
Efficient Mining of XML Query Patterns for Caching

Liang Huai Yang Mong Li Lee Wynne Hsu

 School of Computing
National University of Singapore

{yanglh, leeml, whsu}@comp.nus.edu.sg

Abstract

As XML becomes ubiquitous, the efficient
retrieval of XML data becomes critical. Research
to improve query response time has been largely
concentrated on indexing paths, and optimizing
XML queries. An orthogonal approach is to
discover frequent XML query patterns and cache
their results to improve the performance of XML
management systems. In this paper, we present
an efficient algorithm called FastXMiner, to
discover frequent XML query patterns. We
develop theorems to prove that only a small
subset of the generated candidate patterns needs
to undergo expensive tree containment tests. In
addition, we demonstrate how the frequent query
patterns can be used to improve caching
performance. Experiments results show that
FastXMiner is efficient and scalable, and caching
the results of frequent patterns significantly
improves the query response time.

1. Introduction
Since its inception in 1998, XML has emerged as a
standard for data representation and exchange on the
World Wide Web. The rapid growth of XML repositories
has provided the impetus to design and develop systems
that can store and query XML data efficiently. Given that
XML conforms to a labeled tree or graph, the basic
features in query languages such as XPath [7] or XQuery
[8] are regular path expressions and tree patterns with
selection predicates on multiple elements that specify the
tree-structured relationships.

For example, for a query book [title="XML",
year="2000"] // author [lastname="Buneman"], a query

engine has to find matches for a book element which has
the children title with content "XML" and year with
content "2000", and the book element also has a
descendent author which contains a child lastname with
content "Buneman". Processing such XML queries can be
expensive because it involves navigation through the
hierarchical structure of XML, which can be deeply
nested. Current research to improve query response times
has been focused on indexing paths [9, 13, 16] and
optimizing various classes of XML queries [2, 5].

Caching has played a key role in client-server
databases, distributed databases and Web-based
information systems because network traffic and slow
remote servers can lead to long delays in the delivery of
answers. Work on semantic/query caching examines how
user queries, together with the corresponding answers can
be cached for future reuse [6, 11]. The advantage of this
is that when a user refines a query by adding or removing
one or more query terms, many of the answers would
have already been cached and can be delivered to the user
right away. This avoids the expensive evaluation of
repeated or similar queries.

Traditional caching strategies typically consider the
contents in a cache as belonging to a priority queue. The
LRU (and its many variations) is a well-established
replacement strategy that evicts the least recently accessed
objects from the cache when it is full. The recent move
towards intelligent web caching tries to adapt to changes
in usage patterns by constructing predictive models of
user requests by mining web log data [4, 18].

In this paper, we examine how the query performance
in XML management systems can be improved by
caching XML query results. The results to frequent XML
queries are cached in anticipation of future retrievals. This
entails the discovery of frequent query patterns [24].
Mining these patterns requires more than simple tree
matching as the XML queries contains special characters
such as the wildcard “*” and relative path “//”. The
matching process can be expensive since the search space
is exponential to the size of the XML schema.

Motivated by the need to reduce expensive tree
matching, we develop theorems to prove that only a small
subset of the generated candidate patterns needs to
undergo costly tree containment tests. We present an

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

efficient algorithm called FastXMiner, to discover
frequent XML query patterns, and demonstrate how these
query patterns can be incorporated into a query caching
system for XML data. Experiment results show that
FastXMiner is efficient and scalable, and that utilizing the
frequent query patterns in caching strategy increases the
cost-saving ratio and reduces the average query response
time.

The rest of the paper is organized as follows. Section 2
discusses some concepts used in mining query patterns.
Section 3 describes our approach to mine frequent query
patterns efficiently. Section 4 shows how the discovered
query patterns can be exploited in caching. Section 5
presents the results of our experiments. Section 6
discusses the related work, and we conclude in Section 7.

2. Preliminaries
In this section, we define some of the basic concepts used
in query pattern tree mining.

2.1 Query Pattern Tree

XML queries can be modelled as trees. We call them
query pattern trees. Consider the example BOOK DTD
tree in Figure 1(a). A query to retrieve the title, author and
price of books where books/section//title has value “XML
Schema” would have the query pattern tree as shown in
Figure 1(b). In addition to element tag names, a query
pattern tree may also consist of wildcards “*” and relative
paths “//”. The wildcard “*” indicates the ANY label (or
tag) in DTD, while the relative path “//” indicates zero or
more labels (descendant-or-self).

 (a) Example BOOK DTD (b) A Query Pattern Tree.

Figure 1. A DTD and a XML Query Pattern Tree.

Definition 1 (Query Pattern Tree): A query pattern tree
is a rooted tree QPT = <V, E>, where V is the vertex set,
E is the edge set. The root of the pattern tree is denoted by
root (QPT). For each edge e = (v1, v2), node v1 is the
parent of node v2. Each vertex v has a label, denoted by
v.label, whose value is in {“*”, ”//”} ∪ tagSet, where the
tagSet is the set of all element and attribute names in the
schema.

Definition 2 (Rooted Subtree): Given a query pattern
tree QPT = <V, E>, a rooted subtree RST = <V’, E’> is a
subtree of QPT if it satisfies the following conditions:
(1) Root (RST) = Root (QPT), and

(2) V’⊆ V, E’ ⊆ E.
We call an RST a k-edge rooted subtree if it has k edges.

2.2 Tree Inclusion

In order to decide if a RST is included in some QPT, we
need to define the semantics of tree inclusion. Several
definitions of tree inclusion exist including subtree
inclusion [20], tree embedding [25] and tree subsumption
[14]. The most relevant definition for this work is the
subtree inclusion, which states that a subtree t’ is included
in some tree t if and only if there exists a subtree of t that
is identical with t’. However, this definition is too
restrictive for XML query pattern trees where handling of
wildcards and relative paths are necessary.

Consider the two trees T1 and T2 in Figure 2. Let (p,q)
denote that a node p in T1 is mapped to a node q in T2.
Since we are dealing with rooted subtrees, we can carry
out a top-down matching. Here, (book,book) is mapped
first. Next, we check that each subtree of book in T1
matches with some subtree of book in T2. This requires
that the subtree rooted at section of T1 (denoted as
subtree(section)) has to be matched against the subtrees
rooted at ‘//’ and author of T2. We need to consider
whether ‘//’ indicates zero or many nodes in the path:
Case 1: ‘//’ means zero length.

Then subtree(section) must be included in either
subtree(title) or subtree(image) of T2, which is not the
case here.

Case 2: ‘//’ means many nodes.
This implies that section has been mapped to some
‘unknown’ node in T2. From all the possible subtrees
of section, only one subtree, i.e., subtree(figure),
must be included by subtree(‘//’).

It is obvious that subtree(author) of T1 is included in
subtree(author) of T2. The inclusion of T1 in T2 is shown
in Figure 2 via dashed lines. We conclude that T2 includes
T1, denoted as T1 ⊆ T2. Note that if we have applied an
exact subtree inclusion definition, then T1 would not be
included in T2.

⊆ section

title image
figure

T1

book
author

book

title image

author

T2

address
//

Figure 2. Example of Tree Inclusion.

Before we define our concept of tree inclusion, we
first introduce the notion of the partial order relationship
≤ of labels in QPTs.

Definition 3 (Partial Ordering of Labels): Given two
labels x and x’, if x=x’, then we say x ≤ x’. For any label
x ∈ tagSet, we define x ≤ * ≤ //, that is, a node with label

book

author pricetitle

section

//

title

author+

book
title

section+

address
title para*fn ln

section*
publisher

price
year

preface

x matches a wildcard, which in turn matches a node with
label //.

Definition 4 (Extended Subtree Inclusion): Let
subtree(p) and subtree(q) be two subtrees with root nodes
p and q respectively. Let children(v) denotes the set of
child nodes of v. Then we can recursively determine if
subtree(p) is included in subtree(q), denoted by subtree
(p) ⊆ subtree (q), as follows:

p ≤ q and satisfies:
(1) both p and q are a leaf nodes; or
(2) p is a leaf node and q = ‘//’, then ∃q’∈children(q)

such that subtree(p)⊆ subtree(q’); or
(3) both p and q are non-leaf nodes, and one of the

following holds:
i. ∀p’∈children(p), ∃q’∈children(q) such that

subtree(p’)⊆subtree(q’); or
ii. q=’//’ and ∀p’∈children(p), we have

subtree(p’) ⊆ subtree(q); or
iii. q=’//’ and ∃q’∈children(q) where subtree(p)

⊆ subtree(q’);

In addition, a DTD may contain recursions such as part
has (sub)part(s). Consider the test for whether a path
“a/b/b” is included in “a/b//c”. If we do not know that
there exists a path “a/b/b//c”, then we cannot conclude
that the first path is included in the second path. This is
because it is possible for a DTD declaration to include
“a/b/d/e/c” or “a/b/b/f” but not “a/b/b//c”. In order to
handle these situations, we need to take into account the
DTD and perform some expansions of the QPTs.
Interested readers are referred to [24] for the details.

Clearly, performing such extended subtree inclusion
test is expensive. Below, we describe an efficient
algorithm for mining query pattern trees that aims at
minimizing the number of tree containment tests.

2.3 Query Pattern Tree Mining Problem

Given a set of query pattern trees D={QPT1, …., QPTN},
mining the frequent query pattern implies discovering the
frequent rooted subtrees (RSTs) in the query pattern trees.
A rooted subtree RST matches a query pattern tree QPT
in D (or RST occurs in D) if there exists a QPT that
includes the RST. The total occurrence of an RST in D is
denoted by freq(RST), and the support level supp(RST) is
given by freq(RST)/|D|, where |D| denotes the number of
QPTs in database D. We say that RST is σ-frequent in D
if supp(RST) ≥ σ for some positive number σ.

Frequent Query Pattern Mining Problem: Given a
query pattern tree database D={QPT1,….,QPTN}, and a
positive number 0 < σ ≤ 1 called the minimum support,
find F, the set of all σ-frequent rooted subtrees, that is,
rooted subtrees RST such that supp(RST) ≥ σ.

Consider the query pattern trees and a 3-edge rooted
subtree RST in Figure 3. RST occurs in QPT1 and QPT2

with a frequency and support of freq(RST)=2 and
supp(RST)=2/3 respectively.

Transaction IDs (TID) are often used to expedite the
mining process [3]. Here we associate each query pattern
tree QPT with a unique TID, denoted as QPT.TID. This
will be used in our mining algorithm to reduce the
expensive tree inclusion test.

QPT3 RST

book

title

//

author

price

book

title

QPT1

author

price
book

title
price

fn

book

QPT2
ln

author
title

Figure 3. Example of a Frequent Query Pattern Tree.

3. Mining Query Pattern Trees
Mining frequent query patterns is expensive because of
the potentially large number of candidate RSTs that can
be generated, and the expensive tree containment tests
that these candidate RSTs need to undergo. The work in
[24] describes an Apriori-based algorithm XQPMiner that
exploits the underlying schema to avoid the exhaustive
enumeration of candidate RSTs. In this section, we build
upon this work, and present a novel strategy to further
reduce the costly tree inclusion tests.

We utilize a tree-encoding scheme to partition
candidate RSTs into equivalence classes that are further
divided into three groups. We prove that only the group
that contains single-branch candidate RSTs needs to be
matched against the XML query patterns in the database.
This leads to a large reduction in the number of tree
inclusion tests required. Subsequent experimental studies
show that this technique dramatically improves the
efficiency of the mining process.

Based on the above result, we develop an efficient
frequent query pattern mining algorithm called
FastXMiner (see Figure 4). In the algorithm, the notation
RSTk denotes a k-edge rooted subtree; Fk is a set of
frequent k-edge rooted subtree; and Ck is a set of k-edge
candidate RST. Edges correspond to items in traditional
frequent itemset discovery. The size of frequent RSTs is
increased by adding one edge at a time. In our
implementation, we associate each RSTk with a list of
TIDs, denoted as RSTk. tidlist, which indicates this RSTk
is included in which QPTs. Similarly, |RSTk.tidlist| is the
number of TIDs in RSTk.

FastXMiner initially enumerates all the frequent 1-
edge RSTs by scanning the database D once. In the
subsequent passes, we generate the frequent (k+1)-edge
RSTs from the frequent k-edge RST in two phases. In the
first phase, the algorithm FastRSTGen (more details on
this in Section 3.3) is called to generate the candidate set
Ck+1 by using the previously found frequent set Fk. Any
unqualified candidate RSTs is pruned. The frequency for
each candidate RST is counted, and those RSTs that do

not satisfy the minimal support criteria are pruned. The
candidate set Ck+1 contains all the RSTs to be matched
with the QPTs in the database.

In the second phase, the algorithm Contains is called
to determine if RSTk+1 is included in the pattern tree t.
This test is based on the extended tree inclusion
definition. Details of the Contains algorithm are given in
[24].

Algorithm FastXMiner (D, minSupp)
Input: D—pattern tree transaction database
 minSupp—the minimum support
Output: Sets of frequent RSTs
1.F1={frequent 1-edge rooted subtrees in D};
2.support= minSupp*|D|;
3.for (k=1; Fk≠φ; k++) do
4. Fk+1=φ; Ck+1=φ;
 //generate frequent rooted subtrees
5. FastRSTGen (Fk, support, Fk+1, Ck+1);
6. for each transaction t∈D do
7. for each single-branch candidate RSTk+1∈Ck+1 do
8. if Contains (t, RSTk+1) then //prune
9. RSTk+1.tidlist←t.TID;
10. Fk+1←{RSTk+1∈Ck+1 | |RSTk+1.tidlist|≥ support};
11.return {Fi | i = 1, …, k-1};

Figure 4. Algorithm FastXMiner.

The following subsections will describe the theory
behind FastXMiner.

3.1 Candidate Generation

The first step of FastXMiner is to enumerate all the
frequent RSTs in D. To facilitate this process, we
construct a global query pattern tree G-QPT by merging
the query pattern trees in the database. Figure 5(a) shows
the global query pattern obtained from the query pattern
trees in Figure 3.

The nodes in the G-QPT can be numbered using a pre-
order traversal. Since each QPT∈D is contained in G-
QPT, each node in QPT has the same number as the
corresponding node in G-QPT (see Figure 5). A hash
table is provided for the lookup of the mapping of each
node and its label. This numbering scheme not only
reduces the amount of memory usage during mining, but
also simplifies the representation of the query pattern
trees. For example, QPT1 can now be represented as

<1><2></2><3></3><8></8></1>
By removing the brackets and replacing each end tag with
–1, the above representation can be further compacted to
“1, 2, -1, 3, -1, 8, -1”. Note that the last end tag can be
omitted. This string-encoding scheme is often used to
facilitate tree comparison [25].

Definition 5 (Order of String Encodings): Any two
string encodings Se1 and Se2 can be transformed into the
corresponding strings S1 and S2 by removing all the –1

from Se1 and Se2. We denote the order of Se1and Se2 by
using S1, S2, that is, Se1≤ Se2 iff S1 ≤ S2.

book

author pricetitle

1

2 3 8

author

book

title //
6

titlefn ln

8

7

price

1

32

4 5

(a)G-QPT (b) QPT 1
Figure 5. Numbering Scheme for G-QPT and QPT.

Definition 6 (Prefix of a RST): A prefix of an RST’s
string encoding S is defined as the list of nodes up to the
ith node in S, and is denoted as prefix(S,i). Here, –1 is not
considered as a node. To simplify discussion, we will also
use prefix(RST, i) to refer to prefix(S, i).

After obtaining the global query pattern tree, the RST
enumeration problem is now reduced to the problem of
enumerating the RSTs in a G-QPT. Starting with all the
possible 1-edge RSTs, we use the G-QPT to
systematically guide the generation of 2-edge RSTs level-
wise by expanding the rightmost branch, from which 3-
edge RSTs are obtained, and so on. Figure 6 shows a 2-
edge RST R and the set of corresponding 3-edge RSTs
generated based on the G-QPT in Figure 5.

1

2 3

1

32

5

1

32

4

1

32 6

1

32 8

RST1
3

RST2
3 RST4

3
RST3

3P3

Figure 6. G-QPT-Guided Enumeration.
We introduce the equivalence relation =prefix to

partition the RSTs into equivalence classes. Given two k-
edge rooted subtrees RST1

k and RST2
k, let s1 and s2 denote

their respective string encodings. Then RST1
k =prefix RST2

k
if the equation prefix(s1,k) = prefix(s2,k) holds. Based on
the numbering scheme and the rightmost expansion
method, we derive the following lemma.

Definition 7 (Rightmost Branch Expansion): Given a
k-edge rooted subtree RSTk, the (k+1)-edge RST set
formed by expanding the rightmost branch of RSTk is
denoted as rmbe(RSTk).

Lemma 1: rmbe(RSTk) is an equivalence class based on
the relation =prefix, which shares the same prefix
Pk+1=prefix(RSTk, k+1). The equivalence class is denoted
as [Pk+1]. □

Example: Consider the prefix P3 = “1,2,-1,3”. There are 4
rooted subtrees in the G-QPT in Figure 5(a) that share this
prefix: RST1

3, RST2
3, RST3

3, RST4
3 (see Figure 6). These

RSTs form the equivalence class (EC)[P3].

We next investigate the basic properties for the RST
enumeration. Lemma 2 states that the string encodings of
any RST1

k=prefix RST2
k can at most differ by two.

Lemma 2: For any two k-edge rooted subtrees RST1
k and

RST2
k that belong to the same equivalence class [Pk], if s1

and s2 are their respective encodings, then 1 ≤ diff(s1, s2)
≤ 2, where diff() is a string comparison function.
Proof: Let Pk denote the k-prefix of this EC, and let the
rightmost branch to be n1,n2,..,nm. Assume RST1

k and
RST2

k are expanded at nodes ni and nj with nodes x and y
respectively, i,j∈{1,…,m}∧i≠j. Since the expansion is on
the rightmost path, the string encodings of RST1

k and
RST2

k are Pk{,-1}m-i,x{,-1}i and Pk{,-1}m-j,y{,-1}j. It is
easy to see that if ni=nj, then diff(s1,s2)=1;else,
diff(s1,s2)=2. □

The Apriori property [3] states that two frequent k-
itemset with the same (k-1)-itemset prefix can be joined to
produce a k-itemset candidate. This property also holds
here.

Definition 8 (Join of two RSTs): Given two k-edge
RSTs RST1

k and RST2
k which share the same prefix, the

join result of RST1
k and RST2

k is denoted as RST12
k+1, that

is, RST12
k+1 = RST1

k RST2
k, where RST12

k+1 is a k+1-edge
RST candidate.

Theorem 1 (Join Result Encoding): Suppose RST1
k and

RST2
k satisfy RST1

k =prefix RST2
k. If Pk is their k-prefix,

then their string encodings are s1= Pk{,-1}m-i,x{,-1}i and
s2= Pk{,-1}m-j, y{,-1}j respectively. The string encoding
of RST12

k+1 must be one of the following form:
Case 1: i = j. If x < y, then we have Pk{,-1}m-i,x,-1,y{,-

1}i. Otherwise we have Pk{,-1}m-i,y,-1,x{,-1}i. This
preserves the numbering order.

Case 2: i > j. Pk{,-1}m-i,x,-1{,-1}i-j,y{,-1}j.
Case 3: j > i. The string encoding is symmetric to case

i>j, i.e., Pk{,-1}m-j,y,-1{,-1}j-i,x{,-1}i.
Proof: Since RST1

k and RST2
k are two k-edge RSTs in the

same equivalence class, Lemma 2 holds. If diff (s1,s2) = 1,
i.e., i = j, then this indicates that RST1

k and RST2
k have

been expanded at the same node ni. The join of RST1
k and

RST2
k is tantamount to inserting a rightmost node of RST1

k
into the node ni of RST2

k. To preserve the numbering
order, we insert the rightmost node of an RST with
smaller number into the node ni of the other RST. This
proves Case 1.

If diff (s1, s2) = 2, then this corresponds to Cases 2 and
3. Here, we provide the proof for Case 2. The proof for
Case 3 is similar. From the string encodings of RST1

k and
RST2

k, we know that RST1
k and RST2

k are derived by
expanding the nodes ni and nj respectively in Pk, where ni
and nj are two nodes in the rightmost path n1,n2,…,nm of
Pk. From the numbering scheme, the node x which is
added as a child of ni has a larger number than the node y
which is added as a child to nj (Figure 7). The effect of

joining RST1
k and RST2

k is equivalent to adding node y of
RST2

k to node nj of RST1
k. □

n1
n j

n i
x

y
nm

P k

n1
n j

n i

y
nm

P k

n1
n j

n i

x

nm

P k

Figure 7. Join of kRST1 and kRST2 .

Theorem 1 allows us to simplify the join of two RSTs.
We only need to compare the two RST’s string encodings
and find the first position where they differ. The string
encoding of a new candidate RST can be obtained by
inserting the node with the (smaller) number n plus –1 ({
,n,-1}) into the position of the other string encoding. This
method avoids the expensive tree comparisons needed in
the traditional candidate generation.
Example: Consider the joins of RST1

3 and RST2
3, RST1

3
and RST4

3 in Figure 8. Their respective string encodings
are given by s1=1,2,-1,3,4,-1.-1, s2=1,2,-1,3,5,-1,-1 and
s4=1,2,-1,3,-1,8,-1. These encodings have in common the
prefix P3=1,2,-1,3, and can be rewritten as s1=P3,4,-1.-1,
s2=P3,5,-1,-1, s3=P3,-1,8,-1. We have diff(s1,s2) = 1. Since
the smaller differing node 4 is found in s1, we insert {,4,-
1} into s2 before node 5, and obtain the string encoding s12
of RST1

3 RST2
3: P3,4-1,5,-1,-1. On the other hand, we

have diff(s1,s4)=2. We find the first differing node(≠–1) 4
in s1. By inserting {,4,-1} before the respective position of
s4, we get the string encoding s14 of RST1

3 RST4
3: P3,4,-

1,-1,8,-1.

1

32

5

RST1
3 RST4

3 RST14
4

1

32

4

1

32

4 5

1

32

4

1

32 8

RST12
4

RST2
3

RST1
3

1

32

4

8

Figure 8. Joining RSTs.

Lemma 3: After sorting the string encodings of [Pk] in
ascending order, the resulting [Pk]={RST1

k,RST2
k,…,

RSTN
k } is an ordered list. For all i<j and i,j∈{1,…,N}, let

RSTij
k+1 = RSTi

k RSTj
k. Then prefix(RSTij

k+1,k+1)=
prefix(RSTi

k,k+1) holds, and JR(RSTi
k)= {RSTij

k+1|
RSTij

k+1= RSTi
k RSTj

k, j=i+1,…,N} is the result of
rightmost branch expansion of RSTi

k except the rightmost
leaf node.
Proof: Let si be the string encodings of RSTi

k, and let
RSTi

k and RSTj
k ∈[Pk], i<j. Accordingly, we have si<sj.

Given the numbering scheme in the G-QPT, it is obvious
that the differing node with the smaller number lies in si.
Suppose node y has a parent node ni in Pk, and the
corresponding differing node in sj is x whose parent node
in Pk is nj. We have reduced this problem to the case
shown in Figure 7. From Theorem 1, we know that
prefix(RSTij

k+1,k+1) = prefix(RSTi
k,k+1). Consequently,

any RSTij
k+1 (∈{RSTij

k+1| RSTij
k+1 = RSTi

k RSTj
k,

j=i+1,…,N}) also belongs to the same equivalence class
[prefix(RSTi

k,k+1)].
Let rmln(RSTi

k) denote the rightmost leaf node of
RSTi

k, and Pk=prefix(RSTi
k,k). According to Lemma 1, all

the RSTs RSTj
k (j=i+1,…,N) have the same prefix Pk as

RSTi
k. When RSTi

k joins with RSTj
k, the RSTij

k+1 obtained
corresponds to a rightmost node expansion. Since { RSTj

k
| j=i+1,…,N} contains all the possible nodes of the
rightmost branch of RSTi

k except the leaf node
rmln(RSTi

k), we have JR(RSTi
k)={ RSTij

k+1| RSTij
k+1=

RSTi
k RSTj

k, j=i+1,…,N}, which is the result of the
rightmost branch expansion of RSTi

k except the rightmost
leaf node. □

Corollary 1: Let [Pk]={ RST1
k , RST2

k,…, RSTN
k } be an

ordered list. Then the join result set JR(RSTi
k)={ RSTij

k+1|
RSTij

k+1= RSTi
k RSTj

k, j=i+1,…,N} is in ascending
order. □

Example: Consider the equivalence class EC in Figure 6.
[P3]={ RST1

3, RST2
3, RST3

3, RST4
3} is already sorted.

Since prefix(RST12
4,4) = prefix(RST13

4,4) =
prefix(RST14

4,4) = prefix(RST1
3,, 4) holds, it can be shown

that prefix(RST23
4,4) = prefix(RST24

4,4) = prefix(RST2
3,4)

and prefix(RST34
4,4) = prefix(RST3

3,4) also holds.

The join result from Lemma 3 causes the RSTs to
grow horizontally. All the RSTs of [RSTi

k] can be
generated when it is combined with the vertical growth,
that is, the rightmost leaf node expansion. Let nrml=
rmln(RSTi

k) be the rightmost leaf node of RSTi
k, the result

of rightmost leaf node expansion is given by rmlne(RST).

Lemma 4: Let nrml=rmln(RSTi
k), and RSTi

k = P,nrml{,-1}m.
Suppose n1,…,nc are the children of nrml in ascending
order. We have rmlne(RSTi

k)={P,nrml,ni,-1{,-1}m |
i=1,…,c}, and rmlne(RSTi

k) is in ascending order. □

Consider the prefix tree P3 in Figure 6. Expanding the
rightmost leaf node (node 3) of P3 will generate the
candidates RST1

3 and RST2
3. Since RST1

3 and RST2
3 are

obtained by adding nodes 4 and 5 to rmln(P3)
respectively, they are in ascending order.

Based on the results of Lemma 3 and Lemma 4, the
following theorem produces an equivalence class of RST.

Theorem 2: Given a k-edge RSTi
k ∈[Pk]={RST1

k ,
RST2

k,…, RSTN
k} sorted in ascending string encodings, let

rmlne(RSTi
k)={RSTir

k+1| RSTir
k+1is the rightmost leaf node

expansion of RSTi
k} and JR(RSTi

k)={RSTij
k+1| RSTij

k+1=
RSTi

k RSTj
k, j=i+1,…,N}. Then [prefix(RSTi

k,k+1)]=
rmlne(RSTi

k)∪JR(RSTi
k) holds.

Proof: Lemma 1 shows that rmbe(RSTi
k) forms the

equivalence class [prefix(RSTi
k,k+1)] by expanding the

right most branch of RSTi
k. Lemma 3 states JR(RSTi

k) is
the result of rightmost branch expansion of RSTi

k except
the rightmost leaf node. Lemma 4 gives the result of
rightmost leaf node expansion rmlne(RSTi

k). This

concludes the proof of Theorem 2: [prefix(RSTi
k, k+1)] =

rmlne(RSTi
k)∪JR(RSTi

k) holds. □

Corollary 2: From Lemma 4 and Corollary 1, the
equivalence class [prefix(RSTi

k,k+1)]=rmlne(RSTi
k)

∪JR(RSTi
k) obtained in Theorem 2 is in ascending order,

and generates all the candidate RSTs without repetition. □

Example: Figure 9 illustrates the application of Theorem
2 to the G-QPT in Figure 5. Note that the equivalence
class generated is already in ascending order.

Theorem 2 essentially partitions the RSTs in an
equivalence class into two categories: (a) JR(RSTi

k), the
set of RSTs generated by joining RSTs, and (b)
rmlne(RSTi

k), the set of RSTs generated by the rightmost
leaf node expansion.

Lemma 5: Suppose RST1, RST2∈[Pk] are contained in
the same QPT. Let RST12=RST1 RST2. Then RST12 is
also contained in the QPT. Let [Pk]={ RST1

k, RST2
k,…,

RSTN
k } and the join result JR(RSTi

k)={ RSTij
k+1| RSTij

k+1=
RSTi

k RSTj
k, j=i+1,…,N}. We have ∀

RSTij
k+1∈JR(RSTi

k), RSTij
k+1.tidlist = RSTi

k.tidlist∩
RSTj

k.tidlist. □

Lemma 5 removes the need to match the RSTs
generated by joins, that is, RSTij

k+1∈JR(RSTi
k), with the

QPTs in the database. Next, we examine the RSTs in the
equivalence class [prefix(RSTi

k,k+1)] that have been
generated by the right-most leaf node expansion
rmlne(RSTi

k). This set of RSTs can be divided into single-
branch RSTs and multi-branch RSTs. The former are
RSTs with one leaf node, while the latter are RSTs with
multiple leaf nodes.

Lemma 6: By associating transaction IDs with the QPTs,
only single-branch RSTs in rmlne() need to be matched
with the QPTs in the database. The frequency count for
the remaining k+1-edge RSTs is computed from the
intersection of the tidlists of corresponding k-edge RSTs.
Proof: Let [RSTi

k]=JR(RSTi
k)∪rmlne(RSTi

k). Given a
multi-branch (k+1)-edge RSTk+1∈rmlne(RSTi

k), we obtain
m k-edge RSTs by removing one leaf node from each
branch at a time. Since the rightmost branch expansion
enumerates all the candidates, so these RSTs must be in
some equivalence class. The join result of any two of
these RSTs produces the (k+1)-edge RSTk+1 itself. Let
RSTk+1= RSTi

k RSTk, where RSTk is produced by
removing one leaf node from RSTk+1, such that the
deleted leaf node is not the rightmost leaf node of RSTk+1.
If RSTk∈Fk, then RSTk+1.tidlist can be computed via
RSTk+1.tidlist= RSTi

k.tidlist∩ RSTk.tidlist. In contrast, for
a single-branch (k+1)-edge RSTk+1∈rmlne(RSTi

k), only
one k-edge RST exists. Hence, it must be matched against
QPTs in the DB. □

Lemma 6 further reduces the number of RSTs to be
matched. Consider Figure 9 where RST3 (“1,3,-1,6,7,-1,-

1”) is in the rightmost leaf node expansion of RST2 (“1,3,-
1,6,-1”). RST3 is a 2-branch RST. By removing its leaf
node 3, we obtain the RST (“1,6,7,-1,-1”), which is in
equivalence class [“1,6”]. However, this result cannot be
applied to a single branch RSTk+1∈rmlne(RSTi

k). Since a
single branch RSTk+1 cannot be the join result of two k-
edge RSTs, it has to be matched against the QPTs in the
DB.

1

2

1

6

1

8

rmlne():
1

3

4

1

3

5

1

3

1

3 6

1

3 8

JR:

["1"]

["1,3"]

1

2 3

1

2 6

1

2 8

["1,2"]

JR:
rmlne()= φ

1

6 8

["1,6"]

JR:
1

6

7

rmlne():

["1,3,4"]

JR: 1

3

4 5

1

3

4

6

1

3

4

8

rmlne()= φ
1

6

7

rmlne():

3

1

3 86

JR:
["1,3,-1,6"]

Figure 9. Generating Equivalence Classes.

3.2 Pruning RSTs

Next, we examine how infrequent RSTs can be pruned
early. This is achieved by applying the Apriori property:
If a subset of an itemset is not frequent, then the itemset
itself cannot be frequent. The frequent itemsets of size k-1
serve as filters for candidate itemsets of size k: If a k-edge
RST is frequent, then all its (k-1)-edge RSTs must be
frequent.

Lemma 7: Let s be the string encoding of RSTk. Then all
the RSTk-1 can be generated by deleting “n,-1” from s
each time found when scanning s, where n≠-1.
Proof: By recognizing that each “n,-1” in s represents a
leaf node of RSTk, we know that the string encoding s’
produced by deleting “n,-1” from s is a (k-1)-edge RST.
By scanning s once and each time producing a (k-1)-edge
RST when found a “n,-1”, all RSTk-1 are produced. □

To facilitate this checking, we employ a prefix tree to
index the previously generated frequent RSTs. The prefix
tree behaves like a hash tree. That is, the RSTs stored in
the tree are indexed using the string encoding (with the -
1’s removed) described in the previous section. The
lookup time of the prefix tree is about O(L), where L is
the length of the string encoding.

Figure 10 shows an example prefix tree of some RSTs
generated from G-QPT in Figure 5. Note that nodes at
depth k in the prefix tree stores the string encoding of
frequent k-edge RST.

1

2 3 6 8

3 6 8 4 5 6 8 7 8 ⊥

1,2,-1,3,-1
1,2,-1,6,-1

1,2,-1,8,-1

1,3,4,-1,-1
1,3,5,-1,-1

1,3,-1,6,-1
1,3,-1,8,-1

1,6,-1,8,-1
1,6,7,-1,-1

Figure 10. Example Prefix Tree.

Algorithm FastRSTGen (Fk, Support, Fk+1,Ck+1)
Input: Fk -frequent k-edge RSTs,
 Support = minSupp*|D|
 Fk+1,Ck+1- are used for return result;
Output: Candidate set Ck+1 and part of Fk+1
1.Ck+1=φ; Fk+1=φ;
2.for each equivalence class E∈Fk do
3. for each RSTi

k ∈E do
4. RMLNE = rmlne (RSTi

k);
5. for each rst∈RMLNE do
6. if (IsSingleBranch (rst))
7. Ck+1←rst;
8. else if exists k-edge RSTk of rst in prefix tree
 and RSTk≠ RSTi

k then
9. rst.tidList=RSTk.tidList∩ RSTi

k.tidList;
10. if (|rst.tidList|≥ Support)
11. Fk+1←rst;
12. for RSTj

k ∈E, i<j do
13. RSTk+1= RSTi

k RSTj
k;

14. RSTk+1.tidList= RSTi
k. tidList∩ RSTj

k.tidList;
15. if (|RSTk+1.tidList|≥ Support)
16. Fk+1←RSTk+1;
17.return;

Figure 11. Algorithm FastRSTGen.

3.3 Algorithm FastRSTGen

The theorems in sections 3.1 and 3.2 essentially partition
the candidate RSTs in an equivalence class into two
categories. The first category of RSTs does not need to be
matched against the QPTs in the database, while the
second category of RSTs are the single-branch RSTs that
need to be matched against the QPTs in the database.

Figure 11 shows the candidate generation algorithm
FastRSTGen. Lines 4-11 process the RSTs obtained by
the rightmost leaf node expansion of RSTi

k. Lines 6-7
handle the single-branch RSTs that will be returned as
Ck+1 to be matched against the QPTs in the database.
Lines 8-11 prune the non-single-branch rst based on the
results of Lemmas 5 and 6. That is, if there exists a k-edge
RSTk of rst that is different from RSTi

k, then rst.tidList
will be computed from the intersection of RSTk.tidlist and
RSTi

k.tidList. If rst meets the minimum support criteria,
then rst is frequent and will be added to Fk+1. Lines 12-16
compute the set JR(RSTi

k).Each join result RSTk can be

computed from the tidlists, and added to Fk+1 if it is
frequent.

4. Caching Query Pattern Trees
Frequent QPTs captures the frequent queries issued in the
past and they form the ideal candidates for caching.
However, many of these queries have overlaps in the
answer sets. To fully utilize the limited cache space, we
propose the following rewriting heuristic:

Rewriting heuristic: Let F be the set of frequent
QPTs. Given a new incoming QPT, we find the most
similar frequent pattern tree QPTi0 in F. If the difference
between QPT and QPTi0 is within certain threshold, then
the rewritten query is mQPT=merge(QPT,QPTi0). The
relevant answers to QPT will be presented to the user,
while the query result to mQPT will be cached.

Once the query has been rewritten, we can incorporate
the discovered frequent query patterns with existing cache
replacement policy. We first differentiate the frequent
query patterns from the infrequent ones since the former
are more likely to be issued subsequently. When cache
replacement is needed, answers to infrequent query
patterns are replaced first. If the space for admitting the
new query result is still not sufficient, then the cached
results corresponding to some frequent query patterns will
be replaced according to the existing replacement policy.

Assuming the query result set to be replaced is
{q1,q2,…,qr}, and pi is the predicted probability of future
accessing of qi, ci is its execution cost of query qi, and si is
its size. The benefit for keeping an incoming query qi
result in cache is: pici/si. Therefore, replacement will only
occur if

pc/s ≥ ∑
=

r

j
jjj scp

1
)/(.

Figure 12 outlines a new replacement policy called
FQPT_LRU that incorporates frequent QPTs into the least
recently used (LRU) replacement policy. The most
recently used (MRU) policy can be similarly adapted.

Algorithm FQPT_LRU
1. Replace query results that do not correspond to

any frequent query patterns.
2. If there is sufficient space for the results of new

query, then admit query, else replace those cached
results related to frequent query patterns
according to LRU.

Figure 12. Algorithm FQPT_LRU.

5. Performance Study
In this section, we evaluate the performance of
FastXMiner and demonstrate the effectiveness of our
strategy to cache the frequent query patterns found. The
mining algorithms were implemented in C++ and the
caching system was in Java. We carried out experiments

on a Pentium IV 2.4 GHz with 1 GB RAM, running under
Windows XP.

5.1 Efficiency of FastXMiner

Here, we compare the performance of FastXMiner with
XQPMiner, a G-QPT schema guided enumeration method
[24]. We record the response times of both algorithms
when the minimum support varies. We also investigate
their scalability by varying the number of QPTs in the
database.

The datasets used are SigmodRecord, Shakespears’
Play (SSPlay for short) and DBLP whose schemas are
SigmodRecord.DTD, SSPlay.DTD and DBLP.DTD. A
DTD graph is converted into a DTD tree by introducing
some “//” and “*” nodes, from which the G-QPT is
obtained. To generate the QPTs of queries, we first
enumerate all the RSTs of the G-QPT. Then we use the
Zipfian and uniform distributions to produce the
transaction file of QPTs from the RSTs.

Different datasets have different characteristics (see
Table 1). The number of nodes in G-QPT, the maximum
depth and fanout of G-QPT give an indication of how
many rooted subtrees the G-QPT will have. The total
number of RSTs in a G-QPT affects the mining process
since they have to be matched and pruned against the
QPTs in the database. A RST with “//”consumes more
time to compare with QPTs than a RST without “//”. In
contrast, the average number of nodes, maximum depth
and fanout of QPTs reflect the complexity of the dataset.
All the datasets follow the default Zipfian distribution
except when specified.

Table 1. Characteristics of Datasets Used.
 Datasets DBLP DBLP -

Uniform
SSPlay Sigmod

Record
Num. of
nodes

98 98 67 11

Max depth 8 8 6 5
Num. of // 13 13 0 0

G-
QPT

Max fanout 12 12 9 4
Ave # of
nodes

7.4 9.2 7.5 5.5

Max depth 8 8 6 5

QPT

in
DB Max fanout 12 12 9 4

5.1.1 Effect of Minimum Support

We first investigate the effect of minimum support on the
performance of FastXMiner and XQPMiner. Each of the
datasets consist of 200,000 QPTs. Figure 13 shows the
results. We observe that the response time for FastXMiner
is barely affected by the decrease in minimum support,
while that for XQPMiner grows rapidly. For example, for
the DBLP (uniform) dataset, the time taken by XQPMiner
at 2% minimum support is about 6 times more than that at
0.1%. In contrast, the time needed for FastXMiner at
support 2% is only about 1.2 times more than that at 0.1%.

SigmodRecord

0
0.5

1
1.5

2
2.5

3
3.5

0.1 0.5 1 1.5 2
Min Support(%)

Ti
m

e(
x1

00
s) XQPMiner

FastXMiner

(a) SigmodRecord, 200K, Zipf

SSPlay

0

20

40

60

80

100

0.1 0.5 1 1.5 2
Min Support(%)

Ti
m

e(
x1

00
s)

XQPMiner
FastXMiner

(b) SSPlay, 200K, Zipf

DBLP

0

10

20

30

40

50

60

0.1 0.5 1 1.5 2
Min Support(%)

Ti
m

e(
x1

00
0s

) XQPMiner
FastXMiner

(c) DBLP, 200K, Zipf

DBLP

0

20

40

60

80

100

0.1 0.5 1 1.5 2
Min Support(%)

Ti
m

e(
x1

00
0s

) XQPMiner
FastXMiner

(d) DBLP, 200K, Uniform

Figure 13. Effect of Varying Minimum Support.

0

1

2

3

4

5

6

SigRecd(11) SSPlay(67) DBLP(98)
G-QPTs of Varying Size

Ti
m

e(
s)

 in
 L

O
G

10

FastXMiner
XQPMiner

Figure 14. Effect of Varying G-QPT Size.

This is because with decreasing minimum support,
XQPMiner needs to match an increasing number of
candidate RSTs against the QPTs in the database while
FastXMiner is able to avoid a large number of these
matches.

We also note from the above experiment that as the
number of nodes in the G-QPT increases, FastXMiner
outperforms XQPMiner significantly. Figure 14 shows the
response time (in log10) of the two methods for varying
sizes of G-QPT at minimum support 0.1%. FastXMiner is

DBLP minsupp=0.5%,Zipf

0
10
20
30
40
50
60
70

100 200 300 500 1000
Number of QPTs in DB (x1000)

Ti
m

e(
x1

00
0s

)

FastXMiner
XQPMiner

Figure 15. Effect of Varying Number of QPTs.

faster than XQPMiner by 6~8 times for the
SigmodRecord DTD, 18~132 times faster for the SSPlay
DTD, and 53~273 times faster for the DBLP DTD.

5.1.2 Scalability

Next, we investigate the impact of the number of
transactions (or QPTs) in the database on response time.
The number of QPTs ranges from 100,000 to 1 million.
Figure 15 shows the results for the DBLP dataset.
FastXMiner has excellent scale-up as compared to

XQPMiner. For 1 million QPTs, FastXMiner needs only
26 minutes while XQPMiner needs more than 20 hours.
This confirms the effectiveness of our approach to reduce
the set of RSTs to be matched against the database.

5.2 Effectiveness of Caching Frequent QPTs

In this section, we demonstrate how the frequent query
patterns discovered can be used to improve caching
performance. The XML caching system is implemented in
Java. We use the index scheme [19] to populate the SQL
Server 2000 with the DBLP data and create the
corresponding indexes. The system accepts tree-patterns
as its queries, and utilizes structural join method[3] to
produce the result. Note that a tuple here refers to a tree,
instead of a row. No optimization techniques are used.

To improve the XML query execution speed, we
extract the data of dblp/inproceedings, and add two more
elements: review and comments. These two attributes are
used to store the rarely retrieved data and relatively large
amounts of text (about 1-2KB). The adapted XML data
file size is 81.2MB with 3 levels.

Two sets of experiments that investigate the effect of
varying number of queries and varying cache size are
carried out using 4 replacement policies, namely,
traditional LRU and MRU, FQPT_LRU and
FQPT_MRU. The latter two policies are obtained by
incorporating frequent query patterns into LRU and MRU
respectively.

Table 2 shows the probabilities used to generate the
XML queries for the DBLP data. These queries fall into
two categories: frequent queries and infrequent queries.

Table 2. Probabilities of Queries.
Probability Query types

0.04 Infrequent query patterns
0.16 6 group of frequent query patterns

The infrequent query pattern set is generated with
probability of 0.04. Within the infrequent query set, we
generate the actual XML query using the following
probabilities: Dblp(1), inproceedings(1), key(0.1),
author(0.7), title(0.9), year(1), pages(0.5), crossref(0.4),
booktitle(0.7), ee(0.5), url(0.2), review(0.9),
comments(0.3). Note that dblp and inproceedings always
appear, and year is used as the predicate. A uniform
distribution is employed for the predicate values.

There are 6 groups of frequent XML queries. Each of
them is generated with probability 0.16. We show the
query template for two groups.
– Group 1: Dblp(1), inproceedings(1), key(1), title(1),

year(1), crossref(1), ee(0.9)
– Group 2: Dblp(1), inproceedings(1), key(1), title(1),

year(1), URL(1), ee(0.9)
We generate 100,000 XML queries that are processed by
FastXMiner with a minimum support of 6%.

 5.2.1 Performance Metrics

Hit-rate is not an appropriate evaluation metric because
some queries can only use part of the cached results.
Instead, we utilize cost-saving ratio and average response
time as the performance metrics in our experiments.

Cost Saving Ratio is defined as ∑
i

iiCH /∑
i

ii RC ,

where Hi is the number of times Qi can be answered by
the cache, Ri is the total number of times Qi is issued, and
Ci is the execution cost of query Qi.

Average Response Time is the average time taken to
answer a query. It is defined as the ratio of total execution
time for answering a set of queries to the total number of
queries in this set.

5.2.2 Effect of Varying Number of Queries

In this set of experiment, we investigate the effect of
number of queries on cache performance. We vary the
number of queries from 1000 to 8000, and fix the cache
size at 40MB. The result is shown in Figure 16. We
observe that FQPT_* replacement policies give better
performance than those without frequent query patterns.
The average response time is about 3~4 times lower.
Furthermore, the average response time of FQPT_*
decreases as the number of queries increases. The graph
for cost saving ratio (Figure 16(b)) shows a similar trend.

5.2.3 Effect of Cache Size

Next, we investigate the effect of cache size on query
performance. We vary the cache size from 10MB to
80MB, and fix the number of queries at 4000. Figure
17(a) shows that the gap in the average response time for
the FQPT_* policies and those without using frequent
query patterns increases with the cache size initially, and
then peaks at around 40M. As the cache size continues to
increase, the gap gradually narrows since most of the data
would be found in the cache. Again, the graph for cost
saving ratio indicates similar trend (Figure 17(b)).

6. Related Work
Finding frequent substructures from graphs first gains its
focus in DNA/RNA research. [23] devises an algorithm to
discover approximate common subtrees in multiple RNA
secondary structures. [12] gives an efficient algorithm to
find frequent substructure describing the carcinogenesis
of chemical compounds from labelled graphs, and
applied it to predict the functions of chemical compounds.
The prevalence of the World Wide Web has also
prompted works to find frequent substructures in Web
documents [1, 21, 22, 25]. The objective is to discover the
frequent substructures from a collection of semi-
structured data objects (files) of similar structure. [22]
employs a tree matching algorithm to count the support of
candidate substructures by introducing the wildcard ‘?’ in
the subtree to match any label in the path.

0

200

400

600

800

1000

1 2 4 6 8
Number of Queries(x1000)

A
vg

. R
es

po
ns

e
Ti

m
e(

m
s)

FQPT_LRU
LRU
FQPT_MRU
MRU

(a) Average Response Time (Cache Size 40MB)

0

0.2

0.4

0.6

0.8

1

1 2 4 6 8
Number of Queries(x1000)

C
os

t S
av

in
g

R
at

io

FQPT_LRU
LRU
FQPT_MRU
MRU

(b) Cost Saving Ratio (Cache Size 40MB)

Figure 16. Effect of Varying Number of Queries.

0
200
400
600
800

1000
1200
1400

10 20 40 60 80
Cache Size(in MB)

A
vg

 R
es

po
ns

e
Ti

m
e(

m
s) FQPT_LRU

LRU
FQPT_MRU
MRU

(a) Average Response Time (4000 queries)

0

0.2

0.4

0.6

0.8

1

10 20 40 60 80
Cache Size(in MB)

C
os

t S
av

in
g

R
at

io
FQPT_LRU
LRU
FQPT_MRU
MRU

(b) Cost Saving Ratio (4000 queries)

Figure 17. Effect of Varying Cache Size.

 [25] develops a frequent subtree mining algorithm to
discover the user navigation patterns in web surfing. The
subtree is a generalized one where its interior nodes can
shrink. In addition, for each leaf node of the current
pattern, all the possible node expansions have to be tested
because there is no schema information to guide their
enumeration. This would not be efficient if applied to our
work.

FREQT[1] and TreeFinder[21] aim to find frequent
subtrees from a collection of semi-structured documents.
FREQT considers only subtree inclusion and proposes a
subtree enumeration method that is similar to [25].
TreeFinder employs tree subsumption to approximate the
result in order to achieve scalability. TreeFinder first
transforms the tree into label pairs representing the
transitive closure of ancestor relationship. A standard
Apriori method is used to mine frequent label pair sets.
For each support tree set of a frequent label pair set,
TreeFinder has a generalization step to construct the
maximal common tree. The main limitation of TreeFinder
is that it can only find a subset of the actual set of frequent
trees.

All the above techniques are not appropriate for
mining XML query patterns since these patterns contains
special characters wildcard ‘*’ and relative paths ‘//’.

Semantic caching has received extensive attention
both in database and web areas [6, 11]. The recent move
towards intelligent web caching tries to adapt to changes
in usage patterns by constructing predictive models of
user requests by mining web log data [4, 18]. However,
caching XML query results is still a relatively new area
[10]. To the best of our knowledge, this is a first work to
exploit frequent query patterns for caching XML data.

7. Conclusion and Future Work
In this paper, we have described an efficient algorithm,
FastXMiner, to discover frequent rooted subtrees from
XML queries. FastXMiner enumerates only valid
candidates RSTs. We develop theorems to prove that only
a small subset of the generated candidate patterns needs to
undergo expensive tree containment tests. Experiments
results reveal that FastXMiner has good response time
and scales well.

We have also discussed how the results of the
discovered frequent queries patterns can be incorporated
into a caching system. The experimental results
demonstrate that incorporating frequent query patterns
can help to improve the performance of a XML query
system significantly.

Future work includes extending the mining algorithm
to handle query patterns with predicates, and investigating
how frequent query patterns can be applied to the problem
of view selection. By incorporating user information, the
discovery of frequent query patterns will reflect the user
preferences and requirements. This is especially useful in
designing data warehouses for XML.

References

[1] T. Asai, K. Abe, S. Kawasoe, et. al. Efficient
Substructure Discovery from Large Semi-structured
Data. 2nd SIAM Int. Conference on Data Mining,
2002.

[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, et. al.
Structural Joins: A Primitive for Efficient XML
Query Pattern Matching. IEEE ICDE, 2002.

[3] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. VLDB, pp:487-499, 1994.

[4] F. Bonchi, F. Giannotti, C. Gozzi, G. Manco, et.al.
Web log data warehousing and mining for intelligent
web caching. Data and Knowledge Engineering,
39(2):165-189, 2001.

[5] N. Bruno, N. Koudas, and D. Srivastava. Holistic
Twig Joins: Optimal XML Pattern Matching. ACM
SIGMOD, 2002.

[6] B. Chidlovskii, U. M. Borghoff. Semantic Caching of
Web Queries. VLDB Journal 9(1): 2-17, 2000.

[7] J. Clark and S. DeRose. XML Path Language (XPath)
version 1.0 W3C recommendation, 1999.

[8] D. Chamberlin, D. Florescu, J. Robie, J. Simon, and
M. Stefanescu. XQuery: A Query Language for XML
W3C working draft, 2001.

[9] C.W. Chung, J.K. Min, K. Shim, APEX: An Adaptive
Path Index for XML data, ACM SIGMOD, 2002.

[10]L. Chen, E. A. Rundensteiner, S. Wang. XCache-A
Semantic Caching System for XML Queries. Demo
in ACM SIGMOD, 2002.

[11] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava,
M. Tan. Semantic Data Caching and Replacement.
VLDB, pp:330-341, 1996.

[12] L. Dehaspe, H. Toivonen, R. D. King. Finding
Frequent Substructures in Chemical Compounds.
Proc. of ACM SIGKDD, pp:30-36, 1998.

[13] T. Grust. Accelerating XPath Location Steps. ACM
SIGMOD 2002.

[14] F. Giunchiglia and T. Walsh. Tree Subsumption:
Reasoning with Outlines. 10th European Conference
on Artificial Intelligence, pp:72-76, 1992.

[15] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-
based algorithm for mining frequent substructures
from graph data. 4th European Conf. on Principles and
Practice of Knowledge Discovery in Databases,
pp:13-23, 2000.

[16] R. Kaushik, P. Bohannon, J. Naughton, H. Korth,
Covering Indexes for Branching Path Queries, ACM
SIGMOD, 2002.

[17] M. Kuramochi and G. Karypis. Frequent Subgraph
Discovery. IEEE Int. Conference on Data Mining,
pp: 313-320, 2001.

[18] B. Lan, S. Bressan, B. C. Ooi, K. L. Tan. Rule-
assisted prefetching in Web-server caching. ACM
CIKM, pp: 504 - 511, 2000.

[19] Q. Li, B. Moon. Indexing and Querying XML Data
for Regular Path Expressions. VLDB, pp:361-370,
2001.

[20] R. Ramesh and L.V. Ramakrishnan. Nonlinear
pattern matching in trees. Journal of the ACM,
39(2):295-316, 1992.

[21] A. Termier, M. C. Rousset, M. Sebag. TreeFinder: a
First Step towards XML Data Mining. IEEE 2nd
International Conference on Data Mining, 2002.

[22] K. Wang, H. Liu, Discovering Structural Association
of Semistructured data, IEEE TKDE, 12(3):353-371,
2000.

[23] J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang,
C.-Y. Chang, Automated Discovery of Active Motifs
in Multiple RNA Secondary Structures. ACM
SIGKDD, pp:70-75, 1996.

[24] L. H. Yang, M. L. Lee, W. Hsu. Mining Frequent
Query Patterns in XML. 8th Int. Conference on
Database Systems for Advanced Applications
(DASFAA), 2003.

[25] M. Zaki. Efficiently Mining Frequent Trees in a
Forest. ACM SIGKDD, 2002.

