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ABSTRACT

RDF has become very popular for semantic data publish-
ing due to its flexible and universal graph-like data model.
Thus, the ever-increasing size of RDF data collections raises
the need for scalable distributed approaches. We endorse the
usage of existing infrastructures for Big Data processing like
Hadoop for this purpose. Yet, SPARQL query performance
is a major challenge as Hadoop is not intentionally designed
for RDF processing. Existing approaches often favor certain
query pattern shapes while performance drops significantly
for other shapes. In this paper, we introduce a novel rela-
tional partitioning schema for RDF data called ExtVP that
uses a semi-join based preprocessing, akin to the concept of
Join Indices in relational databases, to efficiently minimize
query input size regardless of its pattern shape and diame-
ter. Our prototype system S2RDF is built on top of Spark
and uses SQL to execute SPARQL queries over ExtVP. We
demonstrate its superior performance in comparison to state

of the art SPARQL-on-Hadoop approaches.

1. INTRODUCTION

RDF is the W3C standard for semantic data modeling.
It has a very flexible graph-like data model and thus can
be used to represent a large variety from highly to loosely
structured datasets. Nowadays, RDF data collections with
billions of triples are not unusual, e.g. Google Knowledge
Vault, raising the need for scalable distributed solutions.
One possible approach is to build a standalone distributed
RDF store designed primarily for RDF with its own boxed
data store, e.g. YARS2 [15]. But this means that data stored
in these systems can only be accessed via application spe-
cific interfaces or endpoints which hampers interoperability
with other systems and causes high integration costs.

On the other side, there already exist mature platforms
for distributed Big Data processing which are also offered on
a rental basis by leading Cloud providers, e.g. Amazon EC2.
Hadoop has become one of the de facto industry standards
in this area. The key concept is to have a unified pool for
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data storage (HDF'S for Hadoop) that is shared among var-
ious applications on top. Thus, different systems can access
the same data without duplication or movement for various
purposes (e.g. querying, data mining or machine learning).
In our view, these existing infrastructures are superior to a
specialized deployment in terms of cost-benefit ratio and can
provide more synergy benefits. However, as Hadoop is not
designed for RDF data management, the main challenge is
to achieve performance in the same order of magnitude com-
pared to specialized systems built from ground for RDF.

There exists a lot of work on RDF/SPARQL querying
based on MapReduce as the execution layer, e.g. |20} |26}
27]. More recently, the emergence of NoSQL key-value stores
(e.g. HBase, Accumulo) as well as in-memory frameworks
(e.g. Impala, Spark) for Hadoop facilitates the development
of new systems that are applicable for more interactive work-
loads, e.g. |23} [28]. Yet still, these systems are typically opti-
mized for query patterns with small diameter like star shapes
and small chains. The performance often drops significantly
for unselective patterns or queries with long chains.

In this paper, we introduce S2RDF (SPARQL on Spark for
RDF), a SPARQL processor based on the in-memory cluster
computing framework Spark. It comes with a novel parti-
tioning schema for RDF called EztVP (Extended Vertical
Partitioning) based on semi-join reductions [4] that is an ex-
tension of the well-known Vertical Partitioning (VP) 1] and
is conceptually related to Join Indices |30]. In contrast to
existing layouts, the optimizations of ExtVP are applicable
for all query shapes regardless of its diameter.

Our major contributions can be summarized as follows:
(1) We define a novel relational partitioning schema for RDF
data called ExtVP that can significantly reduce the input
size of a query. (2) As an optional storage optimization,
ExtVP allows to define a selectivity threshold to effectively
reduce the size overhead compared to VP while preserving
most of its performance benefit. (3) We further provide
a query compiler from SPARQL to Spark SQL based on
ExtVP that uses table statistics to select those tables with
the highest selectivity. Our prototype called S2RDF is avail-
able for downloadﬂ (4) Finally, we present a comprehensive
evaluation comparing S2RDF with other state of the art
SPARQL processors for Hadoop to demonstrate its superior
performance on very diverse query workloads. The evalua-
tion is based on the recent synthetic WatDiv [2] benchmark
and additionally we use the real-world YAGO [16] dataset
to study the effects of the crucial selectivity threshold on
query performance and storage overhead.

http://dbis.informatik.uni-freiburg.de/S2RDF
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2. RDF & SPARQL

RDF is the W3C recommended standard model for repre-
senting information about arbitrary resources. Global iden-
tifiers (IRIs) are used to identify a resource. For the sake of
brevity, we use a simplified notation of RDF without IRIs
in the following. The basic notion of data modeling in RDF
is a so-called triple t = (s,p,0) where s is called subject, p
predicate and o object. It models the statement “s has prop-
erty p with value 0” and can be interpreted as an edge from
s to o labeled with p, s & 0. Hence, a set of triples forms
a directed labeled (not necessarily connected) graph G =
{t1,...,tn}. For example, Figure [1| visualizes RDF graph
G1 = {(A, follows, B), (B, follows,C), (B, follows, D),

(C, follows, D), (A, likes, I), (A, likes, I2), (C,likes, I2) }.
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follows @ follows
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Figure 1: Visualization of RDF graph G;

SPARQL is the W3C recommended query language for
RDF. A SPARQL query Q@ defines a graph pattern P that is
matched against an RDF graph G. This is done by replacing
the variables in P with elements of G such that the result-
ing graph is contained in G (pattern matching). The most
basic notion in SPARQL is a so-called triple pattern tp =
(s',0/,0) with s € {s,7s}, p' € {p,7p} and o € {o0,7%},
i.e. a triple where every part is either an RDF term (called
bound) or a variable (indicated by 7 and called unbound).
A set of triple patterns forms a basic graph pattern (BGP).
For example, the following query Qi (in SPARQL syntax)
contains a single BGP:

SELECT * WHERE {
?x likes 7w .
?y follows 7z .

?x follows 7y .
7z likes 7w }

(@)

It can be interpreted as “For all users, determine the friends
of their friends who like the same things”. Matched on G1
it gives a single result (7x — A,7y — B,7z — C, 7w — I»).
We use RDF graph G; and SPARQL query @1 as a running
example throughout this paper.

The result of a BGP is a bag of solution mappings similar
to relational tuples and can be defined analogous to [25]:
Let V be the infinite set of query variables and 7" be the
set of valid RDF terms. A (solution) mapping p is a partial
function p : V. — T. We call vars(tp) the set of variables
contained in triple pattern tp. Abusing notation, we write
wu(tp) to denote the triple that is obtained by substituting
the variables in tp according to p. The domain of u, dom(u),
is the subset of V' where p is defined.

Two mappings p1, u2 are called compatible, p1 ~ pa, iff
for every variable 7v € dom(u1) N dom(p2) it holds that
w1(?v) = p2(?). It follows that mappings with disjoint
domains are always compatible and the set-union (merge)
of two compatible mappings, @1 U pe, is also a mapping.
The answer to a triple pattern tp for an RDF graph G is a
bag of mappings Qi = {p | dom(p) = vars(tp), u(tp) € G}.

The merge of two bags of mappings, 21 X 2, is defined
as the merge of all compatible mappings in 1 and g, i.e.

805

Q1 M Qo = {(p1 Up2) | p1 € Q,p2 € Q2,1 ~ po}. It can
also be interpreted as a join on the variables that occur in
both mappings. Finally, the result to a basic graph pattern
bgp = {tp1,...,tpm} is defined as the merge of all mappings
from all triple patterns, Qpgp = Qip, X ... X Qg

On top of these basic patterns, SPARQL also provides
more relational-style operators like OPTIONAL and FILTER to
further process and combine the resulting mappings. Con-
sequently, the most important aspect to query RDF data
efficiently, is an efficient evaluation of BGPs. A formal def-
inition of the SPARQL semantics can also be found in [25].

BGPs in a SPARQL query can have different shapes de-
pending on the position of variables in triple patterns which
can have severe impacts on the query performance [2]. The
diameter of a SPARQL BGP is defined as the longest path,
i.e. longest connected sequence of triple patterns, ignoring
edge direction. Star-shaped patterns have a diameter of one
and occur frequently in SPARQL queries, thus many query
processors are optimized for this kind of workload. They
are characterized by subject-subject joins between triple pat-
terns as the join variable is on subject position. Linear- or
path-shaped patterns are also very common in graph query-
ing, e.g. famous friend-of-a-friend queries. Linear patterns
are made of object-subject (or subject-object) joins, i.e. the
join variable is on subject position in one triple pattern and
on object position in the other. Thus, the diameter corre-
sponds to the number of triple patterns. The performance of
such workloads is often worse compared to star-shaped pat-
terns in many RDF triplestores as the selectivity is typically
lower and the result sets can become large for highly con-
nected graphs. Snowflake-shaped patterns are combinations
of several star shapes connected by typically short paths.
More complex query structures are essentially compositions
of these fundamental patterns.

3. RELATED WORK

In recent years, a large variety of RDF stores have been
developed. A comprehensive listing is out of scope for this
work, thus we refer the interested reader to more detailed re-
cent surveys |10} [18]. In the following, we describe the work
that is most closely related to our work and in particular
those which are used in our evaluation (cf. Section @

RDF stores can be broadly categorized into centralized
and distributed systems, running on single machine or on
a computing cluster (mostly using shared nothing architec-
ture), respectively. Additionally, they can be distinguished
by their storage subsystem, i.e. whether they use a rela-
tional database to store RDF data (relational-backed), non-
relational back-ends like key-value stores (NoSQL-backed) or
deploy an own storage subsystem tailored to RDF (native).

Most of the early centralized RDF systems used a re-
lational back-end to materialize RDF data, e.g. Jena [7].
But also more recent state of the art systems like Virtu-
oso |9], DB2RDF (RDF support in DB2) [6] and Mon-
etDB/RDF [24] use a DBMS back-end. There also exists
a bunch of centralized RDF systems that deploy their own
RDF tailored storage solutions, e.g. |21} 32]. Most notably,
RDF-3X |21] creates an exhaustive set of indexes for all
RDF triple permutations and aggregated indexes for sub-
sets, resulting in a total of 15 indexes stored in compressed
clustered B+ trees. Hezastore [32] maintains six indexes for
all triple permutations and can be seen as a combination of
vertical partitioning [1| and multiple indexing.



3.1 Distributed Systems

From a very general perspective, we can classify existing
distributed approaches in three broad categories:

(1) The first type of systems are standalone distributed RDF
stores, i.e. they are self-contained and primarily dedicated
for distributed RDF processing, e.g. |12, 14} |15]. 4store [14]
and YARS2 [15] are cluster extensions of centralized sys-
tems for RDF processing. TriAD [12] uses an asynchronous
Message Passing protocol for distributed join execution in
combination with join-ahead pruning via RDF graph sum-
marization. The METIS graph partitioner is used to parti-
tion the input RDF dataset and construct a summary graph.
However, graph partitioning is an expensive task and cen-
tralized partitioner such as METIS are known to be limited
in scalability. Thus, the initial RDF partitioning can become
a bottleneck with increasing data size.

(2) The second type of systems use a federation of classical
centralized RDF stores deployed on all cluster nodes and
build a communication and coordination layer on top that
distributes the data and (sub)queries, e.g. |11} [13][17]. They
mainly differ in the partitioning strategy used to spread the
data across cluster nodes which also impacts the way how
queries are split and executed. The general idea is that as
much processing as possible is done locally at every node and
a global aggregation mechanism merges the partial results.

One of the first approaches was introduced by Huang et
al. in [17]. Data gets partitioned (with METIS) such that
triples which are nearby in the graph are stored on the same
machine. An instance of RDF-3X is used on all cluster nodes
to store the allocated partitions and execute (sub)queries.
Partition borders can overlap (n-hop guarantee) such that
query patterns with a diameter of at most n can be answered
locally. However, this imposes an exponential increase in
data duplication with increasing n, thus best results are re-
ported for n = 2. Performance degrades significantly when
queries exceed the n-hop guarantee where MapReduce is
used for partial result aggregation.

Partout [11] also uses RDF-3X on every cluster node but
partitions RDF data with respect to a query workload such
that queries can be processed by a minimum number of
nodes in the cluster while maintaining a load balance. How-
ever, the typical query workload has to be known in advance
and can also lead to suboptimal partitions if the workload
changes over time. The concept of DREAM (13| differs from
other systems in the sense that queries are partitioned in-
stead of data. All nodes in the cluster store a copy of the
whole dataset which enables it to completely avoid inter-
mediate data shuffling but only small auxiliary data has to
be exchanged. The main drawback of DREAM is that the
resources of a single node can become a bottleneck as the
whole dataset must be loaded into RDF-3X on every node.

(3) The third type of systems are built on top of existing
distributed platforms for Big Data processing like Hadoop,
e.g. [20, 23, 26, 27, 28]. S2RDF falls into this category.
Hadoop is also offered on a rental basis by leading Cloud
providers, e.g. Amazon Elastic Compute Cloud (EC2).
Many of these systems use MapReduce for query execu-
tion in some way or another, e.g. [20, [26 27|, as Hadoop
originally started as a clone of Google’s MapReduce (see 18]
for a more comprehensive listing). SHARD [26] groups RDF
data by subject and uses a so-called Clause-Iteration ap-
proach for query processing, i.e. a MapReduce job is created
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for every triple pattern (called clause) which conceptually
leads to a left-deep query plan. PigSPARQL [27] uses a ver-
tical partitioning schema for data representation. Instead of
compiling SPARQL queries directly into MapReduce jobs,
it uses Pig as an intermediate layer. By means of this two-
level abstraction, PigSPARQL profits from sophisticated op-
timizations of Pig and runs on all platforms supported by
Pig, including all versions of Hadoop. RAPID+ |20] fol-
lows a very similar approach by extending Pig with a so-
called Nested Triple Group Algebra to reduce the number of
MapReduce cycles during query processing. Yet, these sys-
tems suffer from relatively high query latencies due to the
batch oriented nature of MapReduce. Thus, they are more
suited for long running ETL and analytical query workloads.

H2RDF+ [23] is based on HBase, a variant of Google’s
BigTable. HBase is a sorted and column-oriented NoSQL
key-value store on top of HDFS. H2RDF+ uses six tables for
all possible triple permutations and triples are completely
stored in the row key, thus it creates six clustered indexes.
Additionally, it also maintains aggregated index statistics to
estimate triple pattern selectivity as well as join output size
and cost. Based on these estimations, H2RDF+ adaptively
decides if queries are executed centralized over a single node
or distributed via MapReduce. It comes with implemen-
tations of merge and sort-merge joins for both MapReduce
and local execution. However, distributed query execution
can be orders of magnitude slower than centralized.

Sempala (28] is conceptually related to S2RDF as it is
also a SPARQL-over-SQL approach based on Hadoop. It is
built on top of Impala, a massive parallel processing (MPP)
SQL query engine. Its data layout consists of a single uni-
fied property table such that star-shaped queries can be an-
swered without joins. Hence, its layout is targeted towards
a specific query shape.

4. EXTENDED VERTICAL PARTITIONING

Data layout plays an important role for efficient SPARQL
query evaluation in a distributed environment. The most
straight forward representation of RDF in a relational model
is a so-called triples table with three columns, containing one
row for each RDF triple, i.e. TT(s,p,0). For efficiency rea-
sons, it must be accompanied by several indexes over some
or all (six) triple permutations as query evaluation essen-
tially boils down to a series of self-joins on this large table,
e.g. |21, |32]. However, rich indexes are hardly supported
by most Hadoop frameworks. An often used optimization is
Vertical Partitioning (VP), introduced by Abadi et al. in [1].
Instead of a single three-column table, it uses a two-column
table for every RDF predicate, e.g. follows(s,o0). It mim-
ics the effect of an index on predicates and is also easy to
manage in a distributed Hadoop environment.

Regarding the efficient evaluation of SPARQL BGPs in a
Hadoop setting, one can conceptually distinguish two design
goals: (1) the minimization of input data size and thus I/O
in general, and (2) the reduction of join operations. Further-
more, one has also to consider the specific properties of the
underlying execution layer, in our case Spark. We therefore
examined the main influence factors of query performance in
Spark SQL. The most important finding was that reduction
of data input size tends to be more effective than reduction
of join operations. We attribute this to the fact that Spark
is an in-memory system optimized for pipelined execution
with little setup overhead for individual operations.



4.1 ExtVP Definition

Many existing data layouts for RDF are tailored towards
a specific kind of query shape (cf. Section and most often
star-shaped queries are the primary focus as these shapes
occur very often in typical SPARQL queries. The goal of
our data layout in S2RDF is not to focus on a specific query
shape but to provide improvements for all shapes and also
for queries with a large diameter, a query type that is often
neglected by existing approaches.

Based on our pre-evaluation findings, we decided to use
a vertical partitioned (VP) schema as the base data layout
for RDF in S2RDF. Using such a schema, the results for
a triple pattern with bound predicate can be retrieved by
only accessing the corresponding VP table which leads to a
large reduction of the input size, in general. Unfortunately,
the size of these tables is highly skewed in a typical RDF
dataset with some tables containing only a few entries while
others comprise a large portion of the entire graph. Hence,
there are still a lot of dangling tuples, i.e. input tuples that
do not contribute to the output of a query, that are poten-
tially shuffled during query execution. They cause unneces-
sary 1/O and comparisons during join execution as well as
an increase in memory consumption. Since Spark is an in-
memory system and memory is typically much more limited
than HDFS disk space, saving this resource is important for
scalability. Therefore, to avoid dangling tuples in the query
input to a large extent, we developed an extension to the
VP schema called Extended Vertical Partitioning (ExtVP).

The basic idea is to determine the subsets of a VP table
V P,, that are guaranteed to find at least one match when
joined with another VP table V P,,, p1,p2 predicates in G.
That is, we precompute a number of semi-join reductions [4]
of VPp,. The relevant semi-joins between tables in VP are
determined by the possible joins that can occur when com-
bining the results of triple patterns during query execution.
The position of a variable that occurs in both triple patterns
(called join variable) determines the columns on which the
corresponding VP tables must be joined. We call the co-
occurrence of a variable in two triple patterns a correlation.
Figure [2] illustrates the possible correlations, e.g. if the join
variable is on subject position in both triple patterns we
call this a subject-subject correlation (SS) as both VP ta-
bles (here follows and likes) must be joined on subjects
(s). The other correlations are subject-object (SO), object-
subject (OS) and object-object (OO). We do not consider join
variables on predicate position as such patterns are primar-
ily used for inference or schema exploration but rarely used
in a typical SPARQL query |1]. S2RDF can answer such
queries by accessing the base triples table for triple patterns
with unbound predicate but is not further optimized for it.
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Figure 2: Correlations between triple patterns
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We precompute semi-join reductions for SS, OS and SO
correlations between all pairs of VP tables (i.e. all pairs of
predicates). We omit OO correlations as this would not help
much in practice. Two triple patterns in a SPARQL query
that are connected by an OO correlation often use the same
predicates (cf. OO in Figure and thus result in a self-
join of the corresponding VP table. In this case, a semi-join
would reduce nothing but simply return the table itself. So
we decided not to precompute OO correlations at all due to
their relatively poor cost-benefit ratio. Indeed, it is only a
design choice and we could precompute them just as well.
The advantage of ExtVP is that none of these precomputa-
tions are mandatory. S2RDF makes use of ExtVP tables,
if they exist, or uses the normal VP tables instead. Fur-
thermore, an optional selectivity threshold for ExtVP can
be specified such that only those ExtVP tables are mate-
rialized where the reduction of original VP tables is large
enough. This reduces the size overhead to a large extent as
we discuss in more detail in Section [£3]

To summarize, for two VP tables V P,,,V P,, we compute
the following semi-join reductions and materialize the results
as separate tables in HDFS (if not empty and selectivity is
within the threshold):

SS: VP, Xees VP, , VP, Xees VP,
0S: VP, Xous VP, , VP Xoes VPp,
SO: VP, Xeeo VP, , VP, Xeeo VP,

Essentially, the idea of ExtVP comes from the fact that
a join between two tables T1,7T> on attributes A, B can be
decomposed in the following way:

Ty XWa=p To = (T1 Xa=B T2) Xa=p (T1 xa=BT2) (¥)

This is a common join optimization technique in distributed
database systems to reduce overall communication costs [22].
Let P denote the set of all predicates in an RDF graph G.
Formally, an ExtVP schema over G can be defined as:

ExtV P3Gl ={(s,0) | (s,0) € VP, [GIA
A(s’,0") € VP, [G]: s ="}
= VP, [G] Xs=s V Pp,[G]
ExtVP%S[G] = {ExtVP)5, [G]| p1,p2 € P Ap1 # p2}
ExtV P} [G] ={(s,0) | (s,0) € VP, [GIA
A(s’,0") € VP, |Gl :0=5"}
= VP, [G] Xoms V Py, [G]
ExtVPO%[G] = {ExtVP7 [G]| p1,p2 € P}
ExtV Py [G] ={(s,0) | (s,0) € VP, [G]A
A(s’,0") € VP, |Gl :s=0"}
= VP, [G] Xs=0 V Py, [G]
ExtVP°[G] ={ExtVP)9, [G]| p1,p2 € P}

ExtV P|G] = {ExtV P°[G], ExtV P9%(G], ExtV P [G]}

Important to notice is that we do not precompute the ac-
tual join results themselves as this would usually increase
space consumption by an order of magnitude or even more.
Semi-join reductions on the other side are always guaran-
teed to be a subset of the corresponding base table. Hence,
space consumption and effectiveness of ExtVP depends on
the selectivity of corresponding semi-joins. In practice, the
space requirement of ExtVP is reasonable and comparable
to existing approaches, e.g. |23, 28} 32] (cf. Section |4.3).
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Figure 3: ExtVP data model for RDF graph G,. Left side shows ExtVP tables derived from V Pfoii0ws, right
side for V Pjkes, resp. Tables marked in green are stored. Red tables are equal to VP and thus not stored.

Figure [3| illustrates the entire ExtVP schema for our run-
ning example RDF graph G (cf. Section. In a typical het-
erogeneous RDF dataset consisting of several classes, many
ExtVP tables would be empty because their predicates can
not be combined (e.g. users are likely described by differ-
ent predicates than products). To avoid these unnecessary
semi-join operations when constructing an ExtVP schema,
we determine those predicates that have any correlation to
one another and precompute only these reductions. For ex-
ample, the following query determines those predicates that
have an OS correlation to predicate p1:

SELECT DISTINCT TT.p FROM TriplesTable TT
LEFT SEMI JOIN VPpl ON TT.o = VPpl.s

Finally, we discuss the updatability of ExtVP. Insertions
are not critical since we can easily adapt the correspond-
ing ExtVP tables, i.e. we can append semi-join results for
new triples. Deletions are a bit more affected. To remove a
triple (s,p,0) we have to delete corresponding tuples from
all ExtVP tables for p which potentially leads to dangling
tuples in other tables. Even so, query results are still correct
as the actual joins between ExtVP tables are performed on
query runtime where potential dangling tuples get discarded
(cf. (+)). However, they might degrade the quality of opti-
mization provided by ExtVP, to some extent. As usual,
updates can be realized by a combination of delete and in-
sert. In our current implementation, deletions can not be
realized as HDF'S is an immutable append-only filesystem.
Thus, to support updates and deletions, S2RDF needs to be
extended by an updatable storage middle layer like HBase.

4.2 ExtVP and Database Query Optimization

The notion of semi-joins was originally proposed to reduce
communication cost for join processing in early distributed
databases [4]. However, in Spark joins are executed in paral-
lel on all cluster nodes on portions of the data, similar to an
MPP (Massively Parallel Processing) database. This makes
the application of semi-joins on the fly during query pro-
cessing less effective. In contrast, we precompute semi-join
reductions of VP tables for all possible correlations (omit-
ting OO correlations for aforementioned reasons) such that
we do not have to compute them on-the-fly but only once
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in advance. We can afford this because VP tables, in con-
trast to an arbitrary relational schema, have a fixed two-
column layout. Conceptually, the idea of ExtVP is related
to the notion of Join Indices |30| in relational databases and
Access Support Relations [19] in object-oriented databases.
An ExtV P, |,, table basically resembles a clustered join
indexr between VP tables VP, and VP,, as we store the
actual payload in the index instead of using unique sur-
rogates. Access support relations (ASR) have been intro-
duced to facilitate path expression evaluation. In principle,
ExtV P9% resembles a binary decomposition of all possible
ASR (i.e. paths) in an RDF graph following edges in forward
direction. Complementary, ExtV P5° can be seen as a bi-
nary decomposition following edges in backward direction.

4.3 ExtVP Selectivity Threshold

ExtVP comes at the cost of additional storage overhead
compared to VP. But as the effectiveness of ExtVP increases
with smaller tables sizes (due to higher selectivity), we can
reduce this overhead to a large extent while retaining most
of its benefits. Let SF be the selectivity factor of a table in
ExtVP, i.e. its relative size compared to the corresponding
VP table: SF(ExtV P, |p,) = |ExtV Py p,|/|V Pp,|. For
example, EthPfooiowsmkes in Figure H has a SF value of
0.25 as its size is only a quarter of V Pfojiows. Let k = |P| be
the number of predicates in an RDF graph G and n = |G|
be the number of triples in G. It holds that the sum of all
tuples in VP, |V P[G]|, is also equal to n. W.l.o.g. we assume
that all VP tables have equal size n/k and SF = 0.5 for all
ExtVP tables. The size of an ExtVP schema for G (i.e. sum
of all tuples) can then be estimated as follows:

n
[BatVP[G)| =k x((3k—1) x o )
~ —_— 2k
F#predicates #tables

per predicate table size

=Bk—1)*2 < 3kn

This is, however, by far an overestimation of the real size
as it assumes that all predicates can be combined with one
another. In our experiments, typically more than 90% of all
ExtVP tables were either empty or equal to VP and hence



not stored. In general, the more predicates exist in an RDF
dataset the more ExtVP tables will be empty as many of
these predicates have distinct domains (e.g. predicates de-
scribing products vs. users). Exemplary, for a dataset with
n ~ 10° triples and 86 predicates the actual size of ExtVP
was ~ 11n (cf. Section @ HDF'S storage space is normally
not a limiting factor in a Hadoop environment and as we use
the Parquet columnar storage format in combination with
snappy compression to materialize the tables in HDFS, the
physical size of ExtVP (including VP tables) was ~ 1.3 times
the original input RDF dataset size in N-triples format.

Nonetheless, 11n tuples in ExtVP compared to n tuples in
VP states a significant overhead. On the one hand, tables
with SF ~ 1 impose a large overhead while contributing
only a negligible performance benefit. On the other hand,
tables with SF < 0.25 give the best performance benefit
while causing only little overhead. To this end, S2RDF
supports the definition of a threshold for SF' such that all
ExtVP tables above this threshold are not considered. As
demonstrated in Section [6.3] a threshold of 0.25 reduces the
size of ExtVP from ~ 11n to ~ 2n tuples and at the same
time provides 95% of the performance benefit on average
compared to using no threshold.

S. S2RDF QUERY PROCESSING

Spark [33] is a general-purpose in-memory cluster com-
puting system that runs on Hadoop and can process data
from any Hadoop data source and Spark SQL [3] is the rela-
tional interface of Spark. We use the general-purpose Par-
quet columnar storage format to persist the data store of
S2RDF in HDFS. Parquet is not Spark exclusive and thus
we could directly load and query the data with Impala just
as well without any need for data movement or preparation.

Query processing in S2RDF is based on the algebraic rep-
resentation of SPARQL expressions. We use Jena ARQ [7|
to parse a SPARQL query into the corresponding algebra
tree and apply some basic algebraic optimizations, e.g. filter
pushing. SPARQL query optimization was not a core aspect
when developing S2RDF, hence there is still much room for
improvement in this field. Finally, the tree is traversed from
bottom up to generate the equivalent Spark SQL expres-
sions based on our ExtVP schema described in Section [l
That is, an input SPARQL query gets mapped to a single
equivalent Spark SQL query that is then executed by Spark.
We describe the details of this mapping in the following.

5.1 Triple Pattern Mapping

The basic concept is that every triple pattern in a BGP
bgp = {tpi,...,tpn} is represented by an equivalent sub-
query {sqi,...,sqn} and the results of these subqueries are
joined to compute the result of bgp, Qugp = sq1 X ... X sgn.
For this, the query compiler of S2RDF has to select the ap-
propriate table for every triple pattern ¢p;. In a VP schema,
this choice is unambiguous as it is simply defined by the
predicate of tp;. In an ExtVP schema, however, there are
potentially several candidate tables defined by the correla-
tions of ¢p; to other triple patterns in bgp. From these candi-
dates, the table with the best selectivity factor SF should be
chosen. S2RDF collects statistics about all tables in ExtVP
during the initial creation process, most notably the selec-
tivities (SF values) and actual sizes (number of tuples), such
that these statistics can be used for query generation. It also
stores statistics about empty tables (which do not physically
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exist) as this empowers the query compiler to know that a
query has no results without actually running it.

The table selection procedure is depicted in Algorithm
If the predicate of the input triple pattern tp; is a variable,
we have to use the base triples table (or union of VP ta-
bles) to match that pattern. If not, it initially starts with
the corresponding VP table and iterates over all other triple
patterns in the input BGP to check whether they have any
correlation (SS, SO, OS) to tp;. If tp; has more than one cor-
relation to another triple pattern, the algorithm selects the
corresponding ExtVP table with smallest (best) SF value.

Algorithm 1: TABLESELECTION

input: TriplePattern tp; : (s,p,0)
BGP : Set(TriplePattern : (s,p,0))
tab : Table

if isVar(tp;.p) then return TriplesTable
else tab <+ VP, // initially start with VP table

foreach tp : TriplePattern € BGP # tp; do
if tp;.s = tp.s A SF(E;vtVPtiS'p‘tp'p) < SF(tab) then
‘ tab < E:z:ﬂ/']:’ts"vg // SS correlation
p;-pltp.p
if tp;.s = tp.o A SF(ExtVPti? ) < SF(tab) then
// S0 correlation

i-pltp.p
\ tab « ExtV P3O
) < SF(tab) then

tp;.pltp.p
// 0S correlation

output:

if tp;.0 = tp.s A SF(ExtV POS

tp;.pltp.p
‘ tab + EztV POS
tp;.p|tp.p

© O N O AW N

return tab

Exemplary, consider triple pattern tps = (?y, follows, 7z)
in Figure[d] It has a SO correlation to tps = (?, follows, 7y)
on variable 7y and an OS correlation to tps = (72, likes, Tw)
on variable 7z. Hence, in total, there are three candidate ta-
bles to answer tps: (1) V Pfotiows, (2) ExtVPfo?lows‘fouows

and (3) ExtVPfOO‘?lmm”ikes. From these tables, (3) gets se-
lected as it has the best SF value.

Once the appropriate table is selected, the correspond-
ing SQL subquery to retrieve the results for triple pattern
tp; can be derived from the position of variables and bound
values in tp;. Bound values are used as conditions in the
WHERE clause and variable names are used to rename ta-
ble columns in the SELECT clause such that all subqueries
can be easily joined on the same column names, i.e. using
natural joins. The mapping of a triple pattern to SQL is
depicted in Algorithm [2] using relational algebra notation.
It checks all positions of ¢p; whether they contain a variable
or bound value. In case of a variable, the corresponding
column gets renamed by the variable name and added to a
list of projections (we combine rename and projection for
shorthand notation). For a bound value on subject or ob-
ject position, the corresponding selection is added to a list
of conditions. A bound predicate is already covered by the
selected table and thus no additional selection is needed. In
Figure [ the corresponding SQL subqueries for triple pat-
terns tp1,...,tps are given on the right.

5.2 Query Composition

To compute the overall BGP result, the subqueries for all
triple patterns must be joined. Regarding query semantics,
the order of triple patterns in a SPARQL BGP does not
affect the query result. However, when a query is evaluated,
the order in which triple patterns and thus subqueries are
actually executed can have severe impacts on performance.
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SPARQL ExtVP Table Selection SQL (with join order optimization)
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VPlkes ___________ 3 tuples_ 1.00_ FROM  VPlikes
\ExtVP_SOlikes|follows 1 tuple  0.33

Figure 4: SPARQL to SQL for @1 based on ExtVP. Correlations between triple patterns determine the
possible ExtVP tables. From these candidate tables, the ones with best (min) SF values get selected.

Algorithm 2: TP2SQL

Algorithm 3: BGP2SQL_oprT

input: TriplePattern tp; : (s,p,0) , tab: Table
output: query : SQL (in relational algebra notation)

1 projections < 0, conditions < 0

2 if isVar(tp;.s) then

3 | projections < projections U (s — tp;.s)

4 else conditions < conditions U (s = tp;.s)

5 if isVar(tp;.p) then

6 projections < projections U (p — tp;.p)

7 if isVar(tp;.o) then

8 ‘ projections < projections U (o — tp;.0)

9 else conditions < conditions U (o = tp;.o)

0 return query < m[projections|o|conditions](tab)

In S2RDF, for a BGP with n triple patterns we derive n — 1
join operations between ExtVP tables in the generated SQL
query to compute the result. As query workload is typically
I/0 bound, it is crucial to optimize the join order such that
the amount of intermediate results gets reduced.

Let sel(tp) = |Q4p|/|G| be the selectivity of a triple pattern
tp for RDF graph G. The general rule of thumb is to order
triple patterns by selectivity, i.e. sel(tp;) < sel(tpi+1). This
is based on the assumption that smaller join inputs usually
lead to smaller join outputs which is not always true but
tend to be a good approximation in practice. The most ob-
vious optimization is to make sure that patterns with more
bound values are executed first and cross joins are avoided
as they have the worst selectivity, i.e. it should hold that
(Uj<;vars(tp;)) Nvars(tpi+1) # 0. This can be derived
statically from the query structure itself.

In addition, S2RDF can make use of table statistics col-
lected during initial ExtVP creation. As the system is aware
of the size of each VP and ExtVP table, it can order those
triple patterns with the same amount of bound values by size
of the corresponding table that is selected by Algorithm
It uses the actual table sizes instead of selectivity factors as
we want to join the smallest tables first and not the ones
with the highest reduction compared to VP. This procedure
is depicted in Algorithm [3] It first orders triple patterns by
the number of bound values (line 2). From this list it iter-
atively picks the triple pattern with smallest corresponding
ExtVP table (lines 5-9) and adds a join operation for this
table to the generated SQL query (lines 11-13). This de-
fines the order of joins performed by Spark when executing
the final SQL query. If one of the selected tables is empty,
i.e. SF =0 (line 10), it can directly return an empty result.

input: BGP : Set(TriplePattern : (s,p,0))
output: gquery : SQL (in relational algebra notation)

1 vars < 0, query < 0

2 tmpBGP < order ByBoundV alues(BGP)

3 while tmpBGP # () do

4 tpnezt <~ ®7 tabnezt — @

5 foreach tp : TriplePattern € tmpBGP do

6 tab < TABLESELECTION(¢p, BGP)

7 if tabpest =0 V

8 (Size(tab) < Size(tabpest) A varsNuvars(tp) # 0)
then

9 ‘ tpnext < tp, tabnesxt < tab

10 if SF(tabpest) =0 then return ()

11 else if vars = () then

12 ‘ query < TP2SQL(tpnext, tabnest)

13 else query <+ query X TP2SQL(tpnext, tabnext)
14 vars < vars Uvars(tpnest)

15 tmpBGP < tmpBGP \ {tpnext}

16 return query

Consider again our running example in Figure[d] All triple
patterns have the same amount of bound values and no cross
joins occur when processing them in the given order. How-
ever, execution in listed order would first join the two largest
tables and produce intermediate results that get discarded
in the following joins. Instead, as S2RDF is aware of the
size of all tables, it places the subqueries corresponding to
tps and tps at the beginning of join order as they use the
smallest tables (cf. Figure . Overall, this reduces the in-
termediate result size thus saving I/O, and also the total
number of join comparisons thus saving CPU.

The remaining SPARQL 1.0 operators can be more or less
directly mapped to the appropriate counterparts in Spark
SQL. A FILTER expression in SPARQL can be mapped to
equivalent conditions in Spark SQL where we essentially
have to adapt the SPARQL syntax to the syntax of SQL.
These conditions can then be added to the WHERE clause
of the corresponding (sub)query. OPTIONAL is realized by a
left outer join while UNION, OFFSET, LiMIT, ORDER BY and
DiSTINCT are realized using their equivalent clauses in the
SQL dialect of Spark. S2RDF does currently not support
the additional features introduced in SPARQL 1.1, e.g. sub-
queries and aggregations. This is left for future work.

Eventually, a given SPARQL input query is represented
by a single equivalent Spark SQL query which is then hand
over to Spark for execution.
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6. EVALUATION

Evaluation was performed on a small cluster of 10 ma-
chines (1 master and 9 worker), each equipped with an In-
tel Xeon E5-2420 CPU @1.90GHz, 2x2 TB disks, 32 GB
RAM running Ubuntu 14.04 LTS and connected via Giga-
bit Ethernet. We used the Hadoop distribution of Cloudera
CDH 5.4 which was the most recent version at the time
of evaluation. For Spark we used the version shipped with
CDH (Spark 1.3). Broadcast joins in Spark SQL were dis-
abled since they are based on Hive table statistics which
are not available since we do not store ExtVP tables in the
Hive Metastore. Consequently, they would be based on in-
accurate size estimations. S2RDF uses its own statistics for
table selection. In this way, we do not impose an additional
dependency on Hive. Each Spark executor was given 20 GB
of memory and Parquet filter pushdown was enabled.

We compare S2RDF with state of the art SPARQL pro-
cessors for Hadoop. SHARD [26] and PigSPARQL [27] are
both based on MapReduce, Sempala |28| uses Impala and
H2RDF+ (23] is based on HBase. Additionally, we also com-
pare S2RDF to Virtuoso Open Source Edition v7.1.1 [9)
installed on single server with an Intel Xeon X5667 CPU
@3.07GHz, 12 TB disk in hardware RAID 5 optimized for
read and 32 GB RAM running Ubuntu 14.04 LTS. We in-
clude Virtuoso to give a rough idea of how the runtimes
compare to a state of the art centralized RDF store. In this
way, we demonstrate that our approach to adapt a general-
purpose Big Data platform is competitive while at the same
time being able to scale out (more machines) instead of scale
up (more resources per machine).

The experiments were conducted on two datasets with
approx. 100 million and 1 billion RDF triples generated us-
ing the WatDiv Data Generator with scale factors 1000 and
10000, respectively. It is provided by the Waterloo SPARQL
Diversity Test Suite (WatDiv) [2] that covers all different
query shapes and thus allows us to test the performance
of S2RDF and competitors in a more fine-grained way. We
used the WatDiv Query Generator to instantiate query tem-
plates and report the average mean runtimes (AM) in the
following. When an ExtVP table is used for the first time,
S2RDF uses the cacheTable functionality of Spark SQL to
cache it in memory. We do not include caching times in our
reported query runtimes as it is a one-time operation not
required for subsequent queries accessing the same table.

The loading times and store sizes are listed in Table
For the largest dataset (SF10000), ExtVP consists of 2043
tables. The other potential tables were either empty (19780
with SF' = 0) or equal to VP (279 with SF = 1). S2RDF
needs significantly more time to load the data than the other
systems due to the large amount of semi-joins. However,
this is a one-time task and we have not spent much effort
to optimize this process. In a production environment, one
could think of a pay as you go approach where ExtVP tables
are computed lazily on the fly when required for the first
time in a query and materialized for usage in later queries.

6.1 WatDiv Basic Testing

WatDiv comes with a set of 20 predefined query templates
called Basic Testing use case which can be grouped in four
categories according to their shape: star (S), linear (L),
snowflake (F) and complex (C). Figure |5 compares the dif-
ferent systems on the largest dataset (SF10000), correspond-
ing AM runtimes are listed in Table
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Table 1: WatDiv loading times and HDFS sizes for
S2RDF VP/ExtVP (0 < SF < 1) and competitors

SF1000 SF10000
8 original 109.2 M 1091.5 M
2. VP 109.2 M 1091.5 M
2 ExtVP 1197.9 M 11967 M
2 VP 86 86
5 ExtVP 2041 2043
8 total 2127 2129
g original 5.3 GB 54.9 GB
2 ExtVP 6.2 GB 63.7 GB
n H2RDF+4 5.2 GB 57.0 GB
Rk Sempala 3.5 GB 40.4 GB
A PigSPARQL 8.9 GB 92.5 GB
T SHARD 9.9 GB 100 GB
S2RDF VP 290 s 1065 s
% S2RDF ExtVP 9497 s 60572 s
= H2RDF+ 507 s 5425 s
& Sempala 333 s 2782 s
£ PigSPARQL 71s 498 s
SHARD 134 s 1222 s

We can observe that S2RDF outperforms both SHARD
and PigSPARQL by several orders of magnitude for all query
categories due to their underlying MapReduce-based batch
execution engine. These systems scale very smoothly with
the data size but are not able to provide interactive query
runtimes as MapReduce imposes a large startup overhead.
The performance of PigSPARQL is better than SHARD due
to its multi-join optimization that can process several triple
patterns in a single MapReduce job whereas SHARD uses
one job per triple pattern.

Though Sempala is optimized for star queries, S2RDF
outperforms it by up to an order of magnitude for this cate-
gory as well (S1-S7). We attribute this to the fact that Sem-
pala, though not performing any joins, has to scan through
the whole property table to find the matching rows thus
query execution is limited by table scanning time. S2RDF,
in contrast, can significantly reduce the input size. For ex-
ample, the star pattern of query S3 contains triple patterns
with predicates rdf:type and sorg:caption and the corre-
sponding table ExtVPtfliﬂcapti(m has selectivity SF = 0.02,
i.e. it reduces the input size for triple pattern with predicate
rdf:type to only 2%. This underpins our finding from Sec-
tion [4] that input size reduction is often more effective than
the reduction of join operations. Sempala also shows a good
performance for other query types but is not able to beat
S2RDF for any query. On average, S2RDF is an order of
magnitude faster than Sempala for all four query categories.

The performance of H2RDF+ strongly depends on its ex-
ecution model. For the smaller dataset (SF1000), it can
use efficient centralized merge joins for most of the queries.
However, for the larger dataset (SF10000), many queries
become too costly for centralized execution and MapReduce
must be used. For example, while both systems have nearly
the same performance for query F1 on SF1000, S2RDF out-
performs H2RDF+ by two orders of magnitude for the same
query on SF10000. The same is true for the majority of
queries regardless of their type. There are only a few queries
(5 out of 20) where runtimes of H2RDF+ are slightly better
than S2RDF on the largest dataset. These queries contain
highly selective triple patterns which are ideal candidates
for centralized execution based on HBase lookups. On aver-
age, S2RDF outperforms H2RDF+ by at least one order of
magnitude for all four query categories.
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Figure 5: WatDiv Basic Testing (SF10000) of S2RDF and competitors
Table 2: WatDiv Basic (in ms), AM-X = AM of category X, AM-T = total AM of all queries
Query L1 L2 L3 L4 L5 | AM-L | S1 S2 S3 S4 S5 S6 S7| AM-S
o S2RDF ExtVP 202 196 196 132 162 178 735 294 219 209 199 209 191 294
8 H2RDF+ 98 1450 62 207 1616 687 942 3831 2423 1937 996 673 51 1550
— Sempala 904 746 740 664 752 761 3130 1058 862 876 960 848 870 1229
a PigSPARQL 68000 67500 46500 41000 68000 | 58200 57000 46000 44000 46500 42000 46500 46500 | 46929
SHARD 103153 99905 72603 67937 99595 | 88639 | 264976 130625 122958 127587 123832 99866 102040 | 138840
S2RDF ExtVP 471 498 549 209 270 399 2208 607 311 329 260 235 420 624
(=) H2RDF+ 214 13447 145 1752 32222 9556 1809 32902 30844 30419 30807 25795 109 | 21812
8 Sempala 3938 2140 3630 2616 1914 2848 17386 5368 2816 2442 3142 2260 3476 5270
2 PigSPARQL 76500 72500 51000 46500 75000 | 64300 92500 61000 56500 62000 46500 61500 59000 | 62714
By SHARD 444511 406007 288980 275534 406591 | 364324 | 1240267 579207 555911 567297 550959 424402 428905 | 620992
' Virtuoso (cold) 16009 15727 7580 46287 44260 | 25973 15873 13072 2726 11445 1910 6779 7084 8413
Virtuoso (AM) 3437 5984 1863 10055 9710 6210 4630 2853 576 3157 9470 2555 4516 3965
Query F1 F2 F3 F4 F5 | AM-F | c1 c2 C3 | AM-C | AM-T
o S2RDF ExtVP 433 642 638 692 672 615 923 1460 2929 1771 567
8 H2RDF+ 476 2926 1952 5642 203 2240 53032 20250 35617 36300 6719
— Sempala 1068 1704 1538 1950 2545 1761 2828 5992 6040 4953 1804
% PigSPARQL 97500 80500 92500 85500 99000 91000 119500 272500 64000 152000 76525
SHARD 182215 237370 181606 266426 181581 209839 236828 297344 298759 277644 164860
S2RDF ExtVP 590 1226 1969 1265 2254 1461 2508 2740 16407 7218 1766
=) H2RDF+ 52843 41480 51085 52323 679 39682 96777 170473 91189 119480 37866
8 Sempala 4420 9316 12090 11668 19516 11402 23136 39710 37462 33436 10422
a PigSPARQL 212000 105500 115500 106000 133500 134500 205000 387000 172000 254667 109850
<2 SHARD 835514 1103997 834778 1245115 841380 972157 1100372 1398989 2146928 1548763 783782
N Virtuoso (cold) 3997 30627 31144 11374 11362 17701 22801 39711 226129 96214 28295
Virtuoso (AM) 1197 18376 8629 4705 4879 7557 22801 39711 226129 96214 19262

For Virtuoso we observed that queries with empty results
are generally very fast due to the use of sophisticated in-
dexes. Furthermore, if a query is executed several times
for different template parameter values, its performance im-
proves gradually probably due to caching effects. In Table
we report both, the runtimes of Virtuoso for cold caches
where we execute every query only once as well as AM run-
times for repeated query execution. Nonetheless, S2RDF is
an order of magnitude faster than Virtuoso on average for all
four query categories, even with repeated query execution.

Overall, the evaluation clearly demonstrates the superior
performance of S2RDF compared to other state of the art
distributed and centralized RDF stores for all query shapes.
In contrast to existing approaches, ExtVP does not favor any
specific query type and achieves consistent performance re-
gardless of query shape. Thus, S2RDF answers most queries
in less than a second on a billion triples RDF graph.

6.2 WatDiv Incremental Linear Testing (IL)

The Basic Testing use case is well suited to test the per-
formance for different query shapes but most queries have
a rather small diameter. In fact, only two have a diameter
larger than 3 (C1, C2). Most RDF stores are optimized for
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small diameter queries as RDF datasets are typically frag-
mented based on hashing or graph partitioning algorithms
that try to place vertices on the same cluster node that are
close to each other in the RDF graph, e.g. .

For that reason, we have designed an additional WatDiv
use case called Incremental Linear Testing focusing on lin-
ear queries with increasing size (diameter). It consists of
three query types (IL-1, IL-2, IL-3) which are bound by
user, retailer or unbound. Each type starts with a diam-
eter of 5 (i.e. 5 triple patterns) and we incrementally add
triple patterns (up to 10). For example, query IL-1-8 is a
user bound query with diameter 8. This use case is now
officially included in WatDivEl which emphasizes the impor-
tance of such a workload that was not adequately covered
before. Figure[f]compares all systems on the largest dataset
(SF10000), corresponding AM runtimes are listed in Table 3]

The first query type (IL-1) starts from an instantiated user
following various edges along the graph, i.e. it has the struc-
ture ( %u’% pl ?7vl . 7vl p2 ?v2 . ?v2 p3 7v3 ).
We observe that S2RDF significantly outperforms all other
distributed competitors while runtimes rise only slightly with
increasing data size. The queries make use of the two largest

Zhttp://dsg.uwaterloo.ca/watdiv/
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Figure 6: WatDiv Incremental Linear Testing (SF10000) of S2RDF and competitors
Table 3: WatDiv IL (in ms), AM-IL-X = AM of query type X, AM-Y = AM of queries with length Y
Query IL-1-5 IL-1-6 IL-1-7 IL-1-8 IL-1-9 IL-1-10|AM-IL-1|IL-2-5 IL-2-6 IL-2-7 IL-2-8 IL-2-9 IL-2-10|AM-IL-2
o S2RDF ExtVP 1724 1745 1965 2029 2185 2643 2048| 4944 1869 1980 2114 2382 2413 2617
8 H2RDF+4 25351 48957 78117 71448 99636 92232 69290| 25090 49745 50514 73750 122180 99416 70116
— Sempala 29321 29684 29595 29696 29658 29663 29603| 19357 19388 19496 19867 20162 20152 19737
a PigSPARQL 132130 163757 181044 205225 227679 255845 194280198302 252621 269446 301519 324526 339143 280926
SHARD 167910 189782 217487 244575 275592 302084 232905(167761 196993 223118 252725 281614 309606 238636
S2RDF ExtVP 12543 12252 15062 15003 15478 16124 14410| 41188 13276 14182 15261 16313 13922 19024
=) H2RDF+4 76284 105794 131672 164583 188800 227637 149128| 77567 108780 139282 161913 187288 216887 148620
g Sempala 128486 131304 152730 152169 153360 154272 145387| 61843 63501 64487 76717 97933 96590 76845
S PigSPARQL 209594 270757 293241 321021 348274 364243 301188(258307 313681 340580 365995 396331 415046 348323
< SHARD 792204 925542 1064010 1195541 1354956 1487522| 1136629|837829 992373 1131621 1278385 1414462 1622432| 1212850
" Virtuoso (cold) 46998 77903 74664 82471 109177 86329 79590| 74014 167892 78311 81350 159688  95034| 109382
Virtuoso (AM) 10529 16796 13159 17320 17712 18243 15627| 9470 19314 10775 10870 18808 15431 14111
Query IL-3-5 IL-3-6 IL-3-7 IL-3-8 IL-3-9 IL-3-10‘AM-IL-3‘ AM-5 AM-6 AM-7 AM-8 AM-9 AM-10
° S2RDF ExtVP 4474 12188 8552 178514 13411 13405 38424 3714 5267 4166 60886 5993 6154
g H2RDF+ 121396 183752 225669 F F F N/A| 57279 94151 118100 N/A N/A N/A
- Sempala 155298 194758 93424 878232 217636 231430 295130 67992 81277 47505 309265 89152 93748
5‘) PigSPARQL 362172 571965 622899 1924061 1653627 1777284| 1152001| 230868 329447 357796 810268 735277 790757
SHARD 1323657 2423349 F F F F N/A| 553109 936708  N/A N/A N/A N/A
S2RDF ExtVP 29590 87525 102971 2068100 158595 141940 431454 27774 37684 44072 699454 63462 57329
° H2RDF4 240339 451390 F F F F N/A| 131397 221988  N/A N/A N/A N/A
8 Sempala 493016 595152 365868 5649620 2026680 2462137 1932079| 227782 263319 194362 1959502 759324 904333
2 PigSPARQL 1847039 3353907 4876005 40140420 37353210 37514308| 20847481 | 771646 1312782 1836609 13609145 12699271 12764532
B SHARD 11995677 23164293 F F F F N/A|4541903 8360736  N/A N/A N/A N/A
N Virtuoso (cold) F F F F F F N/A N/A N/A N/A N/A N/A N/A
Virtuoso (AM) F F F F F F N/A| N/A N/A N/A N/A N/A N/A

predicates in the dataset (friend0f and follows) that both
together represent ca. 70% of all triples in the RDF graph
(0.7 % |G]). This is probably also the reason why H2RDF+
does not use centralized execution for all queries. By means
of ExtVP, S2RDF can reduce the input size for predicates
follows and friend0f from 0.3 % |G| to 0.07 % |G| and from
0.4 * |G| to 0.065 * |G| using a combination of OS and SO
tables. The only system that achieves similar runtimes as
S2RDF is centralized Virtuoso with warm caches while being
significantly slower for cold caches.

The second query type (IL-2) has the same structure but
starts from an instantiated retailer. Similar to IL-1, S2RDF
clearly outperforms all other distributed competitors. How-
ever, there is an interesting aspect when comparing the run-
time of S2RDF for I1-2-5 with runtimes of IL-2-6 to IL-2-10.
IL-2-5 performs much worse than all other queries despite
being a subpattern of them. This seems to be odd at first
glance but can be explained by looking at the query pattern.
IL-2-5 ends with following predicate (edge) friend0f twice
(... ?v3 friend0Of ?v4 . ?7v4 friendOf ?7v5) which is
the largest predicate in the graph (0.4 |G|). Unfortunately,
SO table E:ctVPfSr?endOflf”endof has selectivity SF = 1
and thus table V Pjriendor must be used for the last triple
pattern t5. 1L-2-6 adds a triple pattern with predicate 1ikes
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to the end which allows S2RDF to use EmtVPﬁfendof|likes
with SF = 0.24 for t5 which reduces the input size for it
from 0.4 % |G| to 0.1 * |G|. This example demonstrates that
more triple patterns in a query can even lead to better per-
formance in S2RDF despite the fact that it needs more joins.
The third query type (IL-3) has also the same structure
but is not bound at all, i.e. it starts from all vertices in
the graph following various edges. This type of query puts
a heavy load on the system and produces very large result
sets. Only S2RDF, Sempala and PigSPARQL were able to
answer all queries up to diameter 10 on the largest dataset
(SF10000) which demonstrates the excellent scalability of
these systems. Virtuoso was not able to answer any of the
queries within a 10 hours timeout which confirms the scal-
ability limitations of centralized RDF stores. Interesting to
see is that S2RDF runtime of IL-3-8 is an order of magnitude
slower than for all other queries. There is a twofold reason
for that. First, the result size of IL-3-8 is extremely large
(~ 25 billion) and gets reduced by adding another triple
pattern tg in IL-3-9 (~ 1 billion). Second, join order opti-
mization (cf. Section does not simply add the join for t9
in IL-3-9 to the end of execution but pushes it more to the
beginning as its corresponding ExtVP table is rather small
and thus reduces the intermediate result size significantly.



Overall, S2RDF demonstrates its superior performance
and scalability for queries with large diameters, a query type
that is not sufficiently covered by the Basic Testing use case
and is also underrepresented in other existing RDF /SPARQL
benchmarks. Our new use case reveals that performance of
many distributed RDF stores significantly drops for such
workloads as their data model is optimized to answer small
diameter queries. It is now included in WatDiv and we hope
that this will accelerate a better support in future.

6.3 SF Threshold

In the previous two experiments we did not specify a se-
lectivity threshold for ExtVP (SF TH), i.e. all tables with
SF < 1 were available to S2RDF for query execution. In
this section we investigate the influence of a threshold as
discussed in Section 3] on query runtime and storage over-
head. For example, a threshold of 0.5 for SF means that
only those ExtVP tables with SF < 0.5 are materialized.
Since WatDiv data is synthetic and thus potentially more
structured than real-world RDF datasets (8], we addition-
ally used a dump of YAGO [16] (YAGO2s 2.5.3) for this
experiment with a total size of 245 million triples. YAGO
is a huge semantic knowledge base derived from Wikipedia,
WordNet and GeoNames and was also used by IBM Watson.

Table 4: ExtVP sizes (including VP) for varying SF
threshold values (WatDiv SF10000 / YAGO)

SF TH  #tables (%) #tuples (%) HDFS size (%)

. 0.00 86 (0.04) 1091 M (0.08) 6.6 GB (0.09)
5 025 1275 (0.60) 3316 M (0.25) 18.4 GB (0.26)
T 050 1609 (0.76) 5889 M (0.45) 32.1 GB (0.46)
g 0.75 1887 (0.89) 9480 M (0.73) 51.3 GB (0.73)
1.00 2129 (1.00) 13059 M (1.00)  70.3 GB (1.00)

0.00 104 (0.02) 245 M (0.09) 2.4 GB (0.10)

QO 0.5 4977 (0.76) 768 M (0.29) 6.3 GB (0.26)
3 0.50 5369 (0.81) 1086 M (0.41) 9.8 GB (0.41)
S 075 5645 (0.86) 1353 M (0.52) 12.8 GB (0.53)
1.00 6588 (1.00) 2619 M (1.00)  24.2 GB (1.00)

Table [ gives an overview of the number of tables main-
tained by S2RDF (ExtVP + VP), the total number of table
tuples and total storage size in HDFS. SF TH = 0 means
that no ExtVP tables are stored at all and hence only VP is
used whereas SF TH = 1 means that all tables with SF' < 1
are considered. The best performance, of course, is achieved
for SF TH = 1 but this also means that we store a lot of
tables with low selectivities that cost a lot of storage but do
not improve performance to a large extent.

We test the runtimes of S2RDF for varying SF TH val-
ues. For WatDiv we run the Basic Testing use case (cf. Sec-
tion which covers all query shapes. For YAGO we
adapted the queries used in [5] (derived from [21]) and [31].
We omit unbound predicate queries as they are not suited
to demonstrate the properties of ExtVP. Moreover, we de-
signed additional queries such that the final set (15 queries
with up to 13 triple patterns) also covers all shapes similar
to WatDiv. Our YAGO query set is available on the project
website. A comparison of relative runtimes and actual data
sizes with respect to SF TH values is illustrated in Figure[7]

It turns out that for SF TH = 0.25 we already achieve
most of the performance benefit compared to the baseline
execution with SF TH = 0 (which corresponds to VP), both
for synthetic and real-world data. In fact, on average we
achieve 95% of best possible performance benefit for Wat-
Div and even 99% for YAGO. At the same time, we maintain
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Figure 7: Relative query runtimes and data sizes in
relation to increasing SF threshold values

only 3n tuples in total over all tables (including VP) with
n being the number of triples in the RDF graph, compared
to more than 10n for SF TH = 1. Thus, ExtVP implies an
overhead of only 2n compared to VP for SF TH = 0.25 which
also directly corresponds to physical storage in HDFS. Most
notably, S2RDF performs even better for YAGO than for
WatDiv. The reason is that real data is less structured and
thus ExtVP tables are more selective on average (YAGO:
0.20 vs. WatDiv: 0.29). Also 76% of all ExtVP tables have
SF < 0.25 for YAGO compared to 60% for WatDiv. Storage
consumption for YAGO leaps up for SF TH > 0.9 because
a lot of large-scale tables have 0.9 < SF < 1 whereas it
increases uniformly for WatDiv. This also reveals the more
regular nature of WatDiv compared to YAGO. It is also im-
portant that there was no significant difference for different
query shapes which confirms that our data model does not
favor any specific shape. A differentiation by query shape
for WatDiv can be found in our technical report [29].

In summary, the performance of S2RDF when executed
on ExtVP with a threshold of 0.25 for SF' is almost the
same compared to ExtVP with no threshold while reducing
the overhead significantly to a reasonable extent comparable
to existing approaches.

7. CONCLUSION

In this paper, we present S2RDF, a distributed Hadoop-
based SPARQL query processor for large-scale RDF data
implemented on top of Spark. It comes with a novel re-
lational schema for RDF called ExtVP (Extended Vertical
Partitioning) and uses the SQL interface of Spark for query
execution by compiling SPARQL to SQL. ExtVP is an ex-
tension to the Vertical Partitioning (VP) schema [1] and is
inspired by semi-join reductions similar to Join Indices [30].
We precompute the reductions of tables in VP for possible
join correlations that can occur between triple patterns in a
SPARQL query. In this manner, S2RDF can avoid dangling
tuples in the join input which significantly reduces the query
input size and thus execution runtime. This technique is ap-
plicable to any kind of query pattern regardless of its shape
which we demonstrate in our comprehensive evaluation.

S2RDF outperforms state of the art centralized and dis-
tributed SPARQL query processors by an order of magni-
tude on average for all query shapes while achieving sub-
second runtimes for the majority of benchmark queries on
a billion triples dataset. In contrast to most of the existing
distributed RDF stores, the performance of S2RDF using
ExtVP does not depend on the query diameter but achieves
efficient runtimes on large diameter queries as well. To re-
duce the overhead compared to VP, one can also specify



an optional threshold for selectivity factor SF of ExtVP.
We demonstrate in our evaluation that a threshold of 0.25
achieves 95% of best possible runtime improvements on av-
erage while using only 25% of table tuples and storage size.

A more comprehensive discussion, in particular further
evaluation results, can be found in our technical report [29].
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