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ABSTRACT
Analysts often clean dirty data iteratively–cleaning some data, ex-
ecuting the analysis, and then cleaning more data based on the re-
sults. We explore the iterative cleaning process in the context of
statistical model training, which is an increasingly popular form of
data analytics. We propose ActiveClean, which allows for progres-
sive and iterative cleaning in statistical modeling problems while
preserving convergence guarantees. ActiveClean supports an im-
portant class of models called convex loss models (e.g., linear re-
gression and SVMs), and prioritizes cleaning those records likely
to affect the results. We evaluate ActiveClean on five real-world
datasets UCI Adult, UCI EEG, MNIST, IMDB, and Dollars For
Docs with both real and synthetic errors. The results show that our
proposed optimizations can improve model accuracy by up-to 2.5x
for the same amount of data cleaned. Furthermore for a fixed clean-
ing budget and on all real dirty datasets, ActiveClean returns more
accurate models than uniform sampling and Active Learning.

1. INTRODUCTION
Statistical models trained on historical data facilitate several im-

portant predictive applications such as fraud detection, recommen-
dation systems, and automatic content classification. In a survey of
Apache Spark users, over 60% responded that support for advanced
statistical analytics was Spark’s most important feature [1]. This
sentiment is echoed across both industry and academia, and there
has been significant interest in improving the efficiency of model
training pipelines. Although it is often overlooked, an important
step in all model training pipelines is handling dirty or inconsistent
data including extracting structure, imputing missing values, and
handling incorrect data. Analysts widely report that cleaning dirty
data is a major concern [20], and consequently, it is important to
understand the efficiency and correctness of such operations in the
context of emerging statistical analytics.

While many aspects of the data cleaning problem have been
well-studied for SQL analytics, the results can be counter-intuitive
in high-dimensional statistical models. For example, studies have
shown that many analysts do not approach cleaning as a one-shot
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Figure 1: (a) Systematic corruption in one variable can lead to
a shifted model. The dirty examples are labeled 1-5 and the
cleaned examples are labeled 1’-5’. (b) Mixed dirty and clean
data results in a less accurate model than no cleaning. (c) Small
samples of only clean data can result in similarly issues.

pre-processing step, and instead, repeatedly alternate between clean-
ing and analysis. It is common to use the preliminary analysis on
dirty data as a guide to help identify potential errors and design re-
pairs [14,20,22]. Unfortunately, for statistical models, iteratively
cleaning some data and re-training on a partially clean dataset can
lead to misleading results in even the simplest models.

Consider a linear regression model on systematically translated
data (Figure 1a). If one only cleans two of the data points, the inter-
mediate result reveals a misleading trend (Figure 1b). This is a con-
sequence of the well-known Simpson’s paradox where aggregates
over different populations of data can result in spurious relation-
ships [32]. Similarly, statistical models face more dramatic sam-
pling effects than the traditional 1D sum, count, avg SQL aggre-
gates (Figure 1c). The challenges with Simpson’s paradox and sam-
pling are problematic because recent advances in SQL data clean-
ing, such as Sample-and-Clean [33] and Progressive Data Clean-
ing [5,28,36], actually advocate cleaning subsets of data to avoid
the potentially expensive cleaning costs. Clearly, such data clean-
ing approaches will have to be re-evaluated for the statistical mod-
eling setting, and this paper explores how to adapt such approaches
with guarantees of convergence for an important class of modeling
problems.

Data cleaning is a broad area that encompasses extraction, de-
duplication, schema matching, and many other problems in rela-
tional data. We focus on two common operations that often require
iterative cleaning: removing outliers and attribute transformation.
For example, battery-powered sensors can transmit inaccurate mea-
surements when battery levels are low [19]. Similarly, data entered
by humans can be susceptible to a variety of inconsistencies (e.g.,
typos), and unintentional cognitive biases [23]. Since these two
types of errors do not affect the schema or leave any obvious signs
of corruption (e.g., NULL values), model training may seemingly
succeed–albeit with an inaccurate result.
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We propose ActiveClean, a model training framework that al-
lows for iterative data cleaning while preserving provable conver-
gence properties. The analyst initializes ActiveClean with a model,
a featurization function, and a pointer to a dirty relational table.
In each iteration, ActiveClean suggests a sample of data to clean
based on the data’s value to the model and the likelihood that it is
dirty. The analyst can apply value transformations and filtering op-
erations to the sample. ActiveClean will incrementally and safely
update the current model (as opposed to complete re-training). We
propose several novel optimizations that leverage information from
the model to guide data cleaning towards the records most likely to
be dirty and most likely to affect the results.

From a statistical perspective, our key insight is to treat the clean-
ing and training iteration as a form of Stochastic Gradient Descent,
an iterative optimization method. We treat the dirty model as an ini-
tialization, and incrementally take gradient steps (cleaning a sample
of records) towards the global solution (i.e., the clean model). Our
algorithm ensures global convergence with a provable rate for an
important class of models called convex-loss models which include
SVMs, Linear Regression, and Logistic Regression. Convexity is
a property that ensures that the iterative optimization converges to
a true global optimum, and we can apply convergence arguments
from convex optimization theory to show that ActiveClean con-
verges.

To summarize our contributions:

• We propose ActiveClean, which allows for progressive data
cleaning and statistical model training with guarantees.
• Correctness We show how to update a dirty model given

newly cleaned data. This update converges monotonically in
expectation with a with rate O( 1√

T
).

• Optimizations We derive a theoretically optimal sampling
distribution that minimizes the update error and an approx-
imation to estimate the theoretical optimum. Our proposed
optimizations can improve model accuracy by up-to 2.5x for
the same amount of data cleaned.
• Experiments The experiments evaluate ActiveClean on five

datasets with real and synthetic corruption. In a fraud predic-
tion example, ActiveClean examines nearly 10x fewer records
than alternatives to achieve an 80% true positive rate.

We have included detailed proofs in our extended technical re-
port [24] and an implementation of ActiveClean in our SIGMOD
demo [21].

2. ITERATIVE DATA CLEANING
This section introduces the problem of iterative data cleaning

through an example application.

2.1 Use Case: Dollars for Docs
ProPublica collected a dataset of corporate donations to medical

researchers to analyze conflicts of interest [2]. For reference, the
dataset has the following schema:

Contribution(
pi_specialty text, # PI’s medical specialty
drug_nm text , # drug brand name, null if not drug
device_nm text, # device brand name, null if not a device
corp text, # name of pharamceutical donor
amount float, # amount donated
dispute bool, # whether the research is disputed
status text # if the donation is allowed

# under research protocol
)

The dataset comes with a status field that describes whether or
not the donation was allowed under the declared research protocol.

Unfortunately the dataset is dirty, and there are inconsistent ways
to specify “allowed” or “disallowed”. The ProPublica team iden-
tified the suspicious donations via extensive manual review (docu-
mented in [2]). However, new donation datasets are continuously
released and would need to be analyzed by hand. Thus, let us con-
sider an alternative ActiveClean-based approach to train a model to
predict the true status value. This is necessary for several rea-
sons: 1) training a model on the raw data would not work because
the status field is often inconsistent and incorrect; 2) techniques
such as active learning are only designed for acquiring new labels
and not suitable for finding and fixing incorrect labels; and 3) other
attributes such as company name may also be inconsistent (e.g.,
Pfizer Inc., Pfizer Incorporated, Pfizer) and need to be canonical-
ized before they are useful for training the model.

During our analysis, we found that nearly 40,000 of the 250,000
records had some form of inconsistency. Indeed, these errors were
structural rather than random—disallowed donations were more
likely to have an incorrect status value. In addition, larger phar-
maceutical comparies were more likely to have inconsistent names,
and more likely to make disallowed donations. Without cleaning
company names, a model would miss-predict many large pharma-
ceutical donations. In fact, we found that the true positive rate for
predicting disallowed donations when training an SVM model on
the raw data was only 66%. In contrast, cleaning the entire dataset
improves this rate to 97% (Section 7.2.2), and we show in the ex-
periments that ActiveClean can achieve comparable model accu-
racy (< 1% of the true model accuracy) while expending only 10%
of the data cleaning effort. The rest of this section will introduce the
key challenges in designing an iterative data cleaning framework to
support such applications.

2.2 Iteration in Model Construction
Consider an analyst designing a classifier for this dataset. When

she first develops her model on the dirty data, she will find that the
detection rate (true positives predicted) is quite low 66%. To in-
vestigate why she might examine those records that are incorrectly
predicted by the classifier.

It is common for analysts to use the preliminary analysis on
dirty data as a guide to help identify potential errors and design
repairs [20]. For example, our analyst may discover that there are
numerous examples where two records are nearly identical, but one
is predicted correctly, and one is incorrect, and their only difference
is the corporation attribute: Pfizer and Pfizer Incorporated.
Upon discovering such inconsistencies, she will merge those two
attribute values, re-train the model, and repeat this process.

We define iterative data cleaning to be the process of cleaning
subsets of data, evaluating preliminary results, and then cleaning
more data as necessary. ActiveClean explores two key questions
about this iterative process: (1) Correctness. Will this clean-retrain
loop converge to the intended result and (2) Efficiency. How can
we best make use of the existing data and analyst effort.

Correctness: The straight-forward application of data cleaning is
to repair the corruption in-place, and re-train the model after each
repair. However, this process has a crucial flaw, where a model is
trained on a mix of clean and dirty data. It is known that aggregates
over mixtures of different populations of data can result in spurious
relationships due to the well-known phenomenon called Simpson’s
paradox [32]. Simpson’s paradox is by no means a corner case, and
it has affected the validity of a number of high-profile studies [29].
Figure 1 illustrates a simple example where such a process can lead
to unreliable results, where artificial trends introduced by the mix-
ture can be confused for the effects of data cleaning. The conse-
quence is that after applying a data cleaning operation on a subset
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of data the analyst cannot be sure if it makes the model more or less
accurate. ActiveClean provides an update algorithm with a mono-
tone convergence guarantee where more cleaning is leads to a more
accurate result in expectation.

Efficiency: One could alternatively avoid the mixing problem
by taking a small sample of data up-front, perfectly cleaning it,
and then training a model. This approach is similar to Sample-
Clean [33], which was proposed to approximate the results of ag-
gregate queries by applying them to a clean sample of data. How-
ever, high-dimensional models are highly sensitive to sample size,
and it is not uncommon to have models whose training data com-
plexity is exponential in the dimensionality (i.e., the curse of di-
mensionality). Figure 1c illustrates that, even in two dimensions,
models trained from small samples can be as incorrect as the mix-
ing solution described before. Sampling further has a problem of
scarcity, where errors that are rare may not show up in the sample.
ActiveClean uses a model trained on the dirty data as an initializa-
tion and uses this model as guide to identify future data to clean.

Comparison to Active Learning: The motivation of ActiveClean
similar to that of Active Learning [16,36] as both seek to reduce
the number of queries to an analyst or a crowd. However, active
learning addresses a fundamentally different problem than Active-
Clean. Active Learning poses the problem of iteratively selecting
the most informative unlabeled examples to label in partially la-
beled datasets—these examples are labeled by an expert and inte-
grated into the machine learning model. Note that active learning
does not handle cases where the dataset is labelled incorrectly but
only cases where labels are missing. In contrast, ActiveClean stud-
ies the problem of prioritizing modifications to both features and
labels in existing examples. In essence, ActiveClean handles in-
correct values in any part (label or feature) of an example. This
property changes the type of analysis and algorithms that can be
used. Consequently, our experiments find that general active learn-
ing approaches (e.g., uncertainty sampling [31]) converge slower
than ActiveClean. If the only form of data error was missing la-
bels, then we would expect active learning to perform comparably
or better than ActiveClean.

3. PROBLEM FORMALIZATION
ActiveClean is an iterative framework for cleaning data in sup-

port of statistical modeling. Analysts clean batches of data, which
are fed back into the system to intelligently re-train the model, and
recommend a next batch of data to clean. We will first introduce
the terms used in the rest of the paper, describe our assumptions,
and define the two problems that we solve in this paper.

3.1 Assumptions
In this paper, we use the term statistical modeling to describe a

well-studied class of analytics problems; ones that can be expressed
as the minimization of convex loss functions. Examples include lin-
ear models (including linear and logistic regression), support vector
machines, and in fact, means and medians are also special cases.
This class is restricted to supervised Machine Learning, and the re-
sult of the minimization is a vector of parameters θ. We further
assume that there is a one-to-one mapping between records in a
relation R and labeled training examples (xi, yi).

ActiveClean considers data cleaning operations that are applied
record-by-record. That is, the data cleaning can be represented as a
user-defined function C(·) that when applied to a record r and can
perform two actions: recover a unique clean record r′ = C(r) with
the same schema or remove the record ∅ = C(r). ActiveClean
is agnostic to how C(·) is implemented, e.g., with software or a

manual action by the analyst. We define the clean relation as a
relation of all of the records after cleaning:

Rclean = ∪Ni C(ri ∈ R)

Therefore, for every r′ ∈ Rclean there exists a unique r ∈ R in the
dirty data. Supported cleaning operations include merging com-
mon inconsistencies (e.g., merging “U.S.A” and “United States”),
filtering outliers (e.g., removing records with values > 1e6), and
standardizing attribute semantics (e.g., “1.2 miles” and “1.93 km”).
Our technical report discusses a generalization of this basic data
cleaning model called the “set of records” cleaning model [24]. In
this generalization, the C(·) function is composed of schema pre-
serving map and filter operations applied to the entire dataset. This
can model problems such batch merging of inconsistencies with a
“find-and-replace”. We acknowledge that both definitions of data
cleaning are limited as they do not cover errors that simultaneously
affect multiple records such as record duplication or structure such
as schema transformation.

3.2 Notation
The user provides a pointer to a dirty relationR, a cleanerC(·), a

featurizerF (·), and a convex loss problem. A total of k records will
be cleaned in batches of size b, so there will be T = k

b
iterations of

the algorithm. We use the following notation to represent relevant
quantities:
Dirty Model: θ(d) is the model trained on R (without cleaning).
Dirty Records: Rdirty ⊆ R is the subset of records that are still
dirty. As more data are cleaned Rdirty → {}.
Clean Records: Rclean ⊆ R is the subset of records that are
clean, i.e., the complement of Rdirty .
Batches: S is a batch of data (possibly selected stochastically but
with known probabilities) from the recordsRdirty . The clean batch
is denoted by Sclean = C(S).

Clean Model: θ(c) is the optimal clean model, i.e., the model
trained on a fully cleaned relation. Accuracy and convergence are
always with respect to θ(c).
Current Model: θ(t) is the current best model at iteration t ∈
{1, ..., k

b
}, and θ(0) = θ(d).

3.3 System Architecture
The main insight of ActiveClean is to model the interactive data

cleaning problem as Stochastic Gradient Descent (SGD) [8]. SGD
is an iterative optimization algorithm that starts with an initial es-
timate and then takes a sequence of steps “downhill” to minimize
an objective function. Similarly, in interactive data cleaning, the
human starts with a dirty model and makes a series of cleaning
decisions to improve the accuracy of the model. We formalize the
link between these two processes, and since SGD is one of the most
widely studied forms of optimization, it has well understood theo-
retical convergence conditions. These theoretical properties give
us clear restrictions on different components. Figure 2 illustrates
the ActiveClean architecture including the: Sampler, Cleaner, Up-
dater, Detector, and Estimator.

The first step of ActiveClean is initialization. We first initialize
Rdirty = R and Rclean = ∅. The system first trains the model
on Rdirty to find an initial model θ(d) that the system will sub-
sequently improve iteratively. It turns out that SGD converges for
an arbitrary initialization, so θ(d) need not be very accurate. This
can be done by featurizing the dirty records (e.g., using an arbitrary
placeholder for missing values), and then training the model.

In the next step, the Sampler selects a batch of data S from the
data that has not been cleaned already. To ensure convergence, the
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Figure 2: ActiveClean allows users to train predictive mod-
els while progressively cleaning data but preserves convergence
guarantees. Solid boxes are essential components for correct-
ness and dotted boxes indicate optimizations that can improve
model accuracy by up-to 2.5x (Section 7.4.2)

Sampler has to do this in a randomized way, but can assign higher
probabilities to some data as long as no data has a zero sampling
probability. The Cleaner is user-specified and executes C(·) for
each sample record and outputs their cleaned versions. The Up-
dater uses the cleaned batch to update the model using a Gradi-
ent Descent step, thus moving the model closer to the true cleaned
model (in expectation). Finally, the system either terminates due to
a stopping condition (e.g., C(·) has been called a maximum num-
ber of times k, or training error convergence), or passes control to
the sampler for the next iteration.

A user provided Detector can be used to identify records that
are more likely to be dirty (e.g., using data quality rules), and thus
improves the likelihood that the next sample will contain true dirty
records. Furthermore, the Estimator uses previously cleaned data
to estimate the effect that cleaning a given record will have on the
model. These components are optional, but our experiments show
that these optimizations can improve model accuracy by up-to 2.5x
(Section 7.4.2).

EXAMPLE 1. The analyst chooses to use an SVM model, and
manually cleans records by hand (the C(·)). ActiveClean initially
selects a sample of 50 records (the default) to show the analyst. She
identifies records that are dirty, fixes them by normalizing the drug
and corporation names with the help of a search engine, and cor-
rects the labels with typographical or incorrect values. The system
then uses the cleaned records to update the current best model and
selects the next sample of 50. The analyst can stop at any time and
use the improved model to predict whether a record is fraudulent
or not.

3.4 Problem Statements
Update Problem: Given a newly cleaned batch of data Sclean
and the current best model θ(t), the model update problem is to
calculate θ(t+1). θ(t+1) will have some error with respect to the
true model θ(c), which we denote as:

error(θ(t+1)) = ‖θ(t+1) − θ(c)‖
The Update Problem is to update the model with a monotone con-
vergence guarantee such that more cleaning implies a more accu-
rate model.

Since the sample is potentially stochastic, it is only meaningful to
talk about expected errors. Formally, we require that the expected
error is upper bounded by a monotonically decreasing function µ
of the amount of cleaned data:

E(error(θnew)) = O(µ(| Sclean |))

Prioritization Problem: The prioritization problem is to select
Sclean in such a way that the model converges in the fewest it-
erations possible. Formally, in each batch of data, every r has a

probability p(r) of being included. The Prioritization Problem is to
select a sampling distribution p(·) to maximize the progress made
which each iteration of the update algorithm. We derive the optimal
sampling distribution for the updates, and show how the theoretical
optimum can be approximated, while still preserving convergence.

4. UPDATING THE MODEL
This section describes an algorithm for reliable model updates.

For convex loss minimization, Stochastic Gradient Descent con-
verges to an optimum from any initialization as long each gradient
descent step is unbiased. We show how we can leverage this prop-
erty to prove convergence for interactive data cleaning regardless
of the inaccuracy of the initial model–as long as the analyst does
not systematically exclude certain data from cleaning. The updater
only assumes that it is given a sample of data Sdirty from Rdirty
where i ∈ Sdirty has a known sampling probability p(i).

4.1 Convex Loss Models
Formally, suppose x is a feature vector and y is a label. For

labeled training examples {(xi, yi)}Ni=1, the problem is to find a
vector of model parameters θ by minimizing a loss function φ (a
function that measures prediction error) over all training examples:

θ∗ = arg min
θ

N∑
i=1

φ(xi, yi, θ)

where φ is a convex function in θ. For example, in a linear regres-
sion φ is:

φ(xi, yi, θ) = ‖θTxi − yi‖22
Sometimes, a convex regularization term r(θ) is added to the loss:

θ∗ = arg min
θ

N∑
i=1

φ(xi, yi, θ) + r(θ)

However, we ignore this term without loss of generality, since none
of our results require analysis of the regularization. The regulariza-
tion can be moved into the sum as a part of φ for the purposes of
this paper.

4.2 Geometric Derivation
The update algorithm intuitively follows from the convex geom-

etry of the problem. Consider the problem in one dimension (i.e.,
the parameter θ is a scalar value), so then the goal is to find the
minimum point (θ) of a curve l(θ). The consequence of dirty data
is that the wrong loss function is optimized. Figure 3A illustrates
the consequence of the optimization. The red dotted line shows the
loss function on the dirty data. Optimizing the loss function finds
θ(d) at the minimum point (red star). However, the true loss func-
tion (w.r.t to the clean data) is in blue, thus the optimal value on the
dirty data is in fact a suboptimal point on clean curve (red circle).

In the figure, the optimal clean model θ(c) is visualized as a yel-
low star. The first question is which direction to update θ(d) (i.e.,
left or right). For this class of models, given a suboptimal point,
the direction to the global optimum is the gradient of the loss func-
tion. The gradient is a p-dimensional vector function of the current
model θ(d) and the clean data. Therefore, ActiveClean needs to
update θ(d) some distance γ (Figure 3B):

θnew ← θ(d) − γ · ∇φ(θ(d))

At the optimal point, the magnitude of the gradient will be zero.
So intuitively, this approach iteratively moves the model downhill
(transparent red circle) – correcting the dirty model until the desired
accuracy is reached. However, the gradient depends on all of the
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Figure 3: (A) A model trained on dirty data can be thought
of as a sub-optimal point w.r.t to the clean data. (B) The gra-
dient gives us the direction to move the suboptimal model to
approach the true optimum.

clean data, which is not available, and ActiveClean will have to
approximate the gradient from a sample of newly cleaned data.

To derive a sample-based update rule, the most important prop-
erty is that sums commute with derivatives and gradients. The con-
vex loss class of models are sums of losses, so given the current
best model θ, the true gradient g∗(θ) is:

g∗(θ) = ∇φ(θ) =
1

N

N∑
i=1

∇φ(x
(c)
i , y

(c)
i , θ)

ActiveClean needs to estimate g∗(θ) from a sample S, which is
drawn from the dirty dataRdirty . Therefore, the sum has two com-
ponents which are the gradient from the already clean data gC and
gS a gradient estimate from a sample of dirty data to be cleaned:

g(θ) =
| Rclean |
| R | · gC(θ) +

| Rdirty |
| R | · gS(θ) (1)

gC can be calculated by applying the gradient to all of the already
cleaned records:

gC(θ) =
1

| Rclean |
∑

i∈Rclean

∇φ(x
(c)
i , y

(c)
i , θ)

gS can be estimated from a sample by taking the gradient w.r.t
each record, and re-weighting the average by their respective sam-
pling probabilities. Before taking the gradient, the cleaning func-
tion C(·) is applied to each sampled record. Therefore, let S be a
sample of data, where each i ∈ S is drawn with probability p(i):

gS(θ) =
1

| S |
∑
i∈S

1

p(i)
∇φ(x

(c)
i , y

(c)
i , θ)

Then, at each iteration t, the update becomes:

θ(t+1) ← θ(t) − γ · g(θ(t))

4.3 Model Update Algorithm
We present an outline for one iteration of the update algorithm.

To summarize, the algorithm is initialized with θ(0) = θ(d) which
is the dirty model. There are three user set parameters: the budget
k, batch size b, and the step size γ. In the following section, we
provide references from the convex optimization literature that al-
low the user to appropriately select these values. At each iteration
t = {1, ..., T}, the cleaning is applied to a batch of data b selected
from the set of candidate dirty records Rdirty . Then, an average
gradient is estimated from the cleaned batch and the model is up-
dated. Iterations continue until k = T · b records are cleaned. This
basic algorithm will serve as the scaffolding for the optimizations
in the subsequent sections. For example, if we know that a record
is likely to be clean, we can move it from Rdirty to Rclean without
having to sample it. Similarly, we can set the sampling probabilities
p(·) to favor records that are likely to affect the model.

The algorithm is as follows:

1. Take a sample of data S from Rdirty
2. Calculate the gradient over the sample of newly clean data

and call the result gS(θ(t))
3. Calculate the average gradient over all of the already clean

records inRclean = R−Rdirty , and call the result gC(θ(t))
4. Apply the following update rule, which is a weighted aver-

age of the gradient on the already clean records and newly
cleaned records:

θ(t+1) ← θ(t)−γ·( | Rdirty || R | ·gS(θ(t))+
| Rclean |
| R | ·gC(θ(t)))

5. Append the newly cleaned records to set of previously clean
records Rclean = Rclean ∪ S

4.4 Analysis with Stochastic Gradient Descent
The update algorithm can be formalized as a class of very well

studied algorithms called Stochastic Gradient Descent (SGD; more
precisely the mini-batch variant of SGD). In SGD, random subsets
of data are selected at each iteration and the average gradient is
computed for every batch. The basic condition for convergence is
that the gradient steps need to be on average correct. We provided
the intuition that this is the case in Equation 1, and this can be
more rigorously formalized as an unbiased estimate of the true gra-
dient (see T.R [24]). Then model is guaranteed to converge essen-
tially with a rate proportional to the inaccuracy of the sample-based
estimate.

One key difference with the tpyical application of SGD is that
ActiveClean takes a full gradient step on the already clean data
(i.e., not sampled) and averages it with a stochastic gradient step
on the dirty data (i.e., sampled). This is because that data is al-
ready clean and we assume that the time-consuming step is the data
cleaning and not the numerical operations. The update algorithm
can be thought of as a variant of SGD that lazily materializes the
clean value. As data is sampled at each iteration, data is cleaned
when needed. It is well-known that even for an arbitrary initializa-
tion, SGD makes significant progress in less than one epoch (a pass
through the entire dataset) [8]. However, the dirty model can be
much more accurate than an arbitrary initialization leading to even
faster convergence.
Setting the step size γ: There is extensive literature in machine

learning for choosing the step size γ appropriately. γ can be set ei-
ther to be a constant or decayed over time. Many machine learning
frameworks (e.g., MLLib, Sci-kit Learn, Vowpal Wabbit) automat-
ically set this value. In the experiments, we use a technique called
inverse scaling where there is a parameter γ0 = 0.1, and at each
iteration it decays to γt = γ0

|S|t .

Setting the batch size b: The batch size should be set by the
user to have the desired properties. Larger batches will take longer
to clean and will make more progress towards the clean model but
will have less frequent model updates. On the other hand, smaller
batches are cleaned faster and have more frequent model updates.
In the experiments, we use a batch size of 50 which converges fast
but allows for frequent model updates. If a data cleaning tech-
nique requires a larger batch size than 50, ActiveClean can abstract
this size away from the update algorithm and apply the updates in
smaller batches. For example, the batch size set by the user might
be b = 1000, but the model updates after every 50 records are
cleaned. We can disassociate the batching requirements of SGD
and the batching requirements of the data cleaning technique.
Convergence Conditions and Properties The convergence rates
of SGD are also well analyzed [7,10,37]. The analysis gives a
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bound on the error of intermediate models and the expected num-
ber of steps before achieving a model within a certain error. For
a general convex loss, a batch size b, and T iterations, the conver-
gence rate is bounded by O( σ2

√
bT

). σ2 is a measure of how well
the sample gradient estimates the gradient over the entire dataset,
and
√
T shows that each iteration has diminishing returns. σ2 is

the variance in the estimate of the gradient at each iteration:
σ2 = E(‖g − g∗‖2)

where g∗ is the gradient computed over the full data if it were
fully cleaned. This property of SGD allows us to bound the model
error with a monotonically decreasing function of the number of
records cleaned, thus satisfying the reliability condition in the prob-
lem statement.

Gradient descent techniques also can be applied to non-convex
losses and they are widely used in graphical model inference and
deep learning. In this case, however, instead of converging to a
global optimum, they converge to a locally optimal value that de-
pendends on the initialization. In the non-convex setting, Active-
Clean will converge to the closest locally optimal value to the dirty
model which is how we initialize ActiveClean. Because of this, it
is harder to reason about the objective quality of the results and to
define accuracy. Different initializations may lead to different local
optima, and thus, introduce a complex dependence on the initial-
ization with the dirty model.

EXAMPLE 2. Recall that the analyst has a dirty SVM model on
the dirty data θ(d). She decides that she has a budget of cleaning
100 records, and decides to clean the 100 records in batches of 10
(set based on how fast she can clean the data, and how often she
wants to see an updated result). All of the data is initially treated
as dirty with Rdirty = R and Rclean = ∅. The gradient of a basic
SVM is given by the following function:

∇φ(x, y, θ) =

{
−y · x if yx · θ < 1

0 if yx · θ ≥ 1

For each iteration t, a sample of 10 records S is drawn from
Rdirty . ActiveClean then applies the cleaning function to the sam-
ple. Using these values, ActiveClean estimates the gradient on the
newly cleaned data:

1

10

∑
i∈S

1

p(i)
∇φ(x

(c)
i , y

(c)
i , θ)

ActiveClean also applies the gradient to the already clean data (ini-
tially non-existent):

1

| Rclean |
∑

i∈Rclean

∇φ(x
(c)
i , y

(c)
i , θ)

Then, it calculates the update rule:

θ(t+1) ← θ(t) − γ · ( | Rdirty || R | · gS(θ(t)) +
| Rclean |
| R | · gC(θ(t)))

Finally,Rdirty ← Rdirty−S,Rclean ← Rclean+S, and continue
to the next iteration.

5. DIRTY DATA DETECTION
If corrupted records are relatively rare, sampling might be very

inefficient. The analyst may have to sample many batches of data
before finding a corrupted record. In this section, we describe how
we can couple ActiveClean with prior knowledge about which data
are likely to be dirty. In the data cleaning literature, error detection
and error repair are treated as two distinct problems [9,13,30]. Er-
ror detection is often considered to be substantially easier than er-
ror repair since one can declare a set of integrity rules on a database

(e.g., an attribute must not be NULL), and select rows that violate
those rules. On the other hand, repair is harder and often requires
human involvement (e.g., imputing a value for the NULL attribute).

5.1 Detection Problem
First, we describe the required properties of the dirty data de-

tector. The detector returns two important aspects of a record: (1)
whether the record is dirty, and (2) if it is dirty, on which attributes
there are errors. The sampler can use (1) to select a subset of dirty
records to sample at each batch and the estimator can use (2) to
estimate the value of data cleaning based on other records with the
same corruption.

DEFINITION 1 (DETECTOR). Let r be a record in R. A de-
tector is a function that returns a Boolean of whether the record is
dirty and a set of attributes er that are dirty.

D(r) = ({0, 1}, er)

From the set of attributes that are dirty, we can find the corre-
sponding features that are dirty fr and labels that are dirty lr since
we assume a one-to-one mapping between records and training
examples. We will consider two types of detectors: exact rule-
based detectors that detect integrity constraint or functional de-
pendency violations, and approximate adaptive detectors that learn
which data are likely to be dirty.

5.2 Rule-Based Detector
Data quality rules are widely studied as a technique for detect-

ing data errors. In most rule-based frameworks, an analyst declares
a set of rules Σ and checks whether a relation R satisfies those
rules. The rules rules can be declared in advance before applying
ActiveClean, or constructed from the first batch of sampled data.
ActiveClean is compatible with many commonly used classes of
rules for error detection including integrity constraints (ICs), con-
ditional functional dependencies (CFDs), and matching dependen-
cies (MDs). The only requirement on the rules is that there is an
algorithm to enumerate the set of records that violate at least one
rule.

LetRviol andRsat be the subset of records inRditry that violate
at least one rule and satisfy all rules respectively. The rule-based
detector modifies the update workflow in the following way:

1. Rclean = Rclean ∪Rsat

2. Rdirty = Rviol

3. Apply the algorithm in Section 4.3.

EXAMPLE 3 (RULE-BASED DETECTION). An example of a
rule on the running example dataset is that the status of a con-
tribution can be only “allowed” or “disallowed”. Any other value
for status is considered violation.

5.3 Adaptive Detection
Rule-based detection is not possible in all cases, especially in

cases where the analyst selectively modifies data. This is why we
propose an alternative called the adaptive detector. Essentially, we
reduce the problem to training a classifier on previously cleaned
data. Note that this “learning” is distinct from the “learning” in the
user-specified statistical model. One challenge is that the detector
needs to describe how the data is dirty. The detector achieves this
by categorizing the corruption into u classes, and using a multi-
class classifier. These classes are corruption categories that do not
necessarily align with features, but every record is classified with
at most one category.
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When using adaptive detection, the repair step has to clean the
data and report to which of the u classes the corrupted record be-
longs. When an example (x, y) is cleaned, the repair step labels
it with one of the clean, 1, 2, ..., u. It is possible that u increases
each iteration as more types of dirtiness are discovered. In many
real world datasets, data errors have locality, where similar records
tend to be similarly corrupted. There are usually a small number
of error classes even if a large number of records are corrupted.
This problem can be addressed by any classifier, and we use an
all-versus-one Logistic Regression in our experiments.

The adaptive detector modifies the update workflow in the fol-
lowing way:

1. Let Rclean be the previously cleaned data, and let Uclean be
a set of labels for each record indicating the error class and if
they are dirty or “not dirty”.

2. Train a classifier to predict the label Train(Rclean, Uclean)

3. Apply the classifier to the dirty data Predict(Rdirty)

4. For all records predicted to be clean, remove from Rdirty
and append to Rclean.

5. Apply the algorithm in Section 4.3.

The precision and recall of this classifier should be tuned to favor
classifying a record as dirty to avoid falsely moving a dirty record
intoRclean. In our experiments, we set this value to 0.90 probabil-
ity of the “clean” class.

6. SELECTING RECORDS TO CLEAN
The algorithm proposed in Section 4.3 will convege for any sam-

pling distribution where p(·) > 0 for all records, albeit different
distributions will have different convergence rates. The sampling
algorithm is designed to include records in each batch that are most
valuable to the analyst’s model with a higher probability.

6.1 Optimal Sampling Problem
Recall that the convergence rate of an SGD algorithm is bounded

by σ2 which is the variance of the gradient. Intuitively, the variance
measures how accurately the gradient is estimated from a uniform
sample. Other sampling distributions, while preserving the same
expected value, may have a lower variance. Thus, the optimal sam-
pling problem is defined as a search over sampling distributions to
find the minimum variance sampling distribution.

DEFINITION 2 (OPTIMAL SAMPLING PROBLEM). Given a set
of candidate dirty data Rdirty , ∀r ∈ Rdirty find sampling proba-
bilities p(r) such that over all samples S of size k it minimizes the
variance:

arg min
p

E(‖gS − g∗‖2)

It can be shown [37] that the optimal distribution over records in
Rdirty is proportional to: pi ∝ ‖∇φ(x

(c)
i , y

(c)
i , θ(t))‖ Intuitively,

this sampling distribution prioritizes records with higher gradients,
i.e., make a larger impact during optimization. The challenge is that
this particular optimal distribution depends on knowing the clean
value of a records, which is a chicken-and-egg problem: the opti-
mal sampling distribution requires knowing (x

(c)
i , y

(c)
i ); however,

we are sampling the values so that they can be cleaned.

One natural solution is to calculate this gradient with respect to
the dirty values–implicitly assuming that the corruption is not that
severe:

pi ∝ ‖∇φ(x
(d)
i , y

(d)
i , θ(t))‖

This solution is highly related to the Expected Gradient Length
heuristic that has been proposed before in Active Learning [31].
However, there is additional structure to the data cleaning problem.
As the analyst cleans more data, we can build a model for how
cleaned data relates to dirty data. By using the detector from the
previous section to estimate the impact of data cleaning, we show
that we can estimate the cleaned values. We find that this opti-
mization can improve the convergence rate by a factor of 2 in some
datasets.

6.2 The Estimator
We call this component, the estimator, which connects the de-

tector and the sampler. The goal of the estimator is to estimate
∇φ(x

(c)
i , y

(c)
i , θ(t)) (the clean gradient) using∇φ(x

(d)
i , y

(d)
i , θ(t))

(the dirty gradient) andD(r) (the detection results). As a strawman
approach, one could use all of the previously cleaned data (tuples
of dirty and clean records), and use another learning algorithm to
relate the two. The main challenges with this approach are: (1)
the problem of scarcity where errors may affect a small number of
records and a small number of attributes and (2) the problem of
modeling where if we have an accurate parametric model relating
clean to dirty data then why clean the data in the first place. To
address these challenges, we propose a light-weight estimator uses
a linear approximation of the gradient and only relies on the av-
erage change in each feature value. Empirically, we find that this
estimator provides more accurate early estimates and is easier to
tune than the strawman approach until a large amount of data are
cleaned (Section 7.4.6).

The basic idea is for every feature i to maintain an average change
δi before and after cleaning–estimated from the previously cleaned
data. This avoids having to design a complex internal model to re-
late the dirty and clean data, and is based on just estimating sample
means. This would work if the gradient was linear in the features,
and we could write this estimate as:
∇φ(x

(c)
i , y

(c)
i , θ(t)) ≈ ∇φ(x

(d)
i , y

(d)
i , θ(t)) +A · [δ1, ..., δp]ᵀ

The problem is that the gradient ∇φ(·) can be a very non-linear
function of the features that couple features together. For example,
even in the simple case of linear regression, the gradient is a non-
linear function in x:

∇φ(x, y, θ) = (θTx− y)x

It is not possible to isolate the effect of a change of one feature
on the gradient. Even if one of the features is corrupted, all of the
gradient components can be incorrect.

The way that we address this problem is to linearize the gradi-
ent, where the matrix A is found by computing a first-order Taylor
Series expansion of the gradient. If d is the dirty value and c is
the clean value, the Taylor series approximation for a function f is
given as follows:

f(c) = f(d) + f ′(d) · (d− c) + ...

In our case, the function f is the gradient ∇φ, and the linear term
f ′(d) · (d− c) is a linear function in each feature and label:

∇φ(x
(c)
i , y

(c)
i , θ(t)) ≈ ∇φ(x

(d)
i , y

(d)
i , θ(t))

+
∂

∂X
∇φ(x

(d)
i , y

(d)
i , θ(t)) · (x(d) − x(c))

+
∂

∂Y
φ(x

(d)
i , y

(d)
i , θ(t)) · (y(d) − y(c))
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This can be simplified with two model-dependent matrices Mx

(relating feature changes to the gradient) and My (relating label
changes to the gradient) 1:

≈ φ(x
(d)
i , y

(d)
i , θ(t)) +Mx ·∆x+My ·∆y

where ∆x = [δ1, ..., δp]
ᵀ is the average change in each feature and

∆y = [δ1, ..., δl]
ᵀ is the average change in each label. It follows

that the resulting sampling distribution is:

p(r) ∝ ‖∇φ(x
(d)
i , y

(d)
i , θ(t)) +Mx ·∆x +My ·∆y‖

7. EXPERIMENTS
We start by presenting two end-to-end scenarios based on a dataset

of movies from IMDB and a dataset of medical donations from
ProPublica. Then, we evaluate each of the components of Ac-
tiveClean on standard Machine Learning benchmarks (Tax Record
Classification, EEG anomaly detection) with synthetic errors.

7.1 Setup
We compare ActiveClean to alternative solutions along two pri-

mary axes: the sampling procedure to pick the next set of records
to clean, and the model update procedure to incorporate the cleaned
sample. All of the compared approaches clean the same amount of
data, and we evaluate the accuracy of the approaches as a function
of the amount of data examined; defined as the number of evalua-
tions of the user-specified C() (cleaner) on a record whether or not
the record is actually dirty.
Naive-Mix (NM): In each iteration, Naive-Mix draws a random
sample, merges the cleaned sample back into the dataset, and re-
trains over the entire dataset.
Naive-Sampling (NS): In contrast to Naive-Mix, Naive-Sampling
only re-trains over the set of records that have been cleaned so far.
Active Learning (AL): The samples are picked using Active Learn-
ing (more precisely, Uncertainty Sampling [31]), and the model is
re-trained over the set of records cleaned so far.
Active Clean (AC): The iterative Active Clean algorithm described
in this paper.
Oracle (O): Oracle has complete access to the ground truth, and
in each iteration, selects samples that maximize the expected con-
vergence rate. It uses ActiveClean’s model update procedure.
Metrics: We evaluate these approaches on two metrics: model
error, which is the distance between the trained model and true
model if all data were cleaned ‖θ − θ(c)‖, and test error, which is
the prediction accuracy of the model on a held out set of clean data.

7.2 Real Scenarios
The first scenario is a content tagging problem to categorize movies

from plot descriptions; the second is a fraud detection problem to
determine whether a medical donation is suspicious from a record
of the donation. Both of the datasets are plagued by systematic
errors that affect the classification accuracy by 10− 35%. One in-
dication of the systematic nature of the data error is that errors dis-
proportionately affect one class rather than another. We simulate
the analyst’s cleaning procedure by looking up the cleaned value in
the dataset that we cleaned beforehand. See [24] for constraints, er-
rors, and cleaning methodology, as well as an additional regression
scenario.

1A number of example linearizations are listed in [24]

7.2.1 Movie Prediction
The first scenario uses two published datasets about movies from

IMDB 2 and Yahoo 3. Each movie has a title, a short 1-2 paragraph
plot description, and a list of categories, and the goal is to train a
model to predict whether a movie is a “Horror” or “Comedy” from
the description and title. The dataset was featurized using a TFIDF
model.

The IMDB dataset has 486,298 movies and is very dirty. The
category list of many movies has redundant and possibly conflict-
ing tags (e.g., “Kids” and “Horror” for the same movie). Also, the
plot and title text may have errors from the scraping procedure (e.g.,
“brĈuin, the”). This dataset also shows experimental evidence for
systematic bias. Horror movies were more likely to be erroneously
tagged, and consequently, a classifier trained on the dirty data fa-
vored “Comedy” predictions. In contrast, the smaller Yahoo dataset
(106,959 movies) is much cleaner, and nearly all of the movies are
found in the IMDB dataset.

To clean the category lists, this smaller dataset to cross referenc-
ing records when possible and import categories from Yahoo. This
was done using a simple entity resolution to match movie titles be-
tween the two dataset. When there was a sufficiently close textual
match (in terms of title string similarity), we imported the Yahoo
dataset’s category list to the IMDB dataset. For the movies that did
not match, we appended the records to the IMDB dataset. Finally,
we filtered the dataset for movies whose category lists included
“Horror” or “Comedy”. To clean the parsing errors, we identify
common parsing artifacts in each sampled batch and write a script
to fix all records with that problem (e.g., remove all instances of
“Ĉ”).

Figure 4a plots the model error and test error versus the number
of records examined by each algorithm. For very small batches of
data (e.g., 50 out of 400,000), some of the techniques are actually
less accurate than the dirty model. This is because the error due to
the particular initial sampled batch of dominates, and we find that
differences between the techniques are not statistically significant
in that regime. However, as more data is cleaned, we see a clear
seperation between the techniques. The purple bottom curve is the
Oracle approach, and we find that out of the practical approaches
ActiveClean reduces the model error the fastest, and is the only
method that converges to the Oracle performance. Figure 4b di-
rectly shows how ActiveClean rapidly reduces the test error — af-
ter 2000 records, ActiveClean’s test error is within 0.02 of the fully
cleaned model. ActiveClean provides superior convergence for two
main reasons. First, the update algorithm correctly incorporates the
raw data as well as the cleaned samples, thus ActiveClean is less
sensitive to sampling error. Second, ActiveClean selects records
that are more likely to be dirty (Section 5) and will most improve
the model (Section 6). These reasons help ActiveClean converge
faster within the first 2000 cleaned records.

7.2.2 Dollars For Docs (DfD)
Next, we consider ProPublica’s Dollars for Docs dataset as in

Section 2.1. We featurize the 5 text attributes using a bag-of-words
representation, and our goal is to predict the status of medical do-
nations using an SVM (“allowed” or “disallowed”). Figure 4c plots
the model error as a function of the number of records examined for
each of the techniques. As in the IMDB dataset, we find that Ac-
tiveClean converges faster than Naive-Mix, Naive-Sampling, and
Active Learning. In fact, ActiveClean can achieve comparable model
2ftp://ftp.fu-berlin.de/pub/misc/movies/
database/
3http://webscope.sandbox.yahoo.com/catalog.
php?datatype=r
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Figure 4: (a) We plot the relative model error as a function of the number of records cleaned for each of the alternatives on the IMDB
content tagging task. ActiveClean results in the fastest convergence. (b) Faster convergence translates into improved test accuracy.
On a holdout set of 20%, ActiveClean is more accurate than the alternatives. (c) We evaluate ActiveClean on the Dollars For Docs
fraud detection task and find similar results, where ActiveClean converges faster than the alternatives. (d) ActiveClean improves the
false negative rate (detection error) of the classifier resulting in an improved fraud detector.
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Figure 5: In an image processing pipeline on the MNIST
dataset with simulated errors, ActiveClean outperforms Active
Learning and Naive-Sample.

accuracy (< 1% of the true model accuracy) while expending a
fraction of the data cleaning effort (10% of the records cleaned).

In terms of test error, Figure 4d reports the detection error or
false negative % (percentage of disallowed research contributions
that the model misses) on a held-out evaluation set. This mea-
sures the real-world utility of the classifier learned with Active-
Clean. The dirty and fully cleaned models have respectively a 34%
and 3% detection error. Due to the systematic bias in the data er-
rors (explained in Section 2.1), ActiveClean is able to identify the
dirty records and reduce the detection error to 8% after examining
10,000 records.

Overall, we found that systematic errors are indeed present in
real-world datasets, and that ActiveClean can effectively identify
and exploit this bias to more quickly converge to the true clean
model as compared to the naive or active learning approaches. In
fact, we found that the commonly used retraining approach (Naive-
Mix) was almost completely ineffective as compared to other model
update techniques.

7.3 Simulated Machine Learning Pipeline
This experiment is representative of modern machine learning

pipelines such as AMPLab’s Keystone ML [3] and Google’s Ten-
sor Flow [4]. The task is to classify 60,000 images of handwritten
digits from the MNIST dataset into 10 categories with a one-to-
all multiclass SVM classifier 4. In contrast to the prior scenarios,
which directly extracted feature vectors from the raw dataset, im-
age feature extraction involves a pipeline of transformation steps

4
http://ufldl.stanford.edu/wiki/index.php/Using_the_

MNIST_Dataset

including edge detection, projection, and raw image patch extrac-
tion [3,4]. The cleaning function C() involves replacing a poten-
tially corrupted image with a non-corrupted version. We find that
pipelines tend to propagate small amounts of corruption, and in
fact, and even randomly generated errors can morph into system-
atic biases.

There are two types of simulated corruptions that mimic standard
corruptions in image processing (occlusion and low-resolution):
5x5 Removal deletes a random 5x5 pixel block by setting the
pixel values to 0, and Fuzzy blurs the entire image using a 4x4
moving average patch. We apply these corruptions to a random 5%
of the images.

Figure 5 shows that ActiveClean makes more progress towards
the clean model with a smaller number of examples cleaned. To
achieve a 2% error for 5x5 Removal, ActiveClean can inspect 2200
fewer images than Active Learning and 2750 fewer images than
Naive-Sampling. For the fuzzy images, both Active Learning and
ActiveClean reach 2% error after examining < 100 images, while
Naive-Sampling requires 1750. Even though these corruptions are
generated independently of the data, the 5x5 Removal propa-
gates through the pipeline as a systematic error. The image fea-
tures are constructed with edge detectors, which are highly sen-
sitive to this type of corruption. Digits that naturally have fewer
edges than others are disproportionately affected since the removal
process adds spurious edges. On the other hand, the Fuzzy cor-
ruption propagates through the pipeline are similar to random errors
(as opposed to systematic).

7.4 Simulated Error Scenarios
In the next set of experiments, we use standard Machine Learn-

ing benchmark datasets and corrupt them with varying levels of
systematic noise.
Income Classification (Adult): Predict the income bracket (bi-
nary) from 45,552 records with 12 numerical and categorical co-
variates using an SVM classifier.
Seizure Classification (EEG): Predict the onset of a seizure (bi-
nary) from 14,980 records with 15 numerical covariates using a
thresholded Linear Regression. This classification task is inher-
ently hard: the accuracy on fully clean data is only 65%.

7.4.1 Data Cleaning v.s. Robust Statistics
Machine Learning has broadly studied a number of robust meth-

ods to deal with some types of outliers. In particular, this field stud-
ies random high-magnitude outliers and techniques to make statisti-
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Figure 6: (a) Robust techniques and discarding data work
when corrupted data are random and look atypical. (b) Data
cleaning can provide reliable performance in both the system-
atically corrupted setting and randomly corrupted setting.

cal model training agnostic to their presence. Feng et al. proposed
a variant of logistic regression that is robust to outliers [15]. We
chose this algorithm because it is a robust extension of the convex
regularized loss model, leading to a better apples-to-apples com-
parison between the techniques. Our goal is to understand which
types of data corruption are amenable to data cleaning and which
are better suited for robust statistical techniques. The experiment
compares four schemes: (1) full data cleaning, (2) baseline of no
cleaning, (3) discarding the dirty data, and (4) robust logistic re-
gression. We corrupted 5% of the training examples in each dataset
in two different ways:

Random Corruption: Simulated high-magnitude random out-
liers. 5% of the examples are selected at random and a random
feature is replaced with 3 times the highest feature value.

Systematic Corruption: Using the model trained on the clean
data, we sorted the training examples by the three highest weighted
features. We replace those feature values in the top 5% examples
with the mean value of the corresponding feature across the full
training set.

Figure 6 shows the test accuracy for models trained on both types
of data with the different techniques. The robust method performs
well on the random high-magnitude outliers with only a 2.0% re-
duction in clean test accuracy for EEG and 2.5% reduction for
Adult. In the random setting, discarding dirty data also performs
relatively well. However, the robust method falters on the system-
atic corruption with a 9.1% reduction in clean test accuracy for
EEG and 10.5% reduction for Adult. Data cleaning is the most re-
liable option across datasets and corruption types. The problem is
that without cleaning, there is no way to know if the corruption is
random or systematic and when to trust a robust method. While
data cleaning requires more effort, it provides benefits in both set-
tings. The remaining experiments, unless otherwise noted, use sys-
tematic corruption.

7.4.2 Source of Improvements
This experiment compares the performance of ActiveClean with

and without various optimizations for 500 records examined. Ac-
tiveClean without detection is denoted as (AC-D) (that is at each
iteration we sample from the entire dirty data), and ActiveClean
without detection and our prioritized sampling is denoted as (AC-
D-I). Figure 7 plots the relative error of the alternatives and Ac-
tiveClean with and without the optimizations. Without detection
(AC-D), ActiveClean is still more accurate than Active Learning.
Removing the sampling, ActiveClean is slightly worse than Ac-
tive Learning on the Adult dataset but is comparable on the EEG

Figure 7: -D denotes no detection, and -D-I denotes no detec-
tion and no importance sampling. Both optimizations signif-
icantly help ActiveClean outperform Naive-Sampling and Ac-
tive Learning.
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Figure 8: Relative model error vs number of cleaned examples.
ActiveClean uses less samples to converge to the true result,
compared to Naive-Mix (NM). NM+D denotes using the Naive-
Mix approach but with the detection component.

dataset. The advantage of ActiveClean is that it is a composable
framework supporting different instantiations of the detection and
prioritization modules while still preserving convergence guaran-
tees. With these optimizations, ActiveClean is consistently more
efficient than Active Learning.

7.4.3 Mixing Dirty and Clean Data
Naive-Mix is an unreliable methodology lacking the same guar-

antees as Active Learning or Naive-Sampling even in the simplest
of cases. We also saw that it is significantly less efficient than Ac-
tiveClean, Naive-Sampling, and Active Learning on the real datasets.
For thoroughness, these experiments include the model error as a
function of records examined in comparison to ActiveClean. We
also evaluate this approach with our detection component. Naive-
Mix+D randomly samples data using the dirty data detector, applies
the user-specified cleaning, and writes-back the cleaned data.

Figure 8 plots the same curves as the previous experiment com-
paring ActiveClean, Active Learning, and two mixed data algo-
rithms. Intuitively, Naive-Mix makes less progress with each up-
date. Consider the case where 10% of the dataset is corrupted and
a small sample of data 1%. ActiveClean and Naive-Sampling ex-
trapolate from the cleaned sample (ActiveClean extrapolates a gra-
dient) while Naive-Mix considers the entire dirty data which might
be much larger.

7.4.4 Corruption Rate
This experiment explores the tradeoff between Naive-Sampling

and ActiveClean. Figure 9 varies the systematic corruption rate and
plots the number of records examined to achieve 1% relative error
for Naive-Sampling and ActiveClean. Naive-Sampling does not
use the dirty data and thus its error is essentially governed by the
the sample size and not the magnitude or prevalence of corruption.
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Figure 9: ActiveClean outperforms Naive until the corruption
is so severe that the dirty model is initialized very far away from
the clean model. The error of Naive-Sampling does not depend
on the corruption rate so it is a vertical line.
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Figure 10: (a) Data corruptions that are less random are easier
to classify, and lead to more significant reductions in relative
model error with ActiveClean. (b) ActiveClean gives more ac-
curate estimates when the amount of cleaned data is small.

Naive-Sampling outperforms ActiveClean only when corruptions
are very severe (45% in Adult and nearly 60% in EEG). When the
initialization with the dirty model is inaccurate, ActiveClean does
not perform as well.

7.4.5 Dirty Data Detection
Adaptive detection depends on predicting which records are dirty;

and this is again related to the systematic nature of data error. For
example, random corruption not correlated with any other data fea-
tures may be hard to learn. As corruption becomes more random,
the classifier becomes increasingly erroneous. This experiment ex-
plores making our generated systematic corruption incrementally
more random. Instead of selecting the highest valued records for
the most valuable features, we corrupt random records with proba-
bility p. We compare these results to AC-D where we do not have a
detector at all (for a fixed number of 1000 records examined). Fig-
ure 10a plots the relative error reduction using a classifier. When
the corruption is about 50% random then there is a break even point
where no detection is better. The classifier is imperfect and misclas-
sifies some data points incorrectly as cleaned.

7.4.6 Estimation Algorithm
This experiment compares estimation techniques: (1) “linear re-

gression” trains a linear regression model that predicts the clean
gradient as a function of the dirty gradient, (2) “average gradient”
offets the gradient by the average difference between the dirty and
the clean gradients, (3) “average feature change” offsets the fea-
tures by the average difference between dirty and clean features,
and (4) ActiveClean. Figure 10b measures how accurately each es-
timation technique estimates the gradient as a function of the num-
ber of examined records on the EEG dataset. Estimation error is
measured using the relative L2 error with the true gradient. The
Taylor series approximation proposed in ActiveClean gives more
accurate for small cleaning sizes.

8. RELATED WORK
Data Cleaning: There are a number of other works that use ma-
chine learning to improve the efficiency and/or reliability of data
cleaning [16,35,36]. For example, Yakout et al. train a model that
evaluates the likelihood of a proposed replacement value [35]. An-
other application of machine learning is value imputation, where
a missing value is predicted based on those records without miss-
ing values. Machine learning is also increasingly applied to make
automated repairs more reliable with human validation [36]. Hu-
man input is often expensive and impractical to apply to entire large
datasets. Machine learning can extrapolate rules from a small set
of examples cleaned by a human (or humans) to uncleaned data
[16,36]. This approach can be coupled with active learning [25] to
learn an accurate model with the fewest possible number of exam-
ples. While, in spirit, ActiveClean is similar to these approaches,
it addresses a very different problem of data cleaning before user-
specified modeling.

SampleClean [33] applies data cleaning to a sample of data, and
estimates the results of aggregate queries. Sampling has also been
applied to estimate the number of duplicates in a relation [18]. Sim-
ilarly, Bergman et al. explore the problem of query-oriented data
cleaning [6], where given a query, they clean data relevant to that
query. Deshpande et al. studied data acquisition in sensor net-
works [11]. They explored value of information based prioritiza-
tion of data acquisition for estimating aggregate queries of sensor
readings. Similarly, Jeffery et al. [19] explored similar prioritiza-
tion based on value of information. Existing work does not explore
cleaning driven by the downstream machine learning “queries” stud-
ied in this work.

Stochastic Optimization and Active Learning: Zhao and Tong
recently proposed using importance sampling in conjunction with
stochastic gradient descent [37]. This line of work builds on prior
results in linear algebra that show that some matrix columns are
more informative than others [12], and Active Learning which shows
that some labels are more informative that others [31]. Active
Learning largely studies the problem of label acquisition [31], and
recently the links between Active Learning and Stochastic opti-
mization have been studied [17].

Transfer Learning and Bias Mitigation: ActiveClean has a strong
link to a field called Transfer Learning and Domain Adaptation
[27]. The basic idea of Transfer Learning is that suppose a model
is trained on a dataset D but tested on a dataset D′. Much of the
complexity and contribution of ActiveClean comes from efficiently
tuning such a process for expensive data cleaning applications –
costs not studied in Transfer Learning. Other problems in bias mit-
igation (e.g., Krishnan et al. [23]) have the same structure, system-
atically corrupted data that is feeding into a model. In this work,
we try to generalize these principles given a general dirty dataset,
convex model, and data cleaning procedure.

Secure Learning: ActiveClean is also related to work in adversar-
ial learning [26], where the goal is to make models robust to adver-
sarial data manipulation. This line of work has extensively stud-
ied methodologies for making models private to external queries
and robust to malicious labels [34], but the data cleaning prob-
lem explores more general corruptions than just malicious labels.
One widely applied technique in this field is reject-on-negative im-
pact, which essentially, discards data that reduces the loss function–
which will not work when we do not have access to the true loss
function (only the “dirty loss”).
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9. CONCLUSION
The growing popularity of predictive models in data analytics

adds additional challenges in managing dirty data. We propose Ac-
tiveClean, a model training framework that allows for iterative data
cleaning while preserving provable convergence properties. We
specifically focus on problems that arise when data error is system-
atic, i.e., correlated with the hypotheses of interest. The key insight
of ActiveClean is that convex loss models (e.g., linear regression
and SVMs) can be simultaneously trained and cleaned. Active-
Clean also includes numerous optimizations such as: using the in-
formation from the model to inform data cleaning on samples, dirty
data detection to avoid sampling clean data, and batching updates.
The experimental results are promising as they suggest that these
optimizations can significantly reduce data cleaning costs when er-
rors are sparse and cleaning budgets are small. Techniques such as
Active Learning and SampleClean are not optimized for the sparse
low-budget setting, and ActiveClean achieves models of high accu-
racy for significantly less records cleaned. Our experimental results
are promising as they suggest a number of applications to explore
in future work. We believe that there are a number of important
use-cases in knowledge base inference, crowd sourcing, and tools
to debug machine learning applications. Technically, these appli-
cations require relaxing the convexity assumption and broadening
the scope of allowed data cleaning operations.
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