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ABSTRACT 

Most of the existing relational database query 
optimizers generate multi-way join plans only 
from those linear ones to reduce the optimiza- 
tion overhead. For multiprocessor computer 
systems, this strategy seems inadequate since it 
may reduce the search space too much to gen- 
erate near-optimal plans. In this paper we 
present a framework for optimization of multi- 
way join queries in multiprocessor computer 
systems. The optimization process not only 
determines the order and method in which each 
join should be performed, but also determines 
the number of joins should be executed in paral- 
lel, and the number of processors should be allo- 
cated to each join. The preliminary performance 
study shows that the optimizer usually generate 
optimal or near-optimal plans when the number 
of joins is relatively small. Even when the 
number of joins increases, the algorithm still 
gives reasonably good performance. Further- 
more, the optimization overhead is much lesser 
compared to exhaustive search. 

Introduction 

With the advent of VLSI technology, the trend of 
computer architectures is moving towards multiprocessor 
systems, This trend has great influence to all fields in 
computer science. For database management systems, as 
an example, a large amount of work has been done to 
explore parallel processing of database operations. Spe- 
cial database machines have been designed to obtain 
increased system performance (response time and 
throughput) through both inter-query and intra-query 
parallelism [Bora90, Bult89, DeWi90, Su88, Tera831. 
However, most of the existing relational database query 
optimizers only consider plans in which the execution 
order is modeled by a linear processing tree. An M-way 
join query 

RI W R2 W .- * RM W RM+l 

is visualized as a sequence of 2-way joins of the form 

(CC . ’ * CR, w RzJ w Rd s** 1) W h+J 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

This strategy seems adequate in uniprocessor systems 
[Seli79, Lohm85]. In a multiprocessor environment, 
however, the number of feasible join plans increases 
dramatically with new dimensions introduced by parallel- 
ism and parallel processing tends to give better overall 
system performance. The optimal, and even the sub- 
optimal solution may be excluded from the search space 
by restricting to a linear execution sequence only. 

This problem has been recently addressed by 
researchers from different directions lJCris86, Ston88, 
Swam88, Swam89, Deen90, Ioan90, Ono90, Schn901. 
Krishnamurthy, Boral and Zaniolo proposed heuristics to 
optimize non-recursive multi-way query with enlarged 
search space [Kris86]. Swami, Gupta and Ioannidis stu- 
died the benefit of using other techniques such as simu- 
lated annealing in query optimization to tackle the.prob- 
lem of large search space [Swam88, Swam89, Ioan901. 
Ono and Lohman show that even Cartesian product 
should be sometimes considered to generate optimal 
plans IOno90]. For multiprocessor systems, Stonebraker 
et. al. proposed a two step approach to optimize query 
plan, in which a collection of good sequential plans is 
first obtained based on the buffer space and the paralleli- 
zation of this collection of plans is then explored 
[Ston88]. Schneider and Dewitt studied the behavior of 
query plans with different type of structures, left-deep, 
right-deep and bushy, in processing multi-way join 
queries in shared-nothing architecture [SchngO]. 

In this paper, we report our study on optimizing 
non-recursive multi-way join queries in multiprocessor 
systems. The major difference between our work and the 
previous ones is that parallelism is explored at two levels 
: intra-join parallelism where several processors may be 
assigned to one join operation and inrer-join parallelism 
where several joins may be performed concurrently. The 
proposed query optimization algorithm, therefore, not 
only determines the order in which each join should be 
executed and the method should be used, but also deter- 
mines the number of joins should be executed in parallel 
and the number of processors should be allocated to each 
join operation. 

In the next section, we describe the multiprocessor 
system architecture and briefly review some results from 
the first phase of our study which forms the base of our 
work reported here. The framework of parallelizing 
multi-way join queries in the multiprocessor system is 
proposed in section 3. Section 4 describes some results of 
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a performance study on our optimization algorithms. The 
last section, section 5, is a summary and discussion about 
future work. 

2. The Basics of Our Work 

Query 
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Figure 2.1, Functional components in query processing. 

In general, the database query processing and 
optimization process takes queries in a declarative 
language as input and generates query execution plans 
(QEPs). By executing those plans, the results of queries 
are obtained and delivered to the user. Figure 2.1 depicts 
the functional components involved in this process, A 
parser is used to validate the input queries. The validated 
query is first transformed into some semantically 
equivalent internal representation form such as a join 
graph. During this transformation, some heuristic rules 
can be applied, such as push selection down as much as 
possible and perform projections as soon as possible. 
The join graph, together with statistics about the partici- 
pating relations and available join methods, are sent to 
the core component, the plan optimizer, to generate the 
final query execution plan. The major function of this 
plan optimizer is to select an optimal or near-optimal 
query execution plan among all feasible ones based on 
some optimization objectives. 

In most existing database management systems, the 
primitive join operation is the two-way join. Multi-way 
join queries are usually treated as a sequence of two-way 
joins. Two essential tasks of the plan optimizer are to 
select 

1) the order in which the joins are performed, and 

2) an appropriate join method for each join operation 
to achieve some predelined optimization objectives. In a 
multiprocessor system, however, there are more dimen- 
sions in the search space for optimization if both inter- 
and intra-join parallelism are to be explored. In addition 
to the above two tasks, the plan optimizer must also 
determine 
3) the number of joins to be executed concurrently 

and the relations participating in each of these 
joins, and 
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4) the number of processors allocated to each of the 
concurrent join operations. 

Hence, optimization of a query becomes more expensive 
and complicated in multiprocessor environment. 

2.1. Multiprocessor computer system with 
shared memory 

The multiprocessor systems in our study are gen- 
eral purpose systems without any special-purpose 
hardware for database operations. The number of pro- 
cessors of such system is relatively small compared to 
some database machines that may consist of a few hun- 
dred or even thousands of processors [Tera83]. Each 
processor that shares a common memory (shared 
memory) with other processors may also have some 
buffers dedicated to itself (local memory) for 
input/output. Different from most previous work where a 
fixed amount of memory is assumed to be available for a 
database operation such as join, we assume that the 
amount of memory available for an operation varies 
according to the number of processors assigned to the 
operation. This assumption may cause some difficulty in 
performance analysis as the effects of the number of pro- 
cessors cannot be isolated. However, this is closer to real 
situation, In a general purpose computer system, when a 
processor is assigned some tasks to execute, it is usually 
allocated a certain amount of memory space. We also 
assume that if a certain number of processors is allocated 
to process a query, the control of these processors and 
related memory will be transferred to the database 
management system. It is up to the database manage- 
ment system to schedule the processors and to efficiently 
use the available memory space. Furthermore, though it 
is expected that main memory sizes of a gigabyte or more 
will he feasible and perhaps even fairly common within 
the next decade, we still cannot assume that a whole rela- 
tion can he read from the mass storage to either the 
processor’s local memory or the shared memory before 
processing. That is, in general, both the total memory of 
the processors and the size of the shared memory are not 
large enough to contain a whole relation. 

It is assumed that the system uses conventional 
disk drives for secondary storage and databases (rela- 
tions) are stored on these disk storage devices. Both disks 
and memory are organized in fixed-size pages. Hence, 
the unit of transfer between the secondary storage and 
memory is a page. The processors, disks and memory 
are linked by an interconnection network. We assume 
that the interconnection network has sufficient bandwidth 
for the tasks at hand. That is, the contention for the inter- 
connection network is not considered in our analysis. 
However, we do consider the contention of the shared 
memory, which is reflected in the cost model of parallel 
join operations. 

2.2. Parallel join methods and their costs 
As mentioned above, one of the major task of a 

query optimizer is to determine the method for each join 
to be performed since there are usually a number of ways 
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to perform a particular join with different costs. In the 
multiprocessor environment, the selection of join 
methods becomes more complex. First, the number of 
join methods increases. For uniprocessor system, the 
sort-merge join, nested loops join and hash-based join are 
three major join methods. In a multiprocessor system, 
each of these methods has a number of variations with 
different performance. Second, there are more parame- 
ters that affect the cost of a join in multiprocessor sys- 
tems than in uniprocessor systems, such as number of 
processors participating in the join and the architecture of 
the system (shared nothing, shared everything, etc). 
Recently, quite a number of research work have been 
reported on parallel join algorithms [DeWi85, KitsSO, 
Schn89, Vald84, WolfpO]. Performance of different 
parallel join methods are analyzed. In general, the cost 
of a parallel join method is a function of the two relations 
to be joined and the number of processors participating in 
the join. 

In [Lu90], we reported our work on multiprocessor 
join algorithms. We studied four hash-based multipro- 
cessor join methods: a parallel version of hybrid-hash 
join and its modification, hash-based nested loops join 
and simple hash join, The costs of these hash-based join 
methods are studied in terms of the total processing time 
and the elapsed time. Since the major purpose of parallel 
processing is to speed up the computation, the elapsed 
rime is taken as the objective of optimization. Hereafter 
the cost of a join refers to the elapsed time unless other- 
wise specified. To estimate the elapsed time of a join, the 
join process is decomposed into sequentially executed 
phases. Most hash-based joins can be decomposed into 
two such phases: a partition phase and a join phase. The 
join phase, limited by the available memory size, is often 
further divided into iterative batches. Each of them joins 
only a portion of the two relations. These batches are 
also sequentially executed. In most computer systems, 
CPU processing, i.e. computation on the data in memory, 
proceeds concurrently with disk I/O operation, i.e. to find 
the required data on disk and to bring it into memory. 
Our calculation of the elapsed time considered this over- 
lap among CPU processing and disk I/O operation. It 
works as follows: we first compute the required disk I/O 
time per disk drive and CPU time per,processor for each 
phase i in executing an algorithm, T;O and T&. For a 
system with d disk drives and p processors, the total 
processing time for phase i is then 

Ti =p xT&+d XT;* (2.1) 

The elapsed Fime Ei for phase i, whic\l is generally 
less than T&, t T;, due to overlap, will be 

Ei= max (T&u,T;O) (2.2) 

Since phases of an algorithm are executed serially, the 

’ Here, for a CPU-bound phase, the time to read in the initial 
pager before the processing begins, and the time ta write out the 
final pages of the resuking tuples are ignond. While for an I/O- 
bound phase, the time to initiate and terminate tie processing are 
ignored. 
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elapsed time of an algorithm with n phases is 

E=~Ei (2.3) 
i=l 

For the detailed analysis of the four join methods 
and formulas of computing T&u and T;O for these 
methods, please refer to [Lu90]. In our implementation 
of the query optimization algorithms discussed in this 
paper, we used these formulas. However, the algorithms 
proposed is independent of the join methods and cost for- 
mulas, We will assume that the number Of joln 
methods provided by the system and the costs 
associated with them are available in the later dis- 
cussion, 

3. Optimization of Multi-way Join 

Irma-join algorithm can be achieved by assigning 
more than one processor to a join operation as in alI pro- 
posed parallel join algorithms [DeWi85, KitsgO, Schn89, 
Vald84, Lu90, WolfYO]. 
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Figure 3.1. Query execution plans (QEPs). 

Inter-join parallelism among multi-way join queries can 
be realized by gcncrating query execution plans with 
bushy structure. The difference between such bushy 
structured QEPs and the linear structured QEPs is shown 
in Figure 3.1. In a linear QEP (Figure 3.la). joins in a 
multi-way join query are performed one by one. The 
result relation from the first join of two relations, say RI 
and R,, is joined with the third relation, R,, the result of 
which is then joined with the fourth relation, R,, and so 
on. In a bushy structured QEP, a number of pairs of rela- 
tions may be joined in parallel. In Figure 3.lb, two pairs 
of relations, (R t, R 2) and (R a, R4), are joined in parallel. 
The result of R s W R4 is then joined with Rs, the result of 
which is again joined with the result of R 1 W R,. 

When the bushy structured QEPs are included in 
the search space of a query optimizer, the number of 
feasible QEPs increases dramatically. To limit the 
increase of QEPs in the search space of our multiproces- 
sor query optimizer, we divide QEPs into two groups, 
synchronized and asynchronized. By a synchronized 
QEP, we mean that the whole multi-way join process is 
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divided into synchronized steps. For each step, a number 
of joins are executed concurrently. The joins to be per- 
formed at the following step will not start to execute until 
all joins in the previous step have been completed. In 
this section, we are going to propose a greedy multi-way 
join optimization algorithm which explores inter-join 
parallelism by considering such synchronized QEPs dur- 
ing optimization. By limiting QEPs to synchronized ones, 
the cost estimation of a QEP is easier. However, there 
are two possible side effects: (1) the possible pipeline 
among steps is not taken into account. Instead, the costs 
of storing and retrieving the intermediate results are 
added to the plan cost, and (2) some processors that com- 
plete one join earlier than others have to wait and the 
CPU utilization will decrease. As a result, some better 
plans may be excluded from the search space. However, 
the second effect could be minimized by carefully allo- 
cating processors to the joins to be concurrently executed 
according to their workload. Furthermore, since linear 
QEPs are still in the search space, the new optimization 
algorithm should be at least as good as those that do not 
consider bushy QEPs. 

3.1. Algorithm GP: a greedy multi-way join 
query optimization algorithm 

Our algorithm, GP, the Greedy Parallel multi-way 
join optimization algorithm is listed in Figure 3.2. Algo- 
rithm GP is an iterative algorithm that generates one step 
in a synchronized QEP during each iteration. It is a 
greedy algorithm since it always tries to join as many 
pairs of relations as possible in parallel for the current 
step. At the beginning, all relations to be joined are 
included in the working set T. A set of relation pairs, R , 
is selected for the first step by calling function 
Select relgairs. For subsequent steps i, the same pro- 
cedureis applied to the reduced working set that consists 
of the intermediate relations from the last step, step i - 1, 
and the relations that have not been joined so far. Graph- 
ically, this reduced working set is represented by a 
reduced join RTU@I that is obtained by replacing the rela- 
tions joined in step i -1 by their result relations and mcrg- 
ing the edges accordingly. When the working set con- 
tains less than four relations, function Two way seq is 
called to determine the sequence of sequen&lly Toining 
those relations. 

3.2. Selecting pairs of relations 
Function Select-relpairs in Algorithm GP select 

k pairs of relations from the working set to be joined in 
parallel for the current step. Selecj-relgairs determines 
concurrently executed relation patrs with given working 
set (or join graph). The algorithm, shown in Figure 3.3, 
also uses an iterative approach starting with k = 1. Dur- 
ing each iteration, it computes the costs of QEPs which 
concurrently join k pairs of relation at the first step and 
find the minimum cost by calling function 
Minimum-cost. It terminates when either k is equal to 
the number pairs in the join graph or such k is found that 
the minimum cost of QEPs concurrently joining ktl 
pairs first is greater than the minimum cost of QEPs hav- 
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Algorithm GP 

Input :.A join graph G = (T, E) 
where node set T is a set of relations 
and edge set E represents the join conditions. 

Output : S , the join sequence consisting of relation pairs 

s c 0; 
while Size(T) > 3 do ( 

R t Select-relgairs (G); 
StSy R; 
G & G with each pair of relations in R replaced by 

their join results; 
I 
R t Two-way-seq (G); 
St-SyR; 

Figure 3.2. Multi-way join optimization algorithm GP . 

Algorithm Select-rel_pairs 

input : G , a join graph 
Output : R , a set of relation pairs to be joined concurrently 

begin 
kc& 
repeat 

ktk+l; 
C, t Minimum-cost (G, k, R1); 
if (R, does not contain all relations in G) 
then 

Ck+] t Minimum-cost (G, k+l, R,,,); 
until CL+I>Cc or Rk+, contains all pairs in G 
if Ck+t>Cc 
then return Rk 
else return RL+, 

end; 

Figure 3.3. Function Select-relgairs. 

ing k joins evaluated concurrently first. 
Function Minimum-cost is the core part of the 

algorithm. It takes the reduced join graph G, and the 
number of relation pairs to be joined concurrently first, k , 
as input andreturns the minimum cost of those plans that 
joins k pairs first. At the same time, it determines those 
k pairs of relations and join methods for each pair of 
relations. The computation complexity of this function 
comes from (1) the large number of feasible QEPs that 
join k pairs in parallel during the first step; and (2) a 
large number of combinations of join methods supported 
and possible processor allocation strategies for a chosen 
QEP. To simplify the cost evaluation of QEPs and hence 
to reduce the optimization overhead, we propose two 
heuristic cost functions that lead to two versions of Algo- 
rithm GP: GPr, an optimization algorithm based on total 
COSI and GP, , an optimization algorithm based on purrial 
COSL As the name implies, algorithm GP, estimates the 
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total cost of a QEP, C lan, 
each step i (I I i Sm , m the m-step QEP. On the other I. 

which is the sum of the cost of 

hand, Algorithm GPp uses only the cost of the first step 
(may plus one more join as explained later) Cost i as the 
approximation of Cost,,,, . We discuss the details of 
these two algorithms in the next two subsections. 

3.2.1. Greedy Parallel multi-way join optlmiza- 
tlon based on total cost( GP7) 

In Algorithm GP,, the total costs of a QEP, 
COSfph , is computed as the sum of cost of each step 
COSri in the QEP. However, even with a small number of 
joins in the join graph, it seems still very expensive to 
search for the minimum cost from all possible combina- 
tions of different number of steps and different number 
of joins at each step. An important heuristic used to limit 
the search space in GP7 is to consider only those QEPs 
that execute k joins concurrently at the first step and exe- 
cute remaining joins sequentially. For those QEPs, the 
plan cost is 

TotalL = Parjoin-cost (R, > (3.1) 
+ Seqjoin-cost (T - R, u Join-result (Rt)) 

where Parjoin-cost (Rt) returns the cost of joining rela- 
tions in R, in parallel and Seqjoin-cost (R ) returns the 
cost of joining relations in R sequentially. Since there 
are a number of different ways to select k pairs of rela- 
tions from all relations and also a number of different 
sequences to join the remaining relations sequentially, 
function Minimum-cost, with given k, enumerates the 
costs returned by two functions Parjoin-cost and 
Seqjoin-cost and returns the minimum among them, 
MIN(Tofalc), which is denoted as Ct in function 
Select-relgairs . 

@-@-@-@-@-@qy 

Figure 3.4. An example join graph. 

We will delay the discussion about finding 
MIN (Toralt) for the moment and use an example to 
explain how algorithm GP7 works. Consider the join 
graph shown in Figure 3.4. There are 7 relations RI to R 7 
such that there are join predicates between Ri and Ri+l 
fori=l,..... ,6. The optimization process using algo- 
rithm GPT is illustrated in Figure 3.5. To make the 
presentation simpler, we will only focus on determining 
the number of pairs to be joined and will not identify the 
actual relations in the pairs. Algorithm GP7, as an itera- 
tive algorithm, starts with the working set T containing 
all seven relations. In step one (Figure 3.5a), C, and C2, 
the minimum cost of executing one join and two joins 
concurrently at the first step respectively, is first com- 
puted and compared. Assume that C, > C2 so that C3, i.e. 
the minimum cost of joining three pairs of relations in 
parallel during the first step, is computed. Suppose CJ > 
C2 and hence Select-relgairs returns two pairs of rela- 
tions that should be joined concurrently in step one. 
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Now, the working set of step two consists of 5 relations 
- two intermediate results and three original relations 
(Figure 3Sb). For this working set, C, and C2 are first 
computed and let Ci c C2. That means only one pair is 
joined in step two. Finally, in step three (Figure 3Sc), Ci 
is compared with C, (< C,). Since there are only four 
relations, no further computation is needed and two pairs 
of relations should be joined concurrently in this step. 
The working set now contains only two relations which is 
for the last step and the algorithm terminates. The plan 
generated thus consists of four steps: joining two pairs of 
pairs concurrently, followed by one pair, followed by two 
pairs and end with another join (Figure 3Sd). 

3.2.2. Greedy parallel multi-way join optlmlza- 
tlon based on partlal cost ( GPp) 

In Algorithm GPT, the minimum total cost of 
QEPs joining a set of relations is to be computed. 
Although the computation is simplified by limiting the 
search space to those QEPs that only execute joins in 
parallel at their first step, it is still quite expensive to 
compute such total cost at each iteration, especially when 
the number of joins increases. In order to further reduce 
the optimization overhead, the second version of Algo- 
rithm GP , GP, only estimates the partial cost of a QEP, 
Partialc, and uses it as the approximation of Cos$,,,,,. 
Partial,, the cost of a QEP which joins k pairs of rela- 
tions concurrently first, is represented by the cost of exe- 
cuting these k pairs in parallel: 

Parlialk = Parjoin-cost (RL ) (3.2) 

Since two QEPs - one joins k pairs first, and another 
joins k+l pairs first - as required in function 
Select-relgairs, has different number of joins, the com- 
parison of these two QEPs are done by computing 

Ck = MIN (Partialk ) + C~~~~i, 

and 

C c+, = MIN (Parrialk+,) 

where C,, join is the minimum cost of joining two rela- 
tions from- the intermediate results and the remaining 
relations in the original working set. The number of rela- 
tion pairs to be joined concurrently, k is determined as 
fo1lows: 

r 1 ifCicC* 

k= N ifCt-i>Ck V k, l<ksN 

t 

(3.3) 
k if Ct-i > C1 and C, c Ct+i 

where N is the maximum number of pairs. 
Use the same example for Algorithm GPT, Algo- 

rithm GPI, works as illustrated in Figure 3.6 : In step 
one (Figure 3.6a), the working set contains seven rela- 
tions and C, and C2 are compared. Assume C, > Cz and 
C2 and C3 are then computed with the result C2 > C3, 
Since the maximum number of parallel joins is three, so 
step one should join three pairs in parallel. Next, the 
working set of step two consists of four relations (Figure 
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(a) Step 1. Suppose C r > C a and C s > C 2. Therefore, 
only 2 pairs will be joined in parallel in this step. 

L--,-J 
1 

(c) step 3. Given Ct > Ca, 2 pairs 
are joined. 

IO 0 &, i 0 
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@) Step 2. Since Cl C C2, only 1 
pair is joined. 
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Step 1 
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Step 4 

(d) The generated bushy query processing tree. 

Figure 3.5. Example of total cost evaluation function. 
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(i) Iteration 1. Compare C t and C a. (ii) Iteration 2. Compare Cz and Ca. 

(a) Step 1. At iteration 1, Ct > Ca. At iteration 2, Cr > Cr. Since there are 
at most 3 pairs, the step terminates by pairing up 3 pairs to be joined in parallel. 
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(b) Step 2. Assuming C, > C,, we can join 
2 pairs concurrently. 

(c) The generated bushy query processing tree. 

Figure 3.6. Example of partial cost evaluation function. 

@I intermediate results r-7 
relations bounded are executed serially 
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; : one relation is selected from bounded box . . . . . 
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3.6b). C1 and CZ are computed and compared, If Ct > 
Cz, then step 2 will join two pairs concurrently. The plan 
will terminate with another join, The plan generated thus 
comprises joining three pairs concurrently, followed by 
two pairs in parallel and finally one pair (Figure 3.6~). 

3.3. Algorithm to pair up relations 
In this section, we will discuss the detailed func- 

tion repeatedly applied in both algorithms GPP and GPT 
- tp select k pairs of relations and to compute the join 
cost. This problem can be viewed as a marching problem 
[Sysl831: Given a join graph, select k subgraphs consist- 
ing of two nodes with a connecting edge. One straight- 
forward way is to use matching algorithms available to 
find the maximum matching and then select the required 
number of pairs. To reduce the overhead of the matching 
process, we investigate some heuristics that help us to 
lind an initial matching. The algorithm is shown in Figure 
3.7. From the given join graph, a subgraph of two rela- 
tions (nodes) with common join attributes are selected 
first according to some criterion, The same (or different) 
criterion is repeatedly applied to the remaining relations 
to select other pairs until either the desired number of 
pairs have been found or no more two connected nodes in 
the join graph can be found. In the latter case, we use the 
pairs found so far as an initial matching and apply the 
general matching algorithm, marching(G , N, S), to find 
the desired number of relation pairs. Function mnhing 
takes the join graph G and the XI of initial pairing (less 
than N pairs) of relations, S, as the input and outputs a 
set containing N pairs of relations. 

Algorithm to pair up relations 

/n/M: G , a join graph, N, the number of pairs desired 
Output : S , a set of N pairs of relations 

it-0 
SC0 

while (there are connected nodes in G) and (i c N) do ( 
choose one pair ( Ri,,Ri,) from G (based on some 

criterion) 
S + S TV ( Ri,, Ri, 1 
G t G - ( nodes of chosen pair and edges emitting 

from them ) 
i ti+l ) 

ifi <N then 
S i- matchlng(G , N , S) 

return(S) 

Figure 3.7. Function to pair up relations. 

A number of heuristics have been used in different 
optimization algorithms to select two relations among 
others and join them together first with the intention to 
achieve some optimal ordering. The problem in our case 
is a little different: the chosen pairs are executed con- 
currently and their results will participate in subsequent 
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joins. We studied the following four criteria to choose a 
pair among a set of relations: 

1) min(Ni ) and min(Nj) - select the relation with the 
smallest cardinality, followed by selecting from 
among the adjacent relations the one with the 
minimum cardinality 

2) min(Ni) and max(Nj) - select the relation with 
the smallest cardinality, followed by selecting from 
among the adjacent relations the one with the max- 
imum cardinality 

3) Illill(JSij ) - select the pair of relations according 
to increasing order of the join selectivity 

4) min(Ni NjJS’ij) - select the pair of relations that 
result in the smallest size of the intermediate result 

These criteria aim at minimizing the intermediate relation 
sizes. Each criterion achieves this in different ways. Cri- 
terion 1 minimizes the immediate intermediate relation 
size by selecting two smallest source relations. Criterion 
2, considering that the join chosen will be processed con- 
currently with others, hopes to achieve a global effect by 
averaging the intermediate relations. Criterion 3 consid- 
ers the join selectivities hoping that by joining two rela- 
tions with low selectivity it will result in a small relation 
size. Criterion 4 achieves the aim by using the resultant 
intermediate size as the yardstick. However, since several 
pairs are selected greedily, the use of any of the criteria 
suffers from the same shortcoming - the optimal set of 
pairs may not necessarily be selected. The performance 
of these criteria will be discussed later. 

3.4. Processor allocation and join methods 
The last issue to be addressed is the computation of 

the cost of chosen joins, that is the function of 
Parjoin-cost(R) and Seqjoin-cost(R) in Equation (3.1) 
and (3.2). As we assumed in Section 2, cost formulas for 
different join methods should be available for the query 
optimizer. With these formulas, it is straightforward to 
compute the cost of sequentially joining a set of relations, 
Seqjoin-cosl(R) by fixing the number of processors to 
the total number of processors available and query optim- 
ization techniques used in uniprocessor database manage- 
ment systems can be used In our implementation, the 
computation starts with selecting two relations with the 
smallest resulting size and comparing the join costs of 
different methods. The join method with the minimum 
cost is added into the total cost. This process is repeated 
until all relations in the set (R) have been considered. 

For N pairs of relations to be joined concurrently, 
the cost computation was complicated since the number 
of processors allocated to each of the joins will affect the 
join cost. For some particular processor allocation Ak, 
;here pi processors is allocated to the i” join and 

Cpi = p , the total number of processors available, the 

Zst will be 

CO& = ylb-$ join-cosl (irh join, pi ) 
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The problem of computing Parjoin-cost(R) becomes 
that of finding the processor allocation, A,,, among all 
possible allocations A , and then compute the cost 
cost9, , such that 

CO%pt = MIN Cosrt 
CaA 

In our current implementation of the algorithm, the 
processors are allocated to the N joins in the following 
manner: Initially, each join gets an initial assignment, 
that is a certain number of processors. This assignment is 
repeatedly adjusted by adding more processors to the 
most expensive join and/or removing processors from the 
cheapest one to average out the workload until no 
improvements can be made to the cost to compute the N 
joins. 

3.5. Summary 
In this section we have described two versions of a 

greedy query optimization algorithm GP , GP, and GPp , 
for multiprocessor computer systems in a top-down 
manner. The heuristics used to reduce the search space 
and simplify the cost computation are illustrated. To limit 
the search space, only synchronized QEPs are con- 
sidered. To simplify the computation, the cost of a plan 
(subplan) is approximated by the sum of the cost of a 
parallel processing step and the cost of subsequent 
sequential processing cost in algorithm GPr, and the 
same cost is approximated by the cost of the first parallel 
processing cost (or plus the cost of one more join) in 
algorithm GP,. Furthermore, the optimization heuristics 
widely used in uniprocessor systems, such as those dctcr- 
mining the order of joins are also applied. 

The complexity of the algorithm can be roughly 
estimated as follows. In each execution of the w&/e-loop 
of GP, we obtain one step of the execution plan, Since 
there are at most n relations, the loop will not be exe- 
cuted more than n times. The generation of each step of 
the plan is performed by function Select-relyairs, where 
the repeat-loop is executed at most n/2 times. For each 
of the execution of the repeal-loop, several pairs to be 
joined are selected. This takes at most O(n”), which is 
the complexity of a mulching algorithm, The allocation 
of processors has time complexity of O(p x nlgn), 
where p is the number of processors. Therefore, the 
algorithm GP has complexity of 

O(n2x(n3i-p.n4gn))=O(n54gn), forp cn2 

Note that the n3 comes from the matching algorithm used 
when pairs of relations are selected. In fact, the match- 
ing algorithm is called only when the heuristics used can- 
not find enough number of relation pairs. Most of the 
time, the marching function needs not be called as the 
heuristic provides the answer. This will reduce the time 
complexity of selecting relation pairs to 0 (n3*lgn) 
instead of 0 (n’vlgn). 

4. A Performance Study 

To evaluate the algorithms described in the above 
section, an experimental study is conducted with the fol- 
lowing purposes: 
(1) to compare the four criteria for selection of pairs of 

relations (used in the algorithm of pairing relations 
)md 

(2) to evaluate and compare the effectiveness of algo- 
rithm GP with both heuristics, GP, and GPP in 
generating optimal plans. 

The optimization algorithm, algorithm GP, is 
implemented in our study. However, the input queries 
are randomly generated according to chosen parameters 
and execution costs of generated QEPs are calculated 
according to the developed cost models. Therefore, the 
results presented here are basically simulation results 
since no multiprocessor database system is available in 
our organization yet. We hope that these results can give 
us some insight into our algorithm and provide us with 
some experience to implement it in real systems. 

Though recent work [Kris86, Swam88, Swam891 
have emphasized on large number of joins, we believe 
that for most traditional applications in a well-designed 
relational database system, most of the queries will 
require only a small number of joins. Therefore, we study 
the proposed algorithm on a small number of joins (S 
10). We vary the join sclectivities, the sizes of the rela- 
tions, the number of processors and the number of tuples 
per page. However, our algorithm is also applicable for 
large number of joins (> 10). 

We define the following measure to study the per- 
formance of our algorithm : 

cost,, 
CosMulriplier (A,, A 2) = lost 

A; 

where Cost,,,, (i = 1,2), represents the cost of executing 
the QEP generated by algorithm Ai. CosrMultiplier(A1, 
A 3 is thus a measure of the relative performance of algo- 
rithm A 1 over algorithm A 2. 

For the experiments with small number of joins, 
we are able to compute the optimal solution by enumerat- 
ing all possible combinations. We therefore use the 
optimal solution generated by exhaustively trying all pos- 
sibilities as our basis for comparison. Hence, we have 

CosMultiplier (GP , OPT) = 
costfi-p 
COS!~pT 

where CostopT and CosfGp are $he costs of plans gen- 
erated by the exhaustive search and the algorithm GP 
used respectively. It is clear that CosMulriplier(GP, 

’ The. search space only includes all feasible synchronized 
QEPs. So, the optimal here may nol be the real optimal. 
However, Lhis seems the best reference we can use in our 
experiment. 
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OPT) 2 1 and a lower bound value of one implies that 
algorithm GP generates the optimal answer. 

4.1. Experiment 1 : Criteria for selecting the 
joining pairs 

In this experiment, we conducted several tests to 
study the criteria used for selection of joining pairs (see 
Section 3.3). The main parameters of the queries used in 
the experiment are shown in Table 4.1. 

-- 
Parameters 

Relation Size (in pages) 
750-850 600-1000 

Join Sel. 0.0008-00.002 Test 1 Test 3 
0.0007 -0.004 Test 2 Test4 ( 

Table 4.1. Experimental setup. 

For example, in test 1, the join selectivity is varied from 
0.0008 to 0.002 while the relations sizes are in the range 
of 750 to 850 pages. These are varied according to the 
uniform distribution such that the final relation size is 
also in the range of 750 to 850 pages. The other tests are 
similar except for the parameter settings. 

The number of processors are varied from 5 to 32 
for the tests. For each test, more than 2500 multi-way 
join queries with different number of joins, relation sizes, 
join selectivities and number of processors are generated. 
A query generator is used to generate queries. The QEPs 
of these queries are generated by applying algorithm GP 
with all the four criteria. The average costs by using dif- 
ferent criteria were compared with that of criterion 1 and 
Table 4.2 summarizes the results. Those numbers greater 
than one means that the criterion pcrfons worse than the 
first criterion. 

Experiment Set I c1 
GP, 

c2 c3 c4 
Test 1 1.0000 1.0078 0.9912 0.9899 
Test 2 1.0000 l.oooo 0.9872 0.9872 
Test 3 11 1.0000 1 I.0037 ) 1.0023 1 0.9958 
Test 4 11 1.0000 1 0.9993 1 0.9782 1 0.9734 

(a) Performance for GP, 

(b) Performance for GPP 

Table 4.2. Comparison of criteria. 

From Table 4.2, we note that the performance of 
the various criteria are relatively close to one another for 
both heuristics. No single criterion is superior in all 
situations. Several factors contribute to this - the 
number of processors, the join selectivities and the rela- 
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tion sizes. By varying these factors, the heuristics when 
used with one criterion may outperform the others. Cri- 
terion 3, which is shown to be the best criterion in 
[Swam891, no longer dominates. The possible reason is 
that, in our parallel processing environment, a number of 
pairs are joined concurrently and the overall perfor- 
mance depends on the combination of the optimality of 
choosing all these pairs. The policy of choosing one best 
pair may lead to the situation that the execution costs of 
other pairs are too high and the overall cost increases. 
Base on the above results, we use criterion 4, which gen- 
erates more near optimal plans than others, in subsequent 
experiments. 

4.2. Experiment 2 : The base experiment 
We first study the performance of the algorithm 

GP by comparing the results with that of the optimal 
result. The algorithm GP, using both cost evaluation 
functions, and the exhaustive search program are applied 
to the queries generated by the query generator. The 
exhaustive search method used always generate the 
optimal plan for a given query. The plans generated by 
algorithm GP, using either of the cost evaluation func- 
tions, are then tested for optimality by comparing them 
with the optimal ones. The parameters and their settings 
that controlled the query generator for the base experi- 
ment is shown in Table 4.3. We vary the number of rela- 
tions from 4 to 7. For each variation, we collect 500 sets 
of data with different parameter settings. The join selec- 
tivity, JoinSel and the relation sizes, RelSizes are uni- 
formly distributed over 0.0009 - 0.002 and 750 - 850 
pages respectively. The number of processors available 
varies from 5 to 32. 

Parameter Meaning Setting 
JoinSel Join Selectivities. 0.0009-0.002 
NumRel No. of Relations 4 - 7 
RelSizes Size of Relations 750-850 

r NumProAvail No. of Processors 5-32 \ 

Table 4.3. Base experiment parameters settings. 

Tables 4.4 and 4.5 show the results of this experi- 
ment by showing the percentages of QEPs generated by 
our algorithm, GP , that fall in the different ranges of the 
metric, CostMultiplier. For example, in Table 4.4, with a 
3-way join (4-R), GPT generates, in fact, optimal plans. 
With 4-way join (5-R), the costs of 11.4% of QEP’s are 
less than I,1 of the cost of the optimal plans. From Table 
4.4, we see that GPr performs well for small number of 
joins. As expected, the percentage of optimal solution 
decreases as the number of relations increases since the 
search space increases drastically (as the number of rela- 
tions increases). However, even for 6-way join, as high 
as 70% of the plans generated are optimal. The effective- 
ness of the algorithm GPT is apparent since all the QEPs 
generated have costs no more than 10% over the costs of 
the optimal plans. 
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Query CostMultiplier (%) 
Type 1.0 I l.O-Il.1 I 1.1 -1.2 I > 1.2 
4-R 100 1 0 0 
S-R 88.6 11.4 0 0 
6-R 77.3 22.7 0 0 
7-R 72.0 28.0 0 0 4 

Table 4.4. CostMultiplier for GPT. 

Table 4.5. CostMultiplier for GPp . 

Table 4.5 shows that GPP performs well for small 
number of joins too. Except for six relations, GPp gen- 
erates QEPs with CosrMuftiplier less than 120%. For six 
relations, the performance is poor due to the greediness 
of the heuristic. With six relations, when three pairs are 
joined in the first iteration, subsequently only sequential 
joins may be done. However, a possibly better plan might 
be to join two pairs first, follow by two pairs before the 
final sequential join is performed. 

Each cost evaluation function has its own advan- 
tages. While GPT not only generates higher percentage 
of optimal solutions, it also generates nearer-optimal 
solutions (that is the values are nearer to optimal than 
GPP). This is expected as it considers the total cost to 
complete the entire M-way joins. On the other hand, 
GP, is superior in that it generates a good plan in a 
shorter time. We have observed in our experiments that, 
though both approaches generate a plan in less than a 
second, GP, takes about twice as long to produce a plan. 
The exhaustive approach, on the other hand, takes as 
long as several hours to produce an optimal plan. 

4.3. Experiment 3 : Vary sizes of relations 
In this experiment, we study how the relation sizes 

affect the generation of parallel execution plans. The 
relations sizes are varied over a wider range of values 
from 600 to 1000. The join selectivities are kept in the 
same range as the base experiment. However, the selec- 
tivities are chosen such that the final result size is in the 
range of 750 - 850. Tables 4.6 and 4.7 show the results. 

Query . CostMultiplier (%) 
Type 1.0 I l.O- 1.1 I 1.1 -1.2 > 1.2 . 
4-R 93.3 1 6.0 0.1 0 
S-R 75.2 24.2 0.6 0 
6-R 68.0 29.8 2.2 0 
7-R 69.0 31.0 0 0 , 

Table 4.6. CostMultiplier for GP7. 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

Query CostMultiplier (%) 
Type 1.0 I l.O- 1.1 1 1.1 -1.2 I > 1.2 
4-R 1 89.3 1 10.0 1 0.7 1 0 
5-R 72.6 26.8 0.6 0 
6-R 50.2 36.8 9 4.0 
7-R 56.5 36.0 7.5 0 

Table 4.7. CostMultiplier for GPp . 

Compare the results in the above two tables with 
those in experiment 2, we find that the optimality of 
QEPs generated decrease. The algorithm, however, 
remains effective. For GP, (Table 4.6), in all cases, there 
are still at least 68% of the plans generated which are 
optimal and all plans have cost less than 120% of the 
optimal one. On the other hand, the plans generated by 
GP, are at least 50% optimal, 85% with CostMultiplier 
less than 110%. 

4.4. Experiment 4 : Combination of small and 
large relation sizes 

In this experiment, we study how a mixture of 
small and large relation sizes affect the generation of 
parallel execution plans. The relations sizes are varied 
from two ranges : 750 - 850 and 5000 - 6000. This 
mixture simulates the situation where some small size 
relations may be joined with very large size relations. 
Tables 4.8 and 4.9 show the results. 

Quev _ CostMultiplier (8) 
Type 1.0 ( l.O- 1.1 1 1.1 -1.2 ! > 1.2 
4-R 86.0 I 14.0 1 0 1 0 
5-R 15.0 21.0 4.0 0 
6-R 70.0 25.0 5.0 0 
I-R 66.0 33.0 1.0 0 

Table 4.8. CostMultiplier for GPT. 

QUAY CostMultiplier (%) 
Type 1.0 I 1.0-1.1 I 1.1-1.2 ! >1.2, 
4-R 86.0 1 14.0 1 0 1 0 
5-R 45.0 35.0 20.0 0 
6-R 29.0 50.0 20.0 1.0 

_ 7-R 48.0 27.0 23.0 2.0 , 

Table 4.9. CostMultiplier for GPI,. 
Tables 4.8 and 4.9 indicate that, with large variation of 
relation size, performance GP, still performs quite well, 
but GP,, does not perform so good, especially when the 
number of relations increases. This implies that if there 
is a large variance among the relations to be joined, it is 
better to use GPT in order to obtain better plans, with the 
price of high optimization overhead. 

4.5. Experiment 5 : increase the number of joins 
From experiments 2 to 4, we see the effectiveness 

of the proposed algorithm GP. The purpose of this exper- 
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iment is to see the relative performance of GP, and GPp 
for large number of joins. Since an exhaustive enumera- 
tion of the join orderings is computationally expensive, 
we compare them with one another. We vary the join 
selectivities and the sizes of the relations. Tables 4.10 
and 4 .l 1 show the relative performance of heuristic CPT 
over GP,, with parameter settings from experiments 2 
and 3 respectively. 

Query CostMultiplier (%) 
Type 0.6 -0.8 1 0.8-0.9 1 0.9-11.0 1 1.0-11.1 

10-R 1.4.8 1 22.8 [ 71.8 1 1.6 

Table 4.10. CostMultiplier (GPT, GPI,). 
(Experiment 2 settings) 

Query CostMultiplier (%) 
Type 0.6-0.8 1 0.8-0.9 1 0.9-1.0 1 1.0-11.1 
10-R 5.6 17.2 [ 75.4 1 1.8 
20-R 4.75 28.75 65.00 1.5 
30-R 5.5 30.5 62.75 1.25 
40-R 3.0 30.0 65.75 1.25 
50-R 4.75 37.25 57.25 0.75 

Table 4.11. CostMulliplier (GPT, GPp). 
(Experiment 3 settings). 

From Tables 4.10 and 4.11, we see that GPT out- 
performs GPp most of the time (> 98%). For more than 
50% of the time, GP, produces results that are close to 
GP,. Up to 90% of the results generated by GP, are 
80%-near-GPT. 

5. Conclusion 
In this paper, we have examined the problem of 

generating parallel plans for multi-way join in multipro- 
cessor computer systems comprising conventional, com- 
mercially available components without the assistance of 
any special-purpose hardware components. While tradi- 
tional optimizers (which do not generate parallel plans) 
deal with choosing an appropriate join method and the 
best join ordering, our optimizer that generates parallel 
plans, must also select the pairs of relations to be joined 
in parallel and allocate processors to the join operations. 
We proposed an algorithm, algorithm GP, which 
employs the greedy paradigm to generate parallel QEPs 
for multi-way join queries. The plan generated exploits 
parallelism at two levels : intra-join parallelism where 
several processors may be assigned to a join operation 
and inter-join parallelism where several joins may be 
performed concurrently. 

Two cost evaluation functions were proposed to 
compute the cost of a QEP with both concurrently and 
sequentially executed joins. These two cost evaluation 
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functions lead to two versions of GP , GPT and GP,, . 
Algorithm GPT uses the rota1 cost of the entire M-way 
join at each step to determine the number of join opera- 
tions for each step, while Algorithm GP, uses the partial 
cost , i.e. cost to execute joins of the current step to com- 
pare two QEPs. Our study shows that, for small number 
of joins, both heuristics always generate plans with cost 
no more than 120% of the optimal plans. Algorithm GPT 
outperforms Algorithm GP, in most of the cases. How- 
ever, the time to generate the plan is longer. We also 
investigated four criteria to guide the selection of pairs of 
relations to be joined first. The results show that the aver- 
age performance of the criteria are relatively close to one 
another in parallel processing environment, 

Our work may be extended in the following areas. 
First, we plan to relax the assumption of our study that 
the execution of a QEP is synchronized, By restricting to 
synchronized QEPs, processings at certain step cannot 
begin until all the joins at the previous step have been 
completed. This is reasonable if we can minimize the 
overall execution time at each step by distributing the 
processors to balance the load. However, this approach 
has its shortcoming that the effect of pipeline among 
joins, as in the execution scheme suggested by Schneider 
and Dewitt [Schn90], is not considered. Second, previ- 
ous work have applied combinatorial algorithms and 
simulated annealing as heuristics to the problem of 
optimization to generate a sequential plan. Such algo- 
rithms have been shown to be effective. They may be 
further studied and modified to produce plans for parallel 
execution. We may also introduce a k-step (k > 1) look- 
ahead in our heuristics to enhance their performance. 
Third, there are a number of issues and implementation 
details of the algorithm that need to be further studied. 
For example, for allocating processors to joins, our 
current implementation may not be very effective and 
efficient when the number of processors available is 
large. The last, but very important issue to be addressed 
is to move as much work as possible from runtime to 
compilation time. Since the number of processors avail- 
able is only known until runtime, our algorithm presented 
in this paper is to be. executed at runtime. Although most 
of our effort is to reduce the overhead by using heuris- 
tics, precompilation, or most likely partial precompila- 
tion, in this new environment might still be an effective 
way of reducing the runtime overhead. This possibility is 
not explored yet. 
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