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ABSTRACT
It has been a recognized fact for many years that query execution
can benefit from pushing group-by operators down in the operator
tree and applying them before a join. This so-called eager aggrega-
tion reduces the size(s) of the join argument(s), making join evalu-
ation faster. Lately, the idea enjoyed a revival when it was applied
to outer joins for the first time and incorporated in a state-of-the-
art plan generator. However, this recent approach is highly depen-
dent on the use of heuristics because of the exponential growth of
the search space that goes along with eager aggregation. Finding
an optimal solution for larger queries calls for effective optimality
preserving pruning mechanisms to reduce the search space size as
far as possible. By a more thorough investigation of functional de-
pendencies and keys, we provide a set of new pruning criteria and
evaluate their effectiveness with respect to the runtime and memory
consumption of the resulting plan generator.

1. INTRODUCTION
The idea of reordering group-by operators and joins was pro-

posed already two decades ago ([12, 13, 14, 11, 1]) and has since
been implemented in many commercial query optimizers. Howev-
er, it was always limited to inner joins only.

In a recent paper, Eich and Moerkotte revived the topic by show-
ing that the optimal placement of group-by operators is possible
in the presence of non-inner joins as well, thus enabling query op-
timizers to apply this powerful optimization technique to a whole
new class of queries.

They describe a plan generator capable of reordering group-by
and a wide range of different join operators. While their approach
performs well for small queries, queries with more than ten rela-
tions can only be handled by abandoning optimality and relying on
heuristics [4].

The reason for this limitation is the lack of an effective optimality-
preserving pruning criterion to limit the size of the search space and
thereby allow the optimization of larger queries. A quick complex-
ity analysis shows the importance of pruning in this context: A
binary operator tree with n relations contains 2n−2 edges, and we
can attach a group-by to each of these edges and on top of the root,
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resulting in 2n − 1 possible positions for a group-by. If one con-
siders all valid combinations of these positions for every tree, the
additional overhead caused by the optimal placement of group-by
operators is in O(22n−1).

On the other hand, if one can infer at a certain position in the
operator tree that the grouping attributes constitute a superkey, then
a group-by at this position does not need to be considered.

We give an in-depth analysis of four new optimality-preserving
pruning criteria and an existing one that was proposed in [4]. They
are derived by a careful investigation of keys and functional depen-
dencies. We describe the pruning criteria with the help of some
examples and evaluate them experimentally, thereby showing that
they can speed up the plan generator by orders of magnitude. The
correctness proofs for all pruning criteria discussed in this paper
can be found in [3].

Section 2 contains some preliminaries concerning the notation
used in this paper and the basics of a bottom-up plan generator. In
Section 3 we take a closer look at the information needed during
plan generation which is captured in the form of interesting plan
properties. Our main contribution is contained in Sections 4, 5, 6
and 7, where we discuss the different pruning criteria. In Section 8,
we show the results of our experiments and subsequently conclude
the paper in Section 9.

2. PRELIMINARIES

2.1 Algebraic Operators
In this section we provide definitions for the algebraic operators

we will be using throughout the rest of the paper. We use standard
set notation to denote bags.

We define the group-by operator Γ as

ΓG;a1:f1,...,ak:fk (e) := {y ◦ [a1 : x1, . . . , ak : xk] | y ∈ ΠD
G(e),

xi = fi({z|z ∈ e, z.G = y.G})},

for some set of grouping attributes G. The attributes a1 . . . ak are
created by applying the aggregation vector F = (f1, . . . , fk), con-
sisting of k aggregate functions, to the grouped tuples. We de-
note by ΠD

A (e) the duplicate-removing projection onto the set of
attributes A, applied to the expression e. The resulting relation on-
ly contains values for those attributes that are contained inA and no
duplicate values. The aggregate functions contained in F are then
applied to groups of tuples taken from this relation. The groups
contain tuples with equal values in the grouping attributes. The
results are stored in attributes a1, . . . , ak.

Henceforth, we use a shorter notation for the group-by, where
we abbreviate the specification of the aggregation vector and the
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e1 A e2 := {r ◦ s|r ∈ e1, s ∈ e2} (1)
e1 Bp e2 := {r ◦ s|r ∈ e1, s ∈ e2, p(r, s)} (2)
e1 Np e2 := {r|r ∈ e1, ∃s ∈ e2, p(r, s)} (3)
e1 Tp e2 := {r|r ∈ e1, @s ∈ e2, p(r, s)} (4)
e1 Ep e2 := (e1 Bp e2) ∪ ((e1 Tp e2) A {⊥A(e2)} (5)

e1 Kp e2 := (e1 Bp e2)

∪((e1 Tp e2) A {⊥A(e2)}
∪({⊥A(e1)} A (e2 Tp e1)) (6)

e1 Zp;g:f e2 := {r ◦ [g : G]|r ∈ e1,

G = f({s|s ∈ e2, p(r, s)})} (7)

e1
a b c
0 0 1
1 0 1
2 1 3
3 2 3

e2
d e f
0 0 1
1 1 1
2 2 1
3 4 2

e1 Ze1.a=e2.f ;g:sum(e2.f) e2
a b c g
1 0 1 3
2 1 3 2

Figure 1: Join Operators and Example for Groupjoin

aggregation results. We denote by ΓG;A:F the group-by of an ex-
pression e with grouping attributes G, aggregation vector F and
aggregation attributes A.

The join operators we consider are the (inner) join (B), left semi-
join N, left antijoin (T), left outerjoin (E), full outerjoin (K), and
groupjoin (Z). The definitions of these join operators are given
in Figure 1. There, ◦ denotes tuple concatenation and ⊥A denotes
the attribute set A with all contained attributes set to null. Further,
we denote by A(e) the set containing all attributes provided by e.
Most of the shown operators are rather standard.

The last row defines the left groupjoin Z, introduced by von
Bültzingsloewen [10]. First, for a given tuple t1 ∈ e1, it determines
the sets of all join partners for t1 in e2 using the join predicate p.
Then, it applies the aggregate function f to these tuples and extends
t1 by a new attribute g containing the result of this aggregation.
Figure 1 provides an example.

2.2 Pushing Group-By
There are several possible ways of applying a group-by before

a join, depending on the type of join operator, the set of group-
ing attributes specified in the query, and the attributes that are to
be aggregated. Here, we give only a rough overview of the rea-
soning behind these transformations. For more detail, the reader is
referred to the work by Yan and Larson, who coined the term of
eager/lazy aggregation for inner joins [12, 13, 15, 14, 11], meaning
pushing down/pulling up a group-by below/above a join in the op-
erator tree. Thereby, they provided the basis for the work by Eich
and Moerkotte [4], who extended the approach to non-inner joins
and applied it in a state-of-the-art plan generator.

In general, when evaluating a query containing a group-by and
one or several join operators, join arguments can be grouped be-
fore the join to reduce their cardinalities, thus making the join itself
cheaper. However, this transformation typically has an influence on
the query result, meaning that one further operation after the eval-
uation of the final join is needed to achieve the desired result. In
many cases, this additional operation consists of a final group-by at

ΓG;A:F

◦e1,e2

e1 e2
(a)

(ΓG;A:F2 )

◦e1,e2

Γ
G

+
1 ;F1

1

e1

e2

(b)

(ΓG;A:F2 )

◦e1,e2

e1 Γ
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+
2 ;F1

2

e2
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Γ
G
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Γ
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+
2 ;F1

2
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Figure 2: Possible trees for group-by and join

the top of the operator tree to fix the query result. In other cases,
we only need to apply the aggregate functions specified by the us-
er, since the query result is already grouped as desired. The latter
case can be identified by the fact that all attributes contained in the
query result are functionally determined by the grouping attributes
specified in the input query, rendering an additional group-by ob-
solete. This is illustrated by the following implication, where we
denote by |e| the cardinality of the relation defined by expression
e:

G→ A(e)⇒ |ΓG;A:F (e)| = |e|.
In other words: if the grouping attributes form a key of the relation
that is grouped, the group-by has no effect besides the application
of the aggregation vector F.

Figure 2 provides an overview of the different possible evalua-
tion strategies for a query containing a join of expressions e1 and e2
and a group-by with grouping attributes G and aggregation vector
F . The first tree represents the conventional approach of evaluating
the group-by after the join. The remaining trees show the different
possibilities of grouping one or both join arguments before the join.
In these cases, the aggregation vector typically needs to be decom-
posed and split, i.e., it has to be computed in two steps before and
after the join to achieve the correct end result, which is indciated by
the subscripts and superscripts of the aggregation vector applied at
the respective group-by below the join. We put the final group-by
in brackets to indicate that it may not be needed. We denote by
◦e1,e2 an arbitrary join operator with a join predicate referencing
e1 and e2. We also assume that the join operator ◦ allows pushing
down a group-by into both of its arguments, which is not always the
case. It is important to choose the correct set of grouping attributes
for the “eager” group-by operators that are performed before the
join. We denote by G+

1 /G
+
2 the sets of grouping attributes to be

applied on top of e1/e2, respectively. They contain all attributes
that are “still needed” after the group-by, i.e., all attributes provid-
ed by e1/e2 that are referenced in a predicate further up in the tree
or as part of the grouping attributes specified in the query. That is
because the group-by removes all attributes not contained in its set
of grouping attributes, thereby possibly rendering the evaluation of
subsequent predicates or groupings impossible. For more detailed
information regarding all issues discussed in this paragraph, the
reader is referred to the previous work on the topic ([12, 13, 14, 11,
4]).

2.3 Dynamic Programming
We briefly repeat the basics of a plan generator based on dynamic

programming (DP). The plan generator is then extended to allow
the reordering of joins and group-by operators. In this, we closely
adhere to [4].

2.3.1 Plan Generation Basics
Figure 3 shows the basic structure of a typical DP-based plan

generator. Its input consists of three major pieces: the set of re-
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lations to be joined, the set of operators to be used for this, and a
hypergraph representing the query graph. Clearly, the relations and
the operators are derived from the initial SQL query in a straightfor-
ward manner. The hypergraph is constructed by a conflict detector
[6]. It encodes possible reordering conflicts as far as possible into
the hypergraph. This is necessary since inner joins and outer joins
are not freely reorderable.

The major data structure used is the DPTable , which stores (an)
optimal plan(s) for a given set of relations. The basic algorithm in
Figure 3 uses a single plan per DPTable entry. Subsequently, we
will see that for our purposes we have to store multiple plans per
DPTable entry.

The plan generator consists of four major components. The first
component initializes the DPTable with plans for access paths for
single relations, such as table scans and index accesses (Line 1,2).
The second one enumerates connected-subgraph-complement-pairs
(ccp for short) of the hypergraphH (Line 3), where a ccp is defined
as follows:

DEFINITION 1. Let H = (V,E) be a hypergraph and S1, S2

two subsets of V . (S1, S2) is a ccp if the following three conditions
hold:

1. S1 ∩ S2 = ∅,

2. S1 and S2 induce connected subgraphs of H , and

3. ∃(u, v) ∈ E, u ⊆ S1 ∧ v ⊆ S2, that is S1 and S2 are
connected by some edge.

An efficient enumerator for ccps has been proposed in [7].
The third component (Line 5) is an applicability test for opera-

tors. It builds upon the conflict representation and checks whether
some operator ◦p can be safely applied. This is necessary since
it is not possible to exactly cover all reordering conflicts within a
hypergraph representation of the query [6].

The fourth component (BUILDPLANS) is a procedure that builds
plans using some operator ◦p as the top operator and the optimal
plans for the subsets of relations S1 and S2, which can be looked
up in the DPTable . Finally, the optimal plan is returned (Line 9).

This basic algorithm can be extended in such a way that it can
reorder not only join operators but also join and group-by operators.

2.3.2 Extending the Plan Generator
To this end, the routine OPTREES is introduced (Figure 4). Its

arguments are two join trees T1 and T2, and a join operator ◦p. The
result consists of a set of at most four trees which join T1 and T2,
including all possible variants of eager aggregation.

The relation sets S1 and S2 are obtained from T1 and T2, respec-
tively, by extracting their leaf nodes. The first tree is the one which
joins T1 and T2 using ◦p without any grouping.

One situation that requires some care is when a join tree contain-
ing all the relations in our query is created. That is, S = R holds,
where R is the set of all relations. In this case, we have to add
another group-by on top of ◦p if and only if the grouping attributes
do not comprise a (super-)key (see Section 2.2). This is checked by
calling NEEDSGROUPING.

The next tree is the one that groups the left argument before the
join. In order to do so, we have to make sure that the corresponding
transformation is valid, which is achieved by a call to the subrou-
tine VALID. Additionally, we have to avoid the case in which the
grouping attributes G+

i form a key for the set Si, with i ∈ {1, 2},
because then the group-by would be a waste. And again, if neces-
sary, we have to add a group-by on top.

DP-PLANGEN

// Input: a set of relations R = {R0, . . . , Rn−1}
a set of operators O with associated predicates
a query hypergraph H

// Output: an optimal bushy operator tree
1 for all Ri ∈ R
2 DPTable[Ri] = Ri // initial access paths
3 for all csg-cmp-pairs (S1, S2) of H
4 for all ◦p ∈ O
5 if APPLICABLE(S1, S2, ◦p)
6 BUILDPLANS(S1, S2, ◦p)
7 if ◦p is commutative
8 BUILDPLANS(S2, S1, ◦p)
9 return DPTable[R]

BUILDPLANS(S1, S2, ◦p)
1 OptimalCost = ∞
2 S = S1 ∪ S2

3 T1 = DPTable[S1 ]
4 T2 = DPTable[S2 ]
5 if DPTable[S] 6= NULL
6 OptimalCost = COST(DPTable[S])
7 if COST(T1 ◦p T2 ) < OptimalCost
8 OptimalCost = COST(T1 ◦p T2 )
9 DPTable[S] = (T1 ◦p T2 )

Figure 3: Basic DP Algorithm

Once the routine terminates, the returned set Trees contains up
to four different join trees, as depicted further up in Figure 2.

To find the best possible join tree taking eager aggregation into
account, we have to keep all subtrees found by our plan generator,
combine them to produce all possible trees for our query and pick
the best one. That is, we cannot just keep the cheapest plan for
each plan class, as is typically the case when only reordering join
operators.

This is because Bellman’s principle of optimality, which is need-
ed to make DP applicable, does no longer hold once eager aggrega-
tion is taken into consideration. The reason for this is the fact that
applying a group-by at an arbitrary point in the operator tree in-
fluences the functional dependencies holding in all the subsequent
intermediate results. These dependencies finally determine whether
or not we need a final group-by on top to fix the query result (see
Section 2.2). The final group-by causes an additional cost that can
destroy the optimality of the plan. Consequently, we also have to
keep the more expensive subplans for each intermediate result be-
cause they might turn out to be a part of the optimal solution in the
end.

To achieve this, the dynamic programming table is modified to
contain not only one optimal join tree for every set S ⊆ R, but a list
of possible trees. Figure 5 shows the routine BUILDPLANSALL,
which is derived from the routine BUILDPLANS depicted in Figure
3 and illustrates the necessary modifications.

As before, we enumerate all pairs of subsets S1, S2 with S =
S1∪S2 to find possible join trees for S. We then combine every tree
for S1 with every tree for S2 using two loops. We call OPTREES
for each pair of join trees, which results in up to four different trees
for every combination. The newly created trees are added to the list
for S.

Eventually, we face the situation where S = R holds and we
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OPTREES(T1 ,T2 , ◦p)
1 S1 = T (T1 )
2 S2 = T (T2 )
3 S = S1 ∪ S2

4 Trees = ∅
5 NewTree = (T1 ◦p T2 )
6 if S = = R ∧ NEEDSGROUPING(G,NewTree)
7 NewTree = (ΓG(NewTree))
8 Trees.insert(NewTree)
9 NewTree = Γ

G+
1

(T1 ) ◦p T2

10 if VALID(NewTree) ∧ NEEDSGROUPING(G+
1 ,NewTree)

11 if S = = R ∧ NEEDSGROUPING(G,NewTree)
12 NewTree = (ΓG(NewTree))
13 Trees.insert(NewTree)
14 NewTree = T1 ◦p Γ

G+
2

(T2 )

15 if VALID(NewTree) ∧ NEEDSGROUPING(G+
2 ,NewTree)

16 if S = = R ∧ NEEDSGROUPING(G,NewTree)
17 NewTree = (ΓG(NewTree))
18 Trees.insert(NewTree)
19 NewTree = Γ

G+
1

(T1 ) ◦p Γ
G+

2
(T2 )

20 if VALID(NewTree)
∧ NEEDSGROUPING(G+

1 ,NewTree)
∧ NEEDSGROUPING(G+

2 ,NewTree))
21 if S = = R ∧ NEEDSGROUPING(G,NewTree)
22 NewTree = (ΓG(NewTree))
23 Trees.insert(NewTree)
24 return Trees

NEEDSGROUPING(G,T )

1 if G→ A(T ) ∧ the result of T is duplicate-free
2 return FALSE
3 else
4 return TRUE

Figure 4: OPTREES and NEEDSGROUPING

need to build a join tree for the complete query. At this point,
we call another subroutine named INSERTTOPLEVELPLAN. In-
side this routine, we compare the join trees for S to find the one
with minimal costs because there are no subsequent join operators
that need to be taken into account. Before we can do this, we have
to decide whether we need a top-level group-by by calling NEEDS-
GROUPING (Figure 4). In contrast to the other relation sets, we do
not have to keep a list of trees for R, but only the best tree found so
far and replace it if a better one is found.

The runtime complexity of this algorithm is O(22n−1#ccp) for
n relations if #ccp denotes the number of ccps for the query (see
Definition 1).

2.3.3 Optimality Preserving Pruning
As we have seen in the previous section, keeping all possible

trees in the solution table guarantees an optimal solution but, on
the other hand, causes such a big overhead that it is impractical for
most queries. This leads us to the question whether we can find a
way to reduce the number of DP-table entries and still preserve the
optimality of the resulting solution. In other words, we are looking
for an effective optimality-preserving pruning criterion.

Figure 6 shows the routine PRUNEDOMINATEDPLANS, which
discards all trees that are dominated by any other tree found so far.

BUILDPLANSALL(S1 ,S2 , ◦p)
1 S = S1 ∪ S2

2 for each T1 ∈ DPTable[S1 ]
3 for each T2 ∈ DPTable[S2 ]
4 for each T ∈ OPTREES(T1 ,T2 , ◦p)
5 if S = = R
6 INSERTTOPLEVELPLAN(S ,T )
7 else
8 DPTable[S1 ∪ S2 ].APPEND(T )

INSERTTOPLEVELPLAN(S, T)
1 if DPTable[S] = = ∅ ∨ COST(T ) < COST(DPTable[S])
2 DPTable[S] = ∅
3 DPTable.APPEND(T )

Figure 5: BUILDPLANSALL

PRUNEDOMINATEDPLANS(S, T )

1 for Told ∈ DPTable[S ]
2 if Told dominates T
3 return
4 if T dominates Told

5 discard Told
6 DPTable[S].APPEND(T )

Figure 6: PRUNEDOMINATEDPLANS

The routine expects as arguments a set of relations S and a join tree
T for this set. It is called from inside BUILDPLANSALL. To this
end, we replace line 8 in BUILDPLANSALL by

PRUNEDOMINATEDPLANS(S, T ).

The loop beginning in line 1 of PRUNEDOMINATEDPLANS iter-
ates through the existing join trees for S taken from the DP-table
and compares each of them with the new tree T . If there is an ex-
isting tree Told which dominates the new tree T , then the latter is
discarded. Therefore, the routine returns without adding T to the
tree list for S.

If T dominates an existing tree Told, we can safely delete the lat-
ter from the DP-table. In this case, we continue to loop through the
existing trees because more dominated trees to discard may exist.
Eventually, the loop ends and T is added to the list for S.

In the rest of this paper, we discuss several notions of dominance
and evaluate them with respect to their effectiveness as a pruning
criterion.

3. INTERESTING PLAN PROPERTIES AND
THEIR DERIVATION

In this section we provide rules for computing interesting prop-
erties of query plans that we use during plan generation.

3.1 Interesting Properties

Keys. We denote by κ(e) the set of keys for a relation defined
by an expression e. Note that a single key is a set of attributes.
Therefore, κ is a set of sets. Note also that the keys resulting from
the full and left outerjoin contain null values. We therefore assume
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that null values are treated as suggested in [9], i.e., two attributes
are equal if they agree in value or they are both null. We assume that
we know the keys of the base relations from the database schema.

Rules for computing the keys are taken from [4].

Functional Dependencies. We denote by FD(e) the set of
functional dependencies (FDs) holding in expression e. Again, we
adopt Paulley’s definition of functional dependency, where two at-
tributes with value null are treated as equal [9]. Initially, FDs for
a base relation are deduced from the keys declared in the database
schema. In the rest of this work, we frequently use the closure of a
given set of FDs, denoted by FD+1.

Equality Constraints. We denote by EC(e) the set of equal-
ity constraints holding in expression e. Equality constraints are
captured in equivalence classes. An equivalence class is a set of
attributes {A1, A2, . . . , An} where the attributes A1 through An
are known to have equal values. Note that this definition makes
EC a set of sets. We define a set of operations for accessing and
modifying a given set of equality constraints.

We denote by EC[A] the equivalence class containing attribute
A: EC[A] = c ∈ EC, A ∈ c.

We denote by EC ← (A = B) the insertion of the equality
constraint A = B into EC, with A and B being two attributes:

EC← (A = B) ≡ EC \ {EC[A],EC[B]} ∪ {EC[A] ∪ EC[B]}.

Initially, EC contains a singleton for each available attribute A1

to An across relations: EC = {{A1}, {A2}, . . . , {An}}.

Definite Attributes. We denote by NN(e) the set of definite at-
tributes in an expression e. Definite attributes are attributes that do
not contain the value null. If e is a base relation, NN(e) contains
the attributes that are declared as “not null” in the database schema.

3.2 Deriving Interesting Properties
We provide rules for computing the three sets bottom-up in an

operator tree possibly containing all algebraic operators covered in
Section 2.1.

The rules concerning EC and FD are taken from Paulley [9].
For simplicity, we make some restrictions on the join predicates we
consider. We assume (possibly) conjunctive predicates with each
conjunct referencing exactly two relations.

One concept useful for the computation of these abovementioned
properties is null-rejection of a predicate p on attribute A. It is
defined as follows [5]:

DEFINITION 2. A predicate p rejects nulls on attribute A if it
does not evaluate to true if A is null:

p[A ∈ null] 6= true.

NR(p) is the set of attributes, on which predicate p rejects nulls.

3.2.1 Inner Join
Consider the join of two expressions e1 and e2 with join predi-

cate p: e1 Bp e2.

Keys. We have to distinguish three cases [4]:

1By closure we mean the set of all dependencies derivable from a
given set of dependencies as the term is commonly understood.

• In case A1 is a key of e1 and A2 is a key of e2, we have

κ(e1 BA1=A2 e2) = κ(e1) ∪ κ(e2).

That is, each key from one of the input expressions is again
a key for the join result.

• In case A1 is a key, but A2 is not, we have

κ(e1 BA1=A2 e2) = κ(e2).

The case where A2 is a key and A1 is not is handled analo-
gously.

• Without any assumption on the Ai or the join predicate, we
have

κ(e1 Bq e2) =
⋃

k1∈κ(e1),k2∈κ(e2)

k1 ∪ k2.

In other words, every pair of keys from e1 and e2 forms a
key for the join result.

Functional Dependencies. In the join result, all FDs from the
two input expressions still hold, resulting in the following equation:

FD(e1 Bp e2) = FD+(e1) ∪ FD+(e2)

Equality Constraints. If p is an equality predicate of the form
A1 = A2, with A1 belonging to e1 and A2 belonging to e2, we
know that after the join A1 and A2 are equal.

We capture this information by defining an equivalence class
containing the two attributes. The existing equality constraints hold-
ing in the join arguments remain valid after the join, i.e., the fol-
lowing equation holds for an equijoin:

EC(e1 BA1=A2 e2) = (EC(e1) ∪ EC(e2))← (A1 = A2).

For all predicates other than equality conditions, we can state the
following equation: EC(e1 Bp e2) = EC(e1) ∪ EC(e2).

Definite Attributes. All attributes that are known to be definite
in the join arguments still have this property after the join. Addi-
tionally, all attributes that p rejects nulls on are definite after the
join: NN(e1 Bp e2) = NN(e1) ∪ NN(e2) ∪ NR(p).

3.2.2 Left Outerjoin
Consider the left outerjoin of expressions e1 and e2: e1 Ep e2.

Since the left outerjoin can introduce null values, we have to be
careful when determining the dependencies and constraints holding
in its result.

Keys. Here, we have only two possible cases. If A2 is a key of
e2, then κ(e1 EA1=A2 e2) = κ(e1).

Otherwise, we have to combine two arbitrary keys from e1 and
e2 to form a key:

κ(e1 Eq e2) =
⋃

k1∈κ(e1),k2∈κ(e2)

k1 ∪ k2,

where q is an arbitrary predicate.

Functional Dependencies. All FDs holding in e1, the pre-
served side of the outerjoin, continue to hold in the join result. De-
pendencies from e2, the null-supplying side of the outerjoin, only
continue to hold if the left-hand side of the dependency contains an
attribute that p rejects nulls on or a definite attribute.
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This gives rise to the following equation, where p is an arbitrary
predicate:

FD(e1 Ep e2) = FD+(e1)

∪ {(α→ β) ∈ FD+(e2) | (α ∩ (NN(e2) ∪ NR(p)) 6= ∅)}.

In the case of an equality predicate, we do not get a new equiva-
lence class, as was the case for the inner join. Instead, we get a
new FD with the join attribute from the preserved join argument
on the left-hand side and the one from the null-supplying argument
on the right-hand side. Consider the following left outerjoin of ex-
pressions e1 and e2, where A1 belongs to e1 and A2 belongs to e2:
e1 EA1=A2 e2. In this case, the following equation holds:

FD(e1 EA1=A2 e2) = FD+(e1)

∪ {(α→ β) ∈ FD+(e2) | (α ∩ (NN(e2) ∪ NR(p)) 6= ∅)}
∪ {A1 → A2}.

Equality Constraints. Equality constraints from both join ar-
guments continue to hold in the join result, resulting in the follow-
ing equation: EC(e1 Ep e2) = EC(e1) ∪ EC(e2).

Definite Attributes. Since the left outerjoin can introduce null
values in all attributes from the null-supplying relation (e2 in our
case), no attribute from e2 is definite in the join result. The only
definite attributes remaining are the ones from e1, the preserved
relation: NN(e1 Ep e2) = NN(e1).

3.2.3 Full Outerjoin
Consider the full outerjoin of expressions e1 and e2: e1 Kp e2.

Keys. Regardless of the join predicate, we have to combine two
arbitrary keys from e1 and e2 to form a key for the join expression:

κ(e1 Kp e2) =
⋃

k1∈κ(e1),k2∈κ(e2)

k1 ∪ k2,

where p is an arbitrary join predicate.

Functional Dependencies. Since in the full outerjoin both in-
put relations are null-supplying, we have to apply the same rules to
both join arguments that we used for the null-supplying argument
of the left outerjoin. In other words, FDs from either e1/e2 only
continue to hold if the left-hand side of the dependency contains an
attribute p rejects nulls on or a definite attribute.

FD(e1 KA1=A2 e2) = {(α→ β) ∈ FD+(e1) |
(α ∩ NN(e1) 6= ∅) ∨ (p is null-rejecting in F(p) ∩ A(e1))}

∪ {(α→ β) ∈ FD+(e2) | (α ∩ NN(e2) 6= ∅)
∨ (p is null-rejecting in F(p) ∩ A(e2))}.

Here, we denote by F(p) the set of attributes occurring freely in
predicate p.

Equality Constraints. As was the case for the left outerjoin,
equality constraints from both join arguments remain valid in the
result of a full outerjoin: EC(e1 Kp e2) = EC(e1) ∪ EC(e2).

Definite Attributes. The full outerjoin can introduce null values
in all attributes contained in the join result. This means that there
are no definite attributes after the join: NN(e1 Kp e2) = ∅.

3.2.4 Left Semijoin/Left Antijoin/Left Groupjoin
Consider a left semijoin (e1Np e2), left antijoin (e1 Tp e2) or left

groupjoin (e1 Zp e2) of expression e1 and e2.

Keys. Since the attributes from the right input are no longer avail-
able in the join result and the result is duplicate-free by definition,
we always have κ(e1 ◦ e2) = κ(e1), for ◦ ∈ {N, T, ZG;A:F }.

Functional Dependencies. Each of the abovementioned op-
erators produces a relation containing only attributes from e1. There-
fore, all FDs referencing attributes from e2 are no longer valid after
the join. The ones from e1 continue to hold. We can therefore state
the following equations: FD(e1◦pe2) = FD+(e1), for ◦ ∈ {N, T}.

In the left groupjoin, the attributes inG determine the ones inA:
FD(e1 Zp;G;A:F e2) = FD+(e1) ∪ {G→ A}.

Equality Constraints. Equality constraints holding in the left
input (e1 in our example) continue to hold in the join result. Since
no attributes from the right input are contained in the join result,
the equivalence classes from that input are no longer valid after the
join: EC(e1 ◦p e2) = EC(e1), for ◦ ∈ {N, T, Z}.

Definite Attributes. None of the abovementioned join opera-
tors introduces null values. Therefore, the definite attributes of the
join result are the ones from e1: NN(e1 ◦p e2) = NN(e1),
for ◦ ∈ {N, T}.

In the left groupjoin, an attribute a ∈ A is definite if the aggrega-
tion function it results from does not return null. This depends on
whether or not the argument of the aggregation function is definite
and on the characteristics of the aggregation function. For exam-
ple, count(*) never returns null, whereas min returns null if all input
values are null. If the former is the case for all f ∈ F , we can state
the following equation: NN(e1 Zp;G;A:F e2) = NN(e1) ∪A.

3.2.5 Group-By
The result of a group-by applied to some expression e consists

of the attribute set A containing the aggregation results and those
attributes from e that are contained in the grouping attributes G.

Keys. Consider a group-by applied to expression e: ΓG;A:F (e).
The grouping attributes G can be a superkey of the group-by’s ar-
gument e. In this case all keys contained in G remain keys after
applying the group-by: κ(ΓG;A:F (e)) = {k ∈ κ(e)|k ⊂ G}.

Otherwise, the key of the resulting relation consists of the group-
ing attributes G: κ(ΓG;A:F (e)) = G.

Functional Dependencies. In the result of the group-by, all
FDs referring only to the grouping attributes or a subset thereof
remain valid. That is, we keep those dependencies where both sides
are contained in the grouping attributes. Additionally, the grouping
attributes functionally determine the aggregation attributes:

FD(ΓG;A:F (e)) = {f : α→ β | f ∈ FD+(e) ∧ α, β ⊆ G}
∪ {G→ A}.

Equality Constraints. Equality constraints referring only to
the grouping attributes or a subset thereof still hold in the result
of a group-by. EC(ΓG(e)) = {c ∩G | c ∈ EC(e), c ∩G 6= ∅}

Definite Attributes. A group-by does not introduce new null
values. The aggregation results in attribute set A may be definite
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ATTRIBUTECLOSURE(FD ,EC , α)

1 result = α
2 repeat
3 hasChanged = FALSE
4 for all e ∈ EC
5 if (e ∩ result) 6= ∅
6 result = result ∪ e
7 for all FDs β → γ in FD
8 if β ⊆ result
9 result = result ∪ γ

10 hasChanged = TRUE
11 until hasChanged = FALSE
12 return result

Figure 7: ATTRIBUTECLOSURE

under the same conditions as for the groupjoin. In this case, the
following holds: NN(ΓG;A:F (e)) = (NN(e) ∩G) ∪A.

3.3 Computing the Attribute Closure
During plan generation, we are interested in the attribute closure

of a set of attributes α, denoted by AC(α).
Since in the case of equijoins we do not store any FDs between

the join attributes, but instead put them in an equivalence class, we
have to make use of the equivalence classes to compute the attribute
closure. For each FD α → β, we add all attributes β′ to β that are
in the same equivalence class as some attribute B ∈ β. Next, we
have to go through the existing FDs and see if there is a dependency
β′ → γ which gives the transitive dependency α → γ. In this
case, we add γ to the right-hand side of our original dependency
and repeat the whole process until there are no more changes.

The pseudocode for ATTRIBUTECLOSURE is given in Figure 7.
As arguments, the procedure expects the set of functional depen-
dencies FD, the set of equivalence classes EC and the attribute set
α for which the attribute closure is to be computed.

3.4 Implementation in a Plan Generator
Computing and storing the aforementioned plan properties dur-

ing plan generation causes some overhead, which can be mitigat-
ed by carefully choosing the data structures and algorithms used to
represent and compute them. In our implementation, we use bitvec-
tors for all attribute sets, such as NN and equivalence classes in EC,
making frequently needed set operations, such as inclusion tests,
very fast. EC itself can be stored in a union-find data structure [2].
It is optimized for a fast lookup of equivalence classes with a single
array access. This way, inserting new equivalence classes becomes
more expensive, but we only need to compute equality constraints
once for every plan class, whereas the lookup needs to be done
much more often, namely whenever two plans are compared.

We also store in each plan the attribute closure for each attribute
occuring on the left-hand side of some dependency. This way, we
only need to update the closure when it changes instead of comput-
ing it from scratch, which can be done with a single iteration of the
algorithm in Figure 7.

4. PRUNING WITH FUNCTIONAL DEPEN-
DENCIES

The correctness proofs for all pruning criteria discussed in this
paper can be found in [3]. First, we define f-dominance [4]:

DEFINITION 3. A join tree T1 f-dominates another join tree T2

for the same set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. |T1| ≤ |T2|

3. FD+(T1) ⊇ FD+(T2).

It is important to note that the compared trees are not necessarily
equivalent due to the contained group-by operaions. As discussed
in Section 2, a group-by on top of the final join may be necessary
to compensate this.

In order to avoid the overhead associated with computing FD+,
which is used to define f-dominance, the plan generator described
in [4] applies the following pruning criterion, which we call k-
dominance because it is based on keys:

DEFINITION 4. A join tree T1 k-dominates another join tree T2

for the same set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. |T1| ≤ |T2|

3. κ(T1) ⊇ κ(T2).

With the following example, we show that there are cases where
one tree f-dominates but does not k-dominate another tree. In such
cases it can be beneficial to use FDs instead of keys to better exploit
the pruning potential.

Figure 8 shows two operator trees for the same query on rela-
tions R0, . . . , R3. We assume that each relation Ri has two at-
tributes: one key attribute Ki and one non-key attribute NKi, with
i ∈ (0, . . . , 3). In addition to the operators, the trees shown in
Figure 8 contain special nodes displaying the keys valid at the re-
spective point in the tree according to the key computation rules
from Section 3. We assign numbers to the operators to make them
easier to identify.
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Figure 8: Two Operator Trees with Keys

Assume that during plan generation we compare the subtrees for
the relation set {R0, R1, R2} marked red in the figure to decide
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if one of them can be discarded. To this end, we have to check if
one of the trees dominates the other according to our definition of
k-dominance (Def. 4). Assume further that the tree on the right has
lower cost than the one on the left and equal cardinality. Therefore,
the only criterion for k-dominance remaining to be checked is the
third one, i.e, we have to check if κ(B2a) ⊆ κ(B2b) holds.

Here and in the following examples we write κ(◦)/FD+(◦) in-
stead of κ(T )/FD+(T ), respectively, where ◦ is the operator at the
root of T .

Obviously, this criterion is not met, and we decide to keep the
more expensive subtree. We will now use f-dominance as the prun-
ing criterion.

Table 1 shows the FDs and equivalence classes for each interme-
diate result of the join trees depicted in Figure 8. For each operator,
the table gives the set of non-empty attribute closures AC+ hold-
ing in the operator’s result, computed according to the algorithm
described in Section 3.

We use AC+ instead of FD+, since the former is much smaller
and provides all the information needed for our purposes.

For base relations, the only dependencies we have are given by
the key constraints from the relations’ schemas. Once the group-by
on top of R0 is applied in Figure 8(a), we lose the key constraint of
R0 because the key is not part of the grouping attributes. Instead,
we get a new dependency from the grouping attribute NK0 to all
other attributes in the result, namely the grouping attributes and
the attributes containing the aggregation results. We omit the latter
because they are of no importance for our observations.

The evaluation of the first join predicate results in an equiva-
lence class containing the join attributes NK0 and K1. Since the
two attributes are equivalent, we can replace one by the other in
all our FDs. We denote this by replacing all occurrences of an at-
tribute by its equivalence class. This way, the FD {{NK0,K1}} →
{{NK0,K1},NK1} subsumes the following dependencies:

{NK0} → {NK0,K1,NK1},
{K1} → {NK0,K1,NK1}.

Applying the closure computation algorithm from Section 3 and
replacing attributes by their equivalence classes yields the depen-
dencies and equivalence classes shown in the table.

We can now return to our original problem: can we discard the
more expensive tree from Figure 8(a) in favor of the one in Figure
8(b) by considering the FDs holding in both trees instead of the
keys? That is, we need to check if the following relationship holds:

FD+(B2a) ⊆ FD+(B2b). (8)

Instead of computing the closure for both trees, we can go through
all FDs in AC+(B2a) and check if they hold in the right tree as well.
This is where the equivalence classes come in handy. Consider the
following dependency from the left join tree:

{{NK0,K1}} → {{NK0,K1}, {NK1,K2},NK2}

We do not have to find an exact match for this dependency in the
right tree, but instead we have to find one where at least one mem-
ber of each equivalence class contained in the one dependency oc-
curs on the same side of the other dependency. The following de-
pendency from the right side of the table meets these requirements:

{NK0} → {NK0, {NK1,K2},NK2}.

In our example, we find a match for every dependency from the left
side of the table leading us to the conclusion that Eq. 8 holds. We
can therefore safely discard the more expensive tree.

Taking a closer look at Table 1, we also see that κ(B2b) =
{{NK0}}, since all attributes present in the tree are determined by

NK0. The key resulting from the key computation shown in Figure
8 is therefore not minimal, i.e., it is a superkey only.

This example represents the situation where using f-dominance
does allow the elimination of a subtree, while k-dominance does
not. However, there are also cases where this does not hold, espe-
cially in the presence of non-inner joins. We present an example in
Figure 9.
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Figure 9: Two Operator Trees with Keys

We assume the same relation schemas as in the previous exam-
ple, and we are again interested in discarding the tree in Figure 9(a)
because it is more expensive with equal cardinality as the one in
Figure 9(b). Comparing the key sets of B2a and B

2b, we see that
they are equal, i.e., the tree on the left-hand side can be discarded
according to Definition 4.

On the other hand, the requirements for f-dominance are not ful-
filled, as can be seen in Table 2, which contains the FDs and equal-
ity constraints up to B

2, the root of the two subtrees we are com-
paring.

The dependency {{K0,NK1}} → {NK3}, which is contained in
AC+(B2a), is not contained in AC+(B2b). This is because attribute
NK3 is not available in the latter, since it is removed by Γ3. To see
that this is caused by the left outerjoin E

1, we replace it by an inner
join.

This results in an equivalence class {NK1,NK3}, which is later
extended to {K0,NK1,NK3}, turning the problematic dependen-
cy from above into {{K0,NK1,NK3}} → {{K0,NK1,NK3}}.
Since we only need to find one attribute from each equivalence
class on the correct side of another dependency, the dependency
{{K0,NK1}} → {{K0, NK1}} holding in B

2b satisfies the con-
ditions for f-dominance.

5. PRUNING WITH RESTRICTED KEYS
Using f-dominance instead of k-dominance is often beneficial in

terms of better pruning possibilities. But computing and compar-
ing the needed properties is more expensive. In this section, we
propose a third pruning approach that makes use of the keys and
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Table 1: Functional Dependencies for Figure 8
Figure 8(a) Figure 8(b)

AC+ EC AC+ EC

R0 {K0} → {K0,NK0} ∅ {K0} → {K0,NK0} ∅
R1 {K1} → {K1,NK1} ∅ {K1} → {K1,NK1} ∅
R2 {K2} → {K2,NK2} ∅ {K2} → {K2,NK2} ∅
R3 {K3} → {K3,NK3} ∅ {K3} → {K3,NK3} ∅

Γ1 {NK0} → {NK0} ∅ - ∅

B
1 {{NK0, K1}} → {{NK0, K1},NK1} {NK0, K1} {{NK0, K1}} → {{NK0, K1},NK1} {NK0, K1}

Γ2 - {NK0, K1}
{NK0,NK1} → {NK0,NK1}
{NK0} → {NK0,NK1}

∅

B
2 {{NK0, K1}} → {{NK0, K1}, {NK1, K2},NK2}
{{NK1, K2}} → {{NK1, K2},NK2}

{NK0, K1}
{NK1, K2}

{NK0} → {NK0, {NK1, K2},NK2}
{NK0,NK1} → {NK0, {NK1, K2},NK2}
{{NK1, K2}} → {{Nk1, K2},NK2}

{NK1, K2}

B
3

{{NK0, K1}} → {{NK0, K1}, {NK1, K2}, {NK2, K3},NK3}
{{K2,NK1}} → {{NK1, K2}, {NK2, K3},NK3}
{{K3,NK2}} → {{NK2, K3},NK3}

{NK0, K1}
{NK1, K2}
{NK2, K3}

{NK0} → {NK0, {NK1, K2}, {NK2, K3},NK3}
{NK0,NK1} → {NK0, {NK1, K2}, {NK2, K3},NK3}
{{NK1, K2}} → {{NK1, K2}, {NK2, K3},NK3}
{{NK2, K3}} → {{NK2, K3},NK3}

{NK1, K2}
{NK2, K3}

Table 2: Functional Dependencies for Figure 9
Figure 9(a) Figure 9(b)

AC+ EC AC+ EC

R0 {K0} → {K0,NK0} ∅ {K0} → {K0,NK0} ∅
R1 {K1} → {K1,NK1} ∅ {K1} → {K1,NK1} ∅
R3 {K3} → {K3,NK3} ∅ {K3} → {K3,NK3} ∅

Γ1 {NK1} → {NK1} ∅ {NK1} → {NK1} ∅

Γ2 {NK3} → {NK3} ∅ - ∅

E
1 {NK1} → {NK1,NK3}
{NK3} → {NK3}

∅ {NK1} → {NK1,NK3}
{K3} → {K3,NK3}

∅

Γ3 - ∅ {NK1} → {NK1} ∅

B
2 {{K0,NK1}} → {{K0,NK1},NK0,NK3}
{NK3} → {NK3}

{K0,NK1} {{K0,NK1}} → {{K0,NK1},NK0} {K0,NK1}

at the same time allows effective pruning. Again, we provide an
example consisting of two alternative join trees for the same query.
They are shown in Figure 10.
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Figure 10: Two Operator Trees with Keys

As before, we are comparing the subtrees marked red, and we are
interested in discarding the subtree in Figure 10(a), assuming that
it is more expensive than its counterpart on the right side and both
have equal cardinality. Using the key set as the pruning criterion,
we notice that the tree on the left has a set containing three keys,
whereas the one on the right only has two keys. Therefore, we
decide to keep both trees since the third criterion for k-dominance
is not met.

Going one level higher in the tree, we see that there is in fact
no reason to keep the more expensive tree. In both trees, the final
group-by onK2 has no effect becauseK2 is a key of the tree rooted
at B3. Since the left tree contains a subtree that is more expensive
than that contained in the tree on the right, the complete plan on
the left can only be cheaper than the one on the right if it can omit
the final grouping while the right plan cannot. This is not the case
and, therefore, we could have removed the red subtree on the left,
but k-dominance does not allow this.

We claim that the attribute set {K0} contained in κ(B2a) but
not in κ(B2b), which inhibits the pruning, can be ignored since it
is not referenced in any predicate further up in the tree. Therefore,
it does not influence the key constraints that hold in the following
intermediate results which in turn determine the necessity of the
final group-by. The same argument implies that we can also ignore
{NK1}. Applying this to both κ(B2a) and κ(B2b), we see that the
only remaining key in both sets is {K2}. The sets are therefore
equal and the third criterion for k-dominance is fulfilled, meaning
that we can discard the more expensive subtree.
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This leads to a third notion of dominance. Before we define it,
we define the restricted key set κ− as follows:

κ−(T ) = {k|k ∈ κ(T ) ∧ k ⊆ G+(T )}.

We can now define rk-dominance:

DEFINITION 5. A join tree T1 rk-dominates another join tree
T2 for the same set of relations if all of the following conditions
hold:

1. Cost(T1) ≤ Cost(T2)

2. |T1| ≤ |T2|

3. κ−(T1) ⊇ κ−(T2).

6. PRUNING WITH RESTRICTED FDS
So far we have observed that in general we can prune more sub-

plans with FDs than with keys and even more with restricted keys.
Using a restricted set of FDs promises to further increase the prun-
ing capabilities of our plan generator.

Again, we start by giving an example consisting of two operator
trees as shown in Figure 11, where we assume that the red subtree
in Figure 11(a) is more expensive than the one in Figure 11(b).
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Figure 11: Two Operator Trees with Keys

Table 3 contains the FDs and equality constraints holding in each
intermediate result up to the root nodes of the two subtrees. From
the information in the table and the key sets given in the figure, we
conclude that none of the different notions of dominance we have
considered so far suffice to discard the left tree in this case, because
their requirements are not fulfilled.

The third requirement for f-dominance is violated because the
dependency {{NK0,NK2}} → {NK3} is contained in AC+(E2a),
but not in AC+(B1b).

The attribute NK3 is not referenced in any of the join predicates
above the root nodes of the two subtrees. It is also not part of the
grouping attributes at the top-most grouping operator. Removing it

from the right-hand side of the dependency in question allows us to
discard the subtree from Figure 11(a). In analogy to the restricted
key set κ−, we define the restricted set of FDs FD− as

FD−(T ) = {f : α→ β | f ∈ FD+(T ) ∧ α ⊆ G+(T )}.

This leads to the definition of rf-dominance:

DEFINITION 6. A join tree T1 rf-dominates another join tree
T2 for the same set of relations if all of the following conditions
hold:

1. Cost(T1) ≤ Cost(T2)

2. |T1| ≤ |T2|

3. FD−(T1) ⊇ FD−(T2).

7. PRUNING WITH KEYS AND FDS
Our observations from the previous sections suggest that we can

benefit from using (r)f-dominance as the pruning criterion instead
of (r)k-dominance, since it allows to prune more subplans. On the
other hand, there is also a cost associated with this approach which
lies in the higher complexity of computing and comparing the (re-
stricted) closure instead of the (restricted) key set.

This is why we propose a combination of rk-dominance and rf-
dominance which maximizes the pruning capabilities of the plan
generator and at the same time minimizes the overhead associated
with evaluating the pruning criterion.

The idea is to always test rk-dominance first and only compute
and compare the restricted closures of both plans if this test fails.
Since in many cases rk-dominance is sufficient to discard a subop-
timal plan, we only need to compute the closure for a fraction of all
considered plans.

We use the term rkrf-dominance when referring to this combined
approach, even though it does not define a new form of dominance.

8. EVALUATION
We evaluate the performance of our pruning techniques with re-

spect to runtime and memory consumption. By runtime we mean
the time taken for plan generation, including cardinality estimation.
We do not measure the execution time of the resulting plans since
they are all optimal with respect to our cost model and therefore
expected to have equal runtimes. We measure memory consump-
tion as the number of entries in the DP-table after successful plan
generation. This number also gives an impression of how effective
the respective pruning criterion is.

We implemented all five approaches discussed in the previous
sections in the plan generator DPHypE, which is based on the plan
generator DPHyp described in [8] and capable of reordering non-
inner joins and group-by operators. We denote by DPHypEf/k/rk/rf/rkrf

the plan generator employing f-/k-/rk-/rf-/rkrf-dominance, respec-
tively.

The workload consists of randomly generated join trees. Car-
dinalities for the base relations and selectivities for predicates are
also generated randomly. A randomly chosen group-by is placed at
the top of the tree. The results given in this section are average val-
ues of 10,000 queries for a given parameter value, e.g. the number
of relations. All experiments were run on an Intel Xeon E5-2690
V2 CPU at 3.00 GHz.

We do not classify the workload by the shape of the query graph,
as it is usually done when evaluating plan generators for pure join
reordering. The focus of our work lies not on join reordering, which
has been thoroughly investigated in existing works and is in its
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Table 3: Functional Dependencies for Figure 11
Figure 11(a) Figure 11(b)

AC+ EC AC+ EC

R0 {K0} → {K0,NK0} ∅ {K0} → {K0,NK0} ∅
R2 {K2} → {K2,NK2} ∅ {K2} → {K2,NK2} ∅
R3 {K3} → {K3,NK3} ∅ {K3} → {K3,NK3} ∅

Γ1 {NK0} → {NK0} ∅ {NK0} → {NK0} ∅

B
1 {{NK0,NK2}} → {{NK0,NK2}}
{K2} → {K2, {NK0,NK2}}

{NK0,NK2} {{NK0,NK2}} → {{NK0,NK2}} {NK0,NK2}

Γ2 {{NK0,NK2}} → {{NK0,NK2}} {NK0,NK2} - -

Γ3 {NK3} → {NK3} ∅ - -

E
2 {{NK0,NK2}} → {{NK0,NK2},NK3}
{NK3} → {NK3}

{NK0,NK2}
{NK2} → {NK2,NK3}
{K2} → {K2,NK2,NK3}
{K3} → {K3,NK3}

∅

Γ4 - - {NK2} → {NK2} ∅

complexity highly influenced by the query shape. Instead, we are
interested in the complexity added by the optimization techniques
discussed in this paper, which is strongly influenced by other fac-
tors, such as the number of foreign-key predicates and the presence
of non-inner joins.

For an evaluation of the general effectiveness of reordering group-
by and join operators the reader is referred to the previous work on
the topic ([12, 13, 14, 11, 4]) containing experiments not only with
a synthetic workload, but also with selected benchmark queries.

8.1 Runtime
Figures 12 and 13 compare the runtimes of the plan generators

for queries with 5 to 15 relations. The runtimes shown in Figure
12 result from queries containing only inner joins, while Figure
13 depicts queries without any restrictions on the operator types.
The search space for queries with only inner joins is larger than
for queries containing non-inner joins, since inner joins are freely
reorderable and a group-by can always be pushed into both join
arguments. This is why the runtimes in Figure 12 are higher than
the ones in Figure 13. Therefore, we did not run all plan generators
up to 15 relations with inner joins only.

In both cases, we assume a proportion of foreign key predicates
of eighty percent. The proportion of foreign key joins has an impact
on the runtime of the plan generators, especially the ones dealing
with key sets. Since a foreign key join often results in the propaga-
tion of only one key, the key sets are kept small, making the test of
k-dominance and rk-dominance fast. We consider eighty percent
a rather cautious assumption. We assume this number to be high-
er in most real queries. For a more detailed analysis of the impact
that the proportion of foreign key predicates has on the runtime, the
reader is referred to our technical report ([3]).

Both figures confirm that a more effective pruning criterion gen-
erally results in faster plan generation. While the difference is
marginal for small queries, it grows with the number of relations.
For queries with 15 relations and different join operators, DPHypEk

needs 1.4 seconds on average, while DPHypErkrf only runs 0.0015
seconds, making it almost three orders of magnitude faster. We can
also see that the three algorithms working with restricted property
sets have almost equal runtimes.

However, DPHypErk and DPHypErkrf are faster than DPHypErf,
which can be explained by the higher overhead for computing and
comparing the closure, as demanded by rf-dominance.

To give an impression of how big this overhead is, we divided
the runtimes of the different plan generators by the number of plan
comparisons performed during plan generation. For queries with
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Figure 12: Runtimes for 5 to 15 relations, only inner joins

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

5 6 7 8 9 10 11 12 13 14 15

R
u
n
ti

m
e
 [

s]

Relations

k
f

rk
rf

rkrf

Figure 13: Runtimes for 5 to 15 relations, all join operators

15 relations and arbitrary join operators, we got the following num-
bers for ”runtime per plan comparison“: 23 / 306 / 2,073 / 3,705 /
3,077 nanoseconds for k- / f- / rk- / rf- / rkrf-dominance, respective-
ly. Note that these numbers are based on the assumption that the
plan comparisons are the dominating influence on the plan genera-
tor’s runtime, which may not be true, especially for k-dominance.

When considering queries with inner joins only, we observe some
differences. As we can see in Figure 12, there is a trend for larg-
er queries: since the search space is so large with inner joins only,
the search space restriction achieved by the pruning criterion be-
comes more critical, causing rk-dominance to become less and less
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Figure 14: Table Entries for 5 to 15 relations, only inner joins
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Figure 15: Table Entries for 5 to 15 relations, all join operators

efficient when compared to rf-dominance and rkrf-dominance.

8.2 Memory Usage
The reasons for the runtime differences between DPhypEk and

the rest become obvious when we look at the dp-table entries pro-
duced by the different algorithms as depicted in Figures 14 and 15.
As suggested by our observations in the previous sections, the least
effective pruning criterion is k-dominance and the most effective is
rf-dominance. Combining the latter with rk-dominance results in
the same number of table entries, since they are equivalent in their
pruning capability and differ only in the way they achieve it.

If we allow different join operators, the average number of ta-
ble entries is 1800 / 82 for DPHypEk / DPHypErkrf for 15 relations.
Queries limited to inner joins have a much bigger search space re-
sulting in more table entries, which is reflected in the results of our
experiments: here, we have 12,000 / 270 table entries on average
for the same two plan generators and queries with 10 relations.

9. CONCLUSION
We presented a set of pruning criteria applicable in a bottom-up

plan generator reordering (outer)joins and group-by. To this end,
we first analyzed the plan properties needed for effective pruning
and how they can be derived during plan generation.

We then showed that using functional dependencies instead of
keys, as proposed in [4], reveals much better pruning opportunities.

Restricting the set of functional dependencies and keys to contain
only the information crucial to guarantee an optimal solution makes
the resulting pruning criteria even more effective.

All this led to a speed up factor of up to several orders of magni-
tude when compared to the only existing approach, rendering non-
optimal heuristics obsolete even for larger queries.
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