
YourSQL: A High-Performance Database System
Leveraging In-Storage Computing

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang,
Sangyeun Cho, Daniel DG Lee, Jaeheon Jeong

Memory Business, Samsung Electronics Co.

ABSTRACT
This paper presents YourSQL, a database system that ac-
celerates data-intensive queries with the help of additional
in-storage computing capabilities. YourSQL realizes very
early filtering of data by offloading data scanning of a query
to user-programmable solid-state drives. We implement our
system on a recent branch of MariaDB (a variant of MySQL).
In order to quantify the performance gains of YourSQL, we
evaluate SQL queries with varying complexities. Our re-
sult shows that YourSQL reduces the execution time of the
whole TPC-H queries by 3.6×, compared to a vanilla sys-
tem. Moreover, the average speed-up of the five TPC-H
queries with the largest performance gains reaches over 15×.
Thanks to this significant reduction of execution time, we
observe sizable energy savings. Our study demonstrates that
the YourSQL approach, combining the power of early filter-
ing with end-to-end datapath optimization, can accelerate
large-scale analytic queries with lower energy consumption.

1. INTRODUCTION
Delivering end results quickly for data-intensive queries is
key to successful data warehousing, business intelligence,
and analytics applications. An intuitive (and efficient) way
to speed them up is to reduce the volume of data being trans-
ferred across storage network to a host system. This can be
achieved by either filtering out extraneous data or transfer-
ring intermediate and/or final computation results [18].

The former approach is called early filtering, a typical ex-
ample of data-intensive, non-complex data processing. Due
to its simplicity and effectiveness, it has seen many forms
of implementations [3, 12, 19, 22]. However, existing imple-
mentations do not fully utilize modern solid-state storage
device technology and are limited in cost-effectiveness and
performance. First, the software filters [3] presuppose filter
metadata like index, but the overheads of metadata man-
agement can be prohibitively costly. Thus, high-end filter
servers [19] or FPGAs [12, 22] are employed between disk en-
closures and database servers. However, they are not a per-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 2150-8097/16/08.

fect solution, either. Leaving the expense aside, the amount
of data transferred from storage devices remains unchanged
because the data must be transferred in any case to filter
servers or FPGAs before being filtered.

Contrary to the prior work, we argue that early filtering
may well take place at the earliest point possible—within
a storage device. Besides a fundamental computer science
principle—when operating on large datasets, do not move
data from disk unless absolutely necessary—, modern solid-
state drives (SSDs) are not a dumb storage any longer [7,
9, 11, 13, 16, 17, 20]. Therefore, we have explored a novel
database system architecture where SSDs offer compute ca-
pabilities to realize faster query responses. Some prior work
aims to quantify the benefits of in-storage query process-
ing. Do et al. [11] built a “smart SSD” prototype, where
SSDs are in charge of the whole query processing. Even
though this work lays the basis for in-storage query pro-
cessing, there remain large areas for further research due
to its limitations. First, it focuses on proving the concept
of SSD-based query processing but pays little attention to
realizing a realistic database system architecture. Not only
would join queries be unsupported, but internal represen-
tation and layout of data must be converted to achieve
reasonable speed-up. Moreover, the hardware targeted by
this work (i.e., SATA/SAS SSDs) is outdated and the cor-
responding results may not hold for future systems. Indeed,
its performance advantages mainly result from the higher
internal bandwidth inside an SSD compared to the exter-
nal SSD bandwidth limited by a typical host interface (like
SATA/SAS), but the assumption of such a large bandwidth
gap (i.e., a gap of 2.8× or larger) does not hold for a state-
of-the-art SSD. We feel a strong need for a practical system
design that would work on a state-of-the-art SSD and be
able to accelerate complex queries as well.

This paper presents YourSQL, a database system archi-
tecture that leverages in-storage computing (ISC) for query
offloading to SSDs. We built a prototype of YourSQL that
supports ISC-enabled early filtering. Our prototype works
on a commodity NVMe SSD that offers user-programmability
and provides built-in support for advanced hardware IPs
(e.g., pattern matcher) as well [13]. Not only would extra-
neous data reduction take place within SSDs, but YourSQL
would request relevant pages only. Moreover, it leverages the
hardware pattern matcher in the target SSD, which makes
our system sustain high, on-the-fly table scan throughput.
Our findings and contributions are summarized as follows:

• We seamlessly integrated query offloading to SSDs into
MySQL. No prior work reports a full port of a ma-

924

jor DB engine. We modified its query planner to in-
clude new algorithm that automatically identifies cer-
tain query operations to offload to the SSD. Portions
of its storage engine are rewritten so that those oper-
ations are offloaded to the SSD at run time.

• Contrary to the prior work, YourSQL runs all 22 TPC-
H queries. With YourSQL, the average speed-up for
the five TPC-H queries with the largest performance
gains is over 15×. Also, the execution time of the
whole TPC-H queries is reduced by 3.6× compared to
“vanilla” system. With the significant reduction of the
execution time, it achieves substantially lower energy
consumption as well (e.g., about 24× less energy con-
sumption in the case of TPC-H Query 2).

• We present detailed state-of-the-art techniques for ac-
celerating large-scale data processing involving pattern
matching (e.g., grep, html/xml parsing, table scan)
with the help of SSD.

In the remainder of this paper, we introduce the motiva-
tions behind YourSQL’s early filtering approach and its over-
all architecture in Section 2. The implementation details of
YourSQL are described in Section 3. Section 4 provides the
methodologies of our evaluation and the results. We discuss
related works in Section 5 and conclude in Section 6.

2. YOURSQL

2.1 Motivational Example: Early Filtering
The early filtering approach is usually considered one of
the most effective ways to achieve the acceleration of data-
intensive queries. The level of potential improvement varies
depending on selectivity, which represents a fraction of rele-
vant rows from a row set (e.g., a table, a view or the result
of a join) in a given data set. The value ranges from zero to
one, and zero is the highest selectivity value that means no
rows will be selected from a row set.

One may think that higher selectivity guarantees higher
speed-up with early filtering. However, it is not always the
case because the selectivity, which is calculated at row-level,
is not always quantitatively correlated with the amount of
page I/O that can be reduced by early filtering. Their cor-
relation, in deed, may vary depending on the distribution of
rows in pages. Therefore, we define our own metric called
filtering ratio. This is, in essence, a page-level selectivity,
which represents a fraction of relevant pages from a page
set. The value of filtering ratio ranges from zero to one
likewise, and zero is the highest value. Filtering ratio is
highly dependent upon the existence of filter predicates,
which in general appear as base relation predicates of the
form ‘column operator constant’ (e.g., p size = 15 and
p type LIKE ‘%BRASS’ in Query 1).

Based on filter predicates, an early filter determines whether
each page from a page set is needed to answer a given query,
and passes only relevant pages to subsequent steps. As
an example of early filtering, consider a single table query
Query 1 and a join query Query 2 on TPC-H dataset 1. To
estimate the filtering ratio and the resulting I/O reduction,
we ran the example queries with or without Index Condi-
tion Pushdown (ICP) [3], and counted the number of read

1We used a TPC-H dataset at a scale factor of 100.

Query 1: A simple selection query.
SELECT p partkey, p mfgr FROM part
WHERE p size = 15 AND p type LIKE ’%BRASS’;

Query 2: TPC-H Q2.
SELECT s acctbal, s name, n name, p partkey, p mfgr,

s address, s phone, s comment
FROM part, supplier, partsupp, nation, region
WHERE p partkey = ps partkey

AND s suppkey = ps suppkey
AND p size = 15 AND p type LIKE ’%BRASS’
AND s nationkey = n nationkey
AND n regionkey = r regionkey
AND r name = ’EUROPE’
AND ps supplycost = (SELECT MIN(ps supplycost)

FROM partsupp, supplier, nation, region
WHERE p partkey = ps partkey
AND s suppkey = ps suppkey
AND s nationkey = n nationkey
AND n regionkey = r regionkey
AND r name = ’EUROPE’)

ORDER BY s acctbal DESC, n name, s name, p partkey LIMIT 100;

requests in both cases. ICP is an early filtering feature of
MySQL that can be enabled when the filter columns of a
given query are preindexed. In order to enable ICP for the
queries in this example, we first preprocessed the dataset by
creating a multi-column index on p size and p type.
Query 1 is a simplified version of Query 2 and refers to the

part table only. Its filter predicates are very limiting with
the high filtering ratio of 0.067, that is, only 6.7% of pages in
this table are needed to answer this query 2. Compared to a
single table query, a join query can potentially benefit more
from the early filtering approach. For the effective early
filtering of a join query, its join order should be optimized
first, that is, the early filtering target should be placed first
in the join order. With the (early) filtered rows placed first
in the join order, intermediate row sets to be processed could
significantly be reduced at the earliest stage of join.

Table 1 shows how the query plan and the resulting read
amounts change in the presence of ICP for Query 2. We
show top query plans only since subquery plans are iden-
tical in both cases. In this table, Access method and Key

represent the access method to each join table (e.g., full
scan, index scan) and the key (index) column that MySQL
employed, respectively. In the Access method column, all
denotes a table scan, and ref and eq ref [1] denote joins
by indexed columns. pk and fk in the Key column denote
primary key and foreign key, respectively.

As seen from Table 1, MySQL utilizes an index nested-
loop join algorithm [4]. Such join is effective if the outer ta-
ble is small and the inner tables are preindexed and large [6].
This is why MySQL puts a table with the smallest number
of rows first in the join order. region is such a table and
thus it is accessed first in the top of Table 1. However, if
ICP is enabled, it accesses a table that can be filtered (i.e.,
a table whose filter columns are preindexed) first, as shown
in the bottom of Table 1. Even though the filtering ratio
of the early filtering target (i.e., the part table) is same in
both queries, I/O reduction from the optimized join order
and irrelevant data elimination is dramatic. The total num-
ber of read requests is reduced by a factor of 24.4. With

2In this case, each read request from MySQL with ICP is
a single page random read, and thus we can consider the
number of read requests as the number of page reads.

925

Normal SSDNormal SSD

Storage Engine

Query Engine

Parser Query
Planner

Query
Executor

ISC-enabled SSDISC-enabled SSD

Storage Engine

Query Engine

Parser
ISC-aware

Query
Planner

ISC-aware
Query

Executor

Host I/F Host I/F

Host-side
ISC module

Host-side
ISC module

(a) (b)

ISC task ISC task

Figure 1: Two database system architectures. (a)
Traditional system. (b) YourSQL.

this significant I/O reduction, Query 2 expects a far more
speed-up than Query 1.

Table 1: Query plans of MySQL for Query 2.
Join Table Access Key # of read
order method requests

MySQL without ICP
1 region all null 16
2 nation ref nation fk 13
3 supplier ref supplier fk 36,867
4 partsupp ref partsupp fk 2,842,639
5 part eq ref pk 651,525

Total 3,531,060
MySQL with ICP

1 part ref p size & p type 245
2 partsupp ref pk 98,520
3 supplier eq ref pk 45,679
4 nation eq ref pk 5
5 region all null 4

Total 144,453

2.2 Our Approach
In the previous section, we illustrated a typical example
of early filtering in the case of data-intensive, non-complex
query operations. We believe that ISC perfectly fits not only
early filtering but also other data-intensive, non-complex
query operations such as aggregation and projection. First,
it allows a database system to reduce the volume of data
traffic within SSDs. Given that the cost of data-intensive
operations is largely driven by the number of I/O requests,
reducing I/O requests at the earliest stage of query process-
ing could bring noticeable performance improvement. Sec-
ond, the latest SSDs have sufficient compute capability to
process non-complex query operations. Motivated by the
unique capabilities of ISC for data-intensive, non-complex
query operations, we design an ISC-enabled database sys-
tem architecture, named as YourSQL. In this architecture,
queries would be processed by a host system and SSDs in
a distributed manner. One of the YourSQL’s key design

considerations is to keep the architectural base of the tradi-
tional database system intact for the ease of implementation
as well as for the compatibility with existing systems.

Fig. 1 highlights the differences between the traditional
system and YourSQL. The former is comprised of a database
system and normal SSDs. The database system includes a
query engine and a storage engine. Given a query, the query
engine sets a query plan and executes it, and the storage
engine handles I/O requests from the query engine. While
YourSQL in Fig. 1(b) generally follows the basic architec-
ture of the traditional system, it is further equipped with
ISC-enabled SSDs and the entire software stack is aware of
them via ISC modules. YourSQL architecture builds upon
a simple yet practical and flexible system design where any
database system could accelerate queries by offloading any
chosen query operations. The following items are the re-
maining key design considerations in YourSQL.
ISC tasks. User-programmable SSDs employed in YourSQL
allow complex query operations to be offloaded in the form of
ISC task [13]. While there is no practical limit in the extent
of query operations, query offloading should take the aggre-
gate internal bandwidth as well as the compute capability of
target SSD into account (relative to the compute capability
of host). Therefore, operations to offload should be carefully
extracted from the original database system and defined as
ISC tasks. In the case of early filtering in YourSQL, opera-
tions that are relevant for data relevancy inspection, which
are common in data-intensive queries, are offloaded to the
ISC-enabled SSDs as ISC tasks.
Interfaces between a host and ISC tasks. For dis-
tributed processing, an interface between a host database
system and ISC tasks must be well defined so that the host
can invoke ISC tasks and retrieve results from them. Such
interface should also tolerate a relatively large bandwidth
since the size of results generated by ISC tasks could rela-
tively be large. In the case of early filtering in YourSQL, an
interface is defined between the storage engine and the ISC
filters, through which enabling the filter tasks and retrieving
filtering results are done iteratively.
Query planner optimized for ISC. The query plan may
considerably differ between the traditional and ISC-enabled
database systems. Thus, the existing query planner may be
revised to include new algorithms optimized for ISC-enabled
database systems. In the case of early filtering in YourSQL,
the query planner in MySQL is modified to consider alterna-
tive query plans where the early filtering target is accessed
first in order. As it will be shown in the following sections,
this approach is highly efficient in reducing I/O requests.
Reorganized datapath for ISC. Different from the tra-
ditional system, YourSQL does not require the entire data
to be transferred to a host to be processed. In the case of
early filtering in YourSQL, SSD itself can determine relevant
pages and deliver their list to the host. With such list at
hand, the host system can boost I/O operations by prefetch-
ing relevant pages in bulk. Reorganizing datapath is thus
necessary, which is done by revising the existing read logic
for YourSQL.

3. DESIGN AND IMPLEMENTATION
We build a prototype of YourSQL that supports ISC-enabled
early filtering. Fig. 2 depicts how early filtering in YourSQL
is done with the ISC-enabled SSD. Given a query, the query
engine (1) parses it and (2) chooses a candidate for the early

926

YourSQL
Storage Engine

YourSQL
Query Engine

Parser
YourSQL
Query

Planner

YourSQL
Query

Executor

Bulk Random Read

Sampler
Task

Filter
Tasks

Internal Sequential
Read

ISC Framework

Prefetcher

Host-side
Sampler

Host-side
Filter

① ② ③

④

⑤

⑥
ISC-enabled SSD

Figure 2: Early filtering of YourSQL.

filtering target. Then, (3) it invokes the ISC sampler to esti-
mate I/O reduction that would result from early filtering for
the candidate table. If early filtering is expected to be bene-
ficial, (4) it decides the candidate as the early filtering target
and sets the query plan that would trigger early filtering. In-
stead of table scan, (5) the storage engine invokes the ISC
filters so as to perform early filtering for the target table.
As the results from the ISC filters become available (e.g.,
list of relevant pages), (6) the host performs ISC-optimized
read (e.g., bulk prefetch) based on the retrieved results.

3.1 Basic Design

3.1.1 Target Table Selection and Join Order
Join order optimization in the early filtering approach is a
daunting task because it is notoriously difficult to choose a
right target table to filter and a right join order that guaran-
tee overall performance improvement. MySQL’s approach
is rather simple. If there are no secondary indexes, ICP
will not be triggered. That is, no index, no early filtering.
This severely restricts the applicability of early filtering in
MySQL. Considering analytic dataset, database administra-
tors would not create indexes on non-key attributes, unless
absolutely necessary, since it is not realistic to manage sec-
ondary indexes at runtime. In the presence of indexes, ICP
will be triggered. However, MySQL’s overly simplified tar-
get selection criteria, which simply choose a table with prein-
dexed filter columns, do not always guarantee I/O reduction
since the amount of I/O reduction depends on filtering ra-
tio. In the worst case scenario, queries may experience severe
performance drop with such an overly simplified approach.

In contrast, YourSQL neither considers indexes as the tar-
get selection criteria nor utilizes them for early filtering.
YourSQL instead relies on the filtering ratio of a given table,
and considers a table whose estimated filtering ratio is suffi-
ciently high as the early filtering target. Any prerequisite is
not necessary and thus the applicability is highly enhanced.
Moreover, target selection based on filtering ratio gives more
accurate assessment of potential performance gain.

The naive way to calculate the filtering ratio of a given
table is counting the number of qualifying pages while scan-
ning it, which must incur huge overhead. In order to choose
a table that is expected to have the highest filtering ratio
with reasonable overhead, YourSQL introduces two metrics,
limiting score and estimated filtering ratio. The former is
calculated by simple heuristics and therefore incurs negligi-
ble overhead. However, it is not quantitatively correlated
with filtering ratio. Therefore, estimated filtering ratio is

List all the tables with filter predicatesList all the tables with filter predicates

Calculate the limiting score of
each remaining table

Calculate the limiting score of
each remaining table

Select the table with
the highest limiting score as the candidate

Select the table with
the highest limiting score as the candidate

Eliminate small tablesEliminate small tables

Eliminate the tables whose
limiting score is below a given threshold

Eliminate the tables whose
limiting score is below a given threshold

Estimate the filtering ratio of the candidate
by the ISC sampler

Estimate the filtering ratio of the candidate
by the ISC sampler

Determine the candidate as the target if the
estimated filtering ratio is sufficiently high

Determine the candidate as the target if the
estimated filtering ratio is sufficiently high

Figure 3: Selection of the early filtering target table.

introduced for further assessment. This estimated filtering
ratio, which will be explained in Section 3.2.1 in detail, is
quantitatively correlated with filtering ratio, and thus the
accuracy of assessment of potential performance gain be-
comes even more elevated.

If we briefly describe YourSQL’s target selection for a
given query, it chooses a candidate for the early filtering
target by limiting score, and then decides whether to choose
the candidate for the target by estimated filtering ratio.

The limiting score of a table represents how restrictive
its filter predicates are. Thus, a table with high limiting
score can be expected to be one with high filtering ratio.
To calculate the limiting score of a given table, YourSQL
takes account of the number of filter predicates, types of
operations in the filter predicates, and the number of rows
in the table. For a small table, a zero score is assigned 3,
because it is reasonable to disregard such table as the early
filtering target. For a non-small table, YourSQL assigns
a score for each filter predicate, which is summed to give
the limiting score of the table. A filter predicate gets a
higher score as its type of operation is more restrictive. For
example, a filter predicate to test equality gets a higher score
than a filter predicate to check for value in a range.

Fig. 3 describes how YourSQL chooses the early filtering
target of a given query in detail. We explain this figure using
Query 2. First, it lists the tables with filter predicates. Re-
garding this query, the region table has a single predicate,
r name = ‘EUROPE’, and the part table has two predicates,
p size = 15 and p type LIKE ‘%BRASS’. Thus, these two
tables are listed. Second, it eliminates small tables from the
list by assigning a zero score. In this case, the region table
has five rows only, and gets zero. After eliminating small
tables, it calculates the limiting score of each remaining ta-
ble in the list. Considering Query 2, the part table is the
only remaining in the list and its limiting score is the sum
of scores for two filter predicates. If the limiting score of
a table is below the threshold, it eliminates the table from
the list. Then, it chooses the table with the highest limiting
score as the candidate, and estimates the filtering ratio of

3A given table is considered small if the entire table could
be read in a single unit of YourSQL’s read operation. We
will explain YourSQL’s read unit in Section 3.1.3.

927

the candidate by the ISC sampler. If the estimated ratio
is higher than the threshold, it determines the candidate as
the early filtering target. In the example query, the part

table is finally chosen as the target.
Once the early filtering target is set, YourSQL places it

first in the join order so that intermediate row sets would
be narrowed as early as possible. For the remaining join or-
der, it follows MySQL’s decision. Considering the example
above, YourSQL finally determines a join order that accesses
the part table first as shown in Table 2. Comparing query
plans of MySQL with ICP and YourSQL for Query 2, both
use the same join algorithm and set the same join order.
The essential difference between them is the access method
to the first table, i.e., the early filtering target. MySQL per-
forms early filtering by secondary indexes on filter columns,
and thus accesses the part table through the multi-column
index. In contrast, YourSQL performs early filtering with
the ISC filters, which scan the early filtering target.

Table 2: YourSQL’s query plan for Query 2.
Join order Table Access method Key

1 part all null
2 partsupp ref pk
3 supplier eq ref pk
4 nation eq ref pk
5 region all null

3.1.2 Filtering Condition Pushdown
Filtering condition pushdown (FCP) is an optimization for
the case where YourSQL retrieves rows from a table using
filter predicates. Upon request from the storage engine, the
ISC filters evaluate the pushed conditions against the target
table and store match hints. Here, match hints are a byte
array whose element is set to one if the corresponding page
satisfies filtering conditions. Once starting, these filters iter-
ate a process of early filtering and accumulating match hints
till reaching the last page of the target table. The accumu-
lated match hints are pulled by the storage engine and used
to avoid irrelevant page access for a given query.

As shown in Fig. 4, two ISC filters are involved in FCP.
The hardware filter leverages the hardware pattern matcher
equipped with the target SSD. This specialized hardware
provides powerful filtering capability that allows a signifi-
cant reduction of data transfer across the storage network.
Nonetheless, hardware-level inspection of data relevancy is
limited in that hardware-filtered data can still contain false
positives depending on the filtering conditions. Therefore,
we introduce another software-based filtering layer in FCP.
Depending on the filtering conditions, the match hints by
the hardware filter may be in turn redirected to the soft-
ware filter, so that the relevancy of data first examined by
the hardware filter can be further inspected. The software
filter will be explained in Section 3.2.2 in detail.

The hardware pattern matcher in the target SSD takes at
most three 16-byte binary keys and performs byte-granular
matching. Therefore, YourSQL first transforms filter pred-
icates into binary patterns by considering their types of
columns and operators, and feeds those patterns to the hard-
ware filter. In the case of = or LIKE operator, constant is
transformed into internal binary representation. Consider-
ing Query 2, MySQL represents varchar (or variable charac-

Filter Tasks

Software
Filter

Software
Filter

Match hints

Match hints
Arguments for
hardware filter

Arguments for software filter

Host-side
Filter

Module

Match hints

Hardware
Filter

Figure 4: ISC filters.

Query 3: TPC-H Q14.
SELECT 100.00 ∗ SUM(CASE WHEN p type LIKE ’PROMO%’
THEN l extendedprice ∗ (1−l discount) ELSE 0 END) /
SUM(l extendedprice ∗ (1−l discount)) AS promo revenue

FROM lineitem, part
WHERE l partkey = p partkey
AND l shipdate >= date ’1995−09−01’
AND l shipdate < date ’1995−09−01’ + INTERVAL ’1’ MONTH;

ter) and integer as ascii and four bytes starting with 0x8, re-
spectively. Thus, p type LIKE ‘%BRASS’ and p size = 15

are converted into two binary keys, ‘42 52 41 53 53’ and
‘80 0 0 0F’. Also, in the case of range operators such as
≤ and ≥, YourSQL converts each constant into its inter-
nal representation and then extracts common sequence if
possible. Considering Query 3, MySQL converts date into
three byte integer that starts with 0x8. Thus, l shipdate ≥
‘1995-09-01’ and l shipdate <‘1995-09-01’ + INTERVAL

‘1’ MONTH are first converted into ‘8F 97 21’ and ‘8F 97

41’, respectively. Then, the common two byte sequence,
‘8F 97’, is extracted.

3.1.3 Table Access based on Match Hints
YourSQL performs query processing in a distributed man-
ner. As shown in Fig. 5, an early filterable query would be
processed by a series of three tasks: early filtering, match
page reads, and row processing. ISC-enabled SSD takes
charge of the first task, and the host does the remaining
two. These tasks run concurrently in the ISC-enabled SSD
and the host. By this concurrent processing (in Fig. 5(b))
rather than sequential processing (in Fig. 5(a)), YourSQL
efficiently hides early filtering overhead.

Given a query, YourSQL first requests early filtering for
the chosen target to the ISC filters. Once starting, they
continue to the last page of the target table without in-
terruption. In doing so, they accumulate match hints in
a well-defined iteration unit. An iteration involves read-
ing several hundreds or thousands of consecutive pages and
producing the corresponding match hints. This early fil-
tering unit, the number of pages processed by a single it-
eration, must be set before YourSQL starts. The value is
added as bulk match size to MySQL’s configuration file
(i.e., my.cnf) and fully configurable in YourSQL.

On an as-needed basis, YourSQL’s storage engine pulls
match hints from the filters, and these hints are used for ISC-
optimized page reads of the storage engine. Thus, irrelevant
pages determined by the ISC filters would not be transferred
to the host. When the storage engine receives a request
for the next row from the query engine, it first checks the
current page has remaining rows. If so, it finds the next row
and passes it to the query engine. Otherwise, it has to read
a new page and return the first row in the newly read page.

928

Time

ISC-enabled
SSD

Host-side
YourSQL

Read of match
page

Early
filtering

(a)

CPU
exec.

Start
Read of match

page

Early
filtering

CPU
exec.

ISC-enabled
SSD

Host-side
YourSQL

Early
filtering

(b)

Start

Early
filtering

ISC-enabled
SSD

Host-side
YourSQL

Bulk read of
match pages

Early
filtering

(c)

CPU
exec.

Start

Early
filtering

CPU
exec.

Prefetcher

Read of match
page

CPU
exec.

Read of match
page

CPU
exec.

Bulk read of
match pages

Figure 5: Execution timing diagram in YourSQL.

If the table to read is the early filtering target, it does not
issue a read request for the next page. Rather, it checks if
the match hint corresponding to the next page is set to one.
As long as the match hint is set to zero, it proceeds to check
the next match hints. If it finally meets a page whose match
hint is set to one, it fetches such page with normal host read
and then passes a new row to the query engine. If it has
already checked all the match hints for the current unit, it
pulls match hints for the next unit from the filters, and then
continues to read based on match hints.

3.2 Optimization

3.2.1 Sampling-driven FCP
As explained in Section 3.1.1, our limiting score is not quan-
titatively correlated with filtering ratio. Thus, YourSQL re-
quires a further check to see if early filtering for a candidate
table would really be beneficial in terms of execution time
for a given query. A dedicated ISC task called sampler is
used in YourSQL to provide a quantitative estimation of fil-
tering ratio. This sampler is the same as the hardware filter
functionality-wise. It is the range of scan that is different.
The former scans a small portion of the table, as the name
suggests, while the latter does the whole table. Filtering
ratio is estimated by the filtering results from the sampler,
i.e., by dividing the number of match pages by the number
of scanned pages. If the estimated ratio is higher than the
threshold, FCP is enabled. As the precision of sampling is
substantially influenced by data distribution and sampling
size 4, we left several tuning parameters in the sampler such
as sampling size and sampling area.

The key challenge for our sampling-based estimation is
to determine an adequate threshold to enable FCP. This
threshold depends on storage performance as well as early
filtering target in a query. More precisely, relative speed be-
tween sequential and random read operations matters since
the early filtering approach is likely to rely more on ran-
dom read operations. Our analysis suggests queries can be

4TPC-H dataset is uniformly distributed and we found a
sample fraction of 0.05 is already sufficient to give a precise
(in the few % range) estimation of filtering ratio.

categorized into four according to the types of early filtering
target. These four are a single table query, a join query with
no subquery, a query with a derived table, and a query with
a single or multiple subqueries. The last two categories differ
in that a derived table is always in the FROM clause. The
early filtering targets of the first two categories come from
the FROM clause, and those of the remaining categories
come from a derived table and a subquery, respectively.

For queries in the first category, the early filtering ap-
proach can outperform full scan as long as the time to read
relevant pages with random I/O operation is less than the
time to read the whole table with sequential I/O operation.
The asynchronous random read operation in our target sys-
tem is faster than sequential read operation as far as the
amount of random reads falls below 30% of the whole table
size. Thus, we set the threshold for this category at 0.3. For
queries in the third category, we simply set the threshold
at 1.0. A derived table functions as a reference table from
which rows are retrieved. Therefore, reducing the size of
the reference table via early filtering is expected to acceler-
ate queries in this category.

Contrary to the prior two, the thresholds for queries in the
second and the last categories cannot be predefined. Rather,
they should be calculated on the fly. However, various fac-
tors come into play such as the size of each join table, the
filtering ratio of the early filtering candidate, the size and
number of matching row combinations passed to the next
inner join loop, and MySQL’s join buffer size [4]. Currently,
we empirically determined these thresholds to be 0.7 based
on our target system performance and the analysis of TPC-
H queries in these categories. To calculate proper thresholds
for queries in the second and the last categories, we should
build a refined cost model, which remains as future work.

We note that there are two exceptions for setting thresh-
olds. The first one is that if the smallest table is chosen
as the candidate in the case of the second category queries,
we set the threshold at 0.3 again. In this case, query plans
of MySQL and YourSQL differ in the access method to the
first table only. The second one is that we set the thresh-
old at 0 for the last category queries if subqueries can be
materialized [2] (i.e., no early filtering). This is because a
query execution with materialization is fast enough and thus
potential improvement by early filtering is marginal.

3.2.2 Software Filtering
As explained in Section 3.1.2, hardware-filtered data may
still contain false positives depending on filtering conditions.
This is due to the limitation of our pattern matcher that
performs byte-granular matching. For instance, ‘8F 97’

in Section 3.1.2 would match sequences from ‘8F 97 00’

through ‘8F 97 FF’, and thus all pages with date between
‘1995-08-01’ and ‘1995-12-31’ would be considered match.

For a further inspection of the hardware-filtered data, we
introduce another software-based filtering layer in early fil-
tering. The software filter is a simple ISC task comprised of
several primitive arithmetic operations. Depending on the
filtering conditions, the output of the hardware filter may
be redirected to the software filter as an input as shown
in Fig. 4. Code 1 shows the pseudo code of the software
filter. Considering the case exemplified in Section 3.1.2,
the hardware filter sets match hints of pages with the pat-
tern ‘8F 97’ to one, and passes such hints to the software
filter. Given a page whose match hint is set to one, the

929

Code 1: Pseudo code of the software filter.
1 //IN: Match Hint
2 //ARG: SW KEY, OP TYPE, BULK MATCH SIZE
3 //OUT: Match Hint
4

5 DO Get Match Hint from the hardware filter
6 FOR i = 0 TO i < BULK MATCH SIZE DO {
7 IF Match Hint[i] != 0 THEN {
8 Do Match Hint[i] to 0
9 FOR j = 0 TO j < # of rows in Page i DO {

10 FOR each filter column in row j DO {
11 IF ‘the column value OP TYPE SW KEY’ is true THEN
12 DO Set Match Hint[i] to 1
13 DO Break
14 END IF
15 }
16 IF Match Hint[i] == 1 THEN
17 DO Break
18 END IF
19 }}}
20

21 DO Put Match Hint to output

software filter checks if l shipdate value of each row is re-
ally between ‘8F 97 21’ (i.e., ‘1995-09-01’) and ‘8F 97

41’ (i.e., ‘1995-09-01’ + INTERVAL ‘1’ MONTH). When it
meets one, it stops further inspection for this page and the
corresponding match hint would remain unchanged. Other-
wise, the final match hint would be reset to zero.

While the software filter is capable of inspecting data rel-
evancy to an arbitrary level, running it is costly because
of an overhead involved in frequent memory access in the
target SSD. Depending on the complexity of its code, the
resulting overhead could be sizeable enough to degrade the
overall performance. Balancing between the filter accuracy
and overhead, we limit software filtering to a certain level
to ensure an improved overall performance of YourSQL. In
Section 4, we will discuss how much improvement is indeed
achieved by introducing software filtering into early filtering.

3.2.3 Highly Accurate Bulk Prefetch
As explained in Section 3.1.3, every iteration of the ISC
filters generates match hints whose size can reach up to
bulk match size. Pages whose match hint is set to one
would be a superset of pages that are necessary to answer
a given query. Prefetching them must be highly beneficial,
and thus YourSQL introduces two prefetch techniques.

The first technique is bulk read of match pages. Compared
to a single page read, bulk read is expected to achieve sig-
nificantly better performance by the increased queue depth.
Therefore, YourSQL issues a bulk read request for match
pages that belong to the same early filtering unit. The sec-
ond technique is aggressive prefetch. The ISC filters scan
the whole table while the storage engine reads match pages
in bulk. Thanks to the relatively high internal bandwidth
(see Section 4.1.2), the processing time for the ISC filters is
shorter than the time for bulk read of match pages. Thus,
we can get match hints for the subsequent early filtering
units during the bulk read of pages in the current unit.
This allows us to issue multiple prefetch requests based on
match hints for each subsequent unit. For this, we cre-
ate a dedicated thread called prefetcher. Fig. 5(c) depicts
the query execution pipeline including the prefetcher. The
prefetcher iterates a process of pulling match hints and is-
suing asynchronous read requests for match pages in bulk.
This allows YourSQL to hide time for CPU jobs of query

processing and thus improve the overall query performance.
Linux asynchronous I/O functions such as io prep pread(),
io submit(), and io getevents() are used for prefetch and
‘innodb flush method=O DIRECT’ option is added to my.cnf.

The prefetcher communicates with the storage engine via
a Single-Producer/Single-Consumer (SPSC) queue. To avoid
lock contention between them, this queue is implemented as
a simple integer array. When a query starts, the prefetcher
allocates the memory space for the prefetched pages. The to-
tal size comes to page size× bulk match size×#queue entry.
Here, page size and #queue entry denote the page size of
database instance (e.g., innodb page size in MySQL) and
the number of the buffer entries for the SPSC queue, respec-
tively. Every time the prefetcher pulls match hints, match
pages corresponding to them are read in bulk and enqueued
in the SPSC queue. Then, the storage engine dequeues the
prefetched pages from the queue on an as-needed basis. At
least two entries are required for the SPSC queue: One for
the storage engine and the other for the prefetcher.

We note bulk match size is a key performance parame-
ter. By this, overlapping execution of three processing ele-
ments (i.e., the host-side YourSQL, the prefetcher, and the
ISC filters in Fig. 5(c)) is exploited in different levels. In
the respective iterations, time for early filtering and time
for CPU jobs of the host-side YourSQL are directly propor-
tional to this parameter since larger bulk match size means
more pages to filter and more rows processed by host CPU
and vice versa. On the other hand, time for reading match
pages in bulk is not. Up to a certain bulk match size, the
time will remain unchanged because SSD can process the
concurrent requests in parallel. Thus, different proportion-
ality behaviors should be taken into account when this pa-
rameter is tuned. The bottom line is it should be tuned in
a way that it maximizes the parallelism so that the overall
execution time is minimized.

4. EVALUATION
This section evaluates the effectiveness of YourSQL in data-
intensive workloads. We use queries of varying complexities,
both synthetic and TPC-H genuine, with TPC-H dataset.
The evaluations encompass not only the results from the
standard benchmark but also the results obtained with dif-
ferent settings of system memory size as well as different
optimization techniques. Also evaluated are the energy con-
sumption of YourSQL and the effectiveness of early filtering
over a column store.

Our extensive evaluations reveal that YourSQL becomes
increasingly effective when a significant reduction of data
transfer can be made at the earliest point possible—within
a storage device. Overall, YourSQL can outperform a con-
ventional database system up to 167× with significantly less
energy consumption accordingly. Out of 22 TPC-H queries,
five queries show sizable speed-ups and the overall process-
ing time of the whole TPC-H queries is significantly reduced
achieving a speed-up of 3.6×.

4.1 Experimental Setup

4.1.1 System Setup
We conducted experiments on a system comprised of a Dell
PowerEdge R720 server and Samsung PM1725, a latest en-
terprise class NVMe SSD as shown in Fig. 6. The server is
equipped with two Intel Xeon(R) CPU E5-2640 @2.50GHz

930

ISC-enabled
SSD

P
C

Ie

in
te

rf
a
c
e

DRAMDRAM

NAND
flash memory

NAND
flash memory

P
C

Ie
 i

n
te

rf
a
c
e

ISC-enabled
SSD controller

Figure 6: Dell R720 server with PM1725 SSD.

and 64 GB DRAM, and runs 64-bit Ubuntu 15.04. The
ISC-enabled SSD is connected to the server via PCIe Gen3
×4. Details of the SSD are listed in Table 3. It has multiple
dedicated ARM cores, among which two ARM Cortex R7
cores are used as compute resources for ISC.

In order to measure the overall power consumption, we
also connect the server through an external power measure-
ment device, Power Manager B-200U [5]. It is capable of
measuring power up to 2,400 Watts with an accuracy of 97%
or higher. Power consumption of the whole server system is
collected as a separate data sheet.

Table 3: PM1725 specification.
Host interface PCIe Gen3 ×4
Device density 1 TB
SSD architecture Multiple channels/ways/cores
Storage medium Multi-bit NAND flash
Compute resources Two ARM Cortex R7 cores @750MHz
for ISC with L1 cache, no cache coherence

Hardware IP Pattern matcher per channel that takes
up to three 16 byte-long keywords

4.1.2 Basic Performance of the Target SSD
As seen in [13], the host read bandwidth of the target

SSD reaches a plateau at around 3 GiB/s, limited by the
host interface. By contrast, the internal read bandwidth
surpasses such limitation, fully exploiting the superfluous
internal bandwidth. With the pattern matcher enabled, the
internal read bandwidth is lowered due to the overhead aris-
ing from controlling hardware IP, yet it still outperforms the
host read by a few hundred MiB/s at a request size of 256
KiB or larger. It is important to point out that the observed
bandwidth demand of MySQL fell much short of the maxi-
mum bandwidth limit of our target SSD. On the other hand,
the bandwidth limit (internal bandwidth in this case) can
easily be exhausted in the optimized scheme of YourSQL.

4.1.3 Baseline System and Workload
As a baseline system, we chose 5.5.42 version of MariaDB, an
enhanced fork of MySQL. We tightly integrated the baseline
system with the aforementioned ISC framework in the target
SSD, Biscuit [13]. It is the first reported product-strength
ISC implementation, and allows user tasks to run inside the
high-performance NVMe SSD. We made non-negligible code
changes to MariaDB to integrate its query planner and de-
fault storage engine, XtraDB, with Biscuit.

We evaluate the baseline system and YourSQL by queries
with varying complexities. We use synthetic queries to eval-
uate them with the least query complexity, but the main
workload is TPC-H. A scale factor of 100 was chosen. Once
loaded into the database, the dataset becomes nearly 160
GiB in total. A default page size of 16 KiB for the baseline
system is tuned to 4 KiB for YourSQL. While making the
page size smaller degrades the performance of the baseline
system, an improvement is expected in the case of YourSQL
as it improves filtering accuracy. The available memory size
for the system is adjusted to 10% of the total dataset size,
out of which 75% is allocated for the database buffer.

Our prototype is an ISC-enabled variant of MariaDB,
and currently works on page-aligned, uncompressed records.
Thus, some may concern that the results of this paper may
not be true in other database systems with unaligned data or
sophisticated compression scheme [10]. However, YourSQL
does not come with such limitations. Not only because our
hardware filter is capable of matching patterns that span
pages, but because compression does not affect its function-
ality. As long as patterns are passed from the host as argu-
ments, it matches them. YourSQL can access the internal
data structures and functions of the database system, and
thus can pass the compressed patterns to the hardware filter.

4.2 Evaluation Results

4.2.1 Selection Query
For the initial evaluation of YourSQL performance, we use a
rather simple, synthetic query, Query 1. Its filter predicates
are so restrictive that the hardware filter can filter out all
the unnecessary pages. Thus, no further inspection is needed
with the software filter. As shown in Table 4, the execution
time is reduced by a factor of seven, i.e., 7× speed-up with
YourSQL. The 95% confidence interval of the measurement
is less than 2% in both cases.

Table 4: Execution time for Query 1.
MySQL YourSQL

Execution time [sec] 15.9 2.2

This significant speed-up seen in YourSQL is attributed
to the fact that only a small fraction of data needed to be
transferred to the host. The filtering ratio of Query 1 is
0.067, i.e., only 6.7% of the entire pages in the part table are
needed for answering this query. On the contrary, MySQL
requires the entire table to be transferred. The execution
time of MySQL, therefore, is mainly driven by the I/O time
the host takes to scan the entire table.

Actually, the execution time of YourSQL for a single table
query is determined by the slower among early filtering by
the ISC filters and bulk read by the host. These two run in a

931

pipelined manner as illustrated in Fig. 5(c). For a highly se-
lective query like Query 1, the processing time of YourSQL
is therefore mainly driven by early filtering. YourSQL’s
early filtering takes a full advantage of high bandwidth in-
ternal read, which reaches the maximum possible bandwidth
easily with multiple processing of concurrent requests at a
large request size. Even though we do not explicitly show
in this paper, we also carried out measurements for two fil-
tering queries from a recent related work [22]. While the re-
ported speed-up stays below 3× in [22], about 10× speed-up
is achieved with YourSQL thanks to the in-storage filtering
and the read logic optimization.

4.2.2 Join Query
While the advantage of YourSQL for highly selective sin-
gle table queries is distinctively shown from the previous
section, it is yet to be shown that YourSQL is effective for
those queries that access multiple tables, i.e., join queries.
To evaluate its potential gains for join queries, we use TPC-H

Q2 (see Query 2). As shown in Table 5, the execution time is
reduced by a factor of 44, a drastic speed-up even compared
to the speed-up shown in Section 4.2.1. The 95% confidence
interval is less than 10% of the reported value in both cases.

Table 5: Execution time for TPC-H Q2.
MySQL YourSQL

Execution time [sec] 1,104 25

This dramatic performance gain is attributed to the fact
that the early filtering effect is magnified in the case of join
queries. By placing the early filtering target first in the join
order (e.g., the part table in this query), our system reduces
the number of rows that must be read and processed at the
initial stage of query processing. As a result, the number of
I/O operations is significantly reduced, as well illustrated in
the motivational example in Section 2.1 (c.f., Table 1). Early
filtering utilizing high internal bandwidth, which is pipelined
with the boosted host read, allows YourSQL to fully benefit
from such a dramatic I/O reduction. In Section 4.2.4, we
will provide a quantitative measure of the reduction of data
as a consequence of the reduced I/O operations.

It is noted, however, this improved performance by FCP is
not always guaranteed for join queries. Compared to a single
table query, more various factors exemplified in Section 3.2.1
affect the number of I/O operations for a join query. There-
fore, the decision of enabling FCP for a join query is far
more complex than that for a single table query. As it will
be shown in Section 4.2.4, only eight TPC-H queries are
decided to enable FCP by YourSQL.

4.2.3 Available Memory Size
As the buffer size serves as a key performance factor in
a database system, we studied its impact in query per-
formance. We measured the corresponding speed-up after
changing the system memory size from the default of 16 GiB
to 8 GiB (0.5×), 32 GiB (2×), and 64 GiB (4×). We fixed
the fraction of memory allocated for the database buffer at
75% of the system memory size. We use TPC-H Q2, which is
more complicated than Query 1, and Fig. 7 gives the result.

In the case of a memory size of 8 GiB, the resulting speed-
up is even enhanced up to 64×. As the memory size increases
above the default, the resulting speed-up becomes lowered

8 16 32 64
Memory size [GiB]

0

10

20

30

40

50

60

70

Sp
ee

d-
up

Query 264x

43x

8x 7x

Figure 7: Speed-up with different memory size.

and reaches 7× speed-up when 64 GiB of memory is avail-
able for the system. This tendency implies that MySQL
benefits more from a larger buffer than YourSQL, which is
as expected since a larger buffer makes relative cost of read
I/O decreased and therefore the impact of its reduction be-
comes smaller. On the other hand, when the memory usage
becomes tighter, the relative cost of read I/O is increased
and the impact of its reduction becomes more prominent as
shown in the enhanced speed-up at 8 GiB.

4.2.4 TPC-H Results
For each of 22 TPC-H queries, we measured its execution
time and ratio of data transfer reduction. The latter is a ra-
tio of the amount of data transferred across storage network
during a query with MySQL to that with YourSQL. This
ratio, αsaving, illustrates quantitatively how much data is
saved from being transferred as a result of FCP in YourSQL.

Fig. 8 shows the results, sorted by speed-up. Out of 22
queries, eight queries (Q14, Q2, Q10, Q8, Q9, Q17, Q12, and
Q5) are FCP-enabled. The rest queries are not attempted
to be leveraged with FCP for one of the following reasons.
Q18 has no filter predicates, and thus is FCP-disabled. For
the case of Q1, Q7, Q11, and Q21, the query engine does
not enable FCP since the target table is small or their filter
predicates are not restrictive (e.g., a single character com-
parison). Some are FCP-disabled because of the limitation
of the pattern matcher in our target SSD (e.g., it cannot
handle the “NOT LIKE” operator). The remaining queries
are FCP-disabled because their estimated filtering ratio is
lower than the threshold. With FCP disabled, relative per-
formance of the rest 14 queries is simply unity.

The FCP-enabled eight queries show meaningful speed-
up over 1.1×. Q14 exhibits the highest speed-up of 167×.
As a mean of averaging speed-ups from the heterogeneous
queries (i.e., different number and order of table accesses,
different nominal execution time, and etc), geometric means
of the top five accelerated queries as well as all queries are
presented next to Q9 and Q22, respectively. As shown in the
bottom panel of Fig. 8, the average speed-ups reach 15× and
1.9×, respectively for the two cases. The ratio of reduced
data transfer is shown in the top panel of Fig. 8, which highly
correlates with the resulting speed-up as expected. Despite
the mean speed-up of over 15× from the top five queries, it
is still debatable whether YourSQL accelerates the overall
TPC-H performance. To this end, we also measured the
overall execution time. Running all 22 queries takes almost

932

0
100
200
300
400

α
sa
vi
n
g 315.4x

113.0x
19.6x 21.0x 2.7x 33.1x 3.8x 1.0x 1.4x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 2.4x

[Top 5] [All]

Q14 Q2 Q10 Q8 Q9 GM Q17 Q12 Q5 Q3 Q4 Q6 Q15 Q16 Q20 Q1 Q7 Q11 Q13 Q18 Q19 Q21 Q22 GM
0

40

80

120

160

Sp
ee

d-
up

167x

44x

9x 4.6x 2.8x
15x

1.6x 1.2x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.9x

FCP enabled FCP disabled

[Top 5] [All]

Figure 8: TPC-H results.

two days with MySQL, which is reduced to 13 hours with
YourSQL (i.e., by a factor of 3.6). It is interesting to point
out while only eight queries are accelerated with YourSQL
applied, still 3.6× reduction of the overall execution time
is achieved. We find such acceleration is indeed possible
because the top five queries, which are highly data-intensive,
take more than 70% of the total query execution.

4.2.5 Optimizations
In order to gauge the effect of optimization techniques pre-
sented in Section 3.2, we repeatedly ran the top five queries
with the largest performance gains under different optimiza-
tion schemes. Starting from the system with the hardware
filter only, which we call Opt-P, we applied different opti-
mization techniques, namely, software filtering and prefetch
(HABP), one-by-one incrementally. We call the latter two
as Opt-PS and Opt-PSH, respectively. Table 6 lists the op-
timization schemes with the respective configurations.

Table 6: Different levels of optimization.
Scheme Configuration
Opt-P Hardware filter
Opt-PS Hardware filter + Software filter
Opt-PSH Hardware filter + Software filter + HABP

Fig. 9 plots the speed-ups of YourSQL with different op-
timization schemes. In general, more optimizations yield
higher speed-up, as one would naively expect since each opti-
mization scheme is orthogonal to one another. The degree of
improvement somewhat varies depending on the query. For
example, Q14 sees over 3× improvement from Opt-P to Opt-
PSH. Meanwhile, it is 1.3× improvement in the case of Q2.
Overall, software filtering accelerates the top five queries
up to 1.21×, and HABP does up to 3×. The biggest im-
provement seen in Opt-PSH implies that the host-side read
operation was the limiting factor in accelerating the overall
performance. Therefore, the biggest gain was made when
the host-side read operation was optimized with HABP.

For comparison, we also include the result of ICP-enabled
MySQL, which is shown next to the Opt-PSH result in
Fig. 9. In order to enable ICP, we preprocessed the target
table to create required secondary indexes before running
each query. We note MySQL (with ICP) and YourSQL now
follow the exactly same join order. The difference is the way

Q14 Q2 Q10 Q8 Q9
0

20

40

60

80

100

120

140

160

Sp
ee

d-
up

Opt-P
Opt-PS

Opt-PSH
MySQL with ICP

Figure 9: Speed-ups of the top five accelerated
queries with different optimization schemes.

each accesses the first table. We see that the ICP-enabled
MySQL outperforms the fully-optimized YourSQL in some
cases (Q10 and Q8). This is because while index-based page
lookup of MySQL is exactly accurate, ISC-filtered data may
still contain false positives depending on filtering conditions.
However, given that MySQL with ICP required preprocess-
ing of the tables, which was not included in the measurement
of execution time, the largest speed-up in each query is still
achieved in YourSQL.

4.2.6 Power Consumption
We also evaluated YourSQL in the energy consumption as-
pect. The results from the previous sections highly indicate
that YourSQL would be energy efficient due to the signifi-
cant reduction of processing time. In order to check energy
consumption in both systems explicitly, we measured the
energy consumption during the processing of TPC-H Q2.

Fig. 10 shows the power consumption in the time interval
of one second. As expected from the speed-up seen in TPC-H

Q2, the duration of power consumption is markedly shorter
in the case of YourSQL. It is interesting to point out the
power consumption persists even after the query ends. We
identify such residual power consumption is originated from
the post query processing such as synchronizing the buffer

933

0 50 100 150 200 250
Time [sec]

100

110

120

130

140

150

160

170
Po

w
er

 [W
at

ts
]

1000 1050 1100 1150

MySQL
YourSQL

Figure 10: System power consumption during the
execution of TPC-H Q2.

cache. YourSQL consumes more power in a given interval
since it more fully utilizes the target SSD in terms of ex-
ploiting the SSD’s bandwidth capability. Table 7 integrates
the power consumption over time in Fig. 10 into the overall
energy consumption in kJ. This table shows that YourSQL
consumes nearly 24× less energy compared to MySQL.

Table 7: Overall energy consumption.
MySQL YourSQL

Total energy (kJ) 131.0 5.3

4.2.7 Queries on Column Store
The prior sections have shown the effectiveness of YourSQL
in a row-oriented database system. To see if the early fil-
tering approach in YourSQL is also effective for a column-
oriented database system, i.e., a column store, we designed a
micro-benchmark on a column store, and ran it with Query 1.
In order to create column stores, we partitioned each raw ta-
ble file of TPC-H dataset into segments. Each segment that
serializes all of the values of a single column is stored along
with row identification numbers (row IDs) as a separate file
with 4K alignment.

We evaluated the potential gains with and without colum-
nar compression. The compression is done by storing re-
peated column values only once along with the matched row
IDs. Table 8 shows the relative file size and the filtering ra-
tio of each segment before and after the compression. With
the compression, the file sizes are reduced by 48% and 64%,
respectively for the p size and p type segments. It is inter-
esting to see that the filtering ratios in both files are unity,
but reduced significantly due to data locality when com-
pressed (c.f., 2% and 20%). It is already evident that early
filtering must be ineffective in the raw column store from
the lowest possible filtering ratio (i.e., 1).

Table 8: Relative file size and filtering ratio.
p size p type

Raw Compressed Raw Compressed
Relative file size 1.00 0.52 1.00 0.36
Filtering ratio 0.96 0.02 0.99 0.20

 Raw Compressed
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ex
ec

ut
io

n
tim

e
[s

ec
]

0.71

1.34

No early filtering
Early filtering in YourSQL

Figure 11: Execution time for the column stores.

We ran the micro-benchmark on the raw column store
with and without early filtering. Without early filtering,
we fully scanned p size and p type segments in bulk of 64
pages, and combined columns from both segments using row
IDs. Based on the row IDs, we then located p mfgr values
from the corresponding segment. In the case of early filter-
ing, we followed the same process depicted in Fig. 5(c). We
applied the hardware filter to p size and p type segments
each, and read match pages in bulk. Locating p mfgr values
is done identically in both cases. We repeated the micro-
benchmark on the compressed column store. We note the
full scan was no longer necessary in the first case (i.e., no
early filtering) since it stopped scanning when the columnar
value meets the filtering condition (i.e., p size = 15).

Fig. 11 shows the resulting execution time. The value
above the histogram represents the achieved speed-up. As
expected, the early filtering approach for the raw column
store results in a considerable performance drop, i.e., a fac-
tor of 0.71×. We note, however, that our sampling heuristic,
if applied, would have advised to run without early filtering
because of the low filtering ratio. For the compressed col-
umn store, the early filtering approach accelerates the query
execution resulting in the speed-up of 1.34. Two important
observations can be made based on these results. First, the
early filtering approach can hardly benefit a column store
without compression (or with low data locality) due to low
filtering ratio. Second, data structure (i.e., row vs column
and/or raw vs compressed) is an important factor to deter-
mine the effectiveness of early filtering and its extent.

5. RELATED WORK
Reflecting the trend toward big data, interests in Near-data
processing (NDP) [7, 8, 9, 15, 16, 17, 18, 20] have soared
again recently, as can be evidenced in the widely popular
Hadoop framework [21]. Big data analytics is data-centric in
nature (rather than compute-centric), and hence, minimiz-
ing unnecessary I/O is one of the key challenges. High-end
appliances such as Oracle Exadata [19] and IBM Netezza [12]
employ intelligent storage servers between disk enclosures
and database servers. The key enabler in these storage
servers is to identify irrelevant data blocks for a given query
and avoid their transfer. In particular, Netezza minimizes
data traffic with the help of commodity FPGAs. Similarly, a

934

research system called Ibex [22] employs an FPGA between
the database and an SSD, and offloads filter and aggregation
queries to the FPGA. In these cases, however, the amount
of data transferred out of the storage devices is not reduced,
because data must be sent to filter servers or FPGAs first for
relevancy check. In contrast, YourSQL eliminates unneces-
sary data traffic at the earliest point possible—from within
a storage device.

As SSDs become commonplace and their capabilities grow,
researchers from academia and industry alike started to pay
attention to SSD based NDP. Different from database ven-
dors, they focus on programmable data processing within
an SSD [11, 14]. Such an approach is favorable for two rea-
sons: Additional (aggregate) compute capability in SSDs
and higher internal bandwidth inside an SSD compared to
the external SSD bandwidth limited by a typical host inter-
face (like SATA and SAS). Building on this observation, Do
et al. [11] wrote a database system prototype on an SSD,
where the modified SSD firmware performs user queries.
Kang et al. [14] extended the Hadoop framework to turn
SSDs into distributed data nodes. Compared to these earlier
studies, this work not only targets a latest high-performance
NVMe SSD, but describes a much more fully integrated
database system design capable of executing complex queries.

6. CONCLUSIONS
This paper described YourSQL, a database system built
on top of a state-of-the-art SSD architecture. We pursued
achieving cost-effectiveness as well as high performance of
data analytics by realizing an end-to-end datapath optimiza-
tion that spans both host system and SSD. To the best of
our knowledge, it is the first product-strength database sys-
tem building on the concept of ISC on commodity NVMe
SSDs. Moreover, our prototype system proves that full ta-
ble scans could be accelerated with the help of additional,
near-data compute resources in the SSDs.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive

comments, which helped improve the quality of this paper.
Many researchers and individuals have contributed at vari-
ous stages to this work, including: Boncheol Gu, Moonsang
Kwon, Man-Keun Seo, Woojin Choi, and Chanik Park.

8. REFERENCES
[1] Explain output format. http://dev.mysql.com/doc/

refman/5.7/en/explain-output.html.

[2] Faster subqueries with materialization.
http://guilhembichot.blogspot.kr/2012/04/

faster-subqueries-with-materialization.html.

[3] Index condition pushdown optimization.
http://dev.mysql.com/doc/refman/5.7/en/

index-condition-pushdown-optimization.html.

[4] Nested-loop join algorithms. http://dev.mysql.com/
doc/refman/5.7/en/nested-loop-joins.html.

[5] Power manager. http://www.powermanager.co.kr.

[6] Understanding nested loop joins.
https://technet.microsoft.com/en-us/library/

ms191318(v=sql.105).aspx.

[7] D.-H. Bae, J.-H. Kim, S.-W. Kim, H. Oh, and
C. Park. Intelligent SSD: a turbo for big data mining.
In CIKM, pages 1573–1576, 2013.

[8] R. Balasubramonian, J. Chang, T. Manning, J. H.
Moreno, R. Murphy, R. Nair, and S. Swanson.
Near-data processing: Insights from a micro-46
workshop. Micro, 34:36–42, 2014.

[9] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R.
Ganger. Active disk meets flash: A case for intelligent
ssds. In ICS, pages 91–102, 2013.

[10] H. A. Desphande. Efficient compression techniques for
an in memory database system. IJIRCCE,
3(9):8975–8983, 2015.

[11] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and
D. J. DeWitt. Query processing on smart ssds:
Opportunities and challenges. In SIGMOD, pages
1221–1230, 2013.

[12] P. Francisco. Ibm puredata system for analytics
architecture. IBM Redbooks, pages 1–16, 2014.

[13] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon,
J.-U. Kang, M. Kwon, C. Yoon, S. Cho, J. Jeong, and
D. Chang. Biscuit: A framework for near-data
processing of big data workloads. In ISCA, pages
153–165, 2016.

[14] Y. Kang, E. L. Miller, and C. Park. Enabling
cost-effective data processing with smart ssd. In
MSST, pages 1–12, 2013.

[15] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A
case for intelligent disks (IDISKs). SIGMOD Rec.,
27(3):42–52, 1998.

[16] S. Kim, H. Oh, C. Park, S. Cho, and S.-W. Lee. Fast,
energy efficient scan inside flash memory. In ADMS,
pages 36–43, 2011.

[17] Y.-S. Lee, L. C. Quero, Y. Lee, J.-S. Kim, and
S. Maeng. Accelerating external sorting via on-the-fly
data merge in active SSDs. In HotStorage, pages
14–14, 2014.

[18] E. Riedel, G. Gibson, and C. Faloutsos. Active storage
for large-scale data mining and multimedia. In VLDB,
pages 62–73, 1998.

[19] M. Subramaniam. A technical overview of the oracle
exadata database machine and exadata storage server.
An Oracle White Paper, pages 1–43, 2013.

[20] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim,
X. Ma, P. J. Desnoyers, and Y. Solihin. Active flash:
Towards energy-efficient, in-situ data analytics on
extreme-scale machines. In FAST, pages 119–132,
2013.

[21] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2009.

[22] L. Woods, Z. Istvn, and G. Alonso. Ibex-an intelligent
storage engine with support for advanced sql
offloading. the VLDB Endowment, 7(11):963–974,
2014.

935

