
1.

Optimization of Multi-Way Join Queries
for Parallel Execution

Hongjun Lu Ming-Chien Shan Kian-Lee Tan
National University of Singapore Hewlett Packard Laboratory National University of Singapore

Singapore 05 11 Palo Alto, CA 94303 Singapore 05 11

ABSTRACT

Most of the existing relational database query
optimizers generate multi-way join plans only
from those linear ones to reduce the optimiza-
tion overhead. For multiprocessor computer
systems, this strategy seems inadequate since it
may reduce the search space too much to gen-
erate near-optimal plans. In this paper we
present a framework for optimization of multi-
way join queries in multiprocessor computer
systems. The optimization process not only
determines the order and method in which each
join should be performed, but also determines
the number of joins should be executed in paral-
lel, and the number of processors should be allo-
cated to each join. The preliminary performance
study shows that the optimizer usually generate
optimal or near-optimal plans when the number
of joins is relatively small. Even when the
number of joins increases, the algorithm still
gives reasonably good performance. Further-
more, the optimization overhead is much lesser
compared to exhaustive search.

Introduction

With the advent of VLSI technology, the trend of
computer architectures is moving towards multiprocessor
systems, This trend has great influence to all fields in
computer science. For database management systems, as
an example, a large amount of work has been done to
explore parallel processing of database operations. Spe-
cial database machines have been designed to obtain
increased system performance (response time and
throughput) through both inter-query and intra-query
parallelism [Bora90, Bult89, DeWi90, Su88, Tera831.
However, most of the existing relational database query
optimizers only consider plans in which the execution
order is modeled by a linear processing tree. An M-way
join query

RI W R2 W .- * RM W RM+l

is visualized as a sequence of 2-way joins of the form

(CC . ’ * CR, w RzJ w Rd s** 1) W h+J

Proceedings of the 17th International
Conference on Very Large Data Bases

This strategy seems adequate in uniprocessor systems
[Seli79, Lohm85]. In a multiprocessor environment,
however, the number of feasible join plans increases
dramatically with new dimensions introduced by parallel-
ism and parallel processing tends to give better overall
system performance. The optimal, and even the sub-
optimal solution may be excluded from the search space
by restricting to a linear execution sequence only.

This problem has been recently addressed by
researchers from different directions lJCris86, Ston88,
Swam88, Swam89, Deen90, Ioan90, Ono90, Schn901.
Krishnamurthy, Boral and Zaniolo proposed heuristics to
optimize non-recursive multi-way query with enlarged
search space [Kris86]. Swami, Gupta and Ioannidis stu-
died the benefit of using other techniques such as simu-
lated annealing in query optimization to tackle the.prob-
lem of large search space [Swam88, Swam89, Ioan901.
Ono and Lohman show that even Cartesian product
should be sometimes considered to generate optimal
plans IOno90]. For multiprocessor systems, Stonebraker
et. al. proposed a two step approach to optimize query
plan, in which a collection of good sequential plans is
first obtained based on the buffer space and the paralleli-
zation of this collection of plans is then explored
[Ston88]. Schneider and Dewitt studied the behavior of
query plans with different type of structures, left-deep,
right-deep and bushy, in processing multi-way join
queries in shared-nothing architecture [SchngO].

In this paper, we report our study on optimizing
non-recursive multi-way join queries in multiprocessor
systems. The major difference between our work and the
previous ones is that parallelism is explored at two levels
: intra-join parallelism where several processors may be
assigned to one join operation and inrer-join parallelism
where several joins may be performed concurrently. The
proposed query optimization algorithm, therefore, not
only determines the order in which each join should be
executed and the method should be used, but also deter-
mines the number of joins should be executed in parallel
and the number of processors should be allocated to each
join operation.

In the next section, we describe the multiprocessor
system architecture and briefly review some results from
the first phase of our study which forms the base of our
work reported here. The framework of parallelizing
multi-way join queries in the multiprocessor system is
proposed in section 3. Section 4 describes some results of

549
Barcelona, September, 1991

a performance study on our optimization algorithms. The
last section, section 5, is a summary and discussion about
future work.

2. The Basics of Our Work

Query
I

Join
Methods

Validated
Query

fGqA2J rla?+ ‘-L!L $?GZon

v-r,

Transformer Graph Optimizer
c

Query Optimizer
I

output

Figure 2.1, Functional components in query processing.

In general, the database query processing and
optimization process takes queries in a declarative
language as input and generates query execution plans
(QEPs). By executing those plans, the results of queries
are obtained and delivered to the user. Figure 2.1 depicts
the functional components involved in this process, A
parser is used to validate the input queries. The validated
query is first transformed into some semantically
equivalent internal representation form such as a join
graph. During this transformation, some heuristic rules
can be applied, such as push selection down as much as
possible and perform projections as soon as possible.
The join graph, together with statistics about the partici-
pating relations and available join methods, are sent to
the core component, the plan optimizer, to generate the
final query execution plan. The major function of this
plan optimizer is to select an optimal or near-optimal
query execution plan among all feasible ones based on
some optimization objectives.

In most existing database management systems, the
primitive join operation is the two-way join. Multi-way
join queries are usually treated as a sequence of two-way
joins. Two essential tasks of the plan optimizer are to
select

1) the order in which the joins are performed, and

2) an appropriate join method for each join operation
to achieve some predelined optimization objectives. In a
multiprocessor system, however, there are more dimen-
sions in the search space for optimization if both inter-
and intra-join parallelism are to be explored. In addition
to the above two tasks, the plan optimizer must also
determine
3) the number of joins to be executed concurrently

and the relations participating in each of these
joins, and

Proceedings of the 17th International
Conference on Very Large Data Bases

4) the number of processors allocated to each of the
concurrent join operations.

Hence, optimization of a query becomes more expensive
and complicated in multiprocessor environment.

2.1. Multiprocessor computer system with
shared memory

The multiprocessor systems in our study are gen-
eral purpose systems without any special-purpose
hardware for database operations. The number of pro-
cessors of such system is relatively small compared to
some database machines that may consist of a few hun-
dred or even thousands of processors [Tera83]. Each
processor that shares a common memory (shared
memory) with other processors may also have some
buffers dedicated to itself (local memory) for
input/output. Different from most previous work where a
fixed amount of memory is assumed to be available for a
database operation such as join, we assume that the
amount of memory available for an operation varies
according to the number of processors assigned to the
operation. This assumption may cause some difficulty in
performance analysis as the effects of the number of pro-
cessors cannot be isolated. However, this is closer to real
situation, In a general purpose computer system, when a
processor is assigned some tasks to execute, it is usually
allocated a certain amount of memory space. We also
assume that if a certain number of processors is allocated
to process a query, the control of these processors and
related memory will be transferred to the database
management system. It is up to the database manage-
ment system to schedule the processors and to efficiently
use the available memory space. Furthermore, though it
is expected that main memory sizes of a gigabyte or more
will he feasible and perhaps even fairly common within
the next decade, we still cannot assume that a whole rela-
tion can he read from the mass storage to either the
processor’s local memory or the shared memory before
processing. That is, in general, both the total memory of
the processors and the size of the shared memory are not
large enough to contain a whole relation.

It is assumed that the system uses conventional
disk drives for secondary storage and databases (rela-
tions) are stored on these disk storage devices. Both disks
and memory are organized in fixed-size pages. Hence,
the unit of transfer between the secondary storage and
memory is a page. The processors, disks and memory
are linked by an interconnection network. We assume
that the interconnection network has sufficient bandwidth
for the tasks at hand. That is, the contention for the inter-
connection network is not considered in our analysis.
However, we do consider the contention of the shared
memory, which is reflected in the cost model of parallel
join operations.

2.2. Parallel join methods and their costs
As mentioned above, one of the major task of a

query optimizer is to determine the method for each join
to be performed since there are usually a number of ways

5.50 Barcelona, September, 1991

to perform a particular join with different costs. In the
multiprocessor environment, the selection of join
methods becomes more complex. First, the number of
join methods increases. For uniprocessor system, the
sort-merge join, nested loops join and hash-based join are
three major join methods. In a multiprocessor system,
each of these methods has a number of variations with
different performance. Second, there are more parame-
ters that affect the cost of a join in multiprocessor sys-
tems than in uniprocessor systems, such as number of
processors participating in the join and the architecture of
the system (shared nothing, shared everything, etc).
Recently, quite a number of research work have been
reported on parallel join algorithms [DeWi85, KitsSO,
Schn89, Vald84, WolfpO]. Performance of different
parallel join methods are analyzed. In general, the cost
of a parallel join method is a function of the two relations
to be joined and the number of processors participating in
the join.

In [Lu90], we reported our work on multiprocessor
join algorithms. We studied four hash-based multipro-
cessor join methods: a parallel version of hybrid-hash
join and its modification, hash-based nested loops join
and simple hash join, The costs of these hash-based join
methods are studied in terms of the total processing time
and the elapsed time. Since the major purpose of parallel
processing is to speed up the computation, the elapsed
rime is taken as the objective of optimization. Hereafter
the cost of a join refers to the elapsed time unless other-
wise specified. To estimate the elapsed time of a join, the
join process is decomposed into sequentially executed
phases. Most hash-based joins can be decomposed into
two such phases: a partition phase and a join phase. The
join phase, limited by the available memory size, is often
further divided into iterative batches. Each of them joins
only a portion of the two relations. These batches are
also sequentially executed. In most computer systems,
CPU processing, i.e. computation on the data in memory,
proceeds concurrently with disk I/O operation, i.e. to find
the required data on disk and to bring it into memory.
Our calculation of the elapsed time considered this over-
lap among CPU processing and disk I/O operation. It
works as follows: we first compute the required disk I/O
time per disk drive and CPU time per,processor for each
phase i in executing an algorithm, T;O and T&. For a
system with d disk drives and p processors, the total
processing time for phase i is then

Ti =p xT&+d XT;* (2.1)

The elapsed Fime Ei for phase i, whic\l is generally
less than T&, t T;, due to overlap, will be

Ei= max (T&u,T;O) (2.2)

Since phases of an algorithm are executed serially, the

’ Here, for a CPU-bound phase, the time to read in the initial
pager before the processing begins, and the time ta write out the
final pages of the resuking tuples are ignond. While for an I/O-
bound phase, the time to initiate and terminate tie processing are
ignored.

Proceedings of the 17th International
Conference on Vety Large Data Bases

elapsed time of an algorithm with n phases is

E=~Ei (2.3)
i=l

For the detailed analysis of the four join methods
and formulas of computing T&u and T;O for these
methods, please refer to [Lu90]. In our implementation
of the query optimization algorithms discussed in this
paper, we used these formulas. However, the algorithms
proposed is independent of the join methods and cost for-
mulas, We will assume that the number Of joln
methods provided by the system and the costs
associated with them are available in the later dis-
cussion,

3. Optimization of Multi-way Join

Irma-join algorithm can be achieved by assigning
more than one processor to a join operation as in alI pro-
posed parallel join algorithms [DeWi85, KitsgO, Schn89,
Vald84, Lu90, WolfYO].

b

t
SkP3 w,...... **I’ R *.......a ..*..

5

.*.*..>&Ij?!$ / Step 2 t\
R*..., .*... ..,.a....,.

r”
. . . . w ..*.

f

sb

b

I R

. h.pLJ$$..~sR5

(a) Linear QEP (b) Synchronized bushy QEP

Figure 3.1. Query execution plans (QEPs).

Inter-join parallelism among multi-way join queries can
be realized by gcncrating query execution plans with
bushy structure. The difference between such bushy
structured QEPs and the linear structured QEPs is shown
in Figure 3.1. In a linear QEP (Figure 3.la). joins in a
multi-way join query are performed one by one. The
result relation from the first join of two relations, say RI
and R,, is joined with the third relation, R,, the result of
which is then joined with the fourth relation, R,, and so
on. In a bushy structured QEP, a number of pairs of rela-
tions may be joined in parallel. In Figure 3.lb, two pairs
of relations, (R t, R 2) and (R a, R4), are joined in parallel.
The result of R s W R4 is then joined with Rs, the result of
which is again joined with the result of R 1 W R,.

When the bushy structured QEPs are included in
the search space of a query optimizer, the number of
feasible QEPs increases dramatically. To limit the
increase of QEPs in the search space of our multiproces-
sor query optimizer, we divide QEPs into two groups,
synchronized and asynchronized. By a synchronized
QEP, we mean that the whole multi-way join process is

551
Barcelona, September, 1991

divided into synchronized steps. For each step, a number
of joins are executed concurrently. The joins to be per-
formed at the following step will not start to execute until
all joins in the previous step have been completed. In
this section, we are going to propose a greedy multi-way
join optimization algorithm which explores inter-join
parallelism by considering such synchronized QEPs dur-
ing optimization. By limiting QEPs to synchronized ones,
the cost estimation of a QEP is easier. However, there
are two possible side effects: (1) the possible pipeline
among steps is not taken into account. Instead, the costs
of storing and retrieving the intermediate results are
added to the plan cost, and (2) some processors that com-
plete one join earlier than others have to wait and the
CPU utilization will decrease. As a result, some better
plans may be excluded from the search space. However,
the second effect could be minimized by carefully allo-
cating processors to the joins to be concurrently executed
according to their workload. Furthermore, since linear
QEPs are still in the search space, the new optimization
algorithm should be at least as good as those that do not
consider bushy QEPs.

3.1. Algorithm GP: a greedy multi-way join
query optimization algorithm

Our algorithm, GP, the Greedy Parallel multi-way
join optimization algorithm is listed in Figure 3.2. Algo-
rithm GP is an iterative algorithm that generates one step
in a synchronized QEP during each iteration. It is a
greedy algorithm since it always tries to join as many
pairs of relations as possible in parallel for the current
step. At the beginning, all relations to be joined are
included in the working set T. A set of relation pairs, R ,
is selected for the first step by calling function
Select relgairs. For subsequent steps i, the same pro-
cedureis applied to the reduced working set that consists
of the intermediate relations from the last step, step i - 1,
and the relations that have not been joined so far. Graph-
ically, this reduced working set is represented by a
reduced join RTU@I that is obtained by replacing the rela-
tions joined in step i -1 by their result relations and mcrg-
ing the edges accordingly. When the working set con-
tains less than four relations, function Two way seq is
called to determine the sequence of sequen&lly Toining
those relations.

3.2. Selecting pairs of relations
Function Select-relpairs in Algorithm GP select

k pairs of relations from the working set to be joined in
parallel for the current step. Selecj-relgairs determines
concurrently executed relation patrs with given working
set (or join graph). The algorithm, shown in Figure 3.3,
also uses an iterative approach starting with k = 1. Dur-
ing each iteration, it computes the costs of QEPs which
concurrently join k pairs of relation at the first step and
find the minimum cost by calling function
Minimum-cost. It terminates when either k is equal to
the number pairs in the join graph or such k is found that
the minimum cost of QEPs concurrently joining ktl
pairs first is greater than the minimum cost of QEPs hav-

Proceedings of the 17th International
Conference on Very Large Data Bases

Algorithm GP

Input :.A join graph G = (T, E)
where node set T is a set of relations
and edge set E represents the join conditions.

Output : S , the join sequence consisting of relation pairs

s c 0;
while Size(T) > 3 do (

R t Select-relgairs (G);
StSy R;
G & G with each pair of relations in R replaced by

their join results;
I
R t Two-way-seq (G);
St-SyR;

Figure 3.2. Multi-way join optimization algorithm GP .

Algorithm Select-rel_pairs

input : G , a join graph
Output : R , a set of relation pairs to be joined concurrently

begin
kc&
repeat

ktk+l;
C, t Minimum-cost (G, k, R1);
if (R, does not contain all relations in G)
then

Ck+] t Minimum-cost (G, k+l, R,,,);
until CL+I>Cc or Rk+, contains all pairs in G
if Ck+t>Cc
then return Rk
else return RL+,

end;

Figure 3.3. Function Select-relgairs.

ing k joins evaluated concurrently first.
Function Minimum-cost is the core part of the

algorithm. It takes the reduced join graph G, and the
number of relation pairs to be joined concurrently first, k ,
as input andreturns the minimum cost of those plans that
joins k pairs first. At the same time, it determines those
k pairs of relations and join methods for each pair of
relations. The computation complexity of this function
comes from (1) the large number of feasible QEPs that
join k pairs in parallel during the first step; and (2) a
large number of combinations of join methods supported
and possible processor allocation strategies for a chosen
QEP. To simplify the cost evaluation of QEPs and hence
to reduce the optimization overhead, we propose two
heuristic cost functions that lead to two versions of Algo-
rithm GP: GPr, an optimization algorithm based on total
COSI and GP, , an optimization algorithm based on purrial
COSL As the name implies, algorithm GP, estimates the

552 Barcelona, September, 1991

total cost of a QEP, C lan,
each step i (I I i Sm , m the m-step QEP. On the other I.

which is the sum of the cost of

hand, Algorithm GPp uses only the cost of the first step
(may plus one more join as explained later) Cost i as the
approximation of Cost,,,, . We discuss the details of
these two algorithms in the next two subsections.

3.2.1. Greedy Parallel multi-way join optlmiza-
tlon based on total cost(GP7)

In Algorithm GP,, the total costs of a QEP,
COSfph , is computed as the sum of cost of each step
COSri in the QEP. However, even with a small number of
joins in the join graph, it seems still very expensive to
search for the minimum cost from all possible combina-
tions of different number of steps and different number
of joins at each step. An important heuristic used to limit
the search space in GP7 is to consider only those QEPs
that execute k joins concurrently at the first step and exe-
cute remaining joins sequentially. For those QEPs, the
plan cost is

TotalL = Parjoin-cost (R, > (3.1)
+ Seqjoin-cost (T - R, u Join-result (Rt))

where Parjoin-cost (Rt) returns the cost of joining rela-
tions in R, in parallel and Seqjoin-cost (R) returns the
cost of joining relations in R sequentially. Since there
are a number of different ways to select k pairs of rela-
tions from all relations and also a number of different
sequences to join the remaining relations sequentially,
function Minimum-cost, with given k, enumerates the
costs returned by two functions Parjoin-cost and
Seqjoin-cost and returns the minimum among them,
MIN(Tofalc), which is denoted as Ct in function
Select-relgairs .

@-@-@-@-@-@qy

Figure 3.4. An example join graph.

We will delay the discussion about finding
MIN (Toralt) for the moment and use an example to
explain how algorithm GP7 works. Consider the join
graph shown in Figure 3.4. There are 7 relations RI to R 7
such that there are join predicates between Ri and Ri+l
fori=l,..... ,6. The optimization process using algo-
rithm GPT is illustrated in Figure 3.5. To make the
presentation simpler, we will only focus on determining
the number of pairs to be joined and will not identify the
actual relations in the pairs. Algorithm GP7, as an itera-
tive algorithm, starts with the working set T containing
all seven relations. In step one (Figure 3.5a), C, and C2,
the minimum cost of executing one join and two joins
concurrently at the first step respectively, is first com-
puted and compared. Assume that C, > C2 so that C3, i.e.
the minimum cost of joining three pairs of relations in
parallel during the first step, is computed. Suppose CJ >
C2 and hence Select-relgairs returns two pairs of rela-
tions that should be joined concurrently in step one.

Proceedings of the 17th International
Conference on Very Large Data Bases

Now, the working set of step two consists of 5 relations
- two intermediate results and three original relations
(Figure 3Sb). For this working set, C, and C2 are first
computed and let Ci c C2. That means only one pair is
joined in step two. Finally, in step three (Figure 3Sc), Ci
is compared with C, (< C,). Since there are only four
relations, no further computation is needed and two pairs
of relations should be joined concurrently in this step.
The working set now contains only two relations which is
for the last step and the algorithm terminates. The plan
generated thus consists of four steps: joining two pairs of
pairs concurrently, followed by one pair, followed by two
pairs and end with another join (Figure 3Sd).

3.2.2. Greedy parallel multi-way join optlmlza-
tlon based on partlal cost (GPp)

In Algorithm GPT, the minimum total cost of
QEPs joining a set of relations is to be computed.
Although the computation is simplified by limiting the
search space to those QEPs that only execute joins in
parallel at their first step, it is still quite expensive to
compute such total cost at each iteration, especially when
the number of joins increases. In order to further reduce
the optimization overhead, the second version of Algo-
rithm GP , GP, only estimates the partial cost of a QEP,
Partialc, and uses it as the approximation of Cos$,,,,,.
Partial,, the cost of a QEP which joins k pairs of rela-
tions concurrently first, is represented by the cost of exe-
cuting these k pairs in parallel:

Parlialk = Parjoin-cost (RL) (3.2)

Since two QEPs - one joins k pairs first, and another
joins k+l pairs first - as required in function
Select-relgairs, has different number of joins, the com-
parison of these two QEPs are done by computing

Ck = MIN (Partialk) + C~~~~i,

and

C c+, = MIN (Parrialk+,)

where C,, join is the minimum cost of joining two rela-
tions from- the intermediate results and the remaining
relations in the original working set. The number of rela-
tion pairs to be joined concurrently, k is determined as
fo1lows:

r 1 ifCicC*

k= N ifCt-i>Ck V k, l<ksN

t

(3.3)
k if Ct-i > C1 and C, c Ct+i

where N is the maximum number of pairs.
Use the same example for Algorithm GPT, Algo-

rithm GPI, works as illustrated in Figure 3.6 : In step
one (Figure 3.6a), the working set contains seven rela-
tions and C, and C2 are compared. Assume C, > Cz and
C2 and C3 are then computed with the result C2 > C3,
Since the maximum number of parallel joins is three, so
step one should join three pairs in parallel. Next, the
working set of step two consists of four relations (Figure

553
Barcelona, September, 1991

L-----J

L-,---J -

(a) Step 1. Suppose C r > C a and C s > C 2. Therefore,
only 2 pairs will be joined in parallel in this step.

L--,-J
1

(c) step 3. Given Ct > Ca, 2 pairs
are joined.

IO 0 &, i 0
L-e-,-J

jc,
L-,-,..-J

@) Step 2. Since Cl C C2, only 1
pair is joined.

YIP YP
Step 1

step2

step 3

Step 4

(d) The generated bushy query processing tree.

Figure 3.5. Example of total cost evaluation function.

“*,pl
.a. 9,mcp
joo@g\p 7 “j”

iw
Cl

i @c,@

@

(i) Iteration 1. Compare C t and C a. (ii) Iteration 2. Compare Cz and Ca.

(a) Step 1. At iteration 1, Ct > Ca. At iteration 2, Cr > Cr. Since there are
at most 3 pairs, the step terminates by pairing up 3 pairs to be joined in parallel.

q$3
w

c1P%P w w

c2

@

(b) Step 2. Assuming C, > C,, we can join
2 pairs concurrently.

(c) The generated bushy query processing tree.

Figure 3.6. Example of partial cost evaluation function.

@I intermediate results r-7
relations bounded are executed serially

.
L-J

; : one relation is selected from bounded box

Proceedings of the 17th International
Conference on Very Large Data Bases

554
Barcelona, September, 1991

3.6b). C1 and CZ are computed and compared, If Ct >
Cz, then step 2 will join two pairs concurrently. The plan
will terminate with another join, The plan generated thus
comprises joining three pairs concurrently, followed by
two pairs in parallel and finally one pair (Figure 3.6~).

3.3. Algorithm to pair up relations
In this section, we will discuss the detailed func-

tion repeatedly applied in both algorithms GPP and GPT
- tp select k pairs of relations and to compute the join
cost. This problem can be viewed as a marching problem
[Sysl831: Given a join graph, select k subgraphs consist-
ing of two nodes with a connecting edge. One straight-
forward way is to use matching algorithms available to
find the maximum matching and then select the required
number of pairs. To reduce the overhead of the matching
process, we investigate some heuristics that help us to
lind an initial matching. The algorithm is shown in Figure
3.7. From the given join graph, a subgraph of two rela-
tions (nodes) with common join attributes are selected
first according to some criterion, The same (or different)
criterion is repeatedly applied to the remaining relations
to select other pairs until either the desired number of
pairs have been found or no more two connected nodes in
the join graph can be found. In the latter case, we use the
pairs found so far as an initial matching and apply the
general matching algorithm, marching(G , N, S), to find
the desired number of relation pairs. Function mnhing
takes the join graph G and the XI of initial pairing (less
than N pairs) of relations, S, as the input and outputs a
set containing N pairs of relations.

Algorithm to pair up relations

/n/M: G , a join graph, N, the number of pairs desired
Output : S , a set of N pairs of relations

it-0
SC0

while (there are connected nodes in G) and (i c N) do (
choose one pair (Ri,,Ri,) from G (based on some

criterion)
S + S TV (Ri,, Ri, 1
G t G - (nodes of chosen pair and edges emitting

from them)
i ti+l)

ifi <N then
S i- matchlng(G , N , S)

return(S)

Figure 3.7. Function to pair up relations.

A number of heuristics have been used in different
optimization algorithms to select two relations among
others and join them together first with the intention to
achieve some optimal ordering. The problem in our case
is a little different: the chosen pairs are executed con-
currently and their results will participate in subsequent

Roceedings of the 17th International
Conference on Very Large Data Bases

joins. We studied the following four criteria to choose a
pair among a set of relations:

1) min(Ni) and min(Nj) - select the relation with the
smallest cardinality, followed by selecting from
among the adjacent relations the one with the
minimum cardinality

2) min(Ni) and max(Nj) - select the relation with
the smallest cardinality, followed by selecting from
among the adjacent relations the one with the max-
imum cardinality

3) Illill(JSij) - select the pair of relations according
to increasing order of the join selectivity

4) min(Ni NjJS’ij) - select the pair of relations that
result in the smallest size of the intermediate result

These criteria aim at minimizing the intermediate relation
sizes. Each criterion achieves this in different ways. Cri-
terion 1 minimizes the immediate intermediate relation
size by selecting two smallest source relations. Criterion
2, considering that the join chosen will be processed con-
currently with others, hopes to achieve a global effect by
averaging the intermediate relations. Criterion 3 consid-
ers the join selectivities hoping that by joining two rela-
tions with low selectivity it will result in a small relation
size. Criterion 4 achieves the aim by using the resultant
intermediate size as the yardstick. However, since several
pairs are selected greedily, the use of any of the criteria
suffers from the same shortcoming - the optimal set of
pairs may not necessarily be selected. The performance
of these criteria will be discussed later.

3.4. Processor allocation and join methods
The last issue to be addressed is the computation of

the cost of chosen joins, that is the function of
Parjoin-cost(R) and Seqjoin-cost(R) in Equation (3.1)
and (3.2). As we assumed in Section 2, cost formulas for
different join methods should be available for the query
optimizer. With these formulas, it is straightforward to
compute the cost of sequentially joining a set of relations,
Seqjoin-cosl(R) by fixing the number of processors to
the total number of processors available and query optim-
ization techniques used in uniprocessor database manage-
ment systems can be used In our implementation, the
computation starts with selecting two relations with the
smallest resulting size and comparing the join costs of
different methods. The join method with the minimum
cost is added into the total cost. This process is repeated
until all relations in the set (R) have been considered.

For N pairs of relations to be joined concurrently,
the cost computation was complicated since the number
of processors allocated to each of the joins will affect the
join cost. For some particular processor allocation Ak,
;here pi processors is allocated to the i” join and

Cpi = p , the total number of processors available, the

Zst will be

CO& = ylb-$ join-cosl (irh join, pi)

555 Barcelona, September, 1991

The problem of computing Parjoin-cost(R) becomes
that of finding the processor allocation, A,,, among all
possible allocations A , and then compute the cost
cost9, , such that

CO%pt = MIN Cosrt
CaA

In our current implementation of the algorithm, the
processors are allocated to the N joins in the following
manner: Initially, each join gets an initial assignment,
that is a certain number of processors. This assignment is
repeatedly adjusted by adding more processors to the
most expensive join and/or removing processors from the
cheapest one to average out the workload until no
improvements can be made to the cost to compute the N
joins.

3.5. Summary
In this section we have described two versions of a

greedy query optimization algorithm GP , GP, and GPp ,
for multiprocessor computer systems in a top-down
manner. The heuristics used to reduce the search space
and simplify the cost computation are illustrated. To limit
the search space, only synchronized QEPs are con-
sidered. To simplify the computation, the cost of a plan
(subplan) is approximated by the sum of the cost of a
parallel processing step and the cost of subsequent
sequential processing cost in algorithm GPr, and the
same cost is approximated by the cost of the first parallel
processing cost (or plus the cost of one more join) in
algorithm GP,. Furthermore, the optimization heuristics
widely used in uniprocessor systems, such as those dctcr-
mining the order of joins are also applied.

The complexity of the algorithm can be roughly
estimated as follows. In each execution of the w&/e-loop
of GP, we obtain one step of the execution plan, Since
there are at most n relations, the loop will not be exe-
cuted more than n times. The generation of each step of
the plan is performed by function Select-relyairs, where
the repeat-loop is executed at most n/2 times. For each
of the execution of the repeal-loop, several pairs to be
joined are selected. This takes at most O(n”), which is
the complexity of a mulching algorithm, The allocation
of processors has time complexity of O(p x nlgn),
where p is the number of processors. Therefore, the
algorithm GP has complexity of

O(n2x(n3i-p.n4gn))=O(n54gn), forp cn2

Note that the n3 comes from the matching algorithm used
when pairs of relations are selected. In fact, the match-
ing algorithm is called only when the heuristics used can-
not find enough number of relation pairs. Most of the
time, the marching function needs not be called as the
heuristic provides the answer. This will reduce the time
complexity of selecting relation pairs to 0 (n3*lgn)
instead of 0 (n’vlgn).

4. A Performance Study

To evaluate the algorithms described in the above
section, an experimental study is conducted with the fol-
lowing purposes:
(1) to compare the four criteria for selection of pairs of

relations (used in the algorithm of pairing relations
)md

(2) to evaluate and compare the effectiveness of algo-
rithm GP with both heuristics, GP, and GPP in
generating optimal plans.

The optimization algorithm, algorithm GP, is
implemented in our study. However, the input queries
are randomly generated according to chosen parameters
and execution costs of generated QEPs are calculated
according to the developed cost models. Therefore, the
results presented here are basically simulation results
since no multiprocessor database system is available in
our organization yet. We hope that these results can give
us some insight into our algorithm and provide us with
some experience to implement it in real systems.

Though recent work [Kris86, Swam88, Swam891
have emphasized on large number of joins, we believe
that for most traditional applications in a well-designed
relational database system, most of the queries will
require only a small number of joins. Therefore, we study
the proposed algorithm on a small number of joins (S
10). We vary the join sclectivities, the sizes of the rela-
tions, the number of processors and the number of tuples
per page. However, our algorithm is also applicable for
large number of joins (> 10).

We define the following measure to study the per-
formance of our algorithm :

cost,,
CosMulriplier (A,, A 2) = lost

A;

where Cost,,,, (i = 1,2), represents the cost of executing
the QEP generated by algorithm Ai. CosrMultiplier(A1,
A 3 is thus a measure of the relative performance of algo-
rithm A 1 over algorithm A 2.

For the experiments with small number of joins,
we are able to compute the optimal solution by enumerat-
ing all possible combinations. We therefore use the
optimal solution generated by exhaustively trying all pos-
sibilities as our basis for comparison. Hence, we have

CosMultiplier (GP , OPT) =
costfi-p
COS!~pT

where CostopT and CosfGp are $he costs of plans gen-
erated by the exhaustive search and the algorithm GP
used respectively. It is clear that CosMulriplier(GP,

’ The. search space only includes all feasible synchronized
QEPs. So, the optimal here may nol be the real optimal.
However, Lhis seems the best reference we can use in our
experiment.

Proceedings of the 17th International
Conference on Very Large Data Bases

556 Barcelona, September, 1991

OPT) 2 1 and a lower bound value of one implies that
algorithm GP generates the optimal answer.

4.1. Experiment 1 : Criteria for selecting the
joining pairs

In this experiment, we conducted several tests to
study the criteria used for selection of joining pairs (see
Section 3.3). The main parameters of the queries used in
the experiment are shown in Table 4.1.

--
Parameters

Relation Size (in pages)
750-850 600-1000

Join Sel. 0.0008-00.002 Test 1 Test 3
0.0007 -0.004 Test 2 Test4 (

Table 4.1. Experimental setup.

For example, in test 1, the join selectivity is varied from
0.0008 to 0.002 while the relations sizes are in the range
of 750 to 850 pages. These are varied according to the
uniform distribution such that the final relation size is
also in the range of 750 to 850 pages. The other tests are
similar except for the parameter settings.

The number of processors are varied from 5 to 32
for the tests. For each test, more than 2500 multi-way
join queries with different number of joins, relation sizes,
join selectivities and number of processors are generated.
A query generator is used to generate queries. The QEPs
of these queries are generated by applying algorithm GP
with all the four criteria. The average costs by using dif-
ferent criteria were compared with that of criterion 1 and
Table 4.2 summarizes the results. Those numbers greater
than one means that the criterion pcrfons worse than the
first criterion.

Experiment Set I c1
GP,

c2 c3 c4
Test 1 1.0000 1.0078 0.9912 0.9899
Test 2 1.0000 l.oooo 0.9872 0.9872
Test 3 11 1.0000 1 I.0037) 1.0023 1 0.9958
Test 4 11 1.0000 1 0.9993 1 0.9782 1 0.9734

(a) Performance for GP,

(b) Performance for GPP

Table 4.2. Comparison of criteria.

From Table 4.2, we note that the performance of
the various criteria are relatively close to one another for
both heuristics. No single criterion is superior in all
situations. Several factors contribute to this - the
number of processors, the join selectivities and the rela-

Proceedings of the 17th International
Conference on Very Large Data Bases

tion sizes. By varying these factors, the heuristics when
used with one criterion may outperform the others. Cri-
terion 3, which is shown to be the best criterion in
[Swam891, no longer dominates. The possible reason is
that, in our parallel processing environment, a number of
pairs are joined concurrently and the overall perfor-
mance depends on the combination of the optimality of
choosing all these pairs. The policy of choosing one best
pair may lead to the situation that the execution costs of
other pairs are too high and the overall cost increases.
Base on the above results, we use criterion 4, which gen-
erates more near optimal plans than others, in subsequent
experiments.

4.2. Experiment 2 : The base experiment
We first study the performance of the algorithm

GP by comparing the results with that of the optimal
result. The algorithm GP, using both cost evaluation
functions, and the exhaustive search program are applied
to the queries generated by the query generator. The
exhaustive search method used always generate the
optimal plan for a given query. The plans generated by
algorithm GP, using either of the cost evaluation func-
tions, are then tested for optimality by comparing them
with the optimal ones. The parameters and their settings
that controlled the query generator for the base experi-
ment is shown in Table 4.3. We vary the number of rela-
tions from 4 to 7. For each variation, we collect 500 sets
of data with different parameter settings. The join selec-
tivity, JoinSel and the relation sizes, RelSizes are uni-
formly distributed over 0.0009 - 0.002 and 750 - 850
pages respectively. The number of processors available
varies from 5 to 32.

Parameter Meaning Setting
JoinSel Join Selectivities. 0.0009-0.002
NumRel No. of Relations 4 - 7
RelSizes Size of Relations 750-850

r NumProAvail No. of Processors 5-32 \

Table 4.3. Base experiment parameters settings.

Tables 4.4 and 4.5 show the results of this experi-
ment by showing the percentages of QEPs generated by
our algorithm, GP , that fall in the different ranges of the
metric, CostMultiplier. For example, in Table 4.4, with a
3-way join (4-R), GPT generates, in fact, optimal plans.
With 4-way join (5-R), the costs of 11.4% of QEP’s are
less than I,1 of the cost of the optimal plans. From Table
4.4, we see that GPr performs well for small number of
joins. As expected, the percentage of optimal solution
decreases as the number of relations increases since the
search space increases drastically (as the number of rela-
tions increases). However, even for 6-way join, as high
as 70% of the plans generated are optimal. The effective-
ness of the algorithm GPT is apparent since all the QEPs
generated have costs no more than 10% over the costs of
the optimal plans.

557
Barcelona, September, 1991

Query CostMultiplier (%)
Type 1.0 I l.O-Il.1 I 1.1 -1.2 I > 1.2
4-R 100 1 0 0
S-R 88.6 11.4 0 0
6-R 77.3 22.7 0 0
7-R 72.0 28.0 0 0 4

Table 4.4. CostMultiplier for GPT.

Table 4.5. CostMultiplier for GPp .

Table 4.5 shows that GPP performs well for small
number of joins too. Except for six relations, GPp gen-
erates QEPs with CosrMuftiplier less than 120%. For six
relations, the performance is poor due to the greediness
of the heuristic. With six relations, when three pairs are
joined in the first iteration, subsequently only sequential
joins may be done. However, a possibly better plan might
be to join two pairs first, follow by two pairs before the
final sequential join is performed.

Each cost evaluation function has its own advan-
tages. While GPT not only generates higher percentage
of optimal solutions, it also generates nearer-optimal
solutions (that is the values are nearer to optimal than
GPP). This is expected as it considers the total cost to
complete the entire M-way joins. On the other hand,
GP, is superior in that it generates a good plan in a
shorter time. We have observed in our experiments that,
though both approaches generate a plan in less than a
second, GP, takes about twice as long to produce a plan.
The exhaustive approach, on the other hand, takes as
long as several hours to produce an optimal plan.

4.3. Experiment 3 : Vary sizes of relations
In this experiment, we study how the relation sizes

affect the generation of parallel execution plans. The
relations sizes are varied over a wider range of values
from 600 to 1000. The join selectivities are kept in the
same range as the base experiment. However, the selec-
tivities are chosen such that the final result size is in the
range of 750 - 850. Tables 4.6 and 4.7 show the results.

Query . CostMultiplier (%)
Type 1.0 I l.O- 1.1 I 1.1 -1.2 > 1.2 .
4-R 93.3 1 6.0 0.1 0
S-R 75.2 24.2 0.6 0
6-R 68.0 29.8 2.2 0
7-R 69.0 31.0 0 0 ,

Table 4.6. CostMultiplier for GP7.

Proceedings of the 17th International
Conference on Very Large Data Bases

Query CostMultiplier (%)
Type 1.0 I l.O- 1.1 1 1.1 -1.2 I > 1.2
4-R 1 89.3 1 10.0 1 0.7 1 0
5-R 72.6 26.8 0.6 0
6-R 50.2 36.8 9 4.0
7-R 56.5 36.0 7.5 0

Table 4.7. CostMultiplier for GPp .

Compare the results in the above two tables with
those in experiment 2, we find that the optimality of
QEPs generated decrease. The algorithm, however,
remains effective. For GP, (Table 4.6), in all cases, there
are still at least 68% of the plans generated which are
optimal and all plans have cost less than 120% of the
optimal one. On the other hand, the plans generated by
GP, are at least 50% optimal, 85% with CostMultiplier
less than 110%.

4.4. Experiment 4 : Combination of small and
large relation sizes

In this experiment, we study how a mixture of
small and large relation sizes affect the generation of
parallel execution plans. The relations sizes are varied
from two ranges : 750 - 850 and 5000 - 6000. This
mixture simulates the situation where some small size
relations may be joined with very large size relations.
Tables 4.8 and 4.9 show the results.

Quev _ CostMultiplier (8)
Type 1.0 (l.O- 1.1 1 1.1 -1.2 ! > 1.2
4-R 86.0 I 14.0 1 0 1 0
5-R 15.0 21.0 4.0 0
6-R 70.0 25.0 5.0 0
I-R 66.0 33.0 1.0 0

Table 4.8. CostMultiplier for GPT.

QUAY CostMultiplier (%)
Type 1.0 I 1.0-1.1 I 1.1-1.2 ! >1.2,
4-R 86.0 1 14.0 1 0 1 0
5-R 45.0 35.0 20.0 0
6-R 29.0 50.0 20.0 1.0

_ 7-R 48.0 27.0 23.0 2.0 ,

Table 4.9. CostMultiplier for GPI,.
Tables 4.8 and 4.9 indicate that, with large variation of
relation size, performance GP, still performs quite well,
but GP,, does not perform so good, especially when the
number of relations increases. This implies that if there
is a large variance among the relations to be joined, it is
better to use GPT in order to obtain better plans, with the
price of high optimization overhead.

4.5. Experiment 5 : increase the number of joins
From experiments 2 to 4, we see the effectiveness

of the proposed algorithm GP. The purpose of this exper-

Barcelona, September. 1991
558

iment is to see the relative performance of GP, and GPp
for large number of joins. Since an exhaustive enumera-
tion of the join orderings is computationally expensive,
we compare them with one another. We vary the join
selectivities and the sizes of the relations. Tables 4.10
and 4 .l 1 show the relative performance of heuristic CPT
over GP,, with parameter settings from experiments 2
and 3 respectively.

Query CostMultiplier (%)
Type 0.6 -0.8 1 0.8-0.9 1 0.9-11.0 1 1.0-11.1

10-R 1.4.8 1 22.8 [71.8 1 1.6

Table 4.10. CostMultiplier (GPT, GPI,).
(Experiment 2 settings)

Query CostMultiplier (%)
Type 0.6-0.8 1 0.8-0.9 1 0.9-1.0 1 1.0-11.1
10-R 5.6 17.2 [75.4 1 1.8
20-R 4.75 28.75 65.00 1.5
30-R 5.5 30.5 62.75 1.25
40-R 3.0 30.0 65.75 1.25
50-R 4.75 37.25 57.25 0.75

Table 4.11. CostMulliplier (GPT, GPp).
(Experiment 3 settings).

From Tables 4.10 and 4.11, we see that GPT out-
performs GPp most of the time (> 98%). For more than
50% of the time, GP, produces results that are close to
GP,. Up to 90% of the results generated by GP, are
80%-near-GPT.

5. Conclusion
In this paper, we have examined the problem of

generating parallel plans for multi-way join in multipro-
cessor computer systems comprising conventional, com-
mercially available components without the assistance of
any special-purpose hardware components. While tradi-
tional optimizers (which do not generate parallel plans)
deal with choosing an appropriate join method and the
best join ordering, our optimizer that generates parallel
plans, must also select the pairs of relations to be joined
in parallel and allocate processors to the join operations.
We proposed an algorithm, algorithm GP, which
employs the greedy paradigm to generate parallel QEPs
for multi-way join queries. The plan generated exploits
parallelism at two levels : intra-join parallelism where
several processors may be assigned to a join operation
and inter-join parallelism where several joins may be
performed concurrently.

Two cost evaluation functions were proposed to
compute the cost of a QEP with both concurrently and
sequentially executed joins. These two cost evaluation

Proceedings of the 17th International
Conference on Very Large Data Bases

functions lead to two versions of GP , GPT and GP,, .
Algorithm GPT uses the rota1 cost of the entire M-way
join at each step to determine the number of join opera-
tions for each step, while Algorithm GP, uses the partial
cost , i.e. cost to execute joins of the current step to com-
pare two QEPs. Our study shows that, for small number
of joins, both heuristics always generate plans with cost
no more than 120% of the optimal plans. Algorithm GPT
outperforms Algorithm GP, in most of the cases. How-
ever, the time to generate the plan is longer. We also
investigated four criteria to guide the selection of pairs of
relations to be joined first. The results show that the aver-
age performance of the criteria are relatively close to one
another in parallel processing environment,

Our work may be extended in the following areas.
First, we plan to relax the assumption of our study that
the execution of a QEP is synchronized, By restricting to
synchronized QEPs, processings at certain step cannot
begin until all the joins at the previous step have been
completed. This is reasonable if we can minimize the
overall execution time at each step by distributing the
processors to balance the load. However, this approach
has its shortcoming that the effect of pipeline among
joins, as in the execution scheme suggested by Schneider
and Dewitt [Schn90], is not considered. Second, previ-
ous work have applied combinatorial algorithms and
simulated annealing as heuristics to the problem of
optimization to generate a sequential plan. Such algo-
rithms have been shown to be effective. They may be
further studied and modified to produce plans for parallel
execution. We may also introduce a k-step (k > 1) look-
ahead in our heuristics to enhance their performance.
Third, there are a number of issues and implementation
details of the algorithm that need to be further studied.
For example, for allocating processors to joins, our
current implementation may not be very effective and
efficient when the number of processors available is
large. The last, but very important issue to be addressed
is to move as much work as possible from runtime to
compilation time. Since the number of processors avail-
able is only known until runtime, our algorithm presented
in this paper is to be. executed at runtime. Although most
of our effort is to reduce the overhead by using heuris-
tics, precompilation, or most likely partial precompila-
tion, in this new environment might still be an effective
way of reducing the runtime overhead. This possibility is
not explored yet.

References
[Bora90] Boral, H., et. al., “Prototyping BUBBA, A

Highly Parallel Database System,” IEEE
Trans Knowledge and Data Eng., Vol. 2,
No. 1, Mar. 1990, pp. 4-24.

[Bult89] Bultzingsloewen, G. v., et. al., “Design and
Implementation of KARDAMOM - A
Set-Oriented Data Flow Database Machine,”
Proc. 6lh Inll. Workhop on Database
Machines, Springer-Verlag Lecture Notes,
Vol. 368, Jun. 1989, pp. 18-33.

559
Barcelona, September, 1991

[Deer?%]

[DeWi

[DeWi

[IoanBO)

[Kits901

[Kris86]

l&ohm851

[Lu90]

[Ono90]

[Schn89]

Deen, S. M., Kannangara, D. N. P. and Tay-
lor, M. C., “Multi-join on Parallel Proces-
sors,” Proc. 2nd Inll. Symp. Databases in
Parallel and Distributed Systems, Dublin,
Ireland, Jul. 1990, pp. 92-10’2.
Dewitt, D. J., and Gerber, R., “Multiproces-
sor Hashed-Based Join Algorithms,” Proc.
VLDB 85, Stockholm, Aug. 1985, pp. 151-
164.
Dewitt, D. J., et. al., “The GAMMA Data-
base Machine Project,” IEEE Trans
Knowledge and Dala Eng.. Vol. 2, NO. 1,
Mar. 1990, pp. 44-62.
Ioannidis, Y. E. and Kang, Y., “Randomized
Algorithms for Optimizing Large Join
Queries,” Proc. SIGMOD 90, May 1990, pp.
312-321.
Kitsuregawa, M. and Ogawa, Y., “Bucket
Spreading Parallel Hash: A New, Robust,
Parallel Hash Join Method for Data Skew in
the Super Database Computer (SDC),” Proc.
VLDB 90, Australia, Aug. 1990, pp. 210-
221.
Krishnamurthy, R., Boral, H., and Zaniolo,
C., “Optimization of Nonrecursive Queries,”
Proc. VLDB 86, Kyoto, Aug. 1986, pp. 128-
137.
Lohman, G. M., et. al., “Query Processing in
R* ,” in Query Processing in Database Sys-
tems, Kim, W., el. al. (editors), Springer-
Verlag, 1985.
Lu, H. J., Tan, K. L. and Shari, M. C.,
“Hash-based Join Algorithms for Multipro-
cessor Computers with Shared Memory,”
Proc. VLDB 90, Australia, Aug. 1990.
Ono, K. and Lohman, G. M., “Measuring the
Complexity of Join Enumeration in Rela-
tional Query Optimization,” Proc. VLDB 90,
Australia, Aug. 1990.
Schneider, D. A. and Dewitt, D. J., “A Per-
formance Evaluation of Four Parallel Join
Algorithms in a Shared-Nothing Multipro-
cessor Environment,” Proc. SIGMOD 89,

Proceedings of the 17th International
Conference on Very Large Data Bases

[Schn90]

[Seli79]

[Ston88]

[Su88]

[Swam881

[Swam891

[Sys183]

ITera

[Vald84]

[Woll90]

560

Portland, Oregon, Jun. 1989, pp. 110-121.
Schneider, D. A. and Dewitt, D. J,, “Trade-
offs in Processing Complex Join Queries via
Hashing in Mu1 tiprocessor Database
Machines,” Proc. VLDB 90, Australia, Aug.
1990.
Selinger, P. G., et. al., “Access Path Selec-
tion in a Relational Database Management
System,” Proc. SIGMOD 79, Boston, Mas-
sachusetts. Jun. 1979, pp. 23-34.
Stonebraker, M., Katz, R., Patterson. D., and
Ousterhout, J., “The Design of XPRS,” Proc.
VLDB 88, Los Angeles, Aug. 1988, pp.
318-330.
Su, Y. W. Stanley, “Database Computers :
Principles, Architectures and Techniques,”
McGraw-Hill Intl. Edition, Computer Series,
1988.
Swami, A. and Gupta, A., “Optimization of
Large Join Queries,” Proc. SIGMOD 88,
Chicago, Illinois, Jun. 1988, pp. 8-17.
Swami, A. , “Optimization of Large Join
Queries : Combining Heuristics and Com-
binatorial Techniques,” Proc. SIGMOD 89,
Portland, Oregon, Jun. 1989, pp. 367-376.
Syslo, M. M., Deo. N. and Kowalik, J. S.,
“Discrete Optimization Algorithms with Pas-
cal program,” Prentice-Hall, 1983.
Teradata Corporation, DBCX012 Database
Computer Concepts and Facilities, Ingle-
wood, CA, Apr. 1983.
Valduriez, P., and Gardarin, G., “Join and
Semijoin Algorithms for a Multiprocessor
Database Machine,” ACM Trans. Dafabase
Syslems, Vol. 9, NO. 1, Mar. 1984, pp. 133-
161.
Wolf, J. L., Dias, D. M. and Yu, P. S., “An
Effective Algorithm for Parallelizing Sort
Merge Joins in the Presence of Data Skew,”
Proc. 2nd Intl. Symp. Databases in Parallel
and Distributed Systems, Dublin, Ireland,
Jul. 1990, pp. 103-l 15.

Barcelona, September, 1991

