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ABSTRACT
RDF knowledge graphs have attracted increasing attentions these
years. However, due to the schema-free nature of RDF data, it is
very difficult for users to have full knowledge of the underlying
schema. Furthermore, the same kind of information can be repre-
sented in diverse graph fragments. Hence, it is a huge challenge to
formulate complex SPARQL expressions by taking the union of all
possible structures.

In this paper, we propose an effective framework to access the
RDF repository even if users have no full knowledge of the un-
derlying schema. Specifically, given a SPARQL query, the system
could return as more answers that match the query based on the
semantic similarity as possible. Interestingly, we propose a sys-
tematic method to mine diverse semantically equivalent structure
patterns. More importantly, incorporating both structural and se-
mantic similarities we are the first to propose a novel similarity
measure, semantic graph edit distance. In order to improve the
efficiency performance, we apply the semantic summary graph to
summarize the knowledge graph, which supports both high-level
pruning and drill-down pruning. We also devise an effective lower
bound based on the TA-style access to each of the candidate sets.
Extensive experiments over real datasets confirm the effectiveness
and efficiency of our approach.

1. INTRODUCTION
An RDF repository, which consists of a set of triples 〈subject,

predicate, object〉, can be modeled as an RDF graph, where the
vertices represent subjects and objects, and the labeled edges cor-
respond to predicates. The rapidly growing RDF knowledge repos-
itories, such as DBpedia, Yago and Freebase, increase the demand
for managing graph data effectively and efficiently.

SPARQL, a structural query language proposed by W3C, is de-
signed for querying RDF data. Since SPARQL queries can be rep-
resented as query graphs [28], a SPARQL query can be answered
by performing the graph pattern matching over RDF graphs [1].

Due to the “schema-free” nature of RDF data, different data con-
tributors may adopt different schemas to describe the same real-
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world fact. Thus, if we want to find more answers to a question,
complex SPARQL queries that contain multiple UNION operators
are required. Clearly, it is very difficult for users (even the profes-
sional users) to conceive the complicated SPARQL queries that not
only conform to the syntax but also consider the flexible underlying
schemas. We illustrate the challenges by the following motivating
example.

1.1 Motivating Example
Fig. 1 presents a piece of RDF graph extracted from DBpedia.

Assume that we want to find the cars that are produced in Ger-
many. There are at least three different German car brands, such as
Porsche Cayenne, Mercedes Benz and BMWX6, which are stored
in three different schemas in Fig. 1. In order to enable the query,
we should issue the following SPARQL query, which is composed
of three subqueries corresponding to the query graphs q1, q2, and
q3 in Fig. 2(a).

SELECT ? x WHERE {
{?x <type> Automobi le . ? x <p r o d u c t i o n> Germany .}
UNION
{?x <type> Automobi le . ? x <assembly> Germany .}
UNION
{?x <type> Automobi le . ? x <m a n u f a c t u r e r> ? y .

? y <l o c a t i o n > Germany .}}

Since different structural patterns may express the same seman-
tic meanings, formulating a SPARQL query that considers all pos-
sible structures is not a trivial task. Although we can conceive the
complete SPARQL query for “the cars produced in Germany”, we
cannot always use the same query pattern to answer other ques-
tions. For instance, in order to find all cars produced in Aus-
tralia, we should add another SPARQL subquery “?x < type >
AutomobileO f Australia” to capture the complete answers.
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Figure 1: An RDF knowledge graph.
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SELECT ?x WHERE { 

{ ?x <type> Automobile.

   ?x <production> Germany.}

UNION

{ ?x <type> Automobile.

   ?x <assembly> Germany. }

UNION

{ ?x <type> Automobile.

   ?x <manufacturer> ?y.

   ?y <location> Germany.} } 
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SELECT ?x WHERE
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Figure 2: Traditional method vs. our method

To obtain more correct answers, the traditional method (as shown
in Fig. 2(a)) demands users to have the full knowledge about the
schema of an RDF graph. In other words, it requires that user-
s should not only know all the predicates in the knowledge base
clearly, but also be aware of different structural expressions for i-
dentical semantic facts. It will be more difficult for open-domain
knowledge graphs, such as DBpedia. Every coin has two sides.
The “schema-free” nature of RDF facilitates the dataset construc-
tion, but it inevitably leads to the inherent difficulty of querying the
knowledge base.

The goal of this paper is to provide an effective way to access the
RDF repository even if one has no full knowledge of the underlying
schema. To this end, we provide an effective query model. Given
an RDF graph G, a user just needs to write a SPARQL query fol-
lowing one possible schema to express his/her query intention. The
system should return as many answers that semantically match the
query as possible. Fig. 2(b) illustrates our framework of SPARQL
similarity search.

For example, given the SPARQL query in Fig. 2(b) (it corre-
sponds to q1), our system can find all cars that are produced in
Germany. Graphs g1, g2, and g3 in Figs. 3(a), 3(b), and 3(c) are
three of the matches based on the semantic similarity.
1.2 Limitations of Existing Approaches

Although lots of efforts have been devoted to the graph similarity
search [24, 8, 2, 7, 22, 23], they suffer from various drawbacks.

Resorting to Structure Similarity. Several approaches are pro-
posed for the approximate subgraph query, but most of them focus
on the structure similarity, such as SAPPER [24], kGPM [2] and
Ness [8]. SAPPER [24] investigates the problem of approximate
subgraph search allowing some edges unmatched. It does not sup-
port the vertex/edge label substitution. kGPM [2] proposes a graph
pattern query, which allows a path to match an edge. However,
it restricts that the vertex/edge labels specified in the query graph
q should be exactly matched. Exploiting the neighborhood-based
similarity measure, Ness [8] and NeMa [7] try to identify the top-k
approximate matches of a query graph q.

Generally speaking, most of these methods concentrate on the
graph structure similarity without considering the semantic simi-
larity. However, in RDF graphs, two graph patterns may have large
structural dissimilarity, such as Figs. 3(b) and 3(c), but they de-
scribe the identical semantic meaning.

Using Concept-level Similarity. In order to enable semantic
queries over a knowledge graph, several recent approaches have s-
tudied the “semantic” similarity, but they only consider the “concept-
level” similarity. For example, KMatch [22] introduces the ontology-
based subgraph query, which computes the similarity between two

vertex labels by a similarity function. However, it requires that q
and its match must share the same graph structure including the
edge label constraints. Recently, SLQ [23] presents a query engine
that integrates a set of transformation functions, such as “synonym”
and “distance”. Although it can plug in the “distance” transfor-
mation (i.e., transforming an edge to a shortest path), more com-
plicated structures (e.g., graphs) are hard to deal with. Further-
more, structural transformation (corresponding to “distance”) and
semantic transformation (corresponding to “ontology”) are taken
into consideration separately.
1.3 Challenges and Contributions
Challenge 1: Mining Diverse Structure Patterns with Equiva-
lent Semantic Meanings. It is a common case that many subgraph-
s of a knowledge graph convey the same semantic meaning even if
they do not share the identical structure. For example, graphs g1,
g2, and g3 in Fig. 3, are three different subgraphs extracted from
the knowledge graph G in Fig. 1. Although they are different in
terms of graph structures, they share the same semantic meaning,
i.e., the automobiles that are produced in Germany. Note that the
task of mining diverse structural patterns with equivalent seman-
tic meanings is different from schema mapping [13] and ontology
alignment [16]. (1) Different inputs: Schema mapping and ontolo-
gy alignment take two schema/ontologies as inputs; but our input is
a single knowledge graph. (2) Different outputs: Our task is to find
sets of graph patterns that describe the same semantic meanings.
However, schema mapping and ontology alignment aim to find the
mapping between two elements from two schemas or two concepts
from two ontologies.

In this paper, we propose an instance-driven approach to mine
these semantically equivalent patterns. According to the mining
results, we define three representative graph patterns of semantic e-
quivalence, i.e., concept generation, edge redirection, and inductive
inference, over the RDF knowledge graph.
Challenge 2: Measuring Semantic Similarity in a Uniform Man-
ner. The traditional graph similarity metrics, such as graph edit
distance [26] and neighborhood information [8], only measure the
similarity on graph structures without considering semantic mean-
ings. They are not satisfactory for querying RDF knowledge graph-
s. Some recent efforts try to take semantic meanings into consider-
ation, but they mainly concentrate on the single concept level (i.e.,
only considering the similarity of two ontology concepts) [23].

This paper integrates the traditional graph structure similarity,
concept-level similarity and diverse semantically equivalent struc-
ture patterns into a uniform measure, called semantic graph edit
distance (Definition 3.2), which overcomes the limitation of the
existing graph similarity metrics.
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Figure 3: Diverse semantic graph structures

Challenge 3: Improving Query Performance. Subgraph similar-
ity search suffers from high time complexity. Thus, the time effi-
ciency is a crucial issue especially in the scenario of RDF knowl-
edge graphs that could be very large. Instead of enumerating all
possible candidates, we design an efficient framework to deliver
the top-k matches. Furthermore, in order to reduce the search s-
pace, we derive a lower bound for the semantic graph edit distance.

In summary, we make the following contributions in this paper.

• We propose an instance-driven approach to automatically dis-
cover the diverse structure patterns conveying equivalent se-
mantic meanings from a large RDF graph.

• We formalize the problem of Semantic SPARQL Similarity
Search (denoted by S 4) over RDF knowledge graphs. We
propose a novel metric, semantic graph edit distance, to mea-
sure the similarity between RDF graphs, which is the first to
consider the graph structure similarity, concept-level simi-
larity and diverse semantic-equivalent structure patterns in a
uniform manner.

• In order to improve the efficiency, we devise a novel index,
summary semantic graph, which facilitates the query pro-
cessing. We also derive a lower bound for the semantic graph
edit distance to reduce the search space.

• Extensive experiments over real RDF repositories have demon-
strated the effectiveness and efficiency of our method.

2. SEMANTIC GRAPH PATTERN
In this section, we first propose an instance-driven framework to

explore the semantic graph patterns. Then we define three repre-
sentative patterns according to the mining results.

DEFINITION 2.1. (RDF Knowledge Graph). A knowledge graph
is a directed graph G = (V, E, L), where V denotes a set of ver-
tices (including entities, concepts, and literals); E denotes the set
of edges, each of which is assigned with a label l ∈ L.

In an RDF knowledge graph, each entity is associated with a
type1. To evaluate the semantic relatedness, we resort to the ontol-
ogy that is widely used in knowledge graphs.

DEFINITION 2.2. (Type/Predicate Ontology Graph). A type-
/predicate ontology, denoted by OC /OP, is a directed acyclic graph
describing the relations among types/predicates, where each ver-
tex is a type/predicate, and each edge labeled with subTypeOf/sub-
PredicateOf connects two types/predicates.

DEFINITION 2.3. (Semantic Graph Pattern.) In an RDF knowl-
edge graph, a semantic graph pattern P = {s1, s2, . . . , sm} is a set
of structures that convey equivalent semantic meanings.

Fig. 4 presents some semantic graph patterns, where the struc-
tures in the same row convey the identical semantic meaning. For
instance, the two structures in the first row both describe the lakes
of Denmark .
1If the type of an entity is unknown, we can employ the existing
techniques, such as [10], to discover it.
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Figure 4: Semantic graph patterns.

Table 1: Dictionary of Semantic Instances
Semantic Meanings Supporting Instances
“Lake of Denmark” 〈Lake Esrum〉, 〈Lake Madum〉 . . .

“Automobiles of Germany” 〈Porsche Cayenne〉, 〈Benz〉, 〈BMWX6〉, 〈V M〉 . . .
“language spoken in a country” 〈Turkmenistan,Turkmen〉, 〈Estonia, Finnish〉 . . .
“Person who was born in Austria” 〈Schrödinger, Austria〉, 〈Boltzmann, Austria〉 . . .

· · · · · ·

2.1 Instance-driven Mining of Semantic Graph
Patterns

To enable the mining of semantic graph patterns, we build a dic-
tionary of semantic instances D, which records the semantically
equivalent instances.

DEFINITION 2.4. (Dictionary of Semantic Instances.) A dic-
tionary of semantic instances is a table, where each row is a set of
meaning-equivalent entities or entity pairs.

Table 1 shows a dictionary of semantic instances, where Benz,
Porsche Cayenne, and BMWX6 are all automobiles of Germany.

Actually, lots of NLP literatures [3, 11, 21] can be adopted to
extract the meaning-equivalent instances. For example, Patty [11]
uses dependency relations between words to find the instance pairs
that express the same relation phrase. Regarding the meaning-
equivalent entities, we can resort to the existing knowledge base,
such as Probase [21]. Probase contains 4.5 million isA pairs har-
vested automatically from web documents. In this work, we as-
sume that the meaning-equivalent instances (including entities and
entity pairs) are given.

Our goal is to identify semantic graph patterns (as shown in
Fig. 4) according to the meaning-equivalent instances. Since there
are two kinds of instances, i.e., single entities and entity pairs, we
devise two algorithms to deal with these two cases.

2.1.1 Single Entity Based Semantic Graph Patterns
Let Ti denote a set of meaning-equivalent instances {v1

i , . . . , v
m
i },

where each instance is a single entity as shown in the first two rows
of Table 1. Given a family of sets T , denoted by DS = {T1, . . . ,Tn},
our task is to mine the corresponding semantic graph patterns based
on DS . Algorithm 1 gives a formal description of the process.

We find the type t j for each entity v j
i ∈ Ti (1 ≤ j ≤ m) in the

RDF graph G. Assume tk is the type whose depth (i.e., the short-
est path distance from the root type “Thing” to tk) is the largest
in the type ontology (lines 2-3 in Algorithm 1). Then the pat-
tern (∗, type, tk) is added into the semantic graph pattern Pi cor-
responding to Ti, where “*” represents a wildcard vertex (line 4
in Algorithm 1). For each entity v j

i of type t j (, tk), we check
the neighbors L of v j

i in the RDF graph G. If the similarity be-
tween (L + t j) and tk is no less than a threshold, i.e., sim(L +

t j, tk) ≥ θ, we can add {(∗, r1, l1), . . . , (∗, rx, lx), (∗, type, t j)} into Pi,
where L + t j represents the concatenation of strings L and t j, and
sim(·, ·) can be computed based on the string edit distance (lines 5-
12 in Algorithm 1). Since tk is not too long, we can try all pos-
sible combinations of x neighbors to form L. Note that the ∗ in
{(∗, r1, l1), . . . , (∗, rx, lx), (∗, type, t j)} refers to the same entity.
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Algorithm 1 GSP SingleEntity(G,DS , OC)
Input: The RDF knowledge graph G, the dictionary DS consist-

ing of meaning-equivalent single entities, OC ;
Output: The semantic graph patterns P based on DS .
1: for Each set Ti = {v1

i , . . . , v
m
i } ∈ DS do

2: Find the type t j for each vertex v j
i

3: Let tk is the type whose depth in OC is the largest
4: Pi ← (∗, type, tk)
5: for Each entity v j

i ∈ Ti do
6: if t j , tk then
7: for 1 ≤ x ≤ |N(v j

i )| do
8: for Each x neighbors of v j

i do
9: for Each possible combination L do

10: if sim(L + t j, tk) ≥ θ then
11: Pi ← {(∗, r1, l1), . . . , (∗, rx, lx), (∗, type, t j)}∪Pi

12: P← P ∪ Pi

13: return P

EXAMPLE 1. Let us consider the supporting instances for “Lake
of Denmark” in Table 1. The types of “Lake Esrum” and “Lake Ma-
dum” are Lake and LakesOfDenmark, respectively. We find their
structures in the RDF graph. Since the neighborhood “Denmark”
together with “Lake” is similar to “LakeOfDenmark”, we can gen-
erate the semantic graph patterns as shown in the first row of Fig. 4.

2.1.2 Entity Pairs Based Semantic Graph Patterns
Let Ti denote a set of meaning-equivalent instances {〈u1

i , v
1
i 〉, . . . ,

〈um
i , v

m
i 〉}, where each instance is a pair of entities as shown in the

third and fourth rows of Table 1. Given a family of sets T , denoted
by DP = {T1, . . . ,Tn}, the goal is to mine semantic graph patterns
based on DP. The mining process is presented in Algorithm 2.

As shown in Algorithm 2, we first enumerate all simple paths
PS (u j

i , v
j
i ) between u j

i and v j
i in the RDF graph G. For efficien-

cy considerations, we only find simple paths of length less than a
threshold. Then we replace each entity in path(u j

i , v
j
i ) ∈ PS (u j

i , v
j
i )

with its corresponding type to obtain pathT (tu, tv), where tu and
tv are the types of u j

i and v j
i , respectively. For each pathT (tu, tv),

we compute the number of entity pairs in the supporting instances
that can be linked by such a path pattern pathT (tu, tv), denoted
as Sup(pathT (tu, tv)). The type path pathT (tu, tv) with the largest
Sup(pathT (tu, tv)) is added into the semantic graph pattern Pi.

Algorithm 2 GSP EntityPairs(G,DP, OC)
Input: The RDF knowledge graph G, the dictionary DP consist-

ing of meaning-equivalent entity pairs, OC ;
Output: The semantic graph patterns P based on DP.
1: for Each set Ti = {〈u1

i , v
1
i 〉, . . . , 〈u

m
i , v

m
i 〉} ∈ DP do

2: for Each entity pair 〈u j
i , v

j
i 〉 ∈ Ti do

3: PS (u j
i , v

j
i ) ← Find all simple paths (with length less than

a predefined threshold) between u j
i and v j

i

4: for Each path path(u j
i , v

j
i ) ∈ PS (u j

i , v
j
i ) do

5: pathT (tu, tv)← Replace each entity in path(ui
j, v

i
j) with

its corresponding type
6: Compute Sup(pathT (tu, tv))
7: Add pathT (tu, tv) with the largest Sup(pathT (tu, tv)) into

Pi

8: P← P ∪ Pi

9: return P

language

Turkmenistan

spokenIn

Estonia

Turkmen

Finnish_language

(a) Two different edges

language

Country

spokenIn

Language

Country Language

(b)Redirecting edges

Figure 5: Redirecting edges.

EXAMPLE 2. Let us consider the supporting instances for “Per-
son who was born in Austria” in Table 1. The entity pair 〈chrödinger,
Austria〉 is the first to be dealt with. We enumerate all simple path-
s between chrödinger and Austria, and generate the correspond-
ing type paths. Since the type path 〈Person, birthPlace,Country〉
has the largest Sup(·), it is added into Pi. Similarly, we find the
type path 〈Person, birthPlace,City, country,Country〉 for the sec-
ond entity pair 〈Boltzmann, Austria〉. This type path is also added
into Pi as shown in the third row of Fig. 4.

2.2 Representative Semantic Graph Patterns
We categorize the semantic graph patterns mined in the previous

subsection into three representative semantic graph patterns.

2.2.1 Concept Generalization
Considering the two graph patterns in the first row of Fig. 4, we

find that the entity in the right graph is a lake with the constraint of
Country (Denmark). In comparison, the entity in the left graph is
a “LakesOfDenmark”, which is a subconcept of “Lake”. Actually,
this case can be called “concept generalization”. That is, a concept
statement with some constraints is semantically equivalent to one
of its subconcept statement. The set of patterns that satisfy the
concept generalization constraint is denoted by PC .

2.2.2 Edge Redirection
In most languages, it is very common that a fact can be described

using both active voice and passive voice. This phenomenon also
exists in knowledge graphs. Specifically, there are two different
edges sharing the same vertex types (i.e., concepts) but having in-
verse directions. Let PE denote the set of semantic graph patterns
that satisfy the edge redirection constraint.

For example, Fig. 5(a) presents two different edges. Although
they are different from each other, they express the same semantic
meaning (corresponding to the second row of Fig. 4).

2.2.3 Inductive Inference
Another interesting phenomenon on knowledge graphs is induc-

tive inference. Consider the semantic graph patterns in the third
row of Fig. 4. Though the two graphs have different structures,
they convey the equivalent semantic meaning that “the person who
was born in Austria”. Hence, we can find that two entities can be
linked by means of an directed edge or a semantically equivalent
path. The set of semantic graph patterns satisfying the inductive
inference is denoted by PI .

3. PROBLEM FORMALIZATION
Based on the semantic graph patterns, we propose a novel defi-

nition, called semantic graph edit distance (Sections 3.1 and 3.2),
and formalize the problem studied in this paper (Section 3.3).

3.1 Semantic Graph Edit Operation
In the context of knowledge graphs, semantics should be con-

sidered together with the structure similarity. Thus, we define nine
primitive semantic graph edit operations.
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Operation 1. (Semantic Vertex Insertion). Inserting a ver-
tex of type t at some cost cvi(t), where cvi(t) can be computed by
dist(t, t0) (defined by Equation 1), i.e., the semantic distance be-
tween t and the root type t0 in the ontology.

For any two ontological types t1 and t2, their semantic distance
can be computed by the upward cotopic distance [15]. The intuition
is that two types are similar to each other if they have more common
supertypes. Formally, it is defined as:

dist(t1, t2) = 1 −
|S (t1,O)

⋂
S (t2,O)|

|S (t1,O)
⋃

S (t2,O)|
(1)

where S (ti,O) is the set of supertypes of ti in O.
Analogously, we can also define the semantic distance between

two predicates r1 and r2, denoted as dist(r1, r2).

Operation 2. (Semantic Vertex Deletion). Deleting a vertex of
type t at some cost cvd(t), where cvd(t) can be computed by dist(t, t0)
(defined by Equation 1).

Operation 3. (Semantic Vertex Substitution). Replacing a ver-
tex type t with another type t′ at some cost cvs(t, t′), where cvs(t, t′)
can be computed by dist(t, t′).

Operation 4. (Semantic Edge Insertion). Inserting an edge of
label (predicate) r at some cost cei(r), where cei(r) can be comput-
ed by dist(r, r0), i.e., the semantic distance between r and the root
predicate r0 in the predicate ontology.

Operation 5. (Semantic Edge Deletion). Deleting an edge of
label (predicate) r at some cost ced(r), where ced(r) can be comput-
ed by dist(r, r0), i.e., the semantic distance between r and the root
predicate r0 in the predicate ontology.

Operation 6. (Semantic Edge Substitution). Replacing an edge
label (predicate) r with label (predicate) r′ at some cost ces(r, r′),
where ces(r, r′) can be computed by dist(r, r′).

Note that the costs of traditional graph edit operations are iden-
tical (e.g., cvi = cvd = cvs = cei = ced = ces = 1) in the literature
[25, 26, 27]. Different from that, the semantic graph edit operations
are associated with semantic costs, and these costs may be different
from each other.

Above, we only consider the simple vertex/edge insertion/dele-
tion/substitution. As analyzed in Section 2, there are many diverse
structures conveying the same semantic meaning. To cover these
three graph patterns, we introduce three short-cut operations below.

Operation 7. (Semantic Edge Redirection.) Change the di-
rection of an edge, and substitute the edge label r with r′ following
the patterns mined in PE , i.e., (v1, r, v2)←→ (v1, r′, v2).

For instance, the edge (person1, in f luenced, person2) is equiva-
lent to (person2, in f luencedBy, person1).

DEFINITION 3.1. (Star.) A star rooted at vertex v, denoted as
sv, consists of vertex v and some adjacent vertices and edges of v.

Operation 8. (Semantic Star Substitution.) Replacing a star
sv by an edge (v, type, t) following the patterns mined in PC .

EXAMPLE 3. By applying the semantic star substitution, we
can substitute the left graph in Fig. 6 with the edge (Statesman V6,
type, AutomobileOfAustralia) in a semantically equivalent way.

Automobile

assemblytype

Australia

Statesman_V6

AutomobileOfAustralia

type

Statesman_V6

Figure 6: Semantic star substitution.

Operation 9. (Semantic Path Substitution). Replacing a path
p by an edge e following the previously mined patterns in PI .

EXAMPLE 4. As shown in Fig. 3(c), since the path starting from
the vertex “Benz” to the vertex “Germany” in g3 can be substitut-
ed by an edge (?x, production,Germany) in the query graph q1 of
Fig. 2(b), g3 is a good match for q1.

The structure patterns PE , PC and PI constitute a dictionary of
short-cut patterns, denoted as PD. Since the short-cut operations
are introduced to bridge the gap between semantics and structures,
their semantic costs are 0.

3.2 Semantic Graph Edit Distance
Based on the semantic graph edit operations above, we can de-

fine the semantic graph edit distance as follows.

DEFINITION 3.2. (Semantic Graph Edit Distance.) Given two
graphs g1 and g2, their semantic graph edit distance, denoted by
sged(g1, g2), is the minimum cost required to transform g1 to g2 by
applying semantic graph edit operations2.

THEOREM 3.1. Given two graphs g1 and g2, computing the se-
mantic graph edit distance between g1 and g2 is NP-hard.

PROOF. The proof is achieved by reducing the traditional graph
edit distance (GED) problem to the semantic graph edit distance
problem. Note that the three short-cut operations, i.e., semantic
edge redirection, semantic star substitution, and semantic path sub-
stitution, are allowed only if the dictionary PD contains the corre-
sponding graph patterns. For any two graphs g1 and g2, we can
always construct a dictionary, in which any graph patterns cannot
be used for g1 and g2. It indicates that the short-cut operations do
not apply in the computation of sged(g1, g2). Hence, computing
ged(g1, g2) equals computing sged(g1, g2) in this case. Since the
reduction is polynomial and computing GED is a well-known NP-
hard problem, the problem of computing the semantic graph edit
distance is NP-hard as well.

Remark. Since “semantics” is not a well-defined notion, it is hard
to exhaustively collect all possible shortcuts. In this paper, we try
to reduce the gap between semantics and graph structure by the
proposed semantic graph edit operations.

3.3 Semantic Similarity Search
In this paper, we investigate semantic queries over RDF knowl-

edge graphs using the semantic graph edit distance.

Problem Statement 1. Given a knowledge graph G and a query
graph q3, our goal is to deliver k subgraphs of G, denoted by
A = {g1, g2, . . . , gk}, such that for ∀g ∈ G ∧ g < A, it holds that
sged(q, g) ≥ sged(q, gi), where 1 ≤ i ≤ k.

A straightforward method is to enumerate all subgraphs g in G,
and then compute the semantic edit distance between g and q. Fi-
nally, we sort the candidates according to sged(q, g) and return the
top-k subgraphs with the smallest sged(q, g).
2The short-cut operations can be only applicable to the structures
in g1 that satisfy the patterns in PD.
3We only deal with the basic graph patterns of SPARQL queries.
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Figure 7: Framework of Our Approach.

Clearly, the naive approach above is time-consuming since the
search space is too large. Hence, it is desired to devise an efficient
solution. As depicted in Fig. 7, our approach contains two phases.

Offline Phase. In the offline phase, we build an index, i.e., the
semantic summary graph, for the knowledge graph G (in Section 4).
Actually, the semantic summary graph is a hierarchical clustering
of the semantic facts (please refer to Definition 4.1) in G.

Online Phase. Regarding the query graph q, we first exploit
the same method to summarize and rewrite q to obtain q∗. Then
we perform a two-level pruning over the semantic summary graph
(Section 5). Finally, we generate answers according to the candi-
dates (Section 6).

4. SEMANTIC SUMMARY GRAPH
In this section, we propose an effective index to reduce the space

cost and facilitate the query processing.

4.1 Semantic Fact and Semantic Graph
DEFINITION 4.1. (Semantic Fact.) Consider an edge (v1, r, v2)

from vertex v1 to vertex v2 in G, where r is the predicate. If v1 (resp.
v2) has a type t1 (resp. t2) in the type ontology, we use t1 and t2 to
represent vertices v1 and v2. Thus, we can obtain the corresponding
semantic fact, f = (t1, r, t2).

Based on the semantic facts derived from the knowledge graph
G, we can construct a semantic graph.

DEFINITION 4.2. (Semantic Graph.) The semantic graph of a
knowledge graph G, denoted by S G, consists of all semantic facts
derived from G, where vertices and edges correspond to the types
of entities and the semantic facts, respectively.

EXAMPLE 5. As shown in Fig. 8, G2 represents a semantic graph,
where each edge is a semantic fact. For example, (Company, loca-
tion, City) is a semantic fact derived from graph G1, where G1 is
actually the knowledge graph.

4.2 Semantic Summary Graph
Relying on the type and predicate ontologies, we can reduce the

space cost further.

DEFINITION 4.3. (Abstract Semantic Fact.) We say (t′1, r
′, t′2)

is the abstract semantic fact of (t1, r, t2) in a semantic graph S G if
types t′1 and t′2 are the parents of types t1 and t2 in OC , respectively,
and the predicate r′ is a parent of r in OP.

If e′ is a (abstract) semantic fact of edge e, e is a precedent of
e′. We also say that e is covered by e′.

EXAMPLE 6. Consider (Politician, birthPlace, AsianCountry)
in Layer2 of Fig. 8. Replacing “Politician” and “AsianCountry”
with “People” and “Country”, we obtain the abstract semantic fact
(People, birthPlace, Country).
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Figure 8: Semantic Summary Graph.

DEFINITION 4.4. (Abstract Semantic Graph.) The vertices and
edges of the abstract semantic graph, correspond to the paren-
t types and abstract semantic facts of the vertices and semantic
facts in a semantic graph S G4, respectively.

We can recursively define the abstract semantic fact for (t′1, r
′, t′2)

if only t′1, t′2, or r′ has a parent in the ontology. Therefore, we can
build more semantic graphs (e.g., Layer2 and Layer3 in Fig. 8) with
these abstract semantic facts.

DEFINITION 4.5. (Semantic Summary Graph.) A semantic sum-
mary graph, denoted by GS , is a multi-layer graph, where
• the 1st layer, G1, consists of basic facts, i.e., edges in the

knowledge graph G (G1 is identical to G);

• the m-th (m ≥ 2) layer, Gm, is a semantic graph summarized
from Gm−1 in the (m − 1)-th layer by enumerating all (ab-
stract) semantic facts in Gm−1.

Fig. 8 depicts a semantic summary graph. Let θ denote summa-
rization ratio (defined as θ = |Gm+1 |

|Gm |
, where |G| is the sum of vertex

and edge numbers). We can control the summarizing process us-
ing θ. For example, if θ > 80%, it indicates that most vertices and
edges do not change any more. So the summarizing process can
stop. We will study the effect of θ empirically in Section 7.

Actually, we only need to maintain the semantic summary graph
(excluding the 1st layer knowledge graph) as our index. Hence, it
saves much space, which is confirmed by our experiments. More
importantly, the semantic summary graph facilitates the query pro-
cessing in the online phase.

Remark. Although some similar efforts can be found for key-
word search [20, 9], our proposed semantic summary graph differs
from them: (1) Le et al., split the RDF graph into smaller partition-
s and then identify a set of templates serving as summary of these
partitions [9]. (2) The graph schema index in [20] does not consider
multi-level summarization.

5. QUERY REWRITING AND PRUNING
Before generating final answers, we first perform the query rewrit-

ing and candidate generation. To reduce the search space, we pro-
pose a two-level pruning strategy.
4Since an abstract semantic graph is also a semantic graph in actu-
al, we do not distinguish them.
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Figure 9: Query rewriting and summarization.

5.1 Query Rewriting
The objective is to obtain a set of semantically equivalent queries

for the given query graph q. Hence, we rewrite a query graph using
the semantic star substitution and semantic path substitution.

Star Rewriting. We first detect the stars in the query graph q
that could be substituted, and then conduct the semantic star sub-
stitution to obtain a set of rewritten queries, denoted by Q.

EXAMPLE 7. As shown in Fig. 9, graph q1
1 is actually the query

q. Graph q1
2 is the star rewriting result for q.

Path Rewriting. For each rewritten query graph q1
i ∈ Q. We

check whether there exists a path that can be substituted by a short-
cut edge, i.e., the semantic path substitution.

We introduce a special edge, called wildcard edge, which can
match an edge or a path. After the star and path rewritings, we
obtain a set of rewritten queries Q1.

EXAMPLE 8. Graphs q1
3 and q1

4 in Fig. 9 are path rewriting re-
sults. The edge circled by an ellipse in q1

4 is a wildcard edge that
represents an edge or a path. Note that the newly introduced vari-
ables ?y and ?z are wildcard vertices.

Query Summarization. Similar to the construction of the se-
mantic summary graph for the knowledge graph G, we can also
summarize the rewritten queries “Q” using the same method. Thus,
we can get the summarized query graphs, denoted by QS = {Q1, ...,
Qh}, where h is the height of the semantic summary graph for query
graphs. Each query graph in the m-th layer is denoted as qm

i

EXAMPLE 9. Fig. 9 presents the query rewriting and summa-
rization. After the query rewriting, graphs q1

1, q1
2, q1

3, and q1
4 consti-

tute the rewritten set Q1. Correspondingly, graphs qi
1, qi

2, qi
3, and

qi
4 form the summarized rewritten queries Qi, where 2 ≤ i ≤ h.

5.2 Two-level Pruning
In order to retrieve the final answers, we need to obtain candi-

dates for each edge. In this subsection, we propose a two-level
pruning strategy to compute candidates.

High-level Pruning. We first search the summarized query graph-
s QS over the semantic summary graph GS . The principle is that if
the subgraph gs in GS is not similar to qi ∈ QS , the subgraphs g in
G that are covered by gs are probably not similar to the query q.

Considering a summarized query qi ∈ QS , we try to obtain the
candidates for edges in qi. Assume u1u2 is an edge in qi. We first
compute the candidates for u1 and u2.

Let C(u) denote the candidates of vertex u in qi. We can compute
candidates for the edge e = u1u2 ∈ qi using C(u1) and C(u2). Re-
garding each vertex pair (v1, v2), where v1 ∈ C(u1) and v2 ∈ C(u2),

we check whether there exists an edge v1v2 or v2v1 that is semanti-
cally equivalent to e. Then we can obtain a set of candidate edges
for each edge e ∈ qi, denoted by C(e).

EXAMPLE 10. Let us consider the semantic graph G3 in Fig. 8
and the summarized query graph q3

1 in Fig. 9. The edge (Automobile,
production,Country) in q3

1 matches the edge (Automobile, assemb-
ly/production,Country) in G3.

Drill-down Pruning. Since the rewritten queries are summa-
rized upward layer by layer, the summarized graphs in the lower
layer convey more specific semantic meanings. Therefore, we can
refine candidates by going down along with the multi-layer sum-
marized query graphs. Algorithm 3 describes the key steps.

We first construct a set of temporary candidates T (ei) based on
C(ei) (lines 3-5), where cov(e)/cov(q) denotes the set of edges/-
queries covered by e/q. Then we consider the query graphs cov(qk)
that are covered by qk (lines 6-9). For each edge e′i ∈ qk−1, we
compute its candidates based on T (ei). Note that we do not need to
materialize all candidates for an edge. Therefore, we select k edges
that are most similar to e′i as candidates.

Algorithm 3 Drill-downPruning(GS , QS , qk,C, k)
Input: The semantic summary graph GS for G, the summarized

rewritten queries QS , the query graph qk in the k-th layer of
QS , the candidate edges C = {C(e1), ...,C(em)} for the edges
{e1, ..., em} in qk;

Output: The candidates for edges in each query graph q that are
covered by qk.

1: if k = 1 then
2: return C
3: T (ei), ...,T (em)← φ
4: for each edge e ∈ C(ei) do
5: T (ei)← T (ei) ∪ {e′|e′ ∈ Gk−1 ∧ e′ ∈ cov(e)}
6: for each qk−1 ∈ cov(qk) do
7: for each edge e′i ∈ qk−1 do
8: C(e′i )← the first k edges that are similar to e′i
9: Drill-downPruning(GS , QS , qk−1,C, k − 1)

EXAMPLE 11. Let us consider the edge e = (Organization,
locatedIn,Country) ∈ q3

3 in Fig. 9. Its candidate set is C(e) =

{(Organization, locationCountry,Country)}. When we go over the
summarized query q2

3, the precedent edge of e is e′ = (Company, lo-
catedIn, EuropeanCountry). The temporary candidate is T (e) =

{e1, e2}, where e1 = (Company, locationCountry, EuropeanCountry),
and e2 = (Company, locationCountry, AsianCountry). Since e1 is
more similar to e′ than e2 in terms of semantic meanings. Hence,
the candidate of e′ is C(e′) = {e1}.
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6. ANSWER GENERATION
We can generate the top-k answers for q by employing a TA-style

exploration over these candidates for each edge in q.

6.1 Bipartite-graph Based Lower Bound
Before presenting the process of answer generation, we devise a

bipartite-graph based lower bound to reduce the search space.
Let C(e) denote the candidates of edge e. We first sort these can-

didates in non-descending order according to their semantic dis-
tances to e. Given two edges e1 = u1u2 and e2 = v1v2, their seman-
tic graph edit distance is computed by the following equation,

sged(e1, e2)= dist(L(e1), L(e2)) +
∑

dist(L(ui), L(vi)) (2)

where L(e) denotes the predicate of edge e and L(u) denotes the
type of vertex u.

Let us consider a simple case, i.e., there are only two edges in q
as shown in Fig. 10(a), where the characters beside vertices are ver-
tex IDs and the characters in brackets are vertex types. Fig. 10(b)
presents two sorted (in non-descending order) candidate lists, C(u0u1)
and C(u0u2), for edges u0u1 and u0u2, respectively. The left colum-
n of each list presents the semantic distance between a query edge
and the corresponding candidate edge.

High-level idea of TA-style exploration based pruning: Traversing
each candidate list from top to bottom to construct a candidate
graphs g∗. Instead of computing the exact sged(q, g∗), we first com-
pute a lower bound for sged(q, g∗), based on which we determine
whether the exploration continues or not. If the lower bound is
larger than the minimum sged(q, g), g∗ can be screened out.

Given two graphs g1 and g2, a bipartite graph can be constructed
using two edge sets, E1 and E2, which are obtained from g1 and
g2, respectively. There is a weighted edge (given by sged(e1, e2))
between each ei ∈ E1 and e j ∈ E2.

We define a mapping distance between two graphs according to
the mapping constructed above.

DEFINITION 6.1. (Mapping distance.) Given two graphs g1

and g2, their mapping distance, denoted by md(g1, g2), is defined
as md(g1, g2) = min

∑
sged(ei, λ(ei)), where ei ∈ g1, λ(ei) ∈ g2,

and λ(∗) is a bijective mapping function.

THEOREM 6.1. Given two graphs g1 and g2, Equation 3 gives
a lower bound of their semantic graph edit distance.

sged(g1, g2) ≥
md(g1, g2)

d
(3)

where d is the largest vertex degree of g1 and g2.

PROOF. Let P = (p1, p2, ..., pk) be an optimal alignment trans-
forming from g1 to g2, i.e., sged(g1, g2) =

∑
cost(pi), where cost(pi)

is the cost of operation pi. Accordingly, there is sequence of graph
g1 = g0

1 → g1
1 → ... → gk

1 = g2, where gi
1 → gi+1

1 indicates trans-
forming gi

1 to gi+1
1 by operation pi. Since the short-cut operations

Algorithm 4 TA PMD(q, g)
Input: A query graph q, a candidate graph g with edges ê1, . . . , êm;
Output: The pseudo-mapping distance pmd(q, g).
1: pmd(q, g)← 0
2: if There do not exist identical edges in g then
3: pmd(q, g)←

∑
sged(ei, êi)

4: else
5: for Each non-repetitive edge ê j do
6: pmd(q, g)← pmd(q, g) + sged(e j, ê j)
7: for Each set of identical repetitive edges Ê do
8: Let sged(ei, êi) be the smallest one
9: pmd(q, g)← pmd(q, g) + sged(ei, êi)

10: remove êi from Ê
11: for Each set of identical repetitive edges Ê do
12: for Each repetitive edge ê j ∈ Ê do
13: Replace ê j with a special empty edge eφ
14: pmd(q, g)← pmd(q, g) + sged(e j, eφ)
15: return pmd(q, g)

have been considered in the query rewriting, we can only consid-
er the first six operations. Assume that there are k1 edge inser-
tion/deletion/relabeling operations, k2 vertex insertion/deletion/re-
labeling operations in P.

Edge Operations (Insertion/Deletion/Relabeling): If an edge is
inserted or deleted or relabeled over graph gi

1, only one edge is
affected. Thus, it holds that md(gi

1, g
i+1
1 ) ≤ cost(pe

i ) ≤ 1 in the case
of performing one edge operation over gi

1.
Vertex Operations (Insertion/Deletion/Relabeling): Inserting, delet-

ing or relabeling a vertex over gi
1 will affect d edges at most. Hence,

md(gi
1, g

i+1
1 ) ≤ d · cost(pv

i ).
Above all, we have the following inequality:

md(g1, g2) ≤ 1 ·
∑k1

1 cost(pe
i ) + d ·

∑k2
1 cost(pv

i )
≤ d · (

∑k1
1 cost(pe

i ) +
∑k2

1 cost(pv
i ))

≤ d · sged(g1, g2)
Thus, sged(g1, g2) ≥ md(g1 ,g2)

d .

Computing the mapping distance above is equivalent to the max-
imum matching problem. A classical algorithm to solve the maxi-
mum matching problem is the hungarian method [6]. However, it
suffers from the time complexity O(m3), where m is the larger edge
number in graphs q and g.

To improve the efficiency, we propose a pseudo-mapping dis-
tance (Definition 6.2), which can be computed in linear time.

DEFINITION 6.2. (Pseudo-mapping distance.) During the TA-
style exploration of each set of candidate edges, any mapping be-
tween q and g is called a pseudo-mapping. The summation of the
semantic distances between edges in the pseudo-matching is called
the pseudo-mapping distance, denoted by pmd(q, g).

Algorithm 4 gives the details of how to compute pmd(q, g), where
we deal with two cases. Given a candidate graph g consisting of
edges ê1, . . . , êm, if there do not exist identical edges, we can sum
up the semantic edit distance between each mapping pair 〈ei, êi〉,
i.e., pmd(q, g)←

∑
sged(ei, êi) (lines 2-3). Otherwise, we first sum

up the non-repetitive edges (lines 5-6) and the smallest sged(ei, êi)
in each set of repetitive edges (lines 7-9). Regarding the rest repet-
itive edges, they are replaced with special empty edges eφ. Then
we compute sged(e j, eφ), where e j ∈ q is the edge matching the
replaced ê j. Finally, pmd(q, g) is returned.

Time Complexity. The operation on line 3 of Algorithm 4 is
just the summation of the semantic edit distance of each mapping
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edge (ei, êi). Lines 5-14 deal with the case that there exist some
identical edges in ê1, . . . , êm. The time cost of computing the min-
imum sged(ei, êi) (line 8) is O(|Ê|). In the worst case, computing
the minimum sged(ei, êi) for all sets of identical repetitive edges
(lines 7-10) is O(m). Since there are m edges at most, the time
cost of lines 11-14 is O(m). Hence, the overall time complexity of
Algorithm 4 is O(m).

Remark. We use the pseudo-mapping distance pmd(g1, g2) to
replace the optimal mapping distance md(g1, g2) in Equation 3. Al-
though it may not correspond to the optimal mapping, we can use
it to facilitate the query processing without generating any false
negatives. More discussions will be presented in Section 6.2.

6.2 Answer Generation
In this subsection, we first introduce an A∗ algorithm to refine the

candidate graphs, and then present a whole picture of the TA-style
exploration based answer generation.

6.2.1 Verification
For the candidate graphs that are not pruned, we need to com-

pute the exact semantic graph edit distance sged(q, g). Since the
last three operations, semantic edge redirection, star substitution,
and path substitution, have been handled in the query rewriting and
pruning phases, we can just consider the first six semantic graph
edit operations.

Analogous to the computation of the traditional graph edit dis-
tance [14], we adopt A∗ algorithm to explore the search space. Dur-
ing the exploration, we maintain a cost function f (x) consisting of
two parts, i.e., f (x) = g(x) + h(x), where g(x) is the distance caused
by the current mapping part, and h(x) is estimated according to
some heuristics over the unmatched part. If f (x) is larger than the
current minimum cost, the searching branch can be pruned.

6.2.2 Put It All Together
Algorithm 5 gives the details of answer generation, which con-

tains three steps as follows.
Step 1. We sort the candidate edges in each C(ei) in non-descending
order according to sged(ei, e j) (lines 1-2).
Step 2. We retrieve k graphs by accessing each C(ei) in parallel
(lines 3-6), and insert graph g into the buffer B in increasing order
based on sged(q, g) (lines 7-8).
Step 3. We perform the TA-style access to each candidate set C(ei).
Specifically, we retrieve the next candidate graph ĝi with the min-
imum pmd(q, ĝi). If ĝi has not been discarded yet, we deduce the
pseudo-lower bound t based on the pseudo-mapping distance that
is computed by Algorithm 4 (lines 11-16). We can discard graph
ĝi if t is not smaller than sged(q, gB), where gB is the last graph
in B. Otherwise, sged(q, ĝi) is computed to determine whether the
buffer B needs to be updated (lines 17-23). The exploring process
terminates when it is impossible to produce any true answers, i.e.,
the current threshold t ≥ sged(q, gB).

Note that we compute the lower bound based on the pseudo-
mapping distance. Although it may not correspond to the optimal
mapping, we use it to filter out the unpromising candidate graphs.

Correctness. We clarify that Algorithm 5 will not generate any
false negatives. For ease of the presentation, let t denote the pseudo-
mapping distance based lower bound, and o denote the optimal
lower bound. It is straightforward that o ≤ t. If t < sged(q, gB),
the optimal lower bound o must be smaller than sged(q, gB). Oth-
erwise, we just skip the verification of the candidate g temporarily
instead of discarding it. If g is a true answer, it will be found in
the subsequent searching. Thus the correctness of Algorithm 5 is
guaranteed.

Algorithm 5 AnswerGeneration(q,C)
Input: A query graph q, the candidates C = {C(e1), ...,C(em)}

for edges ei ∈ q, user-specified threshold k;
Output: Top-k matches for q
1: for Each candidate set C(ei) do
2: Sort each candidate edge e j ∈ C(ei) in the non-descending

order according to sged(ei, e j)
3: Maintain a buffer B of bounded size k
4: while B is not full do
5: Do sorted access in parallel to each C(ei)
6: Retrieve the graph g consisting of edges e1, . . . , em

7: Compute sged(q, g)
8: Insert g into B in the increasing order based on sged(q, g)
9: t ← 0

10: while t < sged(q, gB) do
11: Retrieve the next graph ĝi with the minimum pmd(q, ĝi)
12: if ĝi has been discarded then
13: Continue
14: t ← T A PMD(q, ĝi)
15: d ← The maximum vertex degree in q and ĝi

16: t ← t/d
17: if t < sged(q, gB) then
18: Compute sged(q, ĝi)
19: if sged(q, ĝi) < sged(q, gB) then
20: Pop the last graph gB in B
21: Insert ĝi into B and discard graph gB

22: else
23: Discard graph ĝi

24: return Graphs in B

7. EXPERIMENTAL STUDY

7.1 Experimental Setup

7.1.1 Datasets
Dataset1. DBpedia: DBpedia 3.95 is an open-domain knowl-

edge base, which is constructed by using the structured informa-
tion extracted from Wikipedia6. It contains 5,040,948 vertices and
61,481,483 edges.

DBpedia Ontology: Each entity in DBpedia has a type (if an
entity has no type, it is assigned with a root type, i.e., “Thing”).
Besides the type ontology, there is a predicate ontology describing
the relations of predicates.

SPARQL Queries: We use QALD-47, a benchmark delivered in
the fourth evaluation campaigns answering over linked data. It
contains 236 SPARQL queries, each of which has the answers.
Note that a SPARQL query may involve multiple UNION opera-
tors, which correspond to different structural patterns. In our ex-
periments, we randomly select only one of these UNION operators
as a query each time. It is desired that we can find the complete
answers instead of using the complete UNION operators.

Dataset2. Yago: Yago [5] is an RDF (Resource Description
Framework) knowledge base that is extracted from Wikipedia, Word-
Net, and GeoNames. It contains 10,538,013 entities and 183,041,129
edges. There are 22,137 types and 100 predicates in the type ontol-
ogy and predicate ontology, respectively. Considering three short-
cut operations, we derive ten queries based on those used in [12].

5http://blog.dbpedia.org/
6http://www.wikipedia.org/
7http://qald.sebastianwalter.org/index.php?x=challenge&q=4
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Figure 11: Patterns of concept generation.

Type1 Type2
Settlement SoccerManager     

Person Person

Redirecting predicates

manager / managerClub
influenced / infulencedBy

Lake Lake
Person Politician     

inflow  / outflow
successor  / predecessor

TelevisionShow TelevisionShow previousWork  / subsequentWork

Figure 12: Patterns of edge redirection.

7.1.2 Metrics
Since QALD-4 provides the golden standard, we adopt two clas-

sical metrics, i.e., precision@k (the ratio of the correctly discov-
ered matches over all discovered top-k matches, denoted by P) and
recall (the ratio of the correctly discovered matches over all cor-
rect matches, denoted by R), to evaluate the effectiveness of our
approach. For simplicity, we also employ F1-measure to combine
both the precision and recall according to Equation 4.

F1 =
2

1/P + 1/R
(4)

To evaluate the effectiveness of our proposed three shortcut graph
edit operations (i.e., the edge redirection, star substitution, and path
substitution), we propose fact coverage ratio, f cr, as formally de-
fined in Equation 5, where |Facts| represents all facts (i.e., edges)
in the knowledge graph, and |Facts(o)| represents the number of
facts satisfying the shortcut graph edit operation o.

f cr =
|Facts(o)|
|Facts|

(5)

We use the response time (the time cost of pruning and refining)
to measure the efficiency of our method.

All experiments are conducted on an Intel(R) Xeon(R) CPU E5504
@ 2.00GHz and 30G RAM, on Windows Server 2008. All pro-
grams were implemented in C++.

7.2 Effectiveness Evaluation
In this subsection, we first present the mining results for semantic

graph pattern, and then report the effectiveness of our proposed
method in terms of recall and precision.

7.2.1 Mining Semantic Graph Patterns
As discussed in Section 2.1, semantic meaning equivalent in-

stances are built based on Patty [11] and Probase [21]. It contains
2,560,000 single entities and 3,862,331 pairs of entities.

Using the Algorithms 1 and 2 given in Section 2.1, we have
found some interesting results. The precisions of the two methods
are 0.61 and 0.64, respectively. Due to the space limitations, we
only present some examples in Figs. 11, 12 and 13. Fig. 11 shows
some interesting results for the concept generalization. For exam-
ple, if a SportsLeague belongs to Australia, we can use a directed
edge to represent it, i.e., it is an AustralianFootballLeague.

As presented in Fig. 12, one person p1 influenced another person
p2, which corresponds to (p1, influenced, p2). In actual, it is equiv-
alent to the expression that p2 is influencedBy person p1, which
corresponds to (p2, influencedBy, p1).

{(p1, birthPlace, c1)};        {(p1, birthPlace, City, Country, c1)}

{(p1, deathPlace, c1)};       {(p1, deathPlace, City, Country,c1)}

{(p1, grandFather, p2)};    {(p1, father, p3, father,p2)}

{(o1, type, t1)};                   {(o1, type, t2, subtype, t1)}

Figure 13: Patterns of inductive reference.

Table 2: Effectiveness evaluation
DBpedia Yago

Method Precision Recall F1 Precision |Correct|
gStore 1 0.332 0.496 1 3
NeMa 0.521 0.690 0.593 0.467 7
SLQ 0.583 0.745 0.654 0.6 9
S 4 0.712 0.866 0.781 0.733 11

7.2.2 SPARQL Similarity Search
Since it has been shown that the latest work NeMa [7] outper-

forms its competitors BLINK [4], IsoRank [17], SAGA [18], and
Ness [8], we only need to compare our method with NeMa. We
also compare our method with gStore [28].

It is easy to compute the precision and recall with the QALD-4
benchmark dataset. However, we have no gold standard on Ya-
go dataset. Therefore, we only report precision and the number
of correct answers. Table 2 presents the evaluating results. In all
experiments, the summarization ratio θ is set to be 60% by default.

As shown in Table 2, the precision of gStore is 100%. It is be-
cause that gStore is built based on the exact subgraph matching.
However, due to the same reason, it can only find the matches that
are isomorphic to the query graph, which results in low recall. In
comparison, our method achieves the best performance in terms of
both precision and recall.
Case study. To answer the question “Give me all cars that are

produced in Germany”, we only use a simple SPARQL query as
follows to search the knowledge graph DBpedia.

SELECT ? x WHERE
{?x <type> Automobi le . ? x <p r o d u c t i o n> Germany .}

As shown in Table 3, gStore only finds 133 matches. The num-
ber of returned answers is set to be 600 for NeMa, SLQ, and S 4.
NeMa, SQL, and S 4 find 302, 411, and 554 correct answers, re-
spectively. Actually, QALD-4 gives 554 correct answers for the
question, which are all found by our method.

7.2.3 Evaluation of Semantic Graph Edit Operations
We exploit f cr (defined in Equation 5) to measure the propor-

tion of facts that are covered by an graph edit operation. Table 4
gives f crs for the edge redirection, the star substitution, and the
path substitution, respectively. The three shortcut operations cover
nearly 88% of all the facts in the knowledge graph.

To further study the effect of shortcut operations, we conduct
experiments by disallowing partial shortcut operations. As shown
Table 5, F1 decreases greatly by disallowing any shortcut opera-
tions, e.g., F1 is 0.649 if none of the shortcut operations is allowed.
It confirms that our proposed shortcut operations are effective.

Table 3: Case study
Method correct answers all returned answers
gStore 133 133
NeMa 302 600
SLQ 411 600
S 4 554 600
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Table 4: Fact coverage ratio on DBpedia
Operations edge red. star sub. path sub. all

fcr 0.73 0.68 0.63 0.88

Table 5: Effect of shortcut operations on DBpedia
Operations precision recall F1

None 0.619 0.684 0.649
edge red. 0.672 0.746 0.707
star sub. 0.651 0.731 0.688
path sub. 0.641 0.703 0.671

edge red. + star sub. 0.701 0.792 0.743
edge red. + path sub. 0.699 0.787 0.740
star sub. + path sub. 0.682 0.781 0.728

All 0.712 0.866 0.781

7.3 Efficiency Evaluation

7.3.1 Index Construction
We study the effect of the summarization ratio θ since it controls

the summarizing process.
As shown in Table 6, the index size and index time both increase

with the growth of θ. That is because if θ becomes larger, it may
generate more semantic graphs. In comparison, the indexing size
and time for gStore on DBpedia: 6.2 GB and 6,800 seconds, on
Yago: 10.4GB and 14,000 seconds. The index size and building
time for NeMa on DBpedia: 4.3 GB and 10,350 seconds, on Yago:
7.9 GB and 22,610 seconds. Therefore, our index is easy to build.

7.3.2 Query Performance
Effect of θ. As shown in Fig. 14(a), the F1 values decrease with
the growth of the summarizing ratio. That is because larger θ will
generate more semantic summary graphs, which results in more
semantic operations of semantic substitution (e.g., semantic edge
redirection, semantic star substitution, and semantic path substitu-
tion) during the candidate computation. Since these semantic op-
erations are not exactly correct, both precision and recall decrease.
However, the response time (the time elapsed from receiving the
query to returning results) consumed in the query processing is re-
duced benefitting from the summarized index.
Effect of k. As depicted in Fig. 15(a), F1 achieves the maximum
when k is 100. The reason is that if we increase k, the recall im-
proves greatly at the cost of degrading the precision. Fig. 15(b)
gives the effect of k over response time. It is straightforward that
delivering more answers will consume more searching time.

Fig. 16(a) shows that S 4 has higher F1 value than NeMa and S-
LQ by varying the number of returned answers, which indicates S 4

is more effective. Furthermore, the time efficiency of S 4 outper-
forms NeMa and SLQ greatly as shown in Fig. 16(b). To study our
proposed summary index, we turn off the it, denoted by “WSum”.
Its time efficiency degrades nearly two orders of magnitude, which
confirms the effectiveness of our proposed index. Similar results
can be also found on the Yago dataset as shown in Figure 17.

Table 6: Index building cost
DBpedia Yago

θ size (MB) time (s) size (MB) time (s)
20% 301 63 1102 731
40% 341 68 1190 796
60% 397 70 1267 873
80% 435 71 1289 921
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Figure 14: Evaluation of θ
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Figure 15: Evaluation of k

Effect of Noise. To study the impact of noises, we randomly gen-
erate some noises on both vertex labels and structures. The noise
ratio is defined as (∆V + ∆E)/|G|, where ∆V denotes the number of
changed vertices, ∆E denotes the number of changed edges, and |G|
is the sum of vertices and edges in G. As shown in Fig. 18(a), F1
values of the four methods all decrease as we increase noises. The
performance of gStore decreases sharply. The reason is that it re-
sorts to the exact subgraph match, and does not tolerate noises. In
comparison, S 4 has the best robustness using the semantic graph
edit distance. The response time of all methods increase slightly
with the growth of noises as presented in Fig. 18(b).

8. RELATED WORK
Structure-based similarity Search. As a classical measure of

the structure similarity, graph edit distance is widely used in the ex-
isting approaches [2, 26, 18, 19]. Based on the graph edit distance,
i.e., the minimum number of edit operations required to transform
g1 into g2, Zheng et al., define the graph similarity search over a
large number of graphs [26]. SAGA [18] employs a flexible model
that is a variation of graph edit distance. It allows for node gaps, n-
ode mismatches and graph structural differences. However, it does
not take the edge edit operations into consideration. Similar to the
SAGA, TALE [19] proposes the node match quality based on some
node misses and mismatches. Although kGPM [2] allows a path to
match an edge, it restricts that vertex/edge labels specified by query
graph q should be exactly matched.
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Figure 16: Comparison with NeMa and SLQ (DBpedia)
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Figure 17: Comparison with NeMa and SLQ (Yago)
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To convey the global structural information, Ness [8] and NeMa
[7] propose the neighborhood-based similarity measure, which uni-
fies both the label matching cost and neighborhood matching cost.

Semantics is a key factor that affects the matching results over
RDF knowledge graphs. Therefore, the major problem of the meth-
ods above is that they do not take the semantics into consideration.

Concept-level similarity Search. To enable semantic queries
over a knowledge graph, some efforts have been made to apply the
“semantic” similarity, but they only consider the “concept-level”
similarity. KMatch [22] defines a quantitative metric to measure
the similarity between the query graph q and its matches in the
knowledge graph G. Specifically, it computes the similarity be-
tween vertex labels based on an ontology-based distance. How-
ever, it restricts that q and its matches must share the same graph
structure including the edge label constraints. Thus, it is not able
to convey the structure similarity. Recently, SLQ [23] introduces a
framework that integrates a set of transformation functions, such as
“synonym”, “ontology” and “distance” (i.e., transforming an edge
to a shortest path). In other words, it predefines several rules that
can be plugged into the system. Note that the transformations of the
structure (corresponding to “distance”) and semantics (correspond-
ing to “ontology”) are exploited separately. Hence, it is hard to deal
with more complicated structures (e.g., stars). In comparison, we
propose a novel similarity metric, semantic graph edit distance, to
integrate both structure similarity and semantic similarity together.

9. CONCLUSIONS
In this paper, we focus on the problem of semantics-based S-

PARQL similarity search over RDF knowledge graphs. Consider-
ing the diverse semantically equivalent graph structures, we pro-
pose an instance-driven approach to mine the semantic graph pat-
terns. Based on the semantic graph patterns, we propose a novel
similarity measure, i.e., semantic graph edit distance. We devise
an efficient index, semantic summary graph, to facilitate the query
processing. At query time, the input query graphs are rewritten
and a two-level pruning technique is performed to prune the search
space. The experimental results on real datasets confirm the effec-
tiveness and efficiency of our method.
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