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ABSTRACT
Many web databases are “hidden” behind proprietary search inter-
faces that enforce the top-k output constraint, i.e., each query re-
turns at most k of all matching tuples, preferentially selected and
returned according to a proprietary ranking function. In this paper,
we initiate research into the novel problem of skyline discovery
over top-k hidden web databases. Since skyline tuples provide crit-
ical insights into the database and include the top-ranked tuple for
every possible ranking function following the monotonic order of
attribute values, skyline discovery from a hidden web database can
enable a wide variety of innovative third-party applications over
one or multiple web databases. Our research in the paper shows
that the critical factor affecting the cost of skyline discovery is the
type of search interface controls provided by the website. As such,
we develop efficient algorithms for three most popular types, i.e.,
one-ended range, free range and point predicates, and then com-
bine them to support web databases that feature a mixture of these
types. Rigorous theoretical analysis and extensive real-world on-
line and offline experiments demonstrate the effectiveness of our
proposed techniques and their superiority over baseline solutions.

1. INTRODUCTION
Problem Motivation: Skyline for structured databases has been
extensively studied in recent years. Consider a database with n
tuples over m numerical/ordinal attributes, each featuring a do-
main that has a preferential order for certain applications, e.g., price
(smaller the better), model year (newer the better), etc. A tuple t
is said to dominate a tuple u if for every attribute Ai, the value of
t[Ai] is preferred over u[Ai]. The skyline is the set of all tuples ti
such that ti is not dominated by any other tuple in the database.

Skyline is important for multi-criteria decision making, and is
further related to well-known problems such as convex hulls, top-k
queries and nearest neighbor search. For example, a precomputed
skyline can serve as an index for efficiently answering any top-1
query with a monotonic ranking function over attributes. The ex-
tension of a skyline to aK-sky band (containing all tuples not dom-
inated by more than K − 1 others) enables efficient answering of
top-k queries when k ≤ K. For a summary of research on skyline
computation and their applications, please refer to Section 8.
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Much of the prior work assumes a traditional database with full
SQL support [5, 7, 14, 24] or databases that expose a ranked list of
all tuples according to a pre-known ranking function [4,18]. In this
paper, we consider a novel problem of how to compute the skyline
over a deep web, “hidden”, database that only exposes a top-k
query interface. Unlike the traditional assumptions, real-world web
databases place severe limits on how external users can perform
searches. Typically, a user can only specify conjunctive queries
with range or (single-valued) point conditions, depending on which
one(s) the web interface supports, and receive at most k matching
tuples, selected and sorted according to a ranking function that is
often proprietary and unknown to the external user.

Discovering skyline tuples from a hidden web database enables a
wide variety of third-party applications, ranging from understand-
ing the “performance envelope” of tuples in the database to en-
abling uniform ranking functions over multiple web databases. For
example, consider the construction of a diamond search service,
that taps into web databases of several jewelry stores such as Blue
Nile (by collecting data through their web search interfaces). While
there are well-known preferential orders on all critical attributes of
a diamond such as clarity, carat, color, cut and price, each jewelry
store may design its own ranking function as a unique weighting
of these attributes. On the other hand, the third-party service needs
to rank all tuples from all stores consistently, and ideally support
user-specified ranking functions (e.g., different weightings of the
attributes) according to his/her own need. An efficient and effec-
tive way to enable this is to first discover the skyline tuples from
the hidden web database of each jewelry store, and then apply a
user-specified ranking function on all the retrieved data to obtain
tuples most preferred by the user. One can see that, similarly, this
approach can be used to enable third-party services such as flight
search with user-defined ranking functions on price, duration, num-
ber of stops, etc.

Challenges: The technical challenges we face are fundamentally
different from traditional skyline computation techniques, mainly
because the data access model is completely different. In traditional
skyline research, there is no top-k constraint on data access, so the
algorithms can take advantage of either full SQL power or certain
pre-existing data indices such as sequence access according to a
known ranking function [4, 18]. On the other hand, as mentioned
earlier, in hidden databases the data access is severely restricted. In
principle, one can apply prior techniques developed to crawl the en-
tire hidden database (e.g., using algorithms such as [23]), and then
compute the skyline over a local copy of the database. However,
as we shall show in the experimental results, such an approach is
often impractical as crawling the entire database (as opposed to just
the skyline) requires an inordinate number of search queries (i.e.,
web accesses). Note that many real-world web databases limit the
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number of web accesses one can issue through per-IP-address or
per-API-key limits.

Technical Highlights: We distinguish between several important
categories of web search interfaces: whether range predicates are
supported for the attributes (either one-ended, e.g. Price < 300,
or two-ended, e.g., 200 < Price ≤ 300), or only single-value/point
predicates (e.g., Number of Stops = 0) or a mix of them are allowed.

For the case of one-ended range queries, we develop SQ-DB-
SKY, an iterative divide-and-conquer skyline discovery algorithm
that starts by issuing broad queries (i.e., queries with few predi-
cates), determines which queries to issue next based on the tuples
received so far, and then gradually narrows them to more specific
ones. For the case of two-ended range queries, we develop algo-
rithm RQ-DB-SKY, which is similar to the previous algorithm,
except that instead of being forced to issue overlapping queries, the
algorithm is able to take advantage of the more powerful search
interface and issue mutually exclusive queries to cover the search
space and be able to terminate earlier.

For the case of point queries, the significantly weaker search in-
terface introduces novel challenges in designing an efficient skyline
discovery algorithm. For the special case of 2-dimensional data, we
design algorithm PQ-2D-SKY that is instance-optimal, although
the worst-case complexity is a complex function that depends not
only on parameters such as n and S, but also on the domain sizes
of the attributes. Unfortunately, the generalization to higher dimen-
sions proves much more complicated, as shown by a negative result
that no instance-optimal algorithm can exist for higher dimensions.

As such, our eventual algorithm for higher dimensions, PQ-DB-
SKY, uses as a subroutine a revised version of the 2D algorithm
that is able to discover all skyline from a “pruned”’ 2D subspace
in an instance-optimal manner (though the overall algorithm for
higher dimensions is not instance-optimal). Given the exponential
nature of dividing a higher-dimensional space into 2D subspaces,
the worst-case query cost of the algorithm can be quite large. How-
ever, as we shall show through real-world online experiments, the
nature of these PQ attributes used in real-world hidden databases
(e.g., they usually have small domains with all domain values oc-
cupied by real tuples) makes the actual performance of PQ-DB-
SKY often fairly efficient in practice. Finally, we develop algo-
rithm MQ-DB-SKY to handle hidden databases that feature a mix-
ture of range and point attributes. All our algorithms have been
extensively evaluated against multiple real-world datasets such as
Yahoo! Autos, Google Flights, and Blue Nile.

2. PRELIMINARIES

2.1 Model of Hidden Database
Database: Consider a hidden web database D with n tuples over
m attributes A1, . . . , Am. Let the domain of Ai be Dom(Ai) and
the value of Ai for tuple t be t[Ai] ∈ Dom(Ai) ∪ {NULL}.
Skyline: The m attributes of a web database can be divided into
two categories: ranking attributes with an inherent preferential or-
der (either numeric or ordinal); and filtering attributes whose val-
ues are not ordered. The skyline definition only concerns the rank-
ing attributes. For a ranking attribute Ai, we denote the total order
by <, i.e., vi ranks higher than vj if vi < vj . With this notation,
a tuple t ∈ D is a skyline tuple if and only if there does not exist
any other tuple t′ ∈ D with t′ 6= t such that t′ dominates t, i.e.
t′[Ai] ≤ t[Ai] for each and every ranking attribute Ai. No other
tuple t′ in the database outranks t on every ranking attribute.

Note that the skyline definition can be easily extended to sky
band - i.e., a tuple is in the K-skyband if and only if it is not dom-
inated by more than K − 1 tuples. One can see that the skyline

is indeed a special case of (top-1) sky band. In most parts of the
paper, we focus on the problem of skyline discovery. Please refer
to [2] for the extension to discovering the K-skyband (K > 1).
Query Interface: The web interface of a hidden database takes as
input a user-specified query (supported by the interface) and pro-
duces as output at most k tuples matching the query. At the in-
put side, the interface generally supports conjunctive queries on
one or more attributes. The predicate supported for each attribute,
however, is a subtle issue that depends on the type of the attribute
and the interface design. While filtering attributes with categorical
values generally support equality (=) only, a ranking attribute may
support any subset of <, =, >, ≤, and ≥ predicates. Since the
supported predicate types turn out to be critical for our algorithm
design, we leave it for detailed discussions in the next subsection.

Output-wise, the query answer is subject to the top-k constraint,
i.e., when more than k tuples match the input query, instead of re-
turning all matching tuples, the hidden database preferentially se-
lects k of them according to a ranking function and returns only
these top-k tuples through the interface. In this case, we say that
query q overflows and triggers the top-k limitation. In this paper,
we support a very broad set of ranking functions with only one re-
quirement: domination-consistent, i.e., if a tuple t dominates t′ and
both match a query q, then t should be ranked higher than t′ in
the answer. All results in the paper hold on any arbitrary ranking
function so long as it satisfies this requirement.
Filtering Attributes: While a web database may contain order-
less filtering attributes, they have no bearing on the definition of
skyline tuples. We further note that filtering attributes have no im-
plication on skyline discovery unless there are skyline tuples with
the exact same value combination on all ranking attributes. Even
in this case, what one needs to do is to simply issue, for each dis-
covered skyline tuple, a conjunctive query with equality conditions
on all ranking attributes. If the query overflows, one can then crawl
all tuples matching the query using the techniques in [23] . Since
such a case is unlikely to happen, we make the general positioning
assumption, i.e., all skyline tuples have unique value combinations
on ranking attributes, as assumed in most prior work [5, 7, 14, 24].
Our experiments in § 7, however, do involve filtering attributes and
confirm that they have no implication on skyline discovery.

2.2 Taxonomy of Attribute Search Interface
We now discuss in detail what types of predicates may be sup-

ported for an attribute - an issue that, somewhat surprisingly, turns
out crucial for the efficiency of skyline discovery. Specifically, we
partition the support into three categories depending on two factors:
(1) whether range predicates are supported for the attribute, or only
equality (i.e., point) predicates are allowed, and (2) when range
predicates are supported, whether the range is one-ended (i.e., “bet-
ter than” a user-specified value), or two-ended.
• SQ, i.e., Single-ended range Query predicate, means that pred-

icate on Ai can be Ai < v, Ai ≤ v or Ai = v, where v ∈
Dom(Ai). Note that we do not further distinguish whether <
or ≤ (or both) is supported, because they are easily reducible to
each other - e.g., one can combine the answers to Ai < v and
Ai = v to produce that forAi ≤ v. On the other hand, ifAi ≤ v
is supported but not Ai < v, one can take the next smaller value
(than v) in Dom(Ai), say v′, and then query Ai ≤ v′ instead 1

1Of course, in the case where Dom(Ai) is an infinite set, e.g.,
when Ai is continuous, a tacit assumption here is that we know a
small value ε such that no tuple can have Ai ∈ (v − ε, v). Given
that the values represented in a database are anyway discrete in
nature, this assumption can be easily satisfied by assuming a fixed
precision level for the skyline definition.
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• RQ, i.e., Range Query predicate, means that predicate onAi can
be Ai < (or ≤) v, Ai = v or Ai > (or ≥) v.
• PQ, i.e., Point Query predicate, means that predicate on Ai can

only be of the form Ai = v.

SQ vs RQ: One might wonder why both single-ended SQ and two-
ended RQ exist in a web interface. To understand why, consider
two examples: the memory size and price of a laptop, respectively.
Both have an inherent order: the larger the memory size or the
lower the price, the better. Nonetheless, their presentations in the
search interface are often different:

Memory size is often presented as SQ, because there is little mo-
tivation for a user to specify an upper bound on the memory size.
Price, on the other hand, is quite different. Specifically, it is usually
set as an RQ attribute with two-ended range support because, even
though almost all users prefer a lower price (for the same prod-
uct), many users indeed specify both ends of a price range to filter
the search results to the items they desire. The underlying reason
here is that price is often correlated (or perceived to be correlated)
with the quality or performance of a laptop. For the lack of under-
standing of the more “technical” attributes, or for the simplicity of
considering only one factor, many users set a lower bound on price
to filter out low-performance laptops that do not meet their needs.
SQ/RQ vs PQ: Note that range-predicate support (SQ or RQ) is
strictly “stronger” than PQ: While it is easy to specify a range pred-
icate that is equivalent to a point one, to “simulate” a range query,
one might have to issue numerous point queries, especially when
the domain sizes and the number of attributes are large.

Fortunately though, real-world hidden databases often only rep-
resent an ordinal ranking attribute as PQ when it has (or is dis-
cretized to) a very small domain size. For example, flight search
websites set the number of stops as PQ because it usually takes
only 3 values: 0, 1, or 2+. On the other hand, price is rarely PQ
given the wide range of values it can take.

2.3 Problem Definition
Performance Measure: In most parts of the paper, we consider
the objective of discovering all skyline tuples from the hidden web
database. Interestingly, our solutions also feature the anytime prop-
erty [1] which enables them to quickly discover a large portion of
the skyline (see technical report [2] for details of this feature).

When our goal is complete skyline discovery, what we need to
optimize is a single target: efficiency. We note the most important
efficiency measure here is not the computational time, but the num-
ber of queries we must issue to the underlying web database. The
rationale here is the query rate limitation enforced by almost all
web databases - in terms of the number of queries allowed from an
IP address or a user account per day. For example, Google Flight
Search API allows only 50 free queries per user per day.

SKYLINE DISCOVERY PROBLEM: Given a hidden database
D with query interface supporting a mixture of SQ, RQ or
PQ for ranking attributes, without knowledge of the ranking
function (except that it is domination-consistent as defined
above), retrieve all skyline tuples while minimizing the num-
ber of queries issued through the interface.

3. SKYLINE DISCOVERY FOR SQ-DB

THEOREM 1. Considering the SQ interface, there exists a data-
base D such that discovering its skyline requires at least O(|S|m)
queries.

Due to lack of space, the proof for the lower bound of the problem
complexity can be found in our technical report [2].

3.1 Key Idea: Algorithm SQ-DB-SKY
We start by considering web databases with only SQ. Our SQ-

DB-SKY algorithm is an iterative divide-and-conquer one that starts
by issuing broad queries, determines which queries to issue next
based on the tuples received so far, and then gradually narrowing
them to more specific ones. For the ease of understanding, con-
sider the example of a 3-dimensional database. Suppose the tuple
returned by q1 : SELECT * FROM D is t1. Algorithm SQ-DB-
SKY first issues the following three queries:
q2: SELECT * FROM D WHERE A1 < t1[A1]
q3: SELECT * FROM D WHERE A2 < t1[A2]
q4: SELECT * FROM D WHERE A3 < t1[A3]

A key observation here is that the comprehensiveness of skyline
discovery is maintained when we divide the problem to the sub-
spaces defined by q2, q3, q4. Specifically, every skyline tuple (be-
sides t1) must satisfy at least one of q2, q3, q4 because otherwise
it would be dominated by t1. Now suppose q2 returns t2 as top-1
(which must be on the skyline because no tuple with Ai ≥ v can
dominate one with Ai < v). We continue with further “dividing”
(the subspace defined by) q2 into three queries according to t2:
q5: WHERE A1 < t2[A1]
q6: WHERE A1 < t1[A1] AND A2 < t2[A2]
q7: WHERE A1 < t1[A1] AND A3 < t2[A3]

Again, any skyline tuple that satisfies q2 (i.e., with A1 < t1[A1])
must match at least one of the three queries. One can see that this
process can be repeated recursively from here: Every time a query
qj returns a tuple t, we generate m queries by appending A1 <
t[A1], . . . , Am < t[Am] to qj , respectively. A critical observation
here is that any skyline tuple matching qj must match at least one
of the m generated queries, because it has to surpass t on at least
one attribute in order to be on the skyline. As such, so long as we
follow the process to traverse a “query tree” as shown in Figure 1,
we are guaranteed to discover all skyline tuples.

THEOREM 2. Algorithm SQ-DB-SKY is guaranteed to discover
all skyline tuples.

PROOF. Consider any skyline tuple t. To prove that t will al-
ways be discovered by SQ-DB-SKY, we construct the proof by con-
tradiction. Suppose that t is not discovered, i.e., it is not returned
by any node in the tree. We start by considering the m branches
of the root node. Since t is a skyline tuple, it must satisfy at least
one of these branches, as otherwise it would be dominated by the
tuple returned by the root node (contradicting the assumption that
t is a skyline tuple). When there are multiple branches matching t,
choose one branch arbitrarily. Consider the node corresponding to
the branch, say qi : Ai < t1[Ai]. Since qi matches t yet does not
return it (because otherwise t would have been discovered), it must
overflow and therefore have m branches of its own.

Once again, t has to satisfy at least one of these m branches (of
qi), as otherwise twould have been dominated by the tuple returned
by qi (contradicting the skyline assumption). Repeat this process
recursively; and one can see that there must exist a path from the
root to a leaf node in the tree, such that t satisfies each and every
node on the path. Since every leaf node of the tree is a valid or
underflowing query, this means that the leaf node must return t,
contradicting the assumption that t is not discovered. This proves
the completeness of skyline discovery by SQ-DB-SKY.

In order to better understand the correctness of the algorithm, con-
sider the dummy example provided in Figure 2, and its correspond-
ing SQ-DB-SKY tree in Figure 3. One can see that each skyline
tuple appears in at least one of the branches, as otherwise it would
have been dominated by another (skyline) tuple.
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Algorithm 1 depicts the pseudo code for SQ-DB-SKY. Note from
the algorithm that a larger k (as in top-k returned by the database)
reduces query cost for two reasons: First, every returned tuple that
is not dominated by another in the top-k is guaranteed to be a sky-
line tuple. Second, a larger k also makes the tree shallower be-
cause a node becomes leaf if it returns fewer than k tuples. This
phenomenon is verified in our experimental studies.

We would like to clarify that, it is not needed to find the largest
domain value of Ai smaller than v. Instead, so long as we find
v′ < v such that replacing the predicate Ai ≤ v with Ai ≤ v′ still
leads to an non-empty query answer, the algorithms will work. The
only case where we may have trouble with a ≤ interface is when
Ai ≤ v overflows, yet it takes a larger number of queries to perform
binary search to find v′ < v with nonempty Ai ≤ v′. This means
that there is a tuple with value v − ε on Ai, with ε extremely close
to 0. While it is true that this situation may lead to a high query
cost for our algorithm, we have not seen this behavior in any real-
world database for the simple reason that it will make it extremely
difficult for a normal user of the hidden database to specify a query
that unveils the tuple with Ai = v − ε.
Algorithm 1 SQ-DB-SKY

1: QueryQ = {SELECT * FROM D}; S = {}
2: while QueryQ is not empty
3: q = QueryQ.deque(); T = Top-k(q)
4: if T is not empty
5: Append the none-dominated tuples in T to S
6: if T contains k tuples
7: Construct m queries q1, . . . , qm where query qi appends
8: predicate “Ai < T0[Ai]” to q
9: Append q1, . . . qm to QueryQ

3.2 Query-Cost Analysis
Algorithm SQ-DB-SKY has one nice property and one problem

in terms of query cost: The nice property is that the top-1 tuple
returned by every node (i.e., query) must be on the skyline (because
it cannot be dominated by a tuple not matching the query). The
problem, however, is that a skyline tuple t might be returned as
No. 1 by multiple nodes, potentially leading to a large tree size and
thus a high query cost. For example, if t has t[A1] < t1[A1] and
t[A2] < t2[A2], then it might be returned by both q2 and q3.
Worst-Case Analysis: Given the overlap between tuples returned
by different nodes, the key for analyzing the query cost of SQ-DB-
SKY is to count how many nodes in the tree return a tuple. Because
we are analyzing the worst-case scenario, we have to consider k =
1 and any arbitrary, ill-behaved, system ranking functions. In other
words, so long as a tuple matches a node, it may be returned by it.
To this end, there is almost no limit on how many times a tuple can
be returned, except the following prefix-free rule:

Note that each node in the tree can be (uniquely) represented by
a sequence of 2-tuples 〈ti, Aj〉, where ti is a skyline tuple returned
by a node, and Aj is an attribute corresponding to the branch taken
from the node. For example, the nodes corresponding to q2 and
q5 are represented as 〈t1, A1〉 and 〈t1, A1〉, 〈t2, A1〉, respectively.
The one property that all nodes returning the same tuple t must
satisfy is that the sequence representing one node, say q, cannot be
a prefix of the sequence representing another, say q′. The reason
is simple: if the sequence of q is a prefix of q′, then q′ must be in
the subtree of q. However, according to the design of SQ-DB-SKY,
since q returns t, none of the nodes in the subtree of q matches t.
This contradicts the assumption that both q and q′ return t.

Given the prefix-free rule, a crude upper bound for the number
of nodes returning a tuple is w ≤ |S|m, where |S| is the num-

ber of skyline tuples. This is because a query can have at most
m predicates, each with a different attribute and a value (i.e., v
as in Ai < v) equal to that of one of the skyline tuples (i.e.,
v = t[Ai] where t is a skyline tuple). Since no query of concern
can be the prefix of another, the maximum number of such queries
is O(|S|m). Given this bound, the maximum number of nodes in
the tree is O(|S| · (|S|m) · (m+ 1)) = O(m · |S|m+1).

One can make two observations from this worst-case bound:
First, the query cost of SQ-DB-SKY depends on the number of
skyline tuples, not the total number of tuples. This is good news
because, as prior research on skyline sizes [6] shows, the num-
ber of skyline tuples is likely orders of magnitude smaller than the
number of tuples. Another observation, however, is seemingly bad
news: the worst-case cost grows exponentially with the number of
attributes m. Fortunately, this is mostly the artifact of an arbitrary
system ranking function we must assume in the worst-case analy-
sis, rather than an indication of what happens in practice. To under-
stand why, consider what really happens when the worst-case result
strikes, i.e., a tuple t is returned by queries with Ω(m) predicates.

Consider a Level-m node returning t. Let its 2-tuple sequence
be 〈t1, A1〉, . . ., 〈tm, Am〉. What this means is not only that t out-
performs ti on Ai for all i ∈ [1,m], but also that tm does the same
(i.e., outperforms ti on Ai) for all i ∈ [1,m − 1], tm−1 for all
i ∈ [1,m − 2], etc. In other words, this tuple t is likely ranked
highly on many attributes - yet its overall rank is too low to be re-
turned by any of them predecessor queries. While this could occur
for an ill-behaved system ranking function, it is difficult to imag-
ine a reasonable ranking function doing the same. As we show as
follows, so long as we assume a “reasonable” ranking function, the
worst-case query cost can indeed be reduced by orders of magni-
tude, no matter what the underlying data distribution is.
Average-Case Analysis: By “average-case” analysis, we mean an
analysis done based on a single assumption: the system ranking
function is random among skyline tuples - i.e., for any query q, the
ranking function returns a tuple chosen uniformly at random from
S(q), i.e., the set of skyline tuples matching q. One can see that this
represents the “average” case as a randomly chosen skyline tuple
from S(q) can be considered an average of the top-1 selections of
all legitimate ranking functions given q and the database D. As
we shall discuss after this analysis, this is likely still “worse” than
what happens in practice. Yet even this conservation assumption is
enough to significantly reduce the worst-case query cost.

The most important observation for our average-case analysis
can be stated as follows: The expected query cost (taken over the
aforementioned randomness of the system ranking function) of SQ-
DB-SKY is a deterministic function of the number of skyline points
|S|, regardless of how the tuple are actually distributed.

To understand why, we start from the simplest case of |S| = 1.
In this case, the SELECT * query returns the single skyline tuple,
while the m branches of it all return empty, finishing the algorithm
execution. In other words, the query cost is always C1 = m + 1
(where the subscript 1 stands for |S| = 1). Now consider |S| = 2.
Here, depending on which tuple is returned by SELECT *, some
of its m branches may be empty; while some others may return the
other skyline tuple. Let m0 be the number of empty branches. For
the (m−m0) non-empty branches, we essentially need C1 queries
to examine each and its m sub-branches (all of which will return
empty). One can see that the overall query cost will be

C2 = 1 +m0 + (m−m0) · C1. (1)

Interestingly, regardless of how tuples are distributed, the above-
described random ranking always yields E(m0) = m/2 and thus

E(C2) = 1 +m/2 + C1 ·m/2, (2)

603



Figure 1: SQ-DB-SKY Tree illustration

A1A2A3

t1 5 1 9
t2 4 4 8
t3 1 3 7
t4 3 2 3

Figure 2: Illustra-
tion of example

Figure 3: SQ-DB-SKY example
tree

Figure 4: RQ-DB-SKY ex-
ample tree

where the expected value E(·) is taken over the randomness of the
ranking function. To see why, note thatm0 is indeed the number of
attributes on which the tuple returned by SELECT * outperforms
the other tuple in the database. Since the ranking function chooses
the returned tuple uniformly at random, the expected value of m0

is always m/2 regardless of what the actual values are.
Similarly when |S| > 2, Cs = 1 + m0 + m1 · C1 + . . . +

ms−1 · Cs−1, where mi is the number of attributes on which i
skyline tuples outrank the tuple returned by SELECT * (t0). Since
the probability that t0 is outranked by i skyline tuples on a given
attribute is 1/s, the expected number of such attributes is m/s.
Consequently, the expected query cost of SQ-DB-SKY is

E(Cs) = 1 +
m

s
·
s−1∑
i=0

E(Ci) (3)

where C0 = 1. With Z-transform and differential equations,

E(Cs) =
m((m+ s− 1)!− (m− 1)!s!)

(m− 1)(m− 1)!s!
. (4)

For example, when m = 2, we have E(Cs) = 2s.
We now show why this average-case query cost is orders of mag-

nitude smaller than the worst-case result. First, since E(Ci) ≥
m+ 1 for all i ≥ 1, we can derive from (3) that

E(Cs) ≤ m+ 1

m
· m
s
·
s−1∑
i=0

E(Ci) =
m+ 1

s
·
s−1∑
i=0

E(Ci) (5)

Clearly, if we set Fi such that F0 = 1 and Fs = ((m + 1)/s) ·∑s−1
i=0 Fi, then we have E(Ci) ≤ Fi for all i ≥ 0. Consider

the ratio between Fs and Fs−1 when s � m. Note that Fs−1 =
(m+ 1)/(s− 1) ·

∑s−2
i=1 Fi - i.e.,

s−1∑
i=1

Fi =
s+m

m+ 1
· Fs−1. (6)

In other words,

E(Cs) ≤ Fs =
m+ 1

s
· s+m

m+ 1
· Fs−1 =

s+m

s
Fs−1 (7)

=
(s+m)!

s! ·m!
=
(s+m

m

)
(8)

≤
(

(s+m) · e
m

)m

=
(
e+

e · s
m

)m
(9)

One can see that the growth rate of Fs (with |S|) is much slower
than what is indicated by the worst-case analysis. Figure 5 confirms
this finding by showing the average and worst-case cost of SQ-DB-
SKY for the cases where m = 4 and m = 8.

Before concluding the average case analysis, we would like to
point out that even this analysis is likely an overly conservative
one. To understand why, note from (1) that the smaller m0 is, i.e.,
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Figure 5: Comparing worst and average cost of SQ-DB-SKY

the more branches return empty, the smaller the query cost will
be. In the average-case analysis, since we assume a random order
of skyline tuples, E(m0) = m/|S|, i.e., the top-ranked tuple re-
turned by SELECT * features the top-ranked value on an average of
m/|S| attributes. Clearly, with a real-world ranking function, this
number is likely to be much higher, simply because the more “top”
attributes values a tuple has, the more likely a reasonable ranking
function would rank the tuple at the top. As a result, the query
cost in practice is usually even lower than what the average-case
analysis suggests, as we show in the experimental results.

4. SKYLINE DISCOVERY FOR RQ-DB
We now consider the RQ-DB case where range queries support

two-ended ranges, rather than one-ended as in the SQ-DB case.
Since RQ-DB has a more powerful interface, a straightforward so-
lution here is to directly use Algorithm SQ-DB-SKY. One can see
that the algorithm still guarantees complete skyline discovery.

The problem with this solution, however, lies in cases where |S|,
the number of skyline tuples, is large. Specifically, when |S| ap-
proaches the database size n, the worst-case query cost may actu-
ally be larger than the baseline query cost of O(m ·n) for crawling
the entire database over a RQ-DB interface [23]. This indicates
what SQ-DB-SKY fails to (or cannot, as it was designed for SQ-
DB) leverage - i.e., the availability of both ends on range queries
- may reduce the query cost significantly when |S| is large. We
consider how to leverage this opportunity in this section.

4.1 Key Idea: Algorithm RQ-DB-SKY
A Simple Revision and Its Problem: Our first idea for reducing
the query cost stems from a simple observation on the design of q2
to q4 described above: Instead of having them as three overlapping
queries, we can revise them to be mutually exclusive:
q2: WHERE A1 < t1[A1]
q3: WHERE A1 ≥ t1[A1] & A2 < t1[A2]
q4: WHERE A1 ≥ t1[A1] & A2 ≥ t1[A2] & A3 < t1[A3]

With this new design, all m branches from a node in the tree
(Figure 1) represent mutually exclusive queries. Interestingly, the
completeness of skyline discovery is not affected! For example,
any skyline tuple other than t1 belongs to at least one of q2 to q4.
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The effectiveness of this revision is evident from one key obser-
vation - because of the mutual exclusiveness and the (still valid)
completeness of skyline discovery, now every skyline tuple is re-
turned by exactly one node in the tree. While this seemingly solves
all the problems in the query-cost analysis for SQ-DB-SKY, it un-
fortunately introduces another challenge:

Unlike in SQ-DB-SKY where the top-1 tuple returned by every
node is a skyline tuple, with this revised tree, a node might return a
tuple not on the skyline as the No. 1. This can be readily observed
from the design of q2 and q3: it is now possible for a tuple returned
by q3 to be dominated by q2 - as the space covered by q3 now
excludes the space of q2. Because of this new problem, the worst-
case query cost for this revised algorithm becomes O(n · m), as
it is now possible for each of the n tuples in the database (even
those not on the skyline) to be returned by a interior node in the
tree. While this bound may still be smaller than that of SQ-DB-
SKY when |S| approaches n, it may also be much worse when
|S| is small. Since we do not have any prior knowledge of |S|
before running the algorithm, we need a solution that adapts to the
different |S| and offers a consistently small query cost in all cases.

Algorithm RQ-DB-SKY: To achieve this, our key idea is to com-
bine SQ-DB-SKY with the above-described revision to be the more
efficient of the two. To understand the idea, note a 1-1 correspon-
dence between the tree constructed in SQ-DB-SKY and the revised
tree: In the revised tree, we map every query q in the tree of SQ-
DB-SKY to a query R(q) covering all value combinations match-
ing q but not any q′ in SQ-DB-SKY which appears before q in the
(depth-first) post-order traversal of the tree. Based on this 1-1 map-
ping, RQ-DB-SKY works as follows.

We traverse the tree in SQ-DB-SKY and issue queries in depth-
first preorder. A key additional step here is that, for each query q in
the tree, before issuing it, we first check all tuples returned by pre-
viously issued queries and check if any of these tuples match q. If
none of them does, then we proceed with issuing q and continuing
on with the traversal process.

Otherwise, if at least one previously retrieved tuple matches q,
then instead of issuing q, we issue its counterpart R(q). If R(q)
is empty, no new skyline tuple can be discovered from the subtree
of q. Thus, we should abandon this subtree and move on. If R(q)
returns as No. 1 a tuple t, then either t is dominated by a previously
retrieved (skyline) tuple, or it must be a (new) skyline tuple itself.
Either way, we must have never seen t before in the answers to the
issued queries. If t is dominated by a previously retrieved tuple, say
t′, then we generate the children of q according to t′. Otherwise,
we generate them according to t. In either case, we continue on
with exploring the subtree of q in depth-first preorder. Algorithm 2
depicts the pseudocode of RQ-DB-SKY.

Algorithm 2 RQ-DB-SKY

1: S = {}; Seen = {}
2: traverse the SQ-DB-SKY tree in depth first preorder and at

each q in the tree
3: if @ t ∈Seen that matches q
4: T = Top-k(q)
5: if T contains k tuples
6: generate the children of q based on T0

7: else
8: T = Top-k(R(q))
9: if T contains k tuples

10: if ∃t′ ∈ S that dominates T0

11: generate the children of q based on t′
12: else, generate the children of q based on T0

13: Update S by T ; Seen=Seen ∪T
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Figure 6: simulation results for RQ-DB-SKY, in comparison with SQ-
DB-SKY

THEOREM 3. Algorithm RQ-DB-SKY is guaranteed to discover
all skyline tuples.

PROOF. The proof can be constructed in analogy to that of The-
orem 2. The only difference is that, unlike in the proof for SQ-
DB-SKY where t might match more than one of the m branches
of a node, here t must match exactly one of the m branches, sim-
ply because these m branches are mutually exclusive by design
in RQ-DB-SKY. Despite of this difference, the logic of the proof
stays exactly the same: there must be exactly one branch of the root
satisfying t because otherwise t would be dominated by the tuple
returned by the root. Recursively, we can construct a path from
the root to a leaf node in the tree, such that t satisfies each and ev-
ery node on the path. Since every leaf node of the tree is a valid
or underflowing query, this means that the leaf node must return t,
contradicting the assumption that t is not discovered.

Once again, let us consider the dummy example provided in Figure2,
and its corresponding RQ-DB-SKY tree in Figure 4. One can see
that applying R(q4)= WHERE A2 ≥ 3 AND A3 < 7, instead
of q4, causes that each skyline tuple appears in exactly one of the
branches.

4.2 Query-Cost Analysis
The key to the query-cost analysis of RQ-DB-SKY is to count

the number of internal, i.e., interior, nodes of the tree. There are
two important observations: First, the SQ-query q of a interior node
must match at least one skyline tuple, as otherwise it would have
to return empty which makes the node a leaf. Second, if a inte-
rior node is not the first (according to preorder) which returns the
skyline tuple, then the node’s RQ-query (i.e., R(q)) must return a
unique tuple in the database that does not match any node accessed
before it, because otherwise the node would return empty and be-
come a leaf. With these two observations, an upper bound on the
number of internal nodes is min(|S|m+1, n). As a result, the total
query cost of RQ-DB-SKY is O(m ·min(|S|m+1, n)).

One might wonder if, for RQ-DB-SKY, we can derive a sim-
ilar result to the average-case analysis of SQ-DB-SKY which is
oblivious to the data distribution. Unfortunately, the query cost of
RQ-DB-SKY is data-dependent. The reason is simple: the query
cost of RQ-DB-SKY is essentially determined by how many non-
skyline tuples match and are returned by the RQ-queriesR(q). This
number, however, depends on the data distribution: e.g., if all non-
skyline tuples are dominated by the skyline tuple returned by SE-
LECT *, then the query cost of RQ-DB-SKY can be extremely
small (≤ m · |S|). Meanwhile, if very few non-skyline tuples are
dominated by skyline tuples returned from nodes at the top of the
tree, then RQ-DB-SKY requires many more queries.

Because of the data-dependent nature of RQ-DB-SKY’s query
cost, to demonstrate the power of its early-termination idea, we re-
sort to the numeric simulations conducted in Section 3. Figure 6
depicts how the query costs of SQ- and RQ-DB-SKY change with
the percentage of tuples on the skyline (when the database con-
tains 2000 tuples each with 2 Boolean i.i.d. uniform-distribution
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Figure 7: Pruning, R1, R2, & demo of algorithm execution

attributes). Note that we control the percentage of skyline tuples by
adjusting the correlation between the two attributes, where positive
correlation leads to fewer skyline tuples. Interestingly, one can ob-
serve from the figure that while the performance of RQ- and SQ- do
not differ much when |S| is small, RQ- has a much smaller query
cost when |S| is large - consistent with the theoretical analysis.

5. SKYLINE DISCOVERY FOR PQ-DB
We now turn our attention point-query PQ-predicates. We first

discuss the 2D case (i.e., a database with two attributes) and present
an instance-optimal solution PQ-2D-SKY. Then, after pointing out
the key differences between 2D and higher dimensional cases, we
present Algorithm PQ-DB-SKY, which discovers all skyline tuples
from a higher dimensional database by calling (a variation of) PQ-
2D-SKY as a subroutine.

5.1 2D Case
Design of Algorithm PQ-2D-SKY: We start with SELECT * which
is guaranteed to return a skyline tuple, say (x1, y1). As shown in
Figure 7, we can now prune the 2D search space (for skyline tu-
ples) into two disconnected subspaces, both rectangles. One has
diagonals (0, ymax) and (x1, y1), while the other has (x1, y1) and
(xmax, 0), where xmax and ymax are the maximum values for x
and y, respectively. We do not need to explore the rectangle with
diagonals (0, 0) and (x1, y1) because there is no tuple in it (as oth-
erwise it would dominate (x1, y1)). We do not need to explore the
rectangle with diagonals (x1, y1) and (xmax, ymax) either because
all tuples in it must be dominated by (x1, y1).

From this point forward, our goal becomes to discover skyline
tuples by issuing 1D queries - i.e., queries of the form of either
x = x0 or y = y0. An important observation here is that any 1D
query we issue will “affect” (precise definition to follow) exactly
one of the two above-described subspaces. For example, if x0 >
x1, query x = x0 affects only R2 in Figure 7: It either proves part
of the rectangle to be empty (when the query returns empty or a
tuple with y > y1), or returns a tuple in the second rectangle that
dominates all other tuples with x = x0. In either case, Rectangle
R1 remains the same and still needs to be explored. As another
example, if y0 > y1, then query y = y0 affects only R1.

This observation actually leads to a simple algorithm that is guar-
anteed to be optimal in terms of query cost: at any time, pick one
of the remaining (rectangle) subspaces to explore. Let the diagonal
points of the subspace be (xL, yT) and (xR, yB), where xL ≤ xR
and yT ≥ yB. If xR − xL < yT − yB, then we issue query
x = xL. Otherwise, we issue y = yB. For example, in Figure 7, if
xmax − x1 > y1, we issue y = 0.

Note the implications of the query answer on the remaining sub-
space to search: Consider query q: x = xL as an example. If q
returns empty, then the subspace is shrunk to between (xL +1, yT)
and (xR, yB). Otherwise, if q returns (xL, y2), then the subspace
is shrunk to between (xL + 1, y2) and (xR, yB). Either way, the
subspace becomes smaller and remains disjoint from other remain-
ing subspace(s). For example, in Figure 7, if y = 0 is empty, R2 is
shrunk to between (x1, y1) and (xmax, 1). Otherwise, if it returns
(x2, 0), then the subspace is now between (x1, y1) and (x2, 1).

What we do next is to simply repeat the above process, i.e., pick
a subspace, determine whether the width or height is larger, and
issue the corresponding query. This continues until no subspace
remains. Algorithm 3 depicts the pseudo code for PQ-2D-SKY.

Algorithm 3 PQ-2D-SKY

1: T = Top-k(SELECT * FROM D); S = {T0}
2: Partition search space into rectangles R1 and R2 based on T0

3: while search space is not fully explored
4: Pick a rectangle and identify point query q to issue
5: T = Top-k(q); S = S ∪ T0

6: if T contains k tuples, prune search space based on T0

Instance Optimality Proof: We now prove the instance optimality
of PQ-2D-SKY, i.e., for any given database, there is no other algo-
rithm that can use fewer queries to discover all skyline tuples and
prove that all skyline tuples have been discovered. Note that the
latter requirement (i.e., proof of completeness) is important. To see
why, consider an algorithm that issues SELECT * and then stops.
For a specific database that contains only one skyline tuple, this al-
gorithm indeed finds all skyline tuples extremely efficiently. But it
is not a valid solution because it cannot guarantee the completeness
of skyline discovery.

We prove the instance optimality of PQ-2D-SKY by contradic-
tion: Suppose there exists an algorithmA, requiring fewer queries.
Consider the (rectangle) subspace between (xL, yT) and (xR, yB).
If xR − xL < yT − yB yetA does not issue x = xL, then the only
alternative is to issue queries y = yB, yB + 1, . . ., yc, where yc is
the y-coordinate value of the tuple returned by x = xL or, in the
case where x = xL returns empty, yc = yT. An example of this
is illustrated in Figure 7: Suppose ymax − y1 > x1. If A does not
issue x = 0, then it must issue y = y1, y2, . . ., yc. This is be-
cause, in order to guarantee the completeness of skyline discovery,
one must “prove” the emptiness of points (xL, yB), (xL, yB + 1),
. . ., (xL, yc − 1), (resp. (x0, y1), . . . , (x0, yc − 1) in Figure 7)
while retrieving tuple (xL, yc) (resp. (x0, yc) in Figure 7). Given
that x = xL is not issued, the only feasible solution is to issue the
above-described y = yi queries.

Yet this contradicts the optimality of Algorithm A. To under-
stand why, consider two cases respectively: First is when x = xL
returns empty. In this case, A calls for yT − yB + 1 queries to be
issued, while PQ-2D-SKY issues at most xR − xL queries. Since
xR−xL < yT−yB,A is actually worse. Now consider the second
case, where x = xL does return a tuple (xL, yc). In this case, A
calls for c queries to be issued. We also require at most c queries,
as y = yc is no longer needed given the answer to x = xL. This
again contradicts the superiority of A.
Query Cost Analysis: Having established the instance optimality
of PQ-2D-SKY, we now analyze exactly how many queries it needs
to issue. LetA1 andA2 be the two attributes and t1, . . . , t|S| be the
skyline tuples in the database. Without loss of generality, suppose
ti is sorted in the increasing order of A1, i.e., ti[A1] ≤ ti+1[A1].
Note that, since ti are all skyline tuples, correspondingly there must
be ti[A2] ≥ ti+1[A2]. Denote as t0 and t|S|+1 the two diagonal
points of the domain, i.e., t0 = 〈0,max(Dom(A2))〉 and t|S|+1 =
〈max(Dom(A1)), 0〉. One can see from the design of PQ-2D-
SKY that its query cost is simply

C =

|S|∑
i=0

min(ti+1[A1]− ti[A1], ti[A2]− ti+1[A2]). (10)

Immediately, following Equation 10, a few upper bounds on C
are: e.g., C ≤ t1[A2], C ≤ t|S|[A1], and C ≤ mini∈[1,|S|]
(ti[A1]+ti[A2]). These upper bounds indicate a likely small query
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cost in practice. To understand why, recall that most web interfaces
only present a ranking attribute as PQ when it has a small domain.
In addition, it is highly unlikely for such an attribute to have empty
domain values - i.e., v ∈ Dom(Ai) that is not taken by any tuple
in the database - because otherwise users of the PQ interface would
be frustrated by the empty result returned after selecting Ai = v.
When every value in Dom(A1) and Dom(A2) is occupied, unless
the number of skyline tuples is very large, ti[Aj ] is likely small for
ti to be on the skyline, leading to a small query cost in practice. We
verify this finding through experimental results in Section 7.

5.2 Algorithm PQ-DB-SKY
Overview: Somewhat surprisingly, the problem changes drasti-
cally when dimensionality increases to m = 3. This forms a sharp
contrast with the SQ/RQ cases where the design of skyline discov-
ery has nothing to do with m, as shown in Section 3 and Section 4.

Specifically, we found a negative result that, unlike in the 2D
case, instance optimality becomes provably unachievable whenm ≥
3. In addition, even discovering all skylines in a 2D subspace of a
higher-D database requires a slight revision to PQ-2D-SKY, which
we name PQ-2DSUB-SKY. Due to space limitations, please refer
to [2] for details the negative-result proof and the design of PQ-
2DSUB-SKY. In the following discussions, we provide the pseu-
docode for PQ-2DSUB-SKY that is then used as a subroutine to
construct Algorithm PQ-DB-SKY, our generic algorithm for sky-
line discovery over point-query interfaces.

Algorithm 4 PQ-2DSUB-SKY
1: Assuming that A1 and A2 create the current subspace S
2: foreach query q that contains S and tuple t discovered by q
3: if ∀i > 2, t[Ai] ≥ S[Ai]
4: Remove the rectangle (0,0) and (t[A1], t[A2]) from S
5: foreach discovered tuple t that ∀i > 2, t[Ai] ≤ S[Ai]
6: Remove the rectangle corresponding to A1 ≥ t[A1] and
A2 ≥ t[A2] from S

7: while S is not completely pruned
8: Remove the pruned rows and columns
9: Construct the “block-diagonal” rectangles (R) between ad-

jacent “lower-bound” skyline points in the subspace
10: Apply PQ-2D-SKY on a rectangle r in R that agrees with

the overall pruned subspace on the dimension to follow

Design and Analysis of PQ-DB-SKY: Our proposed technique for
higher-dimensional skyline discovery has a key step of applying the
application of this algorithm over each 2D subspace of a higher-
dimensional space.

Algorithm 5 PQ-DB-SKY

1: T = Top-k(SELECT * FROM D); S = {T0}
2: Prune search space based on T0

3: while search space is not fully explored
4: Pick the 2D subspace spanning 2 attributes with largest do-

main sizes
5: Identify skyline tuples on subspace using PQ-2DSUB-SKY

As discussed above, instance optimality is lost once the dimen-
sionality reaches 3. A key reason for this is because one does
not know which dimension to “crawl first”, i.e., how to partition
a higher-D space into 2D subspaces (e.g., along x, y or z?). Fortu-
nately, heuristics for dimension selection are easy to identify. The
most important factor here is the domain size. To understand why,
note that the domain sizes for the two dimensions selected into the
2D subspace have an additive effect on query cost, while the others
have a multiplicative effect. Thus, generally, we should choose the
two attributes with the largest domain sizes as the 2D subspace.

Based on the heuristics, the pseudo code of PQ-DB-SKY is de-
picted in Algorithm 5. Given the exponential nature of dividing a
higher-D space into 2D subspaces, the worst-case query cost grows
exponentially with the number of attributes. Nonetheless, as argued
in the 2D case, the small domain sizes and the value-occupancy
property usually lead to a much smaller query cost in practice. Such
an effect is likely amplified even further in higher-D cases, as we
shall show in the experimental results in Section 7, because of the
aforementioned heuristics which places the largest domain-sized
attributes in the 2D subspace, leaving the other (multiplicative) at-
tributes with even smaller domains.

6. SKYLINE DISCOVERY FOR MIXED-DB

6.1 Overview
When the hidden database features a mixture of range- and point-

predicates, a straightforward idea appears to be applying RQ-DB-
SKY directly over the range-predicate attributes and not using the
point ones at all (by setting them to *), because RQ-DB-SKY is sig-
nificantly more efficient than PQ-DB-SKY. The problem, however,
is that doing so misses skyline tuples, as shown below.

First, note that by setting Ai = ∗ on all point-predicate at-
tributes, the skyline tuples discovered by applying RQ-DB-SKY
must indeed be skyline tuples. The problem here, however, is
that the completeness proof no longer holds because a skyline tu-
ple might be dominated by another tuple on all range-predicate at-
tributes. Such a tuple will be missed by RQ-DB-SKY. Fortunately,
the missing tuples must share a common property which we refer to
as the range-domination property: every tuple t missed here must
be dominated by an already-discovered skyline tuple, say D(t), on
all range attributes. Meanwhile, tmust surpassD(t) on at least one
of the point attributes.

Range-domination is an interesting property because it signifi-
cantly shrinks the search space for finding the remaining skyline
tuples. Consider a simple example where the execution of RQ-DB-
SKY returns only one tuple t0. In this case, we can define our new
search space (for all missing skyline tuples) by simply constructing
a conjunctive query with predicates Ai ≥ t0[Ai] for every range-
predicate attribute Ai. Depending on the value of t0 and the data
distribution, these conjunctive predicates may significantly reduce
the space we must search through with PQ-DB-SKY.

When the range attributes only support one-ended ranges, the
above search-space-pruning idea does not work because predicates
like Ai ≥ t0[Ai] are not supported. Nonetheless, it is still possible
to prune the search space because, in order for a missing tuple to be
on the skyline, it must dominate an already discovered tuple on at
least one point-predicate attribute. In other words, in the execution
of PQ-DB-SKY, we no longer need to consider value combinations
of point-predicate attributes that are dominated by all discovered
tuples. While this idea has a much weaker pruning power than the
above one, it works for the case of two-ended ranges as well, and
can be readily integrated with the above idea.

6.2 Details for Leveraging Two-Ended Ranges
Before presenting our final MQ-DB-SKY algorithm, an impor-

tant issue remains on how exactly to leverage the above-described
RQ-based search-space pruning. A straightforward method is to
construct for each discovered skyline tuple ti the above-described
subspace defined by conjunctive predicates Ai ≥ ti[Ai], and then
run PQ-DB-SKY over the space. The problem, however, is that
PQ-DB-SKY cannot be directly used in this case because its 2D-
subspace-discovery subroutine relies on an important property: if
a tuple matches but is not returned by a 1D query q0 as the No. 1
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tuple, then it cannot be on the skyline. Unfortunately, this property
no longer holds in the mixed case.

To address this problem, we devise a new subroutine MIXED-
DB-SKY as follows. For each skyline tuple t0 discovered by the
range-query algorithm, let predicate P (t0) be (t[A1] ≥ t0[A1]) &
· · · & (t[Ah] ≥ t0[Ah]) for all range attributes A1, . . . , Ah. For
each point attribute Bi(i ∈ [1, g]) and each value v < t0[Bi], we
construct a query q: WHERE P (t0) & (t[Bi] = v).

If this query returns empty, we move on to the next query. The
premise (of the efficient execution of this algorithm) is that, in prac-
tice, most such queries q will return empty, quickly pruning the re-
maining search space. If q returns at least one tuple, we need to
start crawling the subspace defined by q. Now recall our PQ-DB-
SKY algorithm for point-query skyline discovery. Our first step
over there is to “partition” the space into 2-dimensional subspaces
(i.e., by enumerating all possible value combinations for the other
g− 2 attributes, where g is the number of point attributes) and deal
with them one after another. This step remains the same. Specif-
ically, at any point we have an empty answer, we can stop further
partitioning the current subspace. When we go all the way to a 2-
dimensional subspace (without being stopped by an empty answer)
then we’ll have to crawl the entire 2D plane to find all tuples in it,
instead of using the “2D skyline discovery” approach in PQ-DB-
SKY. This is the only difference with MIXED-DB-SKY.

A concern with this design is the large number of times MIXED-
DB-SKY may have to be called to completely discover the skyline.
Note that a single call of MIXED-DB-SKY without any appended
predicates is sufficient to unveil all skyline tuples. Yet when we
append the range predicates to prune the search space, the repeated
executions of MIXED-DB-SKY, especially many skyline tuples are
discovered by RQ-DB-SKY, may lead to an even higher query cost.

To address this problem, we consider a slightly different solu-
tion of maintaining a single execution of MIXED-DB-SKY. This
time, instead of designing mTE conjunctive predicates for each of
the discovered skyline tuples, we do so only once for the union
of (dominated) data spaces corresponding to all of them. Specifi-
cally, for each two-ended range attributeAj , its corresponding (ap-
pended) predicate is now

Aj ≥ min(t1[Aj ], . . . , th[Aj ]), (11)

where t1, . . . , th are the initially-discovered skyline tuples. One
can see that these predicates ensure comprehensiveness of skyline
discovery, as any tuple that fails to satisfy (11) must not be domi-
nated by any discovered tuple on the range-predicate attributes - in
other words, this tuple must have already been discovered by RQ-
DB-SKY. On the other hand, given the (relatively) small number of
skyline tuples, min(t1[Aj ], . . . , th[Aj ]) may still have substantial
pruning power, yet reducing the number of executions of MIXED-
DB-SKY to exactly 1.

6.3 Algorithm MQ-DB-SKY
We now combine all the above ideas to produce our ultimate

(most generic) algorithm, MQ-DB-SKY, which supports any arbi-
trary combination of two-ended range, one-ended range, and point
predicate attributes. Note that when there are two-ended range
attributes in the database, we use the pruning idea discussed in
the above subsection. When there are only one-ended range at-
tributes besides point ones, our algorithm is limited to using the
weaker pruning idea discussed in Section 3. If there are only one-
ended range, two-ended range, or point-predicate attributes in the
database, MQ-DB-SKY is reduced to SQ-, RQ-, and PQ-DB-SKY,
respectively. Finally, if there are a mixture of one-ended and two-
ended range-predicate attributes but no point-predicate attribute in

the database, MQ-DB-SKY is reduced to a simple revision of RQ-
DB-SKY which leverages the availability of “>” predicates on only
attributes that support two-ended ranges.

Algorithm 6 MQ-DB-SKY
1: S = apply RQ-DB-SKY() on Range predicates; P =“”
2: foreach range attribute r ∈ R
3: append P by “AND t[r] ≥ min∀tj∈S(tj [r])”
4: foreach point attribute Bi and each value v <

max∀tj∈S(tj [Bi])
5: q: WHERE P AND (t[Bi] = v)
6: T = Top-k(q); update S by T
7: if T contains k tuples
8: partition the space defined q in 2D planes
9: foreach plane, crawl the tuples in it and update S

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setup
In this section, we present the results of our experiments, all of

which were run on real-world data. Specifically, we started by test-
ing a real-world dataset we have already collected. We constructed
a top-k web search interface for it and then ran our algorithms
through the interface. Since we have full knowledge of the dataset
and control over factors such as database size, etc., this dataset en-
ables us to verify the correctness of our algorithms and test their
performance over varying characteristics of the database. Then, we
tested our algorithms live online over three real-world websites, in-
cluding the largest online diamond and flight search services in the
world, echoing the motivating examples discussed in Introduction.
Offline Dataset: The offline dataset we used is the flight on-time
database published by the US Department of Transportation (DOT).
It records, for all flights conducted by the 14 US carriers in January
2015,2 attributes such as scheduled and actual departure time, taxi-
ing time and other detailed delay metrics. The dataset has been
widely used by third-party websites to identify the on-time perfor-
mance of flights, routes, airports, airlines, etc.

The dataset consists of 457,013 tuples over 28 attributes, from
which 9 ordinal attributes were used as ranking attributes3: Dep-
Delay, Taxi-out, Taxi-in, Actual-elapsed-time, Air-time, Distance,
Delay-group-normal, Distance-group, ArrivalDelay. The domain
of the 9 ranking attributes range from 11 to 4,983. Two of the 9
attributes, Delay-group-normal and Distance-group, were already
discretized by DOT (i.e., “grouped”, according to the dataset de-
scription). Thus, we used them as PQ (point-query-predicate) at-
tributes by default. For a few tests which call for more PQ at-
tributes, we also consider four other derived attributes, Taxi-out
group, Taxi-in group, ArrivalDelay group, Air-Time group as po-
tential PQ. The other attributes were used as range-predicate at-
tributes - whether it is SQ or RQ depends on the specific test setup.

For all attributes, we defined the preferential order so that shorter
delay/duration ranks higher than longer values. For non-time at-
tributes, i.e., Distance and Distance-group, we assigned a higher
rank to longer distances than shorter ones, given that the same
amount of delay likely impacts short-distance flights more than
longer ones. We also tested the case where shorter distances are
ranked higher, and found little difference in the performance. To

2from http://www.transtats.bts.gov/DL_SelectFields.
asp?Table_ID=236&DB_Short_Name=On-Time
3The others, such as Flight Number, are considered filtering at-
tributes and not used in the experiments.
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construct the top-k interface, we also need to define a ranking func-
tion it uses. Here we simply used the SUM of attributes for which
smaller values are preferred MINUS the SUM of attributes for which
larger values are preferred.
Online Experiments: We conducted live experiments over three
real-world websites: Blue Nile (BN) diamonds, Google Flights
(GF), and Yahoo! Autos (YA).

Blue Nile (BN)4 is the largest online retailer of diamonds. At the
time of our tests, its database contained 209,666 tuples (diamonds)
over 6 attributes: Shape, Price, Carat, Cut, Color, Clarity, the last 5
of which have universally accepted preferential (global) orders, i.e.,
lower Price, higher Carat, more precise Cut, low trace of Color and
high Clarity. We used these 5 attributes to define skyline tuples.
BN offers two-ended range predicates (RQ) on all five attributes,
with the default ranking function being Price (low to high).

Google Flights (GF) is one of the largest flight search services
and offers an interface called QPX API5. We consider the sce-
nario of a traveler looking to get away with a one-way flight af-
ter a full day of work. We used three filtering attributes, Depar-
tureCity, ArrivalCity and DepartureDate, and four supported rank-
ing attributes: Stops, Price, ConnectionDuration, and Departure-
Time. Here the traveler likely prefers fewer Stops, lower Price,
shorter ConnectionDuration, and later DepartureTime. QPX API
supports SQ (i.e., single-ended ranges) on Stops, Price, Connec-
tionDuration, and RQ (i.e., two-ended) on DepartureTime. The
default ranking function used by GF is price (low to high).

Yahoo! Autos (YA)6 offers a popular search service for used cars.
In our experiments, we considered those listed for sale within 30
miles of New York City, totaling 125,149 cars. We considered
three ranking attributes Price (lower preferred), Mileage (lower
preferred), Year (higher preferred), all of which are supported as
two-ended ranges (RQ) by YA, and the ranking function of Price
(low to high).
Algorithms Evaluated: We tested the four main algorithms de-
scribed in the paper, SQ-, RQ-, PQ-, and MQ-DB-SKY. We also
compared their performance with a baseline technique of first crawl-
ing all tuples from the hidden web database using the state-of-the-
art crawling algorithm in [23], and then extracting the skyline tu-
ples locally. We refer to this technique as BASELINE.
Performance Measures: As we proved theoretically in the paper,
all algorithms guarantee complete skyline discovery. We confirmed
this in all experiments we ran offline (and have the ground truth for
verification). Since precision is not an issue, the key performance
measure becomes efficiency which, as we discussed earlier, is the
number of queries issued to the web database.

7.2 Experiments over Real-World Dataset
Interfaces with Range Predicates: We started with testing skyline
discovery through range-query interfaces, i.e., SQ and RQ, over the
DOT dataset. Figure 8 compares the query cost required for com-
plete skyline discovery by RQ-DB-SKY and BASELINE when k
(as in top-k offered by the web database) varies from 1 to 50. Note
that SQ-DB-SKY is not depicted here because the range-query-
based crawling in BASELINE requires two-ended range support.
One can observe from the figure that, while both algorithms benefit
from a larger k as we predicted, our RQ- algorithm outperforms the
baseline by orders of magnitude for all k values. Given the signif-
icant performance gap between BASELINE and our solutions, we

4http://www.bluenile.com/diamond-search
5https://developers.google.com/qpx-express/
6https://autos.yahoo.com/used-cars/

skip the BASELINE figure for most of the offline results, before
showing it again in the online live experiments.

Figure 9 depicts how the query cost of SQ- and RQ-DB-SKY
change when the database size n ranges from 50K to 400K. To test
databases with varying sizes, we drew uniform random samples
from the DOT dataset. The figure also shows the change of |S|, the
number of skyline tuples. One can see from the figure that RQ-DB-
SKY is more efficient than SQ- because it uses the more powerful,
two-ended, search interface. Perhaps more interestingly, neither
algorithm’s query cost depend much on n. Instead, they appear
more dependent on the number of skyline tuples |S| - consistent
with our theoretical analysis.

Figure 10 varies the number of attributes m. While both RQ-
and SQ- require more queries when there are more attributes, RQ-
again consistently outperforms SQ-DB-SKY. Note that the increase
on query cost is partially because of the rapid increase of the num-
ber of skyline tuples with dimensionality [6]. In any case, the query
cost for RQ- and SQ-DB-SKY remain small, compared to the the-
oretical bounds, even when the dimensionality reaches 10.
Interfaces with Point Predicates: In the next set of experiments,
we tested PQ-DB-SKY. Figure 11 shows how its query cost varies
with n and m. Interestingly, while the query cost barely changes
with n varying from 20,000 to 100,000, it increases significantly
when m changes from 3 to 5, just as predicted by our theoretical
analysis. In Figure 12, we further tested how the query cost changes
with varying domain sizes. To enable this test, for each given do-
main size (from v = 5 to 15), we first select all PQ attributes with
domain larger than v, and then remove from the domain of each
attribute all but v values (along with their associated tuples). Then,
we randomly selected 100,000 tuples from the remaining tuples as
our testing database. One can see from the result that, while larger
attribute domains do lead to a higher query cost, the increase on
query cost is not nearly as fast as the data space (which grows with
vm) - indicating the scalability of PQ-DB-SKY to larger domains.
Interfaces with Mixed Predicates: We next tested a more realis-
tic search interface that contains a mixture of range and point predi-
cates. We started with 3 RQ and 2 PQ predicates and evaluated how
the query cost varies with database size. Figure 13 shows that, as
expected, the number of tuples only have minimal impact on query
cost. We then tested how varying number of RQ and PQ attributes
affect our performance. The two lines in Figure 14 represent, re-
spectively, (1) 1 PQ attribute with the number of RQ attributes vary-
ing from 2 to 5, and (2) 1 RQ attribute with the number of PQ ones
from 2 to 5. One can observe from the figure that the impact on
query cost is much more pronounced on an increase of the number
of PQ attributes - consistent with earlier discussions in the paper.
Anytime Property of Skyline Discovery: Recall from §1 that all
algorithms in the paper feature the anytime property, i.e., one can
stop the algorithm execution at any time to return a subset of sky-
line tuples (over the entire database). Note that BASELINE does
not have this feature, as there is no way for it to determine if a tu-
ple is truly on the skyline before the entire database is crawled.
Figures 15 and 16 trace the progress of SQ-, RQ- and PQ-DB-
SKY over 100,000 tuples (5 predicates in RQ-DB and 4 in PQ-DB
case) and demonstrate how the number of discovered skyline tuples
changes with query cost.

There are some interesting observations from the two figures. In
Figure 15, note that SQ-DB-SKY could find the first 16 skylines
without facing a skyline twice, leading to identical performance
with RQ- up to that point. Afterwards, however, it started getting
the same skyline tuple multiple times, leading to poorer perfor-
mance than RQ-DB-SKY when the number of discovered skyline
tuples reaches 23. In Figure 16, note that despite the limitations
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of PQ, our algorithm managed to discover all skyline tuples with
fewer than 600 queries. The peak between the 8th and 9th tuples is
caused by queries “wasted” for crawling an area that did not contain
any skyline tuple.

7.3 Online Demonstration
Skyline Discovery over Blue Nile (BN): For BN, we discovered a
total of 2,149 tuples on the skyline. We compared the performance
of MQ-DB-SKY with BASELINE (k = 50), with the results de-
picted in Figure 17. Note that we stopped the execution of BASE-
LINE when its query cost reached 10,000 queries, at which time it
only managed to discover 1113 skyline tuples7. On the other hand,
our MQ- algorithm discovers the entire skyline with an average
query cost of only 3.5 per skyline tuple.
Skyline Discovery over Google Flights (GF): Our experiment
setup was as follows. We randomly chose a pair of airports from
the top-25 busiest airports in USA and a date between November 1
and 30, 2015, and sought to find all skyline flights on that day. We
repeated this process for 50 different pairs and report the average
query cost. The number of skyline flights varied between 4 to 11.
Figure 18 shows the results. Note that we did not compare against
BASELINE here because GF offers SQ only for attributes such as
Stops, Price, and ConnectionDuration, while BASELINE requires
two-ended range support for crawling. We verified the correctness
of the results by crawling all the flights for the same date and com-
paring the results. One can observe that our algorithm is highly
efficient even when k = 1. Specifically, it was able to discover
all skyline tuples with query cost below 50, which is the (free) rate
limit imposed per user account per day by GF (QPX API).
Skyline Discovery over Yahoo! Autos (YA): For YA, we discov-
ered a total of 1,601 skyline tuples. Figure 19 shows the perfor-
mance of our MQ- algorithm and the comparison with BASELINE.
Here k = 50. Once again, we had to discontinue BASELINE at

7Note that, as discussed earlier, BASELINE would not be able to
output these skyline tuples despite of having discovered them be-
cause BASELINE lacks the anytime property.

10,000 queries before it were able to complete crawling. On the
other hand, our MQ-DB-SKY algorithm managed to discover the
entire skyline with an average query cost below 2 per skyline tuple.

8. RELATED WORK
Crawling and Data Analytics over Hidden Databases: While
there has been a number of prior works on crawling, sampling, and
aggregate estimation over hidden web databases, there has not been
any study on the discovery of skyline tuples over hidden databases.
Crawling structured hidden web databases have been studied in
[19, 22, 23]. [8–10] describe efficient techniques to obtain random
samples from hidden web databases that can then be utilized to per-
form aggregate estimation. Recent works such as [17, 25] propose
more sophisticated sampling techniques that reduce variance of ag-
gregate estimation.
Skyline Computation: Skyline operator was first described in [5]
and number of subsequent work have studied it from diverse con-
texts. [24] and [7] proposed efficient algorithms with the help of
indices and pre-sorting respectively. Online and progressive algo-
rithms were described in [14, 20]. The problem of skyline over
streams [15], partial orders [3], uncertain data [21], and groups [27]
have also been studied. [4, 18] study the problem of retrieving the
skyline from multiple web databases that expose a ranked list of
all tuples according to a pre-known ranking function. Such special
access might not always be available for a third party operator. Our
work is the first to study the problem of skyline computation over
structured hidden databases by using only the publicly available
access channels.
Applications of Skyline Tuples: Skyline tuples have a number
of applications in diverse contexts. A skyline tuple is not domi-
nated by another tuple while aK-Skyband tuple is dominated by at
most K − 1 tuples in the database. The top-k tuples of any mono-
tone aggregate function must belong to K-Skyband where k ≤ K
[12]. The numerous applications of top-k queries can be found
in [13]. Other applications of Skyline include nearest neighbor
search, answering the preference queries and finding the convex-
hull. Recently, the notion of reverse skyline [11], K-Dominating
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andK-Dominant [26], and top-K representative skylines [16] have
been investigated with a number of applications including query re-
ranking and product design.

9. FINAL REMARKS
In this paper, we studied an important yet novel problem of sky-

line discovery over web databases with a top-k interface. We in-
troduced a taxonomy of the search interfaces offered by such a
database, based on whether single-ended range, two-ended range,
or point predicates are supported. We developed efficient skyline
discovery algorithms for each type and combine them to produce
a solution that works over a combination of such interfaces. We
developed rigorous theoretical analysis for the query cost, and con-
ducted a comprehensive set of experiments on real-world datasets,
including a live online experiment on Google Flights, which demon-
strate the effectiveness of our proposed techniques.

10. ACKNOWLEDGMENTS
The work of Abolfazl Asudeh, Saravanan Thirumuruganathan

and Gautam Das was supported in part by the National Science
Foundation under grant 1343976, the Army Research Office under
grant W911NF-15-1-0020, and a grant from Microsoft Research.
Nan Zhang was supported in part by the National Science Founda-
tion, including under grants 1117297, 1343976, 1443858, and by
the Army Research Office under grant W911NF-15-1-0020. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the sponsors listed above.

11. REFERENCES
[1] B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime

measures for top-k algorithms. In VLDB, 2007.
[2] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das.

Discovering the skyline of web databases. CoRR,
abs/1512.02138, 2015.

[3] A. Asudeh, G. Zhang, N. Hassan, C. Li, and G. Zaruba.
Crowdsourcing pareto-optimal object finding by pairwise
comparisons. CIKM, 2015.

[4] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient
distributed skylining for web information systems. In EDBT,
2004.

[5] S. Borzsony, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, 2001.

[6] C. Buchta. On the average number of maxima in a set of
vectors. Information Processing Letters, 33(2), 1989.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, 2003.

[8] A. Dasgupta, G. Das, and H. Mannila. A random walk
approach to sampling hidden databases. In SIGMOD, 2007.

[9] A. Dasgupta, N. Zhang, and G. Das. Leveraging count
information in sampling hidden databases. In ICDE, 2009.

[10] A. Dasgupta, N. Zhang, and G. Das. Turbo-charging hidden
database samplers with overflowing queries and skew
reduction. In EDBT, 2010.

[11] E. Dellis and B. Seeger. Efficient computation of reverse
skyline queries. In VLDB, 2007.

[12] Z. Gong, G.-Z. Sun, J. Yuan, and Y. Zhong. Efficient top-k
query algorithms using k-skyband partition. In Scalable
Information Systems. Springer, 2009.

[13] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Computing Surveys (CSUR), 40(4), 2008.

[14] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: An online algorithm for skyline queries. In VLDB, 2002.

[15] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky:
Efficient skyline computation over sliding windows. In
ICDE, 2005.

[16] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:
The k most representative skyline operator. In ICDE, 2007.

[17] T. Liu, F. Wang, and G. Agrawal. Stratified sampling for data
mining on the deep web. Frontiers of Computer Science,
6(2):179–196, 2012.

[18] E. Lo, K. Y. Yip, K.-I. Lin, and D. W. Cheung. Progressive
skylining over web-accessible databases. Data & Knowledge
Engineering, 2006.

[19] J. Madhavan, D. Ko, Ł. Kot, V. Ganapathy, A. Rasmussen,
and A. Halevy. Google’s deep web crawl. VLDB, 2008.

[20] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD, 2003.

[21] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines
on uncertain data. In VLDB, 2007.

[22] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. VLDB, 2000.

[23] C. Sheng, N. Zhang, Y. Tao, and X. Jin. Optimal algorithms
for crawling a hidden database in the web. VLDB, 2012.

[24] K.-L. Tan, P.-K. Eng, B. C. Ooi, et al. Efficient progressive
skyline computation. In VLDB, 2001.

[25] F. Wang and G. Agrawal. Effective and efficient sampling
methods for deep web aggregation queries. In EDBT, 2011.

[26] M. L. Yiu and N. Mamoulis. Efficient processing of top-k
dominating queries on multi-dimensional data. In VLDB,
2007.

[27] N. Zhang, C. Li, N. Hassan, S. Rajasekaran, and G. Das. On
skyline groups. TKDE, 26(4), 2014.

611


