The infrequent query pattern set is generated with 
probability of 0.04. Within the infrequent query set, we 
generate the actual XML query using the following 
probabilities: Dblp(1), inproceedings(1), key(0.1), 
author(0.7), title(0.9), year(1), pages(0.5), crossref(0.4), 
booktitle(0.7), ee(0.5), url(0.2), review(0.9), 
comments(0.3). Note that dblp and inproceedings always 
appear, and year is used as the predicate. A uniform 
distribution is employed for the predicate values. 

There are 6 groups of frequent XML queries. Each of 
them is generated with probability 0.16. We show the 
query template for two groups. 
– Group 1: Dblp(1), inproceedings(1), key(1), title(1), 

year(1), crossref(1), ee(0.9) 
– Group 2: Dblp(1), inproceedings(1), key(1), title(1), 

year(1), URL(1), ee(0.9) 
We generate 100,000 XML queries that are processed by 
FastXMiner with a minimum support of 6%. 

 5.2.1 Performance Metrics 

Hit-rate is not an appropriate evaluation metric because 
some queries can only use part of the cached results. 
Instead, we utilize cost-saving ratio and average response 
time as the performance metrics in our experiments. 

Cost Saving Ratio is defined as ∑
i

iiCH /∑
i

ii RC , 

where Hi is the number of times Qi can be answered by 
the cache, Ri is the total number of times Qi is issued, and 
Ci is the execution cost of query Qi. 

Average Response Time is the average time taken to 
answer a query. It is defined as the ratio of total execution 
time for answering a set of queries to the total number of 
queries in this set.  

5.2.2 Effect of Varying Number of Queries 

In this set of experiment, we investigate the effect of 
number of queries on cache performance. We vary the 
number of queries from 1000 to 8000, and fix the cache 
size at 40MB. The result is shown in Figure 16. We 
observe that FQPT_* replacement policies give better 
performance than those without frequent query patterns. 
The average response time is about 3~4 times lower. 
Furthermore, the average response time of FQPT_* 
decreases as the number of queries increases. The graph 
for cost saving ratio (Figure 16(b)) shows a similar trend. 

5.2.3 Effect of Cache Size 

Next, we investigate the effect of cache size on query 
performance. We vary the cache size from 10MB to 
80MB, and fix the number of queries at 4000. Figure 
17(a) shows that the gap in the average response time for 
the FQPT_* policies and those without using frequent 
query patterns increases with the cache size initially, and 
then peaks at around 40M. As the cache size continues to 
increase, the gap gradually narrows since most of the data 
would be found in the cache. Again, the graph for cost 
saving ratio indicates similar trend (Figure 17(b)). 

6. Related Work 
Finding frequent substructures from graphs first gains its 
focus in DNA/RNA research. [23] devises an algorithm to 
discover approximate common subtrees in multiple RNA 
secondary structures. [12] gives an efficient algorithm to 
find frequent substructure describing the carcinogenesis 
of chemical  compounds from labelled graphs, and 
applied it to predict the functions of chemical compounds.  
The prevalence of the World Wide Web has also 
prompted works to find frequent substructures in Web 
documents [1, 21, 22, 25]. The objective is to discover the 
frequent substructures from a collection of semi-
structured data objects (files) of similar structure. [22] 
employs a tree matching algorithm to count the support of 
candidate substructures by introducing the wildcard ‘?’ in 
the subtree to match any label in the path.     
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Figure 16. Effect of Varying Number of Queries. 
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Figure 17. Effect of Varying Cache Size. 

 [25] develops a frequent subtree mining algorithm to 
discover the user navigation patterns in web surfing. The 
subtree is a generalized one where its interior nodes can 
shrink. In addition, for each leaf node of the current 
pattern, all the possible node expansions have to be tested 
because there is no schema information to guide their 
enumeration. This would not be efficient if applied to our 
work.  

FREQT[1] and TreeFinder[21] aim to find frequent 
subtrees from a collection of semi-structured documents. 
FREQT considers only subtree inclusion and proposes a 
subtree enumeration method that is similar to [25]. 
TreeFinder employs tree subsumption to approximate the 
result in order to achieve scalability. TreeFinder first 
transforms the tree into label pairs representing the 
transitive closure of ancestor relationship. A standard 
Apriori method is used to mine frequent label pair sets. 
For each support tree set of a frequent label pair set, 
TreeFinder has a generalization step to construct the 
maximal common tree. The main limitation of TreeFinder 
is that it can only find a subset of the actual set of frequent 
trees.  

All the above techniques are not appropriate for 
mining XML query patterns since these patterns contains 
special characters wildcard ‘*’ and relative paths ‘//’. 

Semantic caching has received extensive attention 
both in database and web areas [6, 11]. The recent move 
towards intelligent web caching tries to adapt to changes 
in usage patterns by constructing predictive models of 
user requests by mining web log data [4, 18]. However, 
caching XML query results is still a relatively new area 
[10]. To the best of our knowledge, this is a first work to 
exploit frequent query patterns for caching XML data. 

7.  Conclusion and Future Work 
In this paper, we have described an efficient algorithm, 
FastXMiner, to discover frequent rooted subtrees from 
XML queries. FastXMiner enumerates only valid 
candidates RSTs. We develop theorems to prove that only 
a small subset of the generated candidate patterns needs to 
undergo expensive tree containment tests. Experiments 
results reveal that FastXMiner has good response time 
and scales well.  



We have also discussed how the results of the 
discovered frequent queries patterns can be incorporated 
into a caching system. The experimental results 
demonstrate that incorporating frequent query patterns 
can help to improve the performance of a XML query 
system significantly.  

Future work includes extending the mining algorithm 
to handle query patterns with predicates, and investigating 
how frequent query patterns can be applied to the problem 
of view selection. By incorporating user information, the 
discovery of frequent query patterns will reflect the user 
preferences and requirements. This is especially useful in 
designing data warehouses for XML. 
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