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ABSTRACT
Crowdsourced top-k computation has attracted significant
attention recently, thanks to emerging crowdsourcing plat-
forms, e.g., Amazon Mechanical Turk and CrowdFlower.
Crowdsourced top-k algorithms ask the crowd to compare
the objects and infer the top-k objects based on the crowd-
sourced comparison results. The crowd may return incor-
rect answers, but traditional top-k algorithms cannot tol-
erate the errors from the crowd. To address this problem,
the database and machine-learning communities have inde-
pendently studied the crowdsourced top-k problem. The
database community proposes the heuristic-based solutions
while the machine-learning community proposes the learning-
based methods (e.g., maximum likelihood estimation). How-
ever, these two types of techniques have not been com-
pared systematically under the same experimental frame-
work. Thus it is rather difficult for a practitioner to de-
cide which algorithm should be adopted. Furthermore, the
experimental evaluation of existing studies has several weak-
nesses. Some methods assume the crowd returns high-quality
results and some algorithms are only tested on simulated ex-
periments. To alleviate these limitations, in this paper we
present a comprehensive comparison of crowdsourced top-k
algorithms. Using various synthetic and real datasets, we
evaluate each algorithm in terms of result quality and effi-
ciency on real crowdsourcing platforms. We reveal the char-
acteristics of different techniques and provide guidelines on
selecting appropriate algorithms for various scenarios.

1. INTRODUCTION
Given a set of objects, the top-k problem aims to find

the top-k best objects from the set. Due to its widespread
applications, top-k algorithms have been widely adopted in
many real-world systems, e.g., search engines and adver-
tisement systems. If the objects can be compared by ma-
chines, e.g., numerical values, existing deterministic top-k
algorithms can efficiently compute top-k objects, e.g., the
heap-based algorithms [5]. However in many real-world ap-
plications, the objects are rather hard to compare for ma-
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chines. For example, in image search, comparing the picture
clarity is hard for machines. As another example, in natural
language processing, comparing the understanding difficulty
between different sentences is also rather hard for machines.
Obviously these comparisons are easy for human. Thus,
crowdsourced top-k computation has been widely studied,
thanks to emerging crowdsourcing platforms, e.g., Amazon
Mechanical Turk and CrowdFlower. Crowdsourced top-k
algorithms ask the crowd to compare objects and infer the
top-k objects based on the crowdsourced comparison results.
As the crowd may return incorrect results, a natural prob-

lem is to obtain high-quality top-k answers by aggregat-
ing the inaccurate comparison results from the crowd. The
database community and machine-learning community have
independently studied the crowdsourced top-k problem. The
database community takes top-k as the basic operation in
databases and proposes heuristic-based solutions [9,18] while
the machine-learning community focuses on ranking docu-
ments/images and proposes learning-based methods (e.g.,
maximal likelihood estimation [4,16], matrix decomposition
[11]). However, these two categories of techniques have not
been compared systematically under the same experimental
framework. Thus it is difficult for a practitioner to decide
which method should be adopted. Furthermore, the experi-
mental evaluation of existing studies has weaknesses. Some
methods assume the crowd returns high-quality results while
some algorithms are only tested on simulated experiments.
To address these problems, this paper presents a com-

prehensive comparison on crowdsourced top-k algorithms.
Most of existing studies utilize a comparison-based method
and employ a two-step strategy. The first step (called pair
selection) selects b object pairs and crowdsources them. And
the second step (called result inference) infers the top-k pairs
based on the comparison results of the crowdsourced pairs.
We make a comprehensive survey on both pair selection and
top-k inference algorithms. We also discuss other crowd-
sourced top-k algorithms. We evaluate all of the algorithms
on real crowdsourcing platforms.
To summarize, we make the following contributions. (1)

We provide a comprehensive survey on more than twenty
crowdsourced top-k algorithms. (2) We compare existing
crowdsourced top-k algorithms from different research com-
munities through extensive experiments with a variety of
synthetic and real datasets on real crowdsourcing platforms.
(3) We report comprehensive findings obtained from the ex-
periments. We provide new insights on the strengths and
weaknesses of existing algorithms that can guide practition-
ers to select appropriate algorithms for various scenarios.
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2. PRELIMINARIES
2.1 Problem Formulation

Definition 1 (Crowdsourced top-k Problem).
Given an object set O = {o1, o2, · · · , on}, where the objects
are comparable but hard to compare by machines, find a k-
size object set R = {o1, o2, · · · , ok} where oi is preferred to
oj (denoted by oi � oj) for oi ∈ R and oj ∈ O −R.
Any comparison operation (�) can be used to ask the

crowd to compare objects. For example, given six images,
we want to identify top-3 clearest ones. Obviously it is hard
to use machines to decide which image is clearer and we
need to utilize the crowd to compare the images. The goal
of devising crowdsourced algorithms is to identify the top-
k objects as accurate as possible and we will discuss two
metrics to quantify crowdsourced algorithms in Section 6.1.

2.2 Workflow
To utilize the crowd to find top-k objects, we need to

generate crowdsourced tasks. There are two widely-used
ways to generate crowdsourced tasks. The first is pairwise
comparison, which selects two objects and asks the crowd
to choose the preferred one. The second is rating, which se-
lects multiple objects and asks the crowd to assign a rate for
each object. The rating-based method has some weaknesses.
First, the crowd prefers pairwise comparisons to ratings as
the former is much easier. Second, it is rather hard for the
crowd to assign an accurate rate and the objects in differ-
ent rating groups may not be correctly compared. Thus
the rating-based method usually has a lower accuracy than
pairwise comparison [12,14]. Due to these reasons, most of
existing works use pairwise comparisons [13]. We first focus
on pairwise comparisons, and then discuss hybrid methods
that combine ratings and pairwise comparisons [12,20].

3. PAIRWISE COMPARISONS
Given a set with n objects, if all pairs are crowdsourced,

there are
(
n
2

)
pairs. Due to the high monetary cost for the

crowd, it is not acceptable to enumerate all pairs for large
object sets. An alternative is to ask B pairs, where B is a
given budget. To achieve high recall, an iterative method
is widely adopted, where b pairs are crowdsourced in each
round. Based on the comparison results of the crowdsourced
pairs, it decides how to select b pairs in next round. Itera-
tively, it crowdsources B pairs in total and uses the compar-
ison results on these pairs to infer the top-k objects.
For each selected pair, a microtask is generated, which

asks the crowd to compare the pair. To reduce crowd errors,
each microtask is assigned to multiple workers and the final
result is aggregated based on the results of these workers,
e.g., weighted majority vote. Thus for each pair (oi, oj), two
numbers are reported from the crowd: Mij ,Mji, where Mij

(Mji) is the number of workers who prefer oi (oj) to oj (oi).
An aggregated weight wij is computed based on Mij and
Mji, e.g., wij=

Mij

Mij+Mji
. We can use a graph to model the

comparison results of the crowdsourced pairs.
Definition 2 (Graph Model). Given a set of crowd-

sourced pairs, a directed graph is constructed where nodes
are objects and edges are comparison results. For each pair
(oi, oj), if the aggregated result is oi � oj (e.g., wij > 1

2
),

there is a directed edge from oi to oj with weight wij.
For example, consider the six objects in Figure 1, o1 �

o2 � o3 � o4 � o5 � o6. Assume seven pairs are crowd-
sourced and each pair is answered by 3 workers (see Fig-
ure 1). M12 = 2 and M21 = 1 denote that two workers

Table 1: Notations Used In The Paper.
Notation Description

oi an object in set O
n the number of objects in set O
k the number of reported objects
b the budget of selected pairs in each round
L collected pairwise comparison results from the crowd

oi � oj oi is preferred to oj
Mij the number of workers reporting oi � oj
M voting matrix collected from the crowd
pij the probability of oi � oj
ŝ estimation matrix of the latent scores for all objects
si si = ŝ[i], estimated score for object oi
δi variance of score for object oi
ηw the estimated accuracy for worker w

o1 o2 o3 o4 o5 o6
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Figure 1: Pairwise Result.
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Figure 2: Graph Model.

Algorithm 1: Crowdsourced Top-k Algorithm
Input: Objects O; Budget B; Budget in each round b
Output: top-k highest ranked objects R
U= All pairs in O; // unanswered pairs1
E= φ; // answered pairs2
while B > 0 do3
Q=PairSelection(O,b,E ,U);4
Publish questions Q to the crowd ;5
Collect answers from the crowd ;6
E = E +Q; U = U −Q; B = B − b ;7

R=ResultInference(O,E) ;8
Return R;9

prefer o1 to o2 and one worker prefers o2 to o1. If oi � oj ,
we says oi wins (oj loses) or oi is better than oj (oj is worse
than oi). Based on the crowdsourced answers, a graph is
constructed in Figure 2. Table 1 summarizes the notations.
The pairwise-comparison-based method contains two steps.

The first is result inference, which infers the top-k an-
swers based on the crowdsourced pairs. The second is pair
selection, which selects next b pairs based on the current
result. Algorithm 1 shows the pseudo code. It first selects b
pairs (line 4). Then it publishes these b pairs to the crowd
and collects the results (lines 5-6). Finally it infers the top-k
results (line 8). We will discuss the details of result inference
and pair selection in Sections 4 and 5 respectively.

4. RESULT INFERENCE
In this section, we discuss how to infer the top-k results.

We first discuss the heuristic-based algorithms in Section 4.1
and then introduce the machine-learning methods in Sec-
tion 4.2. Next we discuss how to extend heap-based methods
to infer the top-k results in Section 4.3. Lastly, we present
the hybrid methods in Section 4.4.

4.1 Heuristic-Based Methods
Guo et al. prove that finding the maximal (top-1) ob-

ject is NP-Hard by a reduction from Kemeny rankings [9].
Thus inferring the top-k objects is also NP-Hard and many
heuristics are proposed to infer top-k objects.
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4.1.1 Score-Based Algorithms
The score-based algorithms assign each object oi with a

score si and the k objects with the largest scores are selected
as top-k answers. Next we discuss how to compute scores.
(1) Election Algorithms. The election algorithms that
determine the winner of an election can be used to com-
pute the score of an object. There are two famous election
algorithms BordaCount [1] and Copeland [17].
BordaCount [1]. The score of oi is its out-degree d+(oi) (the
number of wins compared with its out-neighbors), i.e.,

si = d+(oi). (1)

In our example, s1 is 3 as o1 has 3 out-neighbors. The
scores of 〈o1, o2, o3, o4, o5, o6〉 are 〈3, 2, 1, 1, 1, 0〉.
Copeland [17]. The score of object oi is its out-degree d+(oi)
minus its in-degree d−(oi) (the number of wins minus the
number of losses), i.e.,

si = d+(oi)− d−(oi). (2)

In our example, s2 is 1 as o2 has 2 out-neighbors and 1 in-
neighbor. The scores of 〈o1, o2, o3, o4, o5, o6〉 are 〈3, 1, 0,−1,
−2,−1〉. The top-2 answers are o1 and o2.
(2) Max Algorithms. Guo et al. [9] proposed several
graph-based algorithms to compute the maximal object, which
can be used to assign a score for each object.
Local [9]. The two-election methods only consider the neigh-
bors of each object and cannot capture more information.
Local algorithm [9] is proposed to solve the max problem by
considering 2-hop neighbors and it can naturally be trans-
formed to address the top-k problem. Obviously if an object
has more 2-hop out-neighbors (i.e., its out-neighbors’ out-
neighbors), the object will beat more objects (based on tran-
sitivity), and thus the object has a larger score. Similarly, if
an object has more 2-hop in-neighbors (i.e., its in-neighbors’
in-neighbors), the object will be beaten by more objects, and
thus the object has a lower score. Accordingly, the overall
score of an object is computed as below.

si = Mi∗ −M∗i +
∑

oj∈D+(oi)

Mj∗ −
∑

oj∈D−(oi)

M∗j , (3)

where Mi∗ =
∑
jMij , M∗i =

∑
jMji, and D+(oi) is the

out-neighbor set of oi and D−(oi) is the in-neighbor set of
oi. In our example, the score of o2 is (7−2)+(3+2)−1 = 9
and the score of o5 is (2− 10) + 1− (2 + 3 + 6) = −18. The
scores of 〈o1, o2, o3, o4, o5, o6〉 are 〈20, 9, 1,−4,−18,−11〉.
Indegree [9]. It computes the score based on the bayesian
model. The probability of oi � oj given Mij and Mji is

P (oi �oj |Mij ,Mji) =
P (Mij ,Mji|oi � oj)P (oi � oj)

P (Mij ,Mji)

=
P (Mij ,Mji|oi � oj)

P (Mij ,Mji|oi � oj) + P (Mij ,Mji|oj � oi)
,

(4)

P (Mij ,Mji|oi � oj) =

(
Mij +Mji

Mij

)
pMij (1− p)Mji ;

P (Mij ,Mji|oj � oi) =

(
Mij +Mji

Mji

)
pMji (1− p)Mij .

(5)

p is the estimated worker accuracy which is a fixed value.
Besides, it assumes P (oi � oj) = P (oi ≺ oj). Then it

Top-k Algorithms Details
Area Input Output Parameters

Heuristic
(Local)

BordaCount∗ DB Graph Score N/A
Copeland∗ DB Graph Score N/A
Local∗ DB Graph Score N/A
Indegree∗ DB Graph Score N/A
ELO∗ ML Comparison Score H = 32
BRE∗ ML Comparison Score N/A
URE∗ ML Comparison Score N/A
SSCO ML Comparison Score q = 0.1
SSSE ML Comparison Score q = 0.1

Heuristic
(Global)

Iterative DB Graph Subset N/A
PathRank ML Graph Subset N/A
AdaptiveReduce ML Comparison Subset p = 0.9
MPageRank∗ DB Graph Score c = 1
RankCentrality∗ ML Graph Score N/A
SSRW∗ ML Graph Score q = 0.1

ML

TrueSkill∗ ML Comparison Score ε = 0
CrowdBT∗ ML Comparison Score λ = 0.5
CrowdGauss∗ ML Comparison Score N/A
HodgeRank∗ ML Comparison Score N/A

Extension TwoStageHeap DB Comparison Subset X = 0.1n
k2

Rate +
Compare

Combine∗ ML Rate+Compare Score N/A
Hybrid∗ DB Rate+Compare Score δ = 0.1
HybridMPR∗ DB Rate+Graph Score β = 0.6

Table 2: Details for top-k Inference Algorithms
(Methods with ∗ can also be used for sorting.)
computes the score of object oi as below.

si =
∑
j 6=i

P (oi � oj |Mij ,Mji). (6)

Note that if oi and oj are not compared, P (oi � oj |Mij ,Mji) =
0.5. In our example, if we set p to 0.55 [9], the scores for
〈o1, o2, o3, o4, o5, o6〉 are 〈2.84, 2.74, 2.5, 2.35, 2.11, 2.45〉.
Modified PageRank(MPageRank) [9]. It extends the original
PageRank by considering the crowdsourced comparisons and
computes the score of each object as below.

si = prk[i] =
1− c
n

+ c
∑
i 6=j

Mij

M∗j
prk−1[j], (7)

where prk[i] is the score of oi in the k-th iteration (initially
pr1[i] = 1

n
) and c is a damping factor and set to 1 by de-

fault). The scores are 〈0.5, 0.5, 5e−11, 5e−11, 1.67e−11, 1.67e−11〉.
(3) Ranking Algorithms. There are some ranking-based
algorithms that focus on ranking documents/images.
RankCentrality [15]. The algorithm adopts an iterative method
based on random walk. Its core component is to construct
an n× n transition matrix P , in which

Pij =

{
1

dmax
wji if i 6= j

1− 1
dmax

∑
k 6=i wki if i = j

, (8)

where wji is the weight of edge from oj to oi and dmax is the
maximum in-degree of a node (i.e., dmax = maxoi d

−(oi)).
Then it initializes a 1 × n matrix ŝ and computes ŝ × P ×
P × · · · until convergence. The score of oi is computed as

si = ŝ[i] where ŝ = lim
t→∞

ŝ× P t. (9)

In our example, the scores for 〈o1, o2, o3, o4, o5, o6〉 are
〈2.26, 1.68, 0.93, 0.63, 0.38, 0.91〉.
Balanced Rank Estimation(BRE)/Unbalanced Rank Estima-
tion(URE) [19]. The score is computed based on the prob-
ability theory. The balanced rank estimation (BRE) con-
siders both incoming and outgoing edges. To compute the
score sj , it computes the relative difference of the number
of objects proceeding and succeeding oj :

sj =

∑
i6=j bij(2wij − 1)

2αn
∝
∑
i6=j

bij(2wij − 1). (10)
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where α is the selection rate (i.e., α
(
n
2

)
pairs will be com-

pared); wij = 1 if oi � oj ; wij = 0 otherwise; bij = 1 if oi
and oj are compared by the crowd; bij = 0 otherwise.
The unbalanced rank estimation (URE) computes the score

of oi only based on its incoming edges. To compute the score
sj , it computes the number of objects proceeding oj :

sj =
1

αn

∑
i 6=j

bijw
n
ij ∝

∑
i6=j

bijw
n
ij , (11)

In our example, if we set the value of α to 1, then the
scores are 〈−0.25,−0.08, 0, 0.08, 0.17, 0.08〉 for BRE. And
the scores are 〈0, 0.17, 0.17, 0.33, 0.5, 0.17〉 for URE.
ELO [6]. The ELO method is a chess ranking system, which
can be applied to address the pairwise top-k problem. The
basic idea is that, if object oi with higher ranking beats
another lower one oj , only a few points will be added to si;
on the contrary, if oj wins, a lot of points will be added to
sj . Formally, each object oi is randomly assigned a score
si initially. When oi is compared with oj , the two scores si
and sj will be updated as below.

si = si +H(Ci −
1

1 + 10(sj−si)/400
);

sj = sj +H(1− Ci −
1

1 + 10(si−sj)/400
),

(12)

whereH is a tuning parameter (set to 32 by default). Ci = 1
if oi � oj ; Ci = 0 otherwise. The scores are 〈97.3, 65.3,
50.7, 36.2, 23.6, 32.8〉 if the initial score is 50.

4.1.2 Iterative Reduce Top-k Algorithms
They iteratively eliminate lowly ranked objects that have

small possibilities in the top-k results, until k objects left.
Iterative [9]. Guo et al. [9] improve the max algorithm and
propose the iterative algorithm to improve the quality. It
first utilizes the score-based methods to compute the scores
of each object and then removes the half of the objects with
small scores. Next it re-computes the scores on the survived
objects and repeats the iterations until k objects left.
Eriksson et al. [7] propose two iterative reduce algorithms

which are devised to rank documents and images.
PathRank [7]. The main idea of PathRank is to perform
a “reverse” depth first search (DFS) for each node, which
traverses the graph by visiting the in-neighbors of each node.
If it finds a path with length larger than k, it eliminates the
object as k objects have already been better than the object.
However this method is not robust [7], because if not all
the comparisons are observed, due to missing edges, objects
ranked far from the top-k answers could potentially have no
more than k-paths observed, and non-top-k objects can also
be erroneously returned as an estimated top-k result.
AdaptiveReduce [7]. Initially there are n objects. It
first randomly selects (16(p− 1

2
)−2 + 32) logn objects as the

chosen setXc, where p is the worker accuracy. Then it wants
to select an informative set and utilizes the set to eliminate
objects with small possibilities in the top-k answers. To this
end, it computes the voting count vi for each object oi in
the chosen set, i.e., vi =

∑n
j=1 Mij . Next, it computes a

subset of Xc as the informative set Xv, with voting count
between n

4
and 3n

4
, i.e., Xv = {x ∈ Xc : n

4
≤ vx ≤ 3n

4
}.

Based on Xv, it computes the wining count ti of each
object oi, i.e., ti =

∑
x∈Xv

Mix. Then objects with wining
counts larger than |Xv|

2
will be kept, because they win many

objects in the informative set. Then, it repeats the above
steps using the survived objects until finding top-k objects.

Fekete et al. [3] propose bound-based methods for ranking
in recommendation systems and image search, which build
a stochastic matrix Q where Qij =

Mij

Mij+Mji
, and devise

several algorithms to identify top-k results from the matrix.
Sampling Strategy with Copeland’s Ranking(SSCO)
[3] selects the top-k rows with most entries above 0.5 as the
top-k results. Sampling Strategy with Sum of Expec-
tations (SSSE) [3] selects the top-k rows with the largest
average value as the top-k results. Sampling Strategy
based on Random Walk (SSRW) [3] first transfers the
matrix Q to the stochastic matrix S where Sij =

Qij∑
l Qli

and computes the principal eigenvectors (that belong to the
eigenvalue 1). Then it identifies the top-k rows with the
largest eigenvalues as the top-k answers.

4.2 Machine-Learning Methods
These methods assume that each object has a latent score

which follows a certain distribution. Then they utilize machine-
learning techniques to estimate the scores. Lastly, they se-
lect k objects with the largest scores as the top-k results.

4.2.1 Maximum Likelihood Estimation
CrowdBT with Bradley-Terry Model [2]. This method
uses Bradley-Terry (BT) model to estimate the latent score [2].
In the BT model, the probability of oi � oj is assumed as
esi

esi+e
sj . Then based on the crowdsourced comparisons, it

computes the latent scores by maximizing∑
oi�oj∈L

log(
esi

esi + esj
), (13)

where L is a set of crowdsourced comparison results.
However, the BT model does not consider the crowd qual-

ity. As different workers have different quality, it is very
important to tolerate errors in estimating the scores. To ad-
dress this problem, Chen et al. [4] propose the CrowdBT
model, which assumes that each worker w has a quality
ηw. That is, if worker w returns oi � oj , the probability
of oi � oj is ηw and the probability of oj � oi is 1− ηw. In
addition, if the pairwise comparison graph is not strongly
connected, Equation 13 may not get an accurate estimation
for the objects. To solve this problem, Chen et al. [4] add a
virtual object to the comparison graph with comparisons to
other objects. The score for the virtual object is represented
by s0. Then it computes the scores by maximizing∑

w

∑
oi�oj∈Lw

log
(
ηw

esi

esi + esj
+ (1− ηw)

esj

esi + esj

)
+

λ

n∑
i=1

(
log(

es0

es0 + esi
) + log(

esi

es0 + esi
)
)
,

(14)

where Lw is the set of comparison results by worker w.
CrowdGauss with Gaussian Model [16]. Pfeiffer et
al. [16] propose CrowdGauss that uses the gaussian model
to estimate the score. It assumes that the score follows the
gaussian distribution, where the score is the mean of the
distribution. The probability of oi � oj , i.e., P (oi � oj),
can be computed by the cumulative distribution function
(Φ) of the two standard gaussian distributions, i.e.,

P (oi � oj) = Φ(si − sj). (15)
Then CrowdGauss computes the scores by maximizing∑

oi�oj∈L

Mij · log(Φ(si − sj)). (16)
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4.2.2 Matrix Decomposition Based Method
HodgeRank [11]. In order to estimate a global order for
n objects, HodgeRank [11] utilizes a matrix decomposition
based technique. It first computes a preference matrix Y
based on the crowd’s answers, where

Yij =

{
ln(

Mji

Mij
) if i 6= j and Mij 6= 0

0 otherwise.
(17)

Then, it constructs another matrix X where Xij = sj−si.
Lastly, it computes the score by minimizing∑

oi�oj∈L

(Xij − Yij)2 =
∑

oi�oj∈L

(sj − si − Yij)2. (18)

4.2.3 Others
TrueSkill [10]. TrueSkill improves ELO by reducing the
number of iterations as ELO needs to repeat many times to
convergence. Different from ELO, the score of each object
oi is represented by a Gaussian distribution N(si, δi), where
si is the estimated score for oi and δi is the deviation of si.
Let β =

∑
i δi
n

denote the average deviation for all objects.
U and V are two monotonically decreasing functions, which
are used to update si and δi. U(

si−sj
c

, ε
c
) is the reward

score added to oi or the punishment score subtracted from
oj , where ε is a predefined parameter. V(

si−sj
c

, ε
c
) indicates

the reduction of the deviation. For each comparison result
oi � oj , it updates the scores and deviations as below.

si ← si +
δ2
i

c
· U(

si − sj
c

,
ε

c
); sj ← sj −

δ2
j

c
· U(

si − sj
c

,
ε

c
)

δ2
i ← δ2

i · [1−
δ2
i

c2
· V(

si − sj
c

,
ε

c
)]; δ2

j ← δ2
j · [1−

δ2
j

c2
· V(

si − sj
c

,
ε

c
)],

(19)

where β =
∑

i δi
n

, c =
√

2β2 + δ2
i + δ2

j , ε is a predefined pa-
rameter, and si, δi are learned from the crowdsourced pairs.

4.3 Extensions of Heap-Based Methods
TwoStageHeap [5]. A two-stage heap algorithm [5] is pro-
posed to extend heap-based algorithms to support crowd-
sourced top-k computation in databases. In the first phase,
the objects are divided into n

X
buckets (where X = xn

k2
) such

that the probability of two top-k objects appearing in the
same bucket is at most x (set to 0.1 by default). In each
bucket, a tournament based max algorithm [5] is conducted
to select the best object in the bucket. Each pair on top lev-
els of the tournament is compared multiple times and each
pair on low levels of the tournament is compared only once.
The second phase utilizes a heap-based method [8] to iden-
tify the top-k results from these best objects. To tolerate
errors, when constructing and re-heapifying the heap, each
pair is compared by multiple workers and the algorithm uses
the majority voting to obtain a combined preference. After
popping an object from the heap, the algorithm asks next
pairs following the re-heapifying order.

4.4 Combining Rating And Comparison
There are two algorithms [12,20] that combine rating and

comparison. The methods in [12] are initially designed to
find the maximal object, and they can be extended to ad-
dress the top-k problem. They utilize the rating and com-
parison results to learn the score for each object. For rating,
they pre-define τ categories and each category χc has a range
(γc−1, γc], where γ0 < γ1 < · · · < γτ . If the score of object
oi falls in (γc−1, γc], oi is in the category χc.

Combine [20]. It first selects some rating and comparison
tasks, and then infers the scores based on these results. The
score for each object oi is modeled by si + εi, where εi ∼
N(0, δ2), which is utilized to model crowd errors.
For rating, oi is in the category χc with probability of

P (χc|si) = Pr(γχc−1 < si + εi ≤ γχc) = Φ(
γχc − si

δ
)− Φ(

γχc−1 − si
δ

)

(20)
where Φ represents the Cumulative Density Function(CDF)
of standard Gaussian distribution. Then it constructs a vot-
ing matrix V based on the voting result, where Vij is the
number of times that oi is observed in the j-category.
It computes the probability of observing V given s by:

P (V |s) =

n∏
i=1

Pr(Vi1, Vi2, · · · , Viτ |si)

= c1

n∏
i=1

τ∏
c=1

(
Φ(
γc − si
δ

)− Φ(
γc−1 − si

δ
)
)Vi,c

(21)

where c1 is a constant.
As εi has a normal distribution, the pairwise preference

can be modeled as,

P (oi � oj) = Pr(si + εi > sj + εj) = Φ(
si − sj√

2δ
) (22)

For comparison, it constructs the comparison matrix M
and computes the probability of observing M by:

P (M |s) =
∏

i<j∈1,···n

Pr(Mij ,Mji|si, sj) = c2
∏
i6=j

Φ(
si − sj√

2δ
)Mij

(23)
where c2 is a constant.
Based on Pr(V |s) and Pr(M |s), it computes Pr(s|V,M)

based on the bayesian theory and estimates the score by

ŝ = arg max
s
Pr(s|V,M) (24)

Monte Carlo methods can be used to compute Equation 24,
but the computation cost is rather high. [20] approximates
Pr(s|V,M) by Pr(s|V,M, γ̂), where γ̂ = arg maxγ Pr(V,M |γ).
Utilizing the Laplace approximation, an analytical form can
be formulated for Pr(V,M |γ), and the maximum likelihood
estimation of γ can be computed by gradient based opti-
mization methods. After obtaining γ, s can be estimated by
maximizing a posteriori probability (MAP) estimation.
Hybrid [12]. It first crowdsources all rating tasks and then
selects some candidate objects with higher ratings. Then it
chooses some pairs from the candidates as comparison tasks.
The score of each object oi is modeled as a normal variable
N(si, δ

2). Given the rating results ER and comparison re-
sults EC , it estimates the score by

ŝ = arg max
s
P (ER, EC |s) (25)

If the questions are answered independently, the above
function can be decomposed to

P (ER, EC |s) = P (ER|s)P (EC |s)

P (ER|s) =

n∏
i=1

|R∗
i |∏

j=1

P (Rji |si)

P (EC |s) =

n−1∏
i=1

n∏
j=i+1

|Mij+Mji|∏
t=1

P (Ctij |si, sj)

(26)
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where |R∗i | is the number of ratings for object oi, Rji is the
assigned category in the j-th rating (by assuming each cat-
egory has equal width and γ0 = 0, γτ = 1). Thus, the
probability that object oi lies in category χc is computed as

P (Rji = χc|si) =

 Fsi,δ2( c
τ

) c = 1
Fsi,δ2( c

τ
)− Fsi,δ2( c−1

τ
) 1 < c < τ

1− Fsi,δ2( c−1
τ

) c = τ
(27)

where Fsi,δ2(x) is the CDF of si and δ.
Let Ctij denote the comparison result in the t-th compar-

ison for pair (oi, oj). Ctij = 0 if oj is superior to oi, and
P (Cij = 0) + P (Cij = 1) = 1. Since oi and oj both follow
the normal distribution, oi − oj ∼ N(si − sj , 2δ2),

P (Cti,j = 0|si, sj) = Fsi−sj ,2δ2(0). (28)

HybridMPR. However, the maximum likelihood estimation
is rather expensive, thus a modified PageRank approxima-
tion [12] is proposed to estimate the score for each object.
It defines the average rating score ri for each object oi as,

ri =

dv if |R∗i | = 0∑
j R

j
i

τ |R∗
i |
− 1

2τ
otherwise

(29)

where dv is a default value (e.g., 0.5) for the case of no rating
on oi. Then the modified PageRank is defined as below,

ρi = β
∑

j:wj 6=0

wj,i
wj

ρj + (1− β)
ri∑
j rj

(30)

where β is the fraction of comparison questions to the total
questions, wj =

∑
i wj,i, and wj,i is defined as

wj,i =


1 if Mij +Mji = 0 and ri ≥ rj
0 if Mij +Mji = 0 and ri < rj

Mij

Mij+Mji
otherwise

(31)

5. PAIR SELECTION
This section discusses different pair selection methods.

The random selection method that randomly selects next
b pairs is not effective [19], because different comparison
pairs have different importance to infer the results. For ex-
ample, in Figure 2, suppose we select pairs (o1, o2), (o2, o5),
(o1, o5). As o1 � o2 and o2 � o5, (o1, o5) does not need
to be asked as its result can be deduced. Similarly, (o1, o6)
and (o2, o6) do not need to be crowdsourced. Thus it is im-
portant to select high-quality pairs. We first introduce the
heuristic-based methods in Section 5.1 and then discuss the
bound-based methods in Section 5.2. Lastly, we discuss the
active-learning methods in Section 5.3.

5.1 Heuristic-Based Methods
Guo et al. [9] prove that selecting the pairs to maximize

the probability of obtaining the top-k results (given the com-
parison results of arbitrary crowdsourced pairs) is NP-Hard
and propose four heuristics, which are designed for selecting
the max (top-1) result. The proposed algorithms first com-
pute a score si for object oi (see Section 4.1). Suppose the
sorted objects based on the scores are o1, o2, · · · , on. Then,
the algorithms select the next b pairs as follows.
Max. It selects b pairs: (o1, o2), (o1, o3), · · · , (o1, ob+1).
Group. It groups the i-th object with the (i+ 1)-th object
and the selected pairs are (o1, o2), (o3, o4), · · · , (o2b−1, o2b).

Greedy. It selects the pairs based on si × sj in descending
order, and selects b pairs with the largest value.
Complete. It has two phases. The first phase finds the
maximal number of objects and makes a pairwise compari-
son on them. Thus the first phase finds top-x objects with
the highest scores, where x is the largest integer satisfying
x∗(x−1)

2
≤ b. The first phase compares every two objects

among the first x objects. If the budget is not exhausted
in the first phase (i.e., b > x∗(x−1)

2
), then the second phase

compares the first b − x∗(x−1)
2

objects with the (x + 1)-th
object, i.e., (o1, ox+1), (o2, ox+1), · · · , (o

b− x∗(x−1)
2

, ox+1).

5.2 Bound-Based Methods
SSCO and SSSE estimate a bound for each pair and utilize

the bound to select next pairs [3]. Formally, SSCO and SSSE
first compute a confidence interval [lij , uij ], where lij (uij)
is the lower (upper) bound of the probability of oi � oj ,
which can be computed as below.

uij =
Mij

Mij +Mji
+ cij ; lij =

Mij

Mij +Mji
− cij , (32)

where cij=
√

1
2(Mij+Mji)

log 2n2nmax
q

, nmax is a predefined
maximal number of crowdsourced tasks for each pair and q
is a confidence factor that top-k objects can be found with
probability 1−q. Based on the confidence interval, they se-
lect a set S and discard a set D. Since the relationships
between pairs in S∪D have been effectively captured, these
pairs do not need to be compared. They propose two algo-
rithms to select pairs that are not in S ∪D.
Sampling Strategy with Copeland’s Ranking(SSCO)
[3]. Based on the confidence interval [lij , uij ], it computes
a bound Li = |{oj |lij > 1/2}| of object oi, which is the
number of objects with high probability of oi � oj , and
a bound Ui = |{oj |uij < 1/2}| of object oi, which is the
number of objects with high probability of oj � oi. Given
two objects oi and oj , if Li > n−Uj , oi should be preferred
to oj . If |{j|Li > n − Uj}| > n − k (i.e., the number of
objects beaten by oi is larger than n− k), oi will have high
probability in the top-k results and is added into set S, i.e.,

S = {oi : |{j|Li > n− Uj}| > n− k}. (33)

Similarly, if Ui > n− Lj , oj should be preferred to oi. If
|{j|Ui > n− Lj}| > k (i.e., the number of objects preferred
to oi is larger than k), oi has small probability in the top-k
results and is added into the set D, i.e.,

D = {oi : |{j|Ui > n− Lj}| > k}. (34)

Sampling Strategy with Sum of Expectations(SSSE)
[3]. This method utilizes the sum of expectations to com-
pute the two bounds, and Li = 1

n−1

∑
j 6=i lij is the expec-

tation of lower bound of oi and Ui = 1
n−1

∑
j 6=i uij is the

expectation of upper bound of oi. If Li > Uj , oi should be
preferred to oj . If |{j|Li > Uj}| > n−k (i.e., the number of
objects beaten by oi is larger than n− k), oi will have high
probability in the top-k results and is added into set S, i.e.,

S = {oi : |{j|Li > Uj}| > n− k}. (35)

Similarly, if Ui < Lj , oj should be preferred to oi. If
|{j|Ui < Lj}| > k (i.e., the number of objects preferred to
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oi is larger than k), oi will have small probability in the
top-k results and is added into the set D, i.e.,

D = {oi : |{j|Ui < Lj}| > k}. (36)

Sampling Strategy based on Random Walk(SSRW)
[3]. SSRW uses a random walk based method to select
next pairs. It defines a matrix Ȳ , where each of its element
ȳi,j(ȳi,j =

Mi,j

Mi,j+Mj,i
) is the estimated probability that oi is

preferred to oj . The real probabilities for pairwise compar-
isons are represented by matrix Y , and the accurate value for
matrix Y is unknown. To utilize random walk to address the
top-k problem, the method constructs a stochastic matrix
S̄ for Ȳ . Each element in S̄ is computed as s̄i,j =

ȳi,j∑
l ȳl,i

.
Besides, the stochastic matrix for Y is defined as S and
si,j =

yi,j∑
l yl,i

. Assuming the principal eigenvectors for S̄
and S are v̄ and v. The method makes a statement that

‖ v − v̄ ‖max≤‖ S − S̄ ‖1‖ Ā# ‖max (37)

where Ā# = (I − S̄ + 1v̄T )−1 − 1v̄T . And ‖ Ā# ‖max is
converged to ‖ A# ‖max. As ‖ A# ‖max is bounded, ‖ S −
S̄ ‖16 n

3
arg maxi,j ci,j

∑
l ȳl,i. To minimize Equation 37,

a sampling strategy is used to minimize ‖ S − S̄ ‖1, and
it selects pairs (i, j) = arg maxi,j ci,j

∑
l ȳl,i, where cij =√

1
2(Mij+Mji)

log 2n2nmax
q

.

5.3 Active-Learning Methods
Active-learning methods select next pairs by maximizing

the information gain based on the estimated latent scores.
5.3.1 Active Learning
CrowdGauss [16]. The scores can be modeled by a mul-
tivariate Gaussian distribution N(ŝ, C), where ŝ is a 1 × n
matrix indicating the score for all the objects (initialized by
random values), and C is the covariance matrix of ŝ (Cij is
the value at i-th row and j-th column). In each round of
pair selection, the expected information gain gij for each
pair (oi, oj) is computed. For pair (oi, oj), N(ŝij , Cij) is the
reevaluation distribution by assuming oi � oj , and pij is the
probability of oi � oj estimated in the previous iteration.
The expected information gain is computed as:

gij = pij · KL
(
N(ŝij , Cij), N(ŝ, C)

)
+ pji · KL

(
N(ŝji, Cji), N(ŝ, C)

)
,

(38)

where pij = Φ
(

si−sj
1+Cii+Cjj−2Cij

)
and KL is the Kullback-

Leibler divergence. At each iteration, it selects the pair with
the largest expected information gain and updates ŝ and C.
CrowdBT [4]. The above method does not consider the
worker quality. Chen et al. [4] propose an active-learning
method by taking into account the worker quality. The score
of object oi is modeled by a Gaussian distribution N(si, δi)
and the quality of worker w is modeled by a Beta distribu-
tion Beta(αw, βw). Each time it computes the probability
of worker w on oi � oj , denoted by P (oi �w oj), as below.

P (oi �w oj) = ηw
esi

esi + esj
+ (1− ηw)

esj

esi + esj
. (39)

It uses a parameter γ to tune the comparison result and
worker quality. It assigns (oi, oj) to worker w by maximizing
the probability of w reporting a correct result on (oi, oj).
5.3.2 Combining Rating and Pairwise Comparisons
Combine [20]. Instead of just utilizing pairwise compar-
isons, Ye et al. [20] propose an active-learning strategy by

combining rating and comparison together. Each time with
a budget b, it selects a subset of rating-based questions and
some comparison-based questions to maximize the expected
information gain Z∗. The rating-based method asks the
crowd to assign an object to a rate, and the rating-based
information gain is computed as below.

gr(i) = E
( M∑
r=1

pir log(
pir

p(xi = r)
)
)

(40)

where pir is the probability that the crowd assigns oi with
rate r. p(xi=r) is the prior probability for oi with rate r.
The comparison based information gain is computed as

gc(i, j) = E
(
pij log(

pij
p(xij = 1)

)+qij log(
qij

p(xij = 0)
)
)
, (41)

where pij is the probability of oi � oj based on crowdsourced
comparisons, qij = 1 − pij , p(xij = 1)(p(xij = 0)) is the
prior probability of oi � oj (oj � oi). Assuming the cost for
rating (comparison) is Cr (Cc), which are set to 1, it selects
tasks with the maximal information gain.

6. EXPERIMENTAL STUDY
We evaluated all inference and selection methods. All

the source code and real datasets were available at http:
//dbgroup.cs.tsinghua.edu.cn/ligl/crowdtopk/.

6.1 Experimental Setting
6.1.1 Real Experiments
Existing works selected datasets based on the following

characters: difficulty (easy or hard for workers), task types
(images or texts), objective/subjective. We utilized these
features to select datasets and Table 3 showed the details.
PeopleAge1. It included 50 human photos with ages from 50
to 100. We asked the crowd to judge which one was younger.
PeopleNum [12]. It contained 39 images taken in a mall.
Each image contained multiple people, where the number of
people varied from 13 to 53. We asked the crowd to judge
which one contained more people.
EventTime. It contained 100 history events, e.g., “Germany
invades Poland starting World War II” and “Napoleon de-
feated at Waterloo”. Each event happened in different years.
The crowd was asked to judge which event happened earlier.
ImageClarity. It contained 100 images with different clari-
ties. The crowd was asked to judge which image was clearer.
The datasets had different levels of difficulties. ImageClarity

was the easiest, and EventTime was the hardest. PeopleAge
and PeopleNum had medium difficulty. EventTime used tex-
tual tasks while ImageClarity, PeopleAge and PeopleNum
used image tasks. PeopleAge was subjective because differ-
ent workers might have different judgements on people age
while EventTime, PeopleNum and ImageClarity were objec-
tive as the tasks had clear answers.
We conducted the real experiments on a real crowdsourc-

ing platform, CrowdFlower(www.crowdflower.com). The price
of each microtask was 0.05$. To obtain high-quality workers,
we used 5 qualification tests on each dataset.
6.1.2 Simulation Experiments
To further evaluate different methods on larger datasets,

we generated a dataset with 1000 objects with scores from
1 to 1000 and there were totally 499,500 pairs. (Note that if
we used 10000 objects, there would be 49,995,000 pairs and
most of algorithms cannot support such large dataset.) We
varied the worker accuracy in {60%, 70%, 80%, 90%}.
1http://www.edouardjanssens.com/art/1-to-100-years/men/
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Figure 3: Recall on Simulation for Selected Inference Methods: Varying Selection Rate (1000 Objects, k = 10).
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Figure 4: ACCk on Simulation for Selected Inference Methods: Varying Selection Rate (1000 Objects, k = 10).
Table 3: Worker Accuracy on Real Datasets
(c-Accuracy: Comparison; r-Accuracy: Rating).
Datasets #Objects #Pairs c-Accuracy #Ratings r-Accuracy
PeopleAge 50 1225 85.2% 50 100%
PeopleNum 39 741 88.4% 39 71.8%
EventTime 100 4950 76.6% 100 89.4%
ImageClarity 100 4950 98.6% 100 97%

6.1.3 Setting
Microtasks. For comparison-based methods, we generated
comparison tasks to compare each object pair. For hybrid
methods that combined rating and comparison, we used two
types of tasks: comparison and rating. The rating task asked
the worker to select a category for each object. We used five
categories for each dataset. For example, the five categories
on the PeopleAge dataset were ‘50-60’, ‘60-70’, ‘70-80’, ‘80-
90’, and ‘90-100’. Each task was assigned to 3 workers. For
comparison, we combined the comparison results of the 3
workers using majority vote and computed voted compar-
ison accuracy, denoted by c-accuracy. For rating, we used
the majority vote to combine the result and computed voted
rating accuracy, denoted by r-accuracy.
Quality Metrics. We used two metrics to evaluate the
quality. Let Ak and T k respectively denote the top-k results
by an algorithms and the real top-k results. (1) Recall. It
was computed by |A

k∩Tk|
k

. (2) ACCk. It considered the
orders of the returned results and was computed as

ACCk =

∑
oi,oj∈Tk∩Ak I(ai < aj ∧ ti < tj)

k(k + 1)/2
(42)

where ti was the real ranking position for object oi and ai
was the ranking position by the algorithm. I was a function,
which returned 1 if the condition was true; 0 otherwise.
Setting. All algorithms were implemented by Python 2.7.6.
The parameters were used the same as in the original paper
as shown in Table 2. All experiments were conducted on a
Macbook Pro with 2.3GHz Intel i7 CPU and 16GB RAM.
6.2 Evaluation of Inference Methods
The number of crowdsourced pairs could affect the quality

of inference methods. We varied the selection rate which was
the ratio of the number of selected pairs to the total number
of pairs, to compare the inference algorithms.

6.2.1 Simulation – Varying Selection Rate
We first compared the inference methods by randomly

selecting crowdsourced pairs, and then evaluated different

selection strategies in Section 6.3. Here we showed the re-
sults of selected representative methods from each category
and the results of all the methods were in the full version2.
For the heuristic-based algorithms, we selected Local, URE,
SSRW, and Iterative as they achieved higher performance.
For the machine-learning methods, we selected CrowdBT
which outperformed other methods. For hybrid methods,
we selected Hybrid. We also compared with TwoStageHeap.
Thus we showed the results of these seven algorithms. Fig-
ure 3 showed the recall and Figure 4 showed ACCk.
We had the following observations. First, for low worker

quality (e.g., the worker accuracy of 60%), all the algorithms
had low recall. For example, in Figure 3(a), the recall for
most of the algorithms were smaller than 60%, because for
low worker accuracy, there were many incorrect comparisons
and it was hard to correct many errors.
Second, for high worker quality (e.g., the worker qual-

ity larger than 70%), the machine-learning methods outper-
formed most of the heuristic-based methods, as the machine-
learning methods utilized the global comparison results to
infer the top-k answers while the heuristic-based approaches
only used the local comparison results, e.g., in-degree and
out-degree. If the comparison results on local pairs were
incorrect, they would significantly affect the performance
while the machine-learning methods tolerated local errors.
Third, among the heuristic-based methods, the iterative

inference algorithms (e.g., Iterative, AdaptiveReduce) were
better than the other heuristic inference algorithms(e.g.,
BordaCount, Copeland, Indegree, ELO), and even outperformed
the machine-learning algorithms, because the iterative algo-
rithms iteratively reduced objects that were unlikely in the
top-k answers. In addition, Local was better than Borda-
Count and Copeland, as Local utilized 2-hop neighbors while
BordaCount and Copeland only utilized the direct neighbors.
Fourth, TwoStageHeap was worse than others when the

worker accuracy was low, while it had a good performance
when the accuracy was high. The main reason was that for
low worker quality, it might miss some top-k candidates in
the first step due to the comparison errors from the crowd.
URE had a better performance than BRE when the average
worker accuracy was above 70%. URE was more robust than
BRE as URE computed the number of losses for each object,
rather than computing the relative difference of the number
2http://dbgroup.cs.tsinghua.edu.cn/ligl/crowdtopk/topk.pdf
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Figure 5: Recall on Real Datasets for Selected Inference Methods: Varying Selection Rate (k = 10).
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Figure 6: ACCk on Real Datasets for Selected Inference Methods: Varying Selection Rate (k = 10).

of wins and losses for each specific object. As the number of
pairwise comparisons was not sufficient, the losses for each
object could bring more information than the relative differ-
ence of the wins and losses. Among the three bound-based
algorithms, SSCO and SSSE had poor performance as they
utilized local information to update the score matrix. SSRW
outperformed SSCO and SSSE, as SSRW utilized random
walk to capture global comparison results.
Fifth, for the machine-learning methods, CrowdBT out-

performed other methods. CrowdBT had better performance
than CrowdGauss, because CrowdBT not only considered the
worker quality, but also utilized the graph structure to facil-
itate the inference. HodgeRank and SSRW had lower recall,
because the matrix decomposition had deviations and led to
errors to compute latent scores.
Sixth, AdaptiveReduce had lower recall than other meth-

ods for small selection rates but achieved comparable and
even higher recall for large selection rates. This was be-
cause for small selection rates, AdaptiveReduce cannot get
high-quality informative set (which required to find a sub-
set with voting account between n

4
and 3n

4
, and there were

no enough comparisons for small rates); for large selection
rates, AdaptiveReduce identified a high-quality informative
set based on lots of comparison results. PathRank had poor
recall because it required that the graph was strongly con-
nected and had no circles, which made it not robust.
Seventh, for the hybrid algorithms, Hybrid achieved higher

performance for a low selection rate, because it greatly re-
duced the candidates with little cost and utilized global
pairwise comparisons in the second stage to infer the top-
k answers. Hybrid achieved a good performance for high
worker accuracy, because its quality was greatly affected by
the worker accuracy and if the worker accuracy was low,
its first stage could not guarantee that all the top-k objects
were selected into the candidates. Combine was worse than
Hybrid, as Combine did not consider worker accuracy. Hy-
bridMPR was worse than Hybrid because its estimated scores
were worse than the scores learned by Hybrid.
Eighth, with the increase of the selection rates, the com-

parison algorithms achieved higher recall, as more crowd-
sourced pairs were used to infer the final answers. However
for the hybrid method, the quality first increased and then
decreased, because for a larger selection rate, it involved
more candidates and the second phase had to consider more

pairs to infer the top-k results. The results were also con-
sistent with those in the original paper [12].
Ninth, ACCk was smaller than recall, as ACCk consid-

ered the orders of returned results. The methods computing
scores for each object were better than the adaptive-reduce
methods (e.g., AdaptiveReduce, PathRank, TwoStageHeap),
because the former used the score to infer an order for the
objects while the latter could not get any order.
Tenth, with the increase of selection rates, the recall in-

creased, but the improvement after 30% selection rates was
not significant. In other words, 30% selection rates had sim-
ilar recall with 100% selection rates. Thus if we had a mon-
etary budget, we could select 30% pairs.
Although machine-learning methods had higher recall than

some heuristic-based algorithms, the superiority was not sig-
nificant and they were even worse than Iterative, as some
heuristics also considered global information. The heuris-
tics achieved as high recall as the machine-learning methods
if they effectively utilized global comparison results.

6.2.2 Real Experiments – Varying Selection Rate
We compared different algorithms on real datasets by vary-

ing selection rates. Figures 5 and 6 illustrated the results for
the selected algorithms. We had the following observations.
First, the observations on the simulation experiments were

still true on the real datasets. On the EventTime dataset,
CrowdBT, CrowdGauss, TrueSkill had similar performance,
which outperformed other methods. Among all heuristic-
based methods, URE and SSRW had the highest recall, as
URE could tolerate more noise and SSRW could utilize global
information based on random walk. Second, on the PeopleAge
dataset, URE was slightly superior to the other methods, be-
cause if the noise mainly came from the dataset (as workers
had diverse judgements on people’s ages), the simple heuris-
tics could have a competitive performance with the machine-
learning methods. Third, on the ImageClarity dataset, the
algorithms based on random walk and maximum likelihood
estimation had much better recall than the heuristic-based
methods. For AdaptiveReduce, when the selection rate was
low, it got low recall; however with a high selection rate,
its performance was significantly improved, because if more
pairwise results were collected, AdaptiveReduce could utilize
more comparison results to do effective pruning. Fourth, on
the PeopleNum and ImageClarity datasets, as the workers’
accuracy was high, all the algorithms could get higher recall.
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Figure 7: Recall on Real Datasets for Selected Inference Methods: Varying k.
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Figure 8: Recall on Real Datasets for Selected Inference Methods: Varying Object No (k = 10).

For example, on the ImageClarity dataset, the recall could
reach 90%, even for small rates. Fifth, the hybrid method
achieved higher quality for small selection rates, as it used
rating to eliminate lowly ranked objects with little cost and
utilized the pairwise comparisons to compare highly ranked
objects. With the increase of the selection rate, more pairs
would be selected into the second stage, and more noise
were brought by these pairs. Sixth, for subjective tasks,
e.g., PeopleAge, we found that the quality could not be im-
proved even with a very high selection rate, because workers
had diverse judgements on images with close ages. For ob-
jective tasks, the quality was consistently improved with the
increase of selection rates.

6.2.3 Real Datasets – Varying k
We varied the number of reported results, k. Figure 7

showed the results. We found that a large k had higher recall
than a small k, as the crowd usually returned inaccurate
results for hard comparison pairs (with close scores) and
correct results for easy comparison pairs (with significantly
different scores). The ratio of incorrect pairs to k decreased
as k increased. Thus a small k was harder than a large k.

6.2.4 Real Datasets – Varying Object No
We varied the number of objects. Figure 8 showed the re-

sults. We found that with the increase of the object number,
the recall of some algorithms decreased, because they had
to consider more pairs and it become harder to get top-k
results from a larger dataset (than a smaller dataset). This
was consistent with the case of decreasing k.

6.2.5 Efficiency And Scalability
We evaluated the efficiency of different algorithms. We

only reported the time used to infer the top-k answers and
the time spent by workers was not included. We generated
1000 objects as discussed in Section 6.1.2. Figure 9 showed
the results. First, the heuristics had higher efficiency and
scalability than the machine-learning algorithms, because
the latter involved huge computations of utilizing the global
comparison results to infer latent scores. Second, the local
inference heuristics had better efficiency and scalability than
the global inference heuristics. Third, with the increase of
selection rates, the time increased as they considered more
pairs. The machine-learning methods slightly increased as
they considered all pairs for every selection rate.
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Figure 9: Efficiency/Scalability for Inference.

6.2.6 Takeaways: Inference Algorithm Suggestions
We had the following suggestions that can guide practi-

tioners to select appropriate inference algorithms.
(1) If the user preferred high quality with small selection
rates, the Hybrid method was recommended; If the user pre-
ferred a higher quality with larger selection rates, we recom-
mended the machine-learning algorithms, e.g., CrowdBT.
(2) If the user preferred high quality with high efficiency, we
recommended iterative inference heuristics, e.g., Iterative.
(3) If efficiency was crucial, we recommended TwoStageHeap.
(4) We recommended 30% selection rate.

6.3 Evaluation on Selection Methods
6.3.1 Real Datasets – Varying Selection Rate
We first varied the selection rates. For each selection rate,

we utilized different methods to select pairs and adopted dif-
ferent inference algorithms to infer the top-k answers based
on comparison results on these selected pairs. Figures 10-
13 showed the results for using CrowdBT and Iterative as
inference methods. We had the following observations.
First, the active-learning methods had higher quality than

random selection on all the datasets, because they judi-
ciously selected the pairs with high possibility in the top-k
results, which were better than the randomly chosen ones.
Second, the four heuristics were even worse than the random
method, as these four methods were specifically devised to
select the top-1 object and cannot effectively find the top-
k objects. Even for large selection rates, they still could
not achieve high quality, as they selected many duplicated
pairs. Third, SSCO, SSSE and SSRW were slightly better
than Random, because they could use the estimated scores
to remove some unnecessary pairs but they could not esti-
mate an accurate bound with limited number of compar-
isons. Fourth, Combine achieved high quality as it utilized
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Figure 10: Recall of Selection Method (Inference Method: CrowdBT).
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Figure 11: ACCk of Selection Methods (Inference Method: CrowdBT).
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Figure 12: Recall of Selection Methods (Inference Method: Iterative).
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Figure 13: ACCk of Selection Methods (Inference Method: Iterative).
the rating tasks to select high-quality rating or comparison
tasks. Fifth, the recall of the selection methods became sta-
ble when the selection rates were larger than 30% on all
the datasets, because the selection strategy was not impor-
tant for large selection rates as they could utilize more pairs.
Sixth, on the PeopleNum and ImageClarity datasets, the re-
call of all the methods were high even with a low selection
rate due to the high worker accuracy on these datasets.

6.3.2 Real Datasets – Varying k
We varied the number of reported results, k. We used

CrowdBT as the inference method. Figure 14 showed the re-
sults. With a larger k, the average recall was higher, because
a large k made the problem easy as the comparisons on many
distinctively different objects were easier than the compar-
isons on few similar objects. In addition, the active-learning
methods and bound-based methods still outperformed Ran-
dom, which was better than the heuristics.

6.3.3 Real Datasets – Varying Object No
We varied the number of objects and still used CrowdBT

as the inference method. The selection rate was 30%. Fig-
ure 15 showed the results. With the increase of the object
number, the average recall was slightly decreased, because
more objects were involved, which made the problem harder.
This was also similar to the case of increasing k.

6.3.4 Efficiency and Scalability
We evaluated the efficiency and scalability of the selection

algorithms. In each iteration, we selected 10 pairs. Fig-
ure 16 showed the results. The four heuristics had much
higher efficiency and scalability than other methods, as the
heuristics only sorted the objects based on their scores and
returned the pairs with the highest scores. The active-
learning algorithms had the worst efficiency and scalabil-
ity, because they had to evaluate all the unselected pairs.
Specifically, CrowdGauss involved huge matrix computation
in each iteration. CrowdBT enumerated all possible com-
binations of tasks and workers. Combine did not consider
workers and identified the tasks with the largest informa-
tion gain. Among the three bound-based methods, SSCO
and SSSE had higher efficiency as they only found the rows
with high bounds, while SSRW took longer time than SSCO
and SSSE because SSRW evaluated all the unselected pairs.

6.3.5 Takeaways: Selection Algorithm Suggestions
We had the following suggestions that can guide prac-

titioners to select appropriate selection algorithms. (1) If
the user preferred high quality, the active-learning method
CrowdBT was recommended. (2) If the user preferred high
efficiency, we recommended SSCO/SSSE. (3) For large selec-
tion rates (>30%), the random method was acceptable.
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Figure 14: Recall on Real Datasets for Selection Methods: Varying k (Inference Method: CrowdBT).
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Figure 15: Recall on Real Datasets for Selection Methods: Varying Object No (k = 10, Inference: CrowdBT).
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Figure 16: Efficiency/Scalability for Selection.

7. CONCLUSION
We provided a detailed survey on the crowdsourced top-k

problem, discussed all of the comparison-based algorithms,
rating-based algorithms and hybrid algorithms. Based on
the experimental results, we also provided guidelines on se-
lecting appropriate algorithms for various scenarios.
(1) The inference and selection algorithms were important
to achieve high quality, especially for small selection rates.
(2) For result inference, the machine-learning methods achieved
high quality. The global inference heuristics that utilized
global comparison results achieved comparable and even higher
quality than the machine-learning methods. The local in-
ference heuristics had poor quality. However, the heuristics
achieved higher efficiency and scalability. We had the follow-
ing suggestions to select appropriate algorithms. (i) If the
user preferred high efficiency, we recommended TwoStage-
Heap. (ii) If the user preferred high quality with low selec-
tion rates, we recommended Hybrid; If the user preferred a
high quality with large selection rates, we recommended the
machine-learning algorithms, e.g., CrowdBT; (iii) If the user
preferred high quality with acceptable efficiency, we recom-
mended the iterative inference heuristics, e.g., Iterative.
(3) For pair selection, the active-learning methods and bound-
based methods achieved higher quality than heuristics. How-
ever the active-learning methods had lower efficiency and
cannot meet the online requirement. We had the follow-
ing suggestions. (i) We recommended 30% selection rate;
(ii) If the user preferred high efficiency, we recommended
SSCO/SSSE; (iii) If the user preferred quality, the active-
learning method CrowdBT was recommended. (iv) For large
selection rates, the random method was acceptable.
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