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ABSTRACT
Pioneered by Google’s Pregel, many distributed systems have been
developed for large-scale graph analytics. These systems employ
a user-friendly “think like a vertex” programming model, and ex-
hibit good scalability for tasks where the majority of graph vertices
participate in computation. However, the design of these systems
can seriously under-utilize the resources in a cluster for process-
ing light-workload graph queries, where only a small fraction of
vertices need to be accessed. In this work, we develop a new open-
source system, called Quegel, for querying big graphs. Quegel
treats queries as first-class citizens in its design: users only need to
specify the Pregel-like algorithm for a generic query, and Quegel
processes light-workload graph queries on demand, using a novel
superstep-sharing execution model to effectively utilize the clus-
ter resources. Quegel further provides a convenient interface for
constructing graph indexes, which significantly improve query per-
formance but are not supported by existing graph-parallel systems.
Our experiments verified that Quegel is highly efficient in answer-
ing various types of graph queries and is up to orders of magnitude
faster than existing systems.

1. INTRODUCTION
Big graphs are common in real-life applications today, for exam-

ple, online social networks and mobile communication networks
have billions of users, and web graphs and Semantic webs can be
even bigger. Processing such big graphs typically require a spe-
cial infrastructure, and the most popular ones are Pregel [17] and
Pregel-like systems [1, 7, 8, 15, 21, 26]. In a Pregel-like system, a
programmer thinks like a vertex and only needs to specify the be-
havior of one vertex, and the system automatically schedules the
execution of the specified computing logic on all vertices. The sys-
tem also handles fault tolerance and scales out without extra effort
from programmers.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 7
Copyright 2016 VLDB Endowment 2150-8097/16/03.

Existing Pregel-like systems, however, are designed for heavy-
weight graph computation (i.e., analytic workloads), where the ma-
jority part of a graph or the entire graph is accessed [28]. For exam-
ple, Pregel’s PageRank algorithm [17] accesses the whole graph in
each iteration. However, many real-world applications involve var-
ious types of graph querying, whose computation is light-weight in
the sense that only a small portion of the input graph needs to be
accessed. For example, in our collaboration with researchers from
one of the world’s largest online shopping platforms, we have seen
huge demands for querying different aspects of big graphs for all
sorts of analysis to boost sales and improve customer experience.
In particular, they need to frequently examine the shortest-path dis-
tance between some users in a large network extracted from their
online shopping data. While Pregel’s single-source shortest-path
(SSSP) algorithm [17] can be applied here, much of the computa-
tion will be wasted because only those paths between the queried
users are of interest. Instead, it is much more efficient to apply
point-to-point shortest-path (PPSP) queries, which only traverse a
small part of the input graph. We also worked with a large tele-
com operator, and our experience is that graph queries (with light-
weight workloads) are integral parts of analyzing massive mobile
phone and SMS networks.

The importance of querying big graphs has also been recognized
in some recent work [12], where two kinds of systems are iden-
tified: (1) systems for offline graph analytics (such as Pregel and
GraphLab) and (2) systems for online graph querying, including
Horton [22], G-SPARQL [20] and Trinity [23]. However, Horton
and G-SPARQL are tailor-made only for specific types of queries.
Trinity supports graph query processing, but compared with Pregel,
its main advantage is that it keeps the input graph in main memories
so that the graph does not have to be re-loaded for each query. The
Trinity paper [23] also argues that indexing is too expensive for big
graphs and thus Trinity does not support indexing. In the VLDB
2015 conference, there is also a workshop “Big-O(Q): Big Graphs
Online Querying”, but the works presented there only study algo-
rithms for specific types of queries. So far, there lacks a general-
purpose framework that allows users to easily design distributed
algorithms for answering various types of queries on big graphs.

One may, of course, use existing vertex-centric systems to pro-
cess queries on big graphs, but these systems are not suitable for
processing light-weight graph queries. To illustrate, consider pro-
cessing PPSP queries on a 1.96-billion-edge Twitter graph used
in our experiments. To answer one query (s, t) by bidirectional
breadth-first search (BiBFS) in our cluster, Giraph takes over 100
seconds, which is intolerable for a data analyst who wants to ex-
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amine the distance between users in an online social network with
short response time. To process queries on demand using an ex-
isting vertex-centric system, a user has the following two options:
(1) to process queries one after another, which leads to a low through-
put since the communication workload of each query is usually too
light to fully utilize the network bandwidth and many synchroniza-
tion barriers are incurred; or (2) to write a program to explicitly
process a batch of queries in parallel, which is not easy for users
and may not fully utilize the network bandwidth towards the end of
the processing, since most queries may have finished their process-
ing and only a small number of queries are still being processed. It
is also not clear how to use graph indexing for query processing in
existing vertex-centric systems.

To address the limitations of existing systems in querying big
graphs, we developed a distributed system, called Quegel, for large-
scale graph querying. We implemented the Hub2-Labeling ap-
proach [11] in Quegel, and it can achieve interactive speeds for
PPSP querying on the same Twitter graph mentioned above. Quegel
treats queries as first-class citizens: users only need to write a
Pregel-like algorithm for processing a generic query, and the sys-
tem automatically schedules the processing of multiple incoming
queries on demand. As a result, Quegel has a wide application
scope, since any query that can be processed by a Pregel-style
vertex-centric algorithm can be answered by Quegel, and much
more efficiently. Under this query-centric design, Quegel adopts
a novel superstep-sharing execution model to effectively utilize the
cluster resources, and an efficient mechanism for managing ver-
tex states that significantly reduces memory consumption. Quegel
further provides a convenient interface for constructing indexes to
improve query performance. To our knowledge, Quegel is the first
general-purpose programming framework for querying big graphs
at interactive speeds on a distributed cluster. We have successfully
applied Quegel to process five important types of graph queries (to
be presented in Section 5), and Quegel achieves performance up to
orders of magnitude faster than existing systems.

The rest of this paper is organized as follows. We review related
work in Section 2. In Section 3, we highlight important concepts in
the design of Quegel, and key implementation issues. We introduce
the programming model of Quegel in Section 4, and describe some
graph querying problems as well as their Quegel algorithms in Sec-
tion 5. Finally, we evaluate the performance of Quegel in Section 6
and conclude the paper in Section 7.

2. RELATED WORK
We first review existing vertex-centric graph-parallel systems.

We consider an input graph G=(V,E) stored on Hadoop distributed
file system (HDFS), where each vertex v ∈ V is associated with its
adjacency list (i.e., v’s neighbors). If G is undirected, we denote
v’s neighbors by Γ(v). If G is directed, we denote v’s in-neighbors
and out-neighbors by Γin(v) and Γout(v), respectively. Each vertex
v also has a value a(v) storing v’s vertex value. Graph computation
is run on a cluster of workers, where each worker is a computing
thread/process, and a machine may run multiple workers.

Pregel [17]. Pregel adopts the bulk synchronous parallel (BSP)
model. It distributes vertices to workers in a cluster, where each
vertex is associated with its adjacency list. A Pregel program com-
putes in iterations, where each iteration is called a superstep. Pregel
requires users to specify a user-defined function (UDF) compute(.).
In each superstep, each active vertex v calls compute(msgs), where
msgs is the set of incoming messages sent from other vertices in the
previous superstep. In v.compute(msgs), v may process msgs and
update a(v), send new messages to other vertices, and vote to halt

(i.e., deactivate itself). A halted vertex is reactivated if it receives a
message in a subsequent superstep. The program terminates when
all vertices are deactivated and no new message is generated. Fi-
nally, the results (e.g., a(v)) are dumped to HDFS.

Pregel also allows users to implement an aggregator for global
communication. Each vertex can provide a value to an aggregator
in compute(.) in a superstep. The system aggregates those values
and makes the aggregated result available to all vertices in the next
superstep.

Distributed Vertex-Centric Systems. Many Pregel-like systems
have been developed, including Giraph [1], GPS [21], GraphX [8],
and Pregel+ [26]. New features are introduced by these systems.
For example, GPS proposed to mirror high-degree vertices on other
machines, and Pregel+ proposed the integration mirroring and mes-
sage combining as well as a request-respond mechanism, to reduce
communication workload. While these systems strictly follow the
synchronous data-pushing model of Pregel, GraphLab [15] adopts
an asynchronous data-pulling model, where each vertex actively
pulls data from its neighbors rather than passively receives mes-
sages. A subsequent version of GraphLab, called PowerGraph [7],
partitions the graph by edges rather than by vertices to achieve
more balanced workload. While the asynchronous model leads to
faster convergence for some tasks like random walk, [16] and [9]
reported that GraphLab’s asynchronous mode is generally slower
than synchronous execution mainly due to the expensive cost of
locking/unlocking.

Single-PC Vertex-Centric Systems. There are also other vertex-
centric systems, such as GraphChi [13] and X-Stream [19], de-
signed to run on a single PC by manipulating a big graph on disk.
However, these systems need to scan the whole graph on disk once
for each iteration of computation even if only a small fraction of
vertices need to perform computation, which is inefficient for light-
weight querying workloads.

Weaknesses of Existing Systems for Graph Querying. In our
experience of working with researchers in e-commerce companies
and telecom operators, we found that existing vertex-centric sys-
tems cannot support query processing efficiently nor do they pro-
vide a user-friendly programming interface to do so. If we write
a vertex-centric algorithm for a generic query, we have to run a
job for every incoming query. As a result, each superstep trans-
mits only the few messages of one light-weight query which can-
not fully utilize the network bandwidth. Moreover, there are a lot
of synchronization barriers, one for each superstep of each query,
which is costly. Furthermore, some systems such as Giraph bind
graph loading with graph computation (i.e., processing a query in
our context) for each job, and the loading time can significantly
degrade the performance.

An alternative to the one-query-at-a-time approach is to hard
code a vertex-centric algorithm to process a batch of k queries,
where k can be an input argument. However, in the compute(.)
function, one has to differentiate the incoming messages and/or ag-
gregators of different queries and update k vertex values accord-
ingly. In addition, existing vertex-centric framework checks the
stop condition for the whole job, and users need to take care of ad-
ditional details such as when a vertex can be deactivated (e.g., when
it should be halted for all the k queries), which should originally
be handled by the system itself. More critically, the one-batch-at-
a-time approach does not solve the problem of low utilization of
network bandwidth, since in later stage when most queries finish
their processing, only a small number of queries (or stragglers) are
still being processed and hence the number of messages generated
is too small to sufficiently utilize the network bandwidth.
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Figure 1: System architecture

The single-PC systems are clearly not suitable for light-weight
querying workloads since they need to scan the whole graph on
disk once for each iteration. Other existing graph databases such as
Neo4j [18] and HyperGraphDB [10] support basic graph operations
and simple graph queries, but they are not designed to handle big
graphs. Our experiments also verified the inefficiency of single-PC
systems and graph databases in querying big graphs (see Section 6).
There also exist some computing frameworks that go beyond the
vertex-centric model, such as the block-centric system Blogel [25]
and a recent general-purpose system Husky [29]. While these sys-
tems achieve remarkable performance on offline graph analytics,
they are not designed for graph querying.

The above discussion motivates the need of a general-purpose
graph processing system that treats queries as first-class citizens,
which provides a user-friendly interface so that users can write
their program easily for one generic query and the system processes
queries on demand efficiently. Our Quegel system, to be presented
in the following sections, fulfils this need.

3. THE QUEGEL SYSTEM
The system architecture of Quegel is shown in Figure 1. Quegel

runs two types of programs: a server program that loads an in-
put graph and processes incoming graph queries, and an arbitrary
number of client programs for users to submit their queries to the
server program. The server program consists of a master and a
cluster of workers. The master receives incoming queries and ap-
pends them to a query queue. The master then fetches queries from
the query queue to be processed, and maintains the information
of these queries in a query table HTQ. The queries in the query
queue are fetched into HTQ at each communication barrier to start
their evaluation, and the new content of HTQ is synchronized to all
workers, as indicated by “query sync” in Figure 1. Meanwhile, ver-
tices on different workers send messages to each other to process
the queries, as indicated by “msg sync”.

The server program of Quegel is deployed with Hadoop Dis-
tributed File System (HDFS). Before query processing starts, the
server program first loads an input graph G from HDFS, i.e., dis-
tributing vertices to main memories of different workers in the clus-
ter. If indexing is enabled, a local index will be built from the ver-
tices of each worker. After G is loaded (and index is constructed),
the server program receives and processes incoming queries using
the computing logic specified by a vertex UDF compute(.) as in
Pregel. Users may type their queries from a client console, or sub-
mit a batch of queries with a file. After a query is evaluated, users
may specify Quegel to print the answer to the console, or to dump
the answer to HDFS if its size is large (e.g., when the answer con-
tains many subgraphs).

3.1 Execution Model: Superstep-Sharing
Quegel uses a new execution model called superstep-sharing,

which overcomes the weaknesses of existing systems presented in
Section 2. We first present the hardness of querying a big graph in
general, which influences the design of our model.

Hardness of Big Graph Querying and Our Design Objective.
We consider the processing of a large graph that is stored across a
cluster of machines. Due to the poor locality of graph data, each
query usually accesses vertices spreading through the whole big
graph in distributed sites, and thus the processing of each query re-
quires network communication. Since the message transmission of
each superstep incurs round-trip delay, it is difficult (if not unrealis-
tic) for distributed vertex-centric computation to achieve response
time comparable to that of single-machine algorithms on a small
graph (e.g., in milliseconds). Therefore, our goal is to answer a
query in interactive speed (e.g., in a second or several seconds).
Moreover, due to the sheer size of a big graph, the total workload
of a batch of queries can be huge even if each query accesses just a
fraction of the graph. Therefore, it is difficult (if not unrealistic) to
achieve both high throughput and low latency.

Due to the latency-throughput tradeoff, one can only expect ei-
ther interactive speed or high throughput but not both, and thus, our
design objective focuses on developing a model for the following
two scenarios of querying big graphs, both of which are common
in real life applications.

Scenario (i): Interactive Querying, where a user interacts with
Quegel by submitting a query, checking the query results, refining
the query based on the results and re-submitting the refined query,
until the desired results are obtained. In such a scenario, there are
usually only one user (e.g., a data scientist) or several users analyz-
ing a big graph by posing interactive queries, but each query should
be answered in a second or several seconds. No existing vertex-
centric system can achieve such query latency on a big graph.

Scenario (ii): Batch Querying, where batches of queries are sub-
mitted to Quegel, and they need to be answered within a reason-
able amount of time. An example of batch querying is given by the
vertex-pair sampling application mentioned in Section 1 for esti-
mating graph metrics, where a large number of PPSP queries need
to be answered. Quegel achieves throughput 186 and 38.6 times
higher than Giraph and GraphLab for processing PPSP queries, and
thus allows the graph metrics to be estimated more accurately.

Superstep-Sharing. We propose a superstep-sharing execution
model to meet the requirements of both interactive querying and
batch querying. Specifically, Quegel processes graph queries in it-
erations called super-rounds. In a super-round, all queries that are
being processed proceed their computation by one superstep (thus
the name superstep-sharing); while from the perspective of an in-
dividual query, Quegel processes it superstep by superstep as in
Pregel. For the processing of each query, supersteps are numbered.
Different queries may have different superstep number in the same
super-round, if they are submitted to Quegel at different time.

We illustrate the execution process of superstep-sharing by the
example in Figure 2, where we have four queries q1, q2, q3 and
q4 submitted to Quegel at different time. For simplicity, assume
that the processing of each query takes 4 supersteps. As shown in
Figure 2, at super-round 1, there is only q1, and q1 executes 1 su-
perstep. At the beginning of super-round 2, there is still only q1,
and q1 executes another superstep. At super-round 3, Quegel also
received q2 and q3; and q1, q2 and q3 all execute 1 superstep (note
that q1 executes the third superstep in its processing, while q2 and
q3 execute the first superstep in their processing). At super-round 4,
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Figure 2: Illustration of superstep-sharing

q4 is also received; and all the 4 queries execute 1 superstep, where
q1 executes its last superstep, q2 and q3 execute their second super-
step, and q4 executes its first superstep. At super-round 5, q1 has
already been processed, while q2, q3 and q4 continue to execute the
next superstep in their processing.

Quegel allows users to specify a capacity parameter C, so that in
any super-round, there are at most C queries being processed. New
incoming queries are appended to a query queue maintained by the
master of the server program, as shown in Figure 1. At the begin-
ning of a super-round, the master fetches as many queries from the
queue as possible to start their processing, as long as the capacity
constraint C permits. Newly fetched queries are added to a query
table of the master, which maintains the status of every query cur-
rently being processed and is synchronized with (the query tables
of) all workers at the beginning of a super-round (as indicated by
“query sync” in Figure 1).

During the computation of a super-round, different workers run
in parallel, while each worker processes (its part of) the evaluation
of the queries serially. And for each query q, if q has not been
evaluated, a worker serially calls compute(.) on each of its vertices
that are activated by q; while if q has already finished its evalua-
tion, the worker reports or dumps the query results, and releases
the resources consumed by q. Messages (and aggregators and con-
trol information) of all queries are synchronized only at the end of
a super-round, for use by the next super-round; this is illustrated by
“msg sync” (and “query sync” for query-specific aggregators and
control information) in Figure 1.

For interactive querying where queries are posed and processed
in sequence, the superstep-sharing model processes each individ-
ual query with all the cluster resources just as in Pregel. However,
since Quegel loads the graph at the beginning and keeps it in main
memories for repeated querying, and since Quegel supports conve-
nient construction and adoption of graph indexes, the query latency
is significantly reduced.

For batch querying, while the workload of each individual query
is light, superstep-sharing combines the workloads of up to C queries
together in each super-round to achieve higher resource utilization.
Compared with answering each query independently as in existing
systems, Quegel’s superstep-sharing model supports much more ef-
ficient query processing since only one message (and/or aggrega-
tor) synchronization barrier is required in each super-round instead
of up to C synchronization barriers. In other words, the messages of
multiple queries in a super-round can be batched together for send-
ing to better utilize the network bandwidth. In addition, as each
synchronization barrier itself is relatively expensive compared with
the light workload of processing a single query, superstep-sharing
also significantly reduces the synchronization cost.

Superstep-sharing also leads to more balanced workload. As an
illustration, Figure 3 shows the execution of two queries for one su-
perstep in a cluster of two workers. The first query (darker shading)
takes 2 time units on Worker 1 and 4 time units on Worker 2, while
the second query (lighter shading) takes 4 time units on Worker 1

Worker 1
Worker 2

time sync sync sync

Individual Synchronization Superstep Sharing

Figure 3: Load balancing

and 2 time units on Worker 2. When the queries are processed indi-
vidually, the first query needs to be synchronized before the second
query starts to be processed. Thus, 8 time units are required in to-
tal. Using superstep-sharing, only one synchronization is needed at
the end of the super-round, thus requiring only 6 time units.

One issue that remains is how to set the capacity parameter C.
Obviously, the larger the number of queries being concurrently pro-
cessed, the more fully is the network bandwidth utilized. But the
value of C should be limited by the available RAM space. The in-
put graph consumes O(|V |+ |E|) RAM space, while each query
q consumes O(|Vq|) space, where Vq denotes the set of vertices
accessed by q. Thus, O(|V |+ |E|+C|Vq|) should not exceed the
available RAM space, though in most case this is not a concern as
|Vq| � |V |. While setting C larger tends to improve the throughput,
the throughput converges when the network bandwidth is saturated.
In a cluster such as ours which is connected by Gigabit Ethernet, we
found that the throughput usually converges when C is increased to
8 (for the graph queries we tested), which indicates that Quegel has
already fully utilized the network bandwidth.

3.2 System Design
Quegel manages three kinds of data: (i) V-data, whose value

only depends on a vertex v, such as v’s adjacency list. (ii) VQ-
data, whose value depends on both a vertex v and a query q. For
example, the vertex value a(v) is query-dependent: in a PPSP query
q = (s, t), a(v) keeps the estimated value of the shortest distance
from s to v, denoted by d(s,v), whose value depends on the source
vertex s. As a(v) is w.r.t. a query q, we use aq(v) to denote “a(v)
w.r.t. q”. Other examples of VQ-data include the active/halted state
of a vertex v, and the incoming message buffer of v (i.e., input to
v.compute(.)). (iii) Q-data, whose value only depends on a query
q. For example, at any moment, each query q has a unique super-
step number. Other examples of Q-data include the query content
(e.g., (s, t) for a PPSP query), the outgoing message buffers, ag-
gregated values, and control information that decides whether the
computation should terminate.

Let Q = {q1, . . . ,qk} be the set of queries currently being pro-
cessed, and let id(qi) be the query ID of each qi ∈ Q. Each worker
of Quegel maintains a hash table HTQ to keep the Q-data of each
query in Q (see Figure 1). The Q-data of a query qi can be ob-
tained from HTQ by providing the query ID id(qi), and we denote
it by HTQ[qi]. When a new query q is fetched from master’s query
queue to start its processing, the Q-data of q is inserted into HTQ of
every worker; while after q reports or dumps its results, the Q-data
of q is removed from HTQ of every worker.

Each worker W also maintains an array of vertices, varray, each
element of which maintains the V-data and VQ-data of a vertex v
that is distributed to W . The VQ-data of a vertex v is organized
by a look-up table LUTv, where the VQ-data related to a query qi
can be obtained by providing the query ID id(qi), and we denote it
by LUTv[qi]. Since every vertex v needs to maintain a table LUTv,
we implement it using a space-efficient balanced binary search tree
rather than a hash table. The data kept by each table entry LUTv[q]
include the vertex value aq(v), the active/halted state of v (in q),
and the incoming message buffer of v (for q).
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Cvertex

… compute(msgs)
1:    if (superstep() = 1) { a(v) ← 0;  send messages }
2:   else {    min ← min{msgs}
3:                if (min < a(v)) { a(v) ← min; send messages }
4:   }
5:   vote_to_halt()

Figure 4: Illustration of context objects

Unlike the one-batch-at-a-time approach with existing vertex-
centric systems, where each vertex v needs to maintain k vertex val-
ues no matter whether it is accessed by a query, we design Quegel
to be more space efficient. We require that a vertex v is allocated a
state for a query q only if q accesses v during its processing, which
is achieved by the following design. When vertex v is activated for
the first time during the processing of q, the VQ-data of q is initial-
ized and inserted into LUTv. After a query q reports or dumps its
results, the VQ-data of q (i.e., LUTv[q]) is removed from LUTv of
every vertex v in G accessed by q.

Each worker also maintains a hash table HTV , such that the po-
sition of a vertex element v in varray can be obtained by provid-
ing the vertex ID of v. We denote the obtained vertex element by
HTV [v]. The table HTV is useful in two places: (1) when a message
targeted at vertex v is received, the system will obtain the incom-
ing message buffer of v from varray[pos] where pos is computed
as HTV [v], and then append the message to the buffer; (2) when an
initial vertex v is activated using its vertex ID at the beginning of a
query q, the system will initialize the VQ-data of v for q, and in-
sert it into LUTv which is obtained from varray[pos] where pos is
computed as HTV [v]. We shall see how users can activate the (usu-
ally small) initial set of vertices in Quegel for processing q without
scanning all vertices in Section 4.

An important feature of Quegel is that, it only requires a user
to specify the computing logic for a generic vertex and a generic
query; the processing of concrete queries is handled by Quegel
and is totally transparent to users. For this purpose, each worker
W maintains two global context objects: (i) query context Cquery,
which keeps the Q-data of the query that W is processing; and
(ii) vertex context Cvertex, which keeps the VQ-data of the cur-
rent vertex that W is processing for the current query. In a super-
round, when a worker starts to process each query qi, it first ob-
tains HTQ[qi] and assigns it to Cquery, so that when a user accesses
the Q-data of the current query in UDF compute(.) (e.g., to get
the superstep number or to append messages to outgoing message
buffers), the system will access Cquery directly without looking up
from HTQ. Moreover, during the processing of qi, and before the
worker calls compute(.) on each vertex v, it first obtains LUTv[qi]
and assigns it to Cvertex, so that any access or update to the VQ-
data of v in compute(.) (e.g., obtaining aq(v) or letting v vote to
halt) directly operates on Cvertex without looking up from LUTv.

As an illustration, consider the example shown in Figure 4, where
there are 3 queries being evaluated and the computation proceeds
for 3 supersteps. Moreover, we assume that 4 vertices call com-
pute(.) in each superstep of each query. As an example, when
processing a superstep (i+2), Cquery is set to HTQ[q3] before eval-
uating v1 for q3; and when the evaluation arrives at v3, Cvertex is
set to LUTv3 [q3] before v3.compute(.) is called. Figure 4 also
shows a simplified code of compute(.) for shortest path compu-
tation, and inside v3.compute(.) for q3, a(v) is accessed once in
Line 1 and twice in Line 3, all of which use the value aq3(v) stored
in Cvertex = LUTv3 [q3] directly; while Line 1 accesses the superstep
number which is obtained from Cquery = HTQ[q3] directly.

One benefit of using the context objects Cvertex and Cquery is that,
due to the access pattern locality of superstep-sharing, repetitive
lookups of tables HTQ and LUTv are avoided. Another benefit is
that, users can write their program exactly like in Pregel (e.g., to
access a(v) and superstep number) and the processing of concrete
queries is transparent to users.

4. PROGRAMMING INTERFACE
The programming interface of Quegel incorporates many unique

features designed for querying workload. For example, the inter-
face allows users to construct distributed graph indexes at graph
loading. The interface also allows users to activate only an ini-
tial (usually small) set of vertices, denoted by V I

q , for processing
a query q without checking all vertices. Note that we cannot acti-
vate V I

q during graph loading because V I
q depends on each incoming

query q.
Quegel defines a set of base classes, each of which is associated

with some template arguments. To write an application program,
a user only needs to (1) subclass the base classes with the tem-
plate arguments properly specified, and to (2) implement the UDFs
according to the application logic. We now describe these base
classes.

Vertex Class. Figure 5 summarizes the key API of the Vertex
class. As in Pregel, the Vertex class has a UDF compute(.) for
users to specify the computing logic. In compute(.), a user may
call get query() to obtain the content of the current query qcur. A
user may also access other Q-data in compute(.), such as getting
qcur’s superstep number, sending messages (which appends mes-
sages to qcur’s outgoing message buffers), and getting qcur’s ag-
gregated value from the previous superstep. Quegel also allows a
vertex to call force terminate() to terminate the computation of qcur
at the end of the current superstep. All these operations access the
Q-data fields from Cquery directly.

The vertex class of Quegel is defined as Vertex<I,V Q,VV ,M,Q>,
which has five template arguments: (1) <I> specifies the type (e.g.,
int) of the ID of a vertex (which is V-data). (2) <V Q> specifies
the type of the query-dependent attribute of a vertex v, i.e., aq(v)
(which is VQ-data). (3) <VV> specifies the type of the query-
independent attribute of a vertex v, denoted by aV (v) (which is V-
data). We do not hard-code the adjacency list structure in order
to provide more flexibility. For example, a user may define aV (v)
to include two adjacency lists, one for in-neighbors and the other
for out-neighbors, which is useful for algorithms such as bidirec-
tional BFS. Other V-data can also be included in aV (v), such as
vertex labels used for search space pruning in some query process-
ing algorithms. (4) <M> specifies the type of the messages that
are exchanged between vertices. (5) <Q> specifies the type of the
content of a query. For example, for a PPSP query, <Q> is a pair of
vertex IDs indicating the source and target vertices. In compute(.),
a user may access aV (v) by calling value(), and access aq(v) by
calling qvalue().
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Vertex < I, VQ, VV, M, Q >

I  id
VV v_val
LUT q_val

q5 VQ-data(q5)
q6 VQ-data(q6)

… …

send(I tgt, M msg) vote_to_halt()

compute(M[] msgs)

Q  get_query() VQ & qvalue() int superstep()

VQ init_value(Q query)

force_terminate()

Fields: VQ vq_val
bool is_active
M[] in_msgs

Other Functions: 

UDFs: 

VV & value()

…

Figure 5: API summary of the Vertex class

Tvtx* [] vertexes
hash_table query_table
Tidx index

Tvtx* to_vertex(line) dump(Tvtx* v, hdfs_writer)

load2Idx(Tvtx* v, int pos)

int get_vpos(int vertexID)

Q  to_query(line)

init_activate()

activate(int vpos)

Worker <Tvtx, Tidx>
Fields: 

Formatting UDFs: 

run(param)

q5 Q-data(q5)
q6 Q-data(q6)
… … …

save(Tvtx* v, hdfs_writer)
Other UDFs: 

Other Functions: 

Figure 6: API summary of the Worker class

Suppose that a set of k queries, Q, is being processed, then each
vertex conceptually has k query-dependent attributes aq(v), one for
each query q ∈ Q. Since a query normally only accesses a small
fraction of all the vertices, to be space-efficient, Quegel allocates
space to aq(v) as well as other VQ-data only at the time when the
vertex is first accessed during the processing of q. Accordingly,
Quegel provides a UDF init value(q) for users to specify how to
initialize aq(v) when v is first accessed by q. For example, for
a PPSP query q = (s, t), where aq(v) keeps the estimated value
of d(s,v), one may implement init value(s, t) as follows: if v = s,
aq(v)← 0; else, aq(v)← ∞. The state of v is always initialized
to be active by the system, since when the space of the state is
allocated, v is activated for the first time and should participate in
the processing of q in the current superstep. Function init value(q)
is the only UDF of the Vertex class in addition to compute(.).

Worker Class. The Vertex class presented above is mainly for users
to specify the graph computation logic. Quegel provides another
base class, Worker<Tvtx,Tidx>, for specifying the input/output for-
mat and for executing the computation of each worker. The tem-
plate argument <Tvtx> specifies the user-defined subclass of Ver-
tex. The template argument <Tidx> is optional, and if distributed
indexing (to be introduced shortly) is enabled, <Tidx> specifies the
user-defined index class.

Figure 6 summarizes the key API of the Worker class. The
Worker class has a function run(param), which implements the ex-
ecution procedure of Quegel as described at the beginning of Sec-
tion 3. After users define their subclasses to implement the comput-
ing logic, they call run(param) to start a Quegel job. Here, param
specifies job parameters such as the HDFS path of the input graph
G. During the execution, we allow each query to change aV (v) of a
vertex v, and when a user closes the Quegel program from the con-
sole, he/she may specify Quegel to save the changed graph (V-data
only) to HDFS, before freeing the memory space consumed by G.

The Worker class has four formatting UDFs, which are used
(1) to specify how to parse a line of the input file into a vertex

of G in main memory, (2) to specify how to parse a query string
(input by a user from the console or a file) into the query content of
type <Q>, (3) to specify how to write the information of a vertex
v (e.g., aq(v)) to HDFS after a query is answered, and (4) to spec-
ify how to write the changed V-data of a vertex v to HDFS when a
Quegel job terminates. The last UDF is optional, and is only useful
if users enable the end-of-job graph dumping.

Quegel allows each worker to construct a local index from its
loaded vertices before query processing begins. We illustrate this
process by considering a vertex-labeled graph G where each vertex
v contains text ψ(v), and show how to construct an inverted index
on each worker W , so that given a keyword k, it returns a list of
vertices on W whose text contains k. This kind of index is use-
ful in XML keyword search, subgraph pattern matching, and graph
keyword search. Specifically, recall that each worker in Quegel
maintains its vertices in an array varray. If indexing is enabled, a
UDF load2Idx(v, pos) will be called to process each vertex v in var-
ray immediately after graph loading, where pos is v’s position in
varray. To construct inverted indexes in Quegel, a user may spec-
ify <Tidx> as a user-defined inverted index class, and implement
load2Idx(v, pos) to add pos to the inverted list of each keyword k in
ψ(v). There are also indices that cannot be constructed simply from
local vertices, and we shall see how to handle such an application
in Quegel in Section 5.1.

When a query is first scheduled for processing, each worker
calls a UDF init activate() to activate only the relevant vertices
specified by users. For example, in a PPSP query (s, t), only s
and t are activated initially; while for querying a vertex-labeled
graph, only those vertices whose text contains at least one key-
word in the query are activated. Inside init activate(), one may
call get vpos(vertexID) to get the position pos of a vertex in varray
(which actually looks up the hash table HTV of each worker), and
then call activate(pos) to activate the vertex. For example, to acti-
vate s in a PPSP query (s, t), a user may specify init activate() to
first call get vpos(s) to return s’s position poss. If s is on the current
worker, poss will be returned and one may then call activate(poss)
to activate s in init activate(). Otherwise, get vpos(s) returns -1 and
no action needs to be performed in init activate(). For querying a
vertex-labeled graph, in init activate() one may first get the posi-
tions of the keyword-matched vertices from the inverted index, and
then activate them with activate(pos).

Other Base Classes. Quegel also provides other base classes such
as Combiner and Aggregator, for which users can subclass them to
specify the logic of message combiner [17] and aggregator [17].

5. APPLICATIONS
To demonstrate the generality of Quegel’s computing model for

querying big graphs, we have implemented distributed algorithms
for five important types of graph queries in Quegel. Due to space
limit, we present two of them: (1) PPSP queries, which focus on
the graph topology; and (2) XML keyword queries, which also care
about the text information on vertices and edges. The complete
algorithms of all five applications can be found in the full version
of this paper [27].

5.1 PPSP Queries
Given two vertices s and t in an unweighted graph G = (V,E),

a PPSP query finds the minimum number of hops from s to t in
G, denoted by d(s, t). We focus on unweighted graphs since most
large real graphs (e.g., social networks and web graphs) are un-
weighted. Moreover, we are only interested in reporting d(s, t),
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although our algorithms can be easily modified to output the ac-
tual shortest path(s) by recording the previous in-neighbor of each
vertex on its shortest path.

5.1.1 Algorithms without Indexing
Breadth-First Search (BFS). The simplest way of answering a
PPSP query q = (s, t) is to perform BFS from s, until the search
reaches t. In this algorithm, aq(v) is specified as the current es-
timation of d(s,v). UDF Worker::init activate() should activate s
before starting to process q, and when a vertex v is first activated
by q, UDF v.init value(s, t) should set d(s,v) to 0 if v = s, and to
∞ otherwise. UDF v.compute(.) is implemented as follows. Let
stepq be the superstep number of q. If stepq = 1, then v is s, and
v broadcasts messages to its out-neighbors to activate them before
voting to halt. If stepq > 1, Case 1: if d(s,v) = ∞, then v is vis-
ited for the first time, and it sets d(s,v)← stepq− 1, activates its
out-neighbors by sending messages and votes to halt; moreover,
if v = t, v calls force terminate() since d(s, t) has been computed;
Case 2: if d(s,v) 6= ∞, then v has been activated by q before, and
hence v votes to halt directly. Finally, only t reports aq(t) = d(s, t)
on the console and nothing is dumped to HDFS.

Bidirectional BFS (BiBFS). A more efficient algorithm is to per-
form forward (resp., backward) BFS from s (resp., t) until a vertex
v is visited in both directions (or, bi-reached). Let C be the set
of bi-reached vertices when BiBFS stops, then d(s, t) is given by
minv∈C{d(s,v)+d(v, t)}. We take the minimum since when BiBFS
stops at iteration i, (d(s,v)+d(v, t)) for a vertex v∈C may be either
(2i−1) or 2i.

The Quegel algorithm for BiBFS is similar to that for BFS, with
the following differences. Now, aq(v) keeps a pair (d(s,v),d(v, t)).
UDF v.init value(s, t) sets d(s,v) (resp., d(v, t)) to 0 if v = s (resp.,
v= t), and to ∞ otherwise. Both s and t are activated by init activate()
initially, and two types of messages are used in order to perform for-
ward BFS and backward BFS in parallel without interfering with
each other. In v.compute(.), if both d(s,v) 6= ∞ and d(v, t) 6= ∞, v
should call force terminate() since v is bi-reached. Then, an aggre-
gator is used to collect the distance (d(s,v)+d(v, t)) of each v ∈C,
and to obtain the smallest one as d(s, t) for reporting. To terminate
earlier when s cannot reach t, we also use aggregator to compute
the numbers of messages sent in both directions in each superstep,
respectively. If the number of messages sent in either direction is
0, the aggregator calls force terminate() and reports d(s, t) = ∞.

5.1.2 Hub2: An Algorithm with Indexing
Many real graphs exhibit skewed degree distribution, where some

vertices (e.g., celebrities in a social network) connect to a large
number of other vertices. We call such vertices as hubs. Dur-
ing BFS, visiting a hub results in visiting a large number of ver-
tices at the next step, rendering BFS or BiBFS inefficient. Hub2-
Labeling (abbr. Hub2) [11] was proposed to address this problem.
We present a distributed implementation of Hub2 in Quegel for an-
swering PPSP queries. We first consider undirected graphs and then
extend the method to directed graphs.

Hub2 picks k vertices with the highest degrees as the hubs. Let
the set of hubs be H, Hub2 pre-computes the pairwise distance be-
tween any pair of hubs in H. Hub2 also associates each vertex v /∈H
with a list of hubs, Hv ⊆ H, called core-hubs, and pre-computes
d(v,h) for each core-hub h ∈ Hv. Here, a hub h ∈ H is a core-hub
of v, iff no other hub exists on any shortest path between v and h.

Formally, each vertex v ∈V maintains a list L(v) of hub-distance
labels defined as follows: (i) if v∈H, L(v) = {〈u,d(v,u)〉 | u∈H};
(ii) if v ∈ (V −H), L(v) = {〈u,d(v,u)〉 | u ∈ Hv}.

Given a PPSP query q = (s, t), an upperbound of d(s, t) can be
derived from the vertex labels. For simplicity, we only present
the algorithm for the case where neither s nor t is a hub, while
algorithms for the other cases can be similarly derived. Specifi-
cally, d(s, t) is upperbounded by dub = minhs∈Hs,ht∈Ht{d(s,hs) +
d(hs,ht) + d(ht , t)}. Obviously, if there exists a shortest path P
from s to t that passes at least one hub (we allow hs = ht ), then dub
is exactly d(s, t). However, the shortest path P′ from s to t may not
contain any hub, which still needs to be found by BiBFS from s
and t. Since any edge (u,v) on P′ satisfies u,v 6∈ H, we need not
continue BFS from any hub. In other words, BiBFS is performed
on the subgraph of G induced by (V −H), which does not include
high-degree hubs.

Algorithm for Querying. We now present the UDF compute(.),
which applies Hub2 to process PPSP queries. We first assume that
L(v) for each vertex v is already computed (we will see how to
compute L(v) shortly), and v keeps aV (v) = (Γ(v),L(v)). The new
BiBFS algorithm is different in following aspects: (i) whenever
forward or backward BFS visits a hub h, h votes to halt directly;
and (ii) once a vertex v /∈ H is bi-reached, v calls force terminate()
to terminate the computation, and reports minv∈(C−H){d(s,v) +
d(v, t)}. Moreover, the BiBFS should terminate earlier if the super-
step number reaches i = (1+b dub

2 c) and d(s, t) = dub gets reported,
since a non-hub vertex v that is bi-reached at superstep i or later
would report d(s,v)+d(v, t)≥ (2i−1) which is at least dub.

We obtain dub in the first two supersteps: in superstep 1, only s
and t are activated by init activate(); s sends each core-hub hs ∈Hs
a message 〈d(s,hs)〉 (obtained from L(s)), while t provides L(t) to
the aggregator. In superstep 2, each vertex hs ∈ Hs receives mes-
sage d(s,hs) from s, and obtains L(t) from the aggregator. Then, hs
evaluates minht∈Ht{d(s,hs)+ d(hs,ht)+ d(ht , t)}, where d(hs,ht)
is obtained from L(hs) and d(ht , t) is obtained from L(t), and pro-
vides the result to the aggregator. The aggregator takes the mini-
mum of the values provided by all hs ∈ Hs, which gives dub.

Algorithm for Indexing. The above algorithm requires that each
vertex v stores L(v) in aV (v). We now consider how to pre-compute
L(v) in Quegel. This indexing procedure can be accomplished by
performing |H| BFS operations, each starting from a hub h∈H. In-
terestingly, if we regard each BFS operation from a hub h as a BFS
query 〈h〉 in Quegel, then the entire procedure can be formulated as
an independent Quegel job with the query set {〈h〉 | h ∈ H}.

We process a BFS query 〈h〉 in Quegel as follows. The query-
dependent attribute of a vertex v is defined as aq(v)= 〈d(h,v), preH(
v)〉, where preH(v) is a flag indicating whether any shortest path
from h to v passes through another hub h′ (h′ 6= h and h′ 6= v).
Quegel starts processing 〈h〉 by calling init activate() to activate
h. The UDF v.init value(〈h〉) is specified to set preH(v)← FALSE,
and to set d(s,v)← 0 if v = h or set d(s,v)← ∞ otherwise.

The UDF v.compute(.) is implemented as follows. In this algo-
rithm, a message sent by v indicates whether there exists a shortest
path from h to v that contains another hub h′ 6= h (here, h′ can be v);
if so, for any vertex u /∈H newly activated by that message, it holds
that h 6∈ Hu. Based on this idea, the algorithm is given as follows.
In superstep 1, h broadcasts message 〈FALSE〉 to its neighbors. In
superstep i (i > 1), if d(h,v) 6= ∞, then v is already visited by BFS,
and it votes to halt directly; otherwise, v is activated for the first
time, and it sets d(h,v)← stepq−1, and receives and processes in-
coming messages as follows. If v receives 〈TRUE〉 from a neighbor
w, then a shortest path from h to v via w passes through another
hub h′ (h′ 6= h and h′ 6= v), and thus v sets preH(v)← TRUE. Then,
if v ∈ H or preH(v) = TRUE, v broadcasts message 〈TRUE〉 to
each neighbor u; otherwise, v broadcasts message 〈FALSE〉 to all
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Figure 7: A fragment of an XML document

its neighbors. Finally, v votes to halt.
To compute L(v) using the above algorithm, we specify the query-

independent attribute of a vertex v as aV (v) = (Γ(v),L(v)), where
L(v) is initially empty. After a query 〈h〉 is processed, we perform
the following operation in the query dumping UDF: (i) if v /∈ H, v
adds 〈h,d(h,v)〉 to L(v) only if preH(v) = FALSE; (ii) if v ∈ H, v
always adds 〈h,d(h,v)〉 to L(v).

After all the |H| queries are processed, L(v) is fully computed
for each v ∈ V . Then, each vertex v saves L(v) along with other
V-data to HDFS, which is to be loaded later by the Quegel program
for processing PPSP queries described previously.

Extension to Directed Graphs. If G is directed, we make the fol-
lowing changes. First, each vertex v now has in-degree |Γin(v)|
and out-degree |Γout(v)|, and thus we consider three different ways
of picking hubs, i.e., picking those vertices with the highest (i) in-
degree, or (ii) out-degree, or (iii) sum of in-degree and out-degree.
Second, each vertex v now maintains two core-hub sets: an entry-
hub set H in

v and an exit-hub set Hout
v . A hub h ∈ H is an entry-hub

(resp., exit-hub) of v, iff no other hub h′ ( 6= h,v) exists on any short-
est path from v to h (resp., from h to v). Accordingly, we obtain two
lists of hub-distance labels, Lin(v) and Lout(v). During indexing,
we construct Lin(v) (resp., Lout(v)) by backward (resp., forward)
BFS, i.e., sending messages to in-neighbors (out-neighbors). When
answering PPSP queries, we compute dub similarly but hs ∈ Hs
(resp., ht ∈ Ht ) is now replaced by hs ∈ H in

s (resp., ht ∈ Hout
t ).

5.2 XML Keyword Search
Section 5.1 illustrated how graph indexing itself can be formu-

lated as an individual Quegel program. We now present another
application of Quegel, i.e., keyword search on XML documents,
which makes use of the distributed indexing interface of Quegel de-
scribed in Section 4 directly. Compared with traditional algorithms
that rely on disk-based indexes [14, 32], our Quegel algorithms are
much easier to program, and they avoid the expensive cost of con-
structing any disk-based index. Although simple MapReduce solu-
tion has also been developed, it takes around 15 seconds to process
each keyword query on an XML document whose size is merely
200MB [30]. The low efficiency is because MapReduce is not de-
signed for querying workload. In contrast, our Quegel program
answers the same kind of keyword queries on much larger XML
documents in less than a second. Let us first review the query se-
mantics of XML keyword search, and then discuss XML keyword
query processing in Quegel, followed by a real application of the
query in an online shopping platform.

5.2.1 Query Semantics
An XML document can be regarded as a rooted tree, where inter-

nal vertices are XML tags and leaf vertices are texts. To illustrate,
Figure 7 shows the tree structure of an XML document describing
the information of a research lab. We denote the set of words con-

tained in the tag or text of a vertex v by ψ(v), and if a keyword
k ∈ ψ(v), we call v as a matching vertex of k (or, v matches k).
Given an XML document modeled by a tree T , an XML keyword
query q = {k1, k2, . . ., km} finds a set of trees, each of which is a
fragment of T , denoted by R, such that for each keyword ki ∈ q,
there exists a vertex v in R matching ki. We call each result tree R
as a matching tree of q.

Different semantics have been proposed to define what a mean-
ingful matching tree R could be. Most semantics require that the
root of R be the Lowest Common Ancestor (LCA) of m vertices
v1, . . ., vm, where each vertex vi matches a keyword ki ∈ q. For
example, given the XML tree in Figure 7 and a query q = {Tom,
Graph}, vertex 9 is the LCA of the matching vertices 11 and 13,
while vertex 1 is the LCA of the matching vertices 3 and 5.

We consider two popular semantics for the root of R: Small-
est LCA (SLCA) and Exclusive LCA (ELCA) [32]. For simplicity,
we use “LCA/SLCA/ELCA of q” to denote “LCA/SLCA/ELCA of
matching vertices v1, . . ., vm”. An SLCA of q is defined as an LCA
of q that is not an ancestor of any other LCA of q. For example,
in Figure 7, vertex 9 is the SLCA of q = {Tom, Graph}, while ver-
tex 1 is not since it is an ancestor of another LCA, i.e. vertex 9. Let
us denote the subtree of T rooted at vertex v by Tv, then a vertex v is
an ELCA of q if Tv contains at least one occurrence of all keywords
in q, after pruning any subtree Tu (where u is a child of v) which
already contains all keywords in q. Referring to Figure 7 again,
both vertices 1 and 9 are ELCAs of q = {Tom, Graph}. Vertex 1
is an ELCA since after pruning the subtree rooted at vertex 6, there
still exist vertices 3 and 5 matching the keywords in q. In contrast,
if q = {Peter, Graph}, then vertex 9 is an ELCA of q, while ver-
tex 1 is not an ELCA of q since after pruning the subtree rooted at
vertex 6, there is no vertex matching “Peter”.

Once the root, r, of a matching tree is determined, we may return
the whole subtree Tr as the result tree R. However, if r is at a top
level of the input XML tree, Tr can be large (e.g., the subtree rooted
at vertex 1) and may contain much irrelevant information. For an
SLCA r, MaxMatch [14] was proposed to prune irrelevant parts
from Tr to form R. Let K(v) be the set of keywords matched by the
vertices in Tv. If a vertex v1 has a sibling v2, where K(v1)⊂ K(v2),
then Tv1 is pruned. For example, let q= {Tom, Graph} and consider
the subtree rooted at vertex 1 in Figure 7. Since vertex 9 contains
{Tom, Graph} in its subtree while its sibling vertex 14 does not
contain any keyword in its subtree, the subtree rooted at vertex 14
is pruned.

5.2.2 Query Algorithms
Due to space limit, we only present the Quegel algorithms for

computing SLCA, and the algorithms for computing ELCA and
MaxMatch can be found in the full version of this paper [27]. The
Quegel program first loads the graph that represents the XML doc-
ument (the graph is obtained by parsing the XML document with a
SAX parser), where each vertex v is associated with its parent pa(v)
and its children Γc(v) (V-data). Then, each worker constructs an in-
verted index from the loaded vertices using the indexing interface
described in Section 4.

To process a query q, the UDF init activate() activates only those
vertices v with ψ(v)∩ q 6= /0. The query-independent attribute of
each vertex v, aV (v), maintains pa(v), Γc(v), and ψ(v), and the
query-dependent attribute aq(v) maintains a bitmap bm(v), where
bit i (denoted by bm(v)[i]) equals 1 if keyword ki exists in subtree
Tv and 0 otherwise. The UDF v.init value(q) sets each bit bm(v)[i]
to 1 if ki ∈ ψ(v) and 0 otherwise. For simplicity, if all the bits of
bm(v) are 1, we call bm(v) as all-one. We now describe the query
processing logic of v.compute(.) for computing SLCA as follows.
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Computing SLCA in Quegel. In superstep 1, all matching vertices
have been activated by init activate(), and each matching vertex v
sends bm(v) to its parent pa(v) and votes to halt. In superstep i
(i > 1), there are two cases in processing a vertex v. Case (a):
if some bit of bm(v) is 0, v computes the bitwise-OR of bm(v)
and those bitmaps received from its children, which is denoted by
bmOR. If bmOR 6= bm(v), then some new bit of bm(v) should be
set due to a newly matched keyword; thus, v sets bm(v) = bmOR,
and sends the updated bmv to its parent pa(v). In addition, if bmOR
is all-one, then (1) if v receives an all-one bitmap from a child, v
is labeled as a non-SLCA (the label is also maintained in aq(v));
(2) otherwise, v is labeled as an SLCA. Case (b): if bm(v) is all-
one, then v has been labeled either as an SLCA or as a non-SLCA
(because a descendant is an SLCA) in an earlier superstep. (1) If v
is labeled as a non-SLCA, v votes to halt directly; while (2) if v is
labeled as an SLCA, and v receives an all-one bitmap from a child,
then v labels itself as a non-SLCA. Finally, v votes to halt.

In the above algorithm, a vertex may send messages to its parent
multiple times. To make sure that each vertex sends at most one
message to its parent, we design another level-aligned algorithm
as follows. Specifically, we pre-compute the level of each vertex
v in the XML tree, denoted by `(v), by performing BFS from the
tree root (with a traditional Pregel job). Then, our Quegel program
loads the preprocessed data, where each vertex v also maintains
`(v) in aq(v). The UDF v.compute(.) is designed as follows. Ini-
tially, we use an aggregator to collect the maximum level of all the
matching vertices, denoted by `max. The aggregator maintains `max
and decrements it by one after each superstep. In a superstep, a
vertex v at level `max computes the bitwise-OR of bm(v) and all the
bitmaps received from its children at level (`max +1); the bitwise-
OR is then assigned to bm(v) and sent to v’s parent pa(v). More-
over, if an all-one bitmap is received, v labels itself as a non-SLCA
directly; otherwise, and if bm(v) becomes all-one, then v labels it-
self as an SLCA. Finally, v votes to halt. Note that those matching
vertices u with `(u)< `max remain active until they are processed.

Applications of XML Keyword Search. Though originally pro-
posed for querying a single XML document [14, 32], our algo-
rithms can also be used to query a large corpus of many XML
documents. We illustrate this by one application in e-commerce.
During online shopping, a customer may pose a keyword query (in
the form of an AJAX request) from a web browser to search for
interested products. The web server will obtain the matched prod-
ucts from the database, organize them as an XML document, and
send it back to the client side. The browser of the client will then
parse the XML document by a Javascript script to display the re-
sults. The server may log the various AJAX responses to disk, so
that data scientists and sellers may pose XML keyword queries on
the logged XML corpus to study customers’ search behaviors of
specific products, to help them make better business decisions.

6. EXPERIMENTAL EVALUATION
We now evaluate the performance of Quegel. We only report

the experimental results for answering PPSP and XML keyword
queries, and the results of processing other types of queries can be
found in the full version of this paper [27]. The source code of the
Quegel system and algorithms of its five applications can be found
in: http://www.cse.cuhk.edu.hk/quegel.

The experiments were conducted on a cluster of 15 machines,
each with 24 cores (two Intel Xeon E5-2620 CPU) and 48GB RAM.
The machines are connected by Gigabit Ethernet. In Quegel, each
worker corresponds to one process that uses a core. We ran 8 work-
ers per machine (i.e., 120 workers in total) for all the experiments

Table 1: Datasets (M = million)
Dataset |V| |E| Max

Deg
Avg
Deg

Reach
Rate

Twitter 52.6 M 1963.3 M 0.8 M 37.3 78.1%
BTC 164.7 M 772.8 M 1.6 M 4.7 41.8 %
LiveJ 10.7 M 224.6 M 1.0 M 21.0 85.0 %

(a) Datasets For PPSP Queries
Dataset |V| Doc Size Graph Size
DBLP 81.9M 1.4 GB 4.9 GB
XMark 170.5 M 5.5 GB 14.1 GB

(b) Datasets For XML Keyword Queries

of Quegel, since running more workers per machine does not sig-
nificantly improve query performance due to the limited network
bandwidth. We used HDFS of Hadoop 1.2.1 on the cluster.

Table 1(a) shows the datasets used in our experiments on PPSP
queries: (i) Twitter [5]: Twitter who-follows-who network based
on a snapshot taken in 2009; (ii) BTC [3]: a semantic graph con-
verted from the Billion Triple Challenge 2009 RDF dataset; and
(iii) a small dataset LiveJ [4] that refers to a bipartite network of
LiveJournal users and their group memberships, which is used to
demonstrate the poor scalability of some existing systems. Twitter
is directed while BTC and LiveJ are undirected. Table 1(a) also
shows the maximum and average vertex degree of each graph, and
we can see that the degree distribution is highly skewed. We ran-
domly generate vertex pairs (s, t) on each dataset for running PPSP
query processing, and the percentage of queries where s can reach
t is shown in column “Reach Rate” of Table 1(a).

Comparison with Neo4j, GraphChi, and GraphX. We first com-
pare Quegel with (1) Neo4j [18]: a well-known graph database;
(2) GraphChi [13]: a single-machine graph processing system; and
(3) GraphX [8]: a graph-parallel framework built on Spark (one of
the most popular big data systems now). Neo4j and GraphChi were
run on one of the machines in the cluster, while GraphX (shipped
in Spark 1.4.1) was run on all the machines, using all cores and
RAMs available.

These three systems have poor scalability for processing PPSP
queries, as they either ran out of memory or are too time-consuming
to process the two larger graphs, Twitter and BTC. We were only
able to record the results for them on the smallest dataset, LiveJ.
Table 2 reports the performance of these systems for answering 20
randomly-generated PPSP queries (s, t) on LiveJ, where s cannot
reach t in only three queries Q3, Q12, and Q15.

We adopt the BFS, BiBFS and Hub2 algorithms described in
Section 5.1, and 1000 hubs were selected for Hub2. The results of
Quegel are used for comparison with the other systems, to demon-
strate why these systems are inefficient for graph querying. Quegel
took 2912 seconds (end-to-end indexing time including graph load-
ing/dumping) to compute the label set L(v) for every vertex v. As
Table 2 shows, Quegel answers every query in less than 3 seconds
even by simply running BFS, while the time is consistently much
less than one second when Hub2 is used. Quegel’s graph loading
time for Hub2 is longer than for BFS and BiBFS since since the
program for Hub2 also needs to load L(v) of every vertex v.

Since Neo4j provides a built-in “shortestPath” function, we di-
rectly use this function to answer the 20 PPSP queries. Neo4j spent
over 17 hours just to import LiveJ, and the imported graph con-
sumes 64GB disk space while LiveJ itself is only 1.1GB. In fact,
Twitter could not be imported even after running for several days,
and all disk space was used up when importing BTC. As Table 2
shows, the querying time is very unstable and can vary from a
second to many hours, especially when s cannot reach t. This is
mainly because the built-in “shortestPath” function often needs to
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Table 2: Non-scalable systems: an illustration by answering 20 queries on Livej in serial (unit: second)
Load Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Neo4j Built-in – 286.3 466.8 28969 1.1 1.3 1.5 1.4 1.2 7.2 3.5 103.4 64577 1.2 67.9 32421 104.4 165.5 1.2 1.1 0.4

GraphChi
BFS – 68.7 79.4 114.2 51.5 75.0 71.8 75.3 68.6 75.1 78.5 77.3 115.2 57.9 80.8 113.5 73.2 77.6 59.4 48.6 57.9

BiBFS – 142.6 135.4 367.6 86.8 149.1 133.1 159.2 134.2 139.1 160.2 155.8 386.3 88.8 140.5 328.2 131.9 157.1 120.1 88.5 75.2
Hub2 – 86.0 67.7 259.3 79.7 52.7 69.8 98.0 90.1 92.9 49.9 115.1 240.4 69.8 77.3 287.9 70.1 94.3 50.4 68.7 50.4

GraphX
BFS 6.3 154.3 204.5 285.4 87.8 188.3 182.5 184.9 111.7 150.3 177.6 161.2 309.8 116.3 168.3 338.4 174.3 208.4 134.3 105.4 96.6

BiBFS 6.8 89.5 86.2 568.8 74.7 85.4 87.4 86.4 85.5 89.7 83.8 89.8 532.3 66.5 85.4 635.2 82.4 92.5 70.7 71.8 73.7
Hub2 8.7 84.1 73.1 506.2 70.2 81.4 76.7 78.5 87.8 85.8 79.0 86.1 511.7 66.3 81.6 506.6 75.3 88.9 65.9 66.6 67.2 

Quegel
BFS 7.9 1.9 2.6 2.8 2.3 2.1 1.9 2.1 1.9 2.2 2.1 2.2 2.6 1.8 2.5 2.6 2.3 2.0 2.0 2.1 2.2

BiBFS 7.9 1.7 0.7 0.8 0.6 0.7 0.3 1.1 2.0 2.0 0.7 2.2 1.8 0.6 0.8 0.4 0.7 2.8 0.4 0.6 0.8
Hub2 21.4 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.7 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.2

Reachability √ √ X √ √ √ √ √ √ √ √ X √ √ X √ √ √ √ √

visit many vertices in order to determine whether s can reach t,
which is costly in Neo4j.

To apply Hub2 in GraphChi and GraphX, we implemented the
hub-sourced BFS algorithm for Hub2 indexing in both GraphChi
and GraphX. Recall that in Quegel, we append core-hubs to an in-
memory list L(v) of every vertex v during the execution of the 1000
BFS jobs and dump the lists at the end. We were not able to do this
in GraphChi and GraphX, since GraphChi requires vertex value
type to be of constant size, while GraphX does not utilize RAM
space efficiently and ran out of all RAM in our cluster when main-
taining L(v) in memory. Therefore, we dumped the results for each
of the 1000 hubs individually, and thus postprocessing is necessary
to merge the results to obtain L(v) for every vertex v, which is not
as user-friendly as with Quegel’s API. It took GraphChi 129,508
seconds (1.5 days) to finish the 1000 BFS jobs, while after 90,390
seconds (over 1 day) GraphX only finished 239 out of the 1000
jobs. We can see that, even without considering the postprocessing
time to obtain L(v), their indexing time is already orders of magni-
tude longer than that of Quegel.

Despite the difficulty in computing L(v) in GraphChi and GraphX,
we tested the effect of Hub2 for query processing in GraphChi and
GraphX with the aid of Quegel. We first use Quegel to build Hub2

and obtain the upperbound dub of each of the 20 queries, and then
we directly hard-code dub as an additional input argument to each
GraphChi and GraphX job in addition to the query (s, t). In this
way, we can process each query in GraphChi and GraphX as if we
use Hub2 to obtain dub for the query.

GraphX took 6–9 seconds time to load the graph into RAM,
while GraphChi does not load the graph into RAM but keeps it
on disk (thought it took 193 seconds to compute shards over LiveJ).
GraphX’s loading time for Hub2 is close to that for BFS and BiBFS,
since dub is given as a query input and there is no need to load the
list L(v) of any vertex v. As shown in Table 2, both GraphChi and
GraphX took tens to hundreds of seconds to answer a query on the
smallest graph LiveJ, which is too slow for interactive querying.
Moreover, BFS is even faster than BiBFS and Hub2 when s cannot
reach t, since BiBFS and Hub2 additionally need to perform back-
ward BFS from t to process vertices in t’s connected component.
Table 2 also shows that the performance of GraphX is similar and
sometimes even slower than the single-machine GraphChi system,
although GraphX was run on 15 machines. GraphX also does not
utilize RAM space efficiently: during the query processing on the
small LiveJ, GraphX already used more than half the RAM in each
machine; and GraphX could not process BTC and Twitter as it ran
out of all RAM in our cluster.

Comparison with Distributed Vertex-Centric Systems. Next,
we compared Quegel with Giraph 1.0.0 and GraphLab 2.2 by run-
ning the PPSP algorithms of Section 5.1 on the two large graphs,

Table 3: Cumulative time of BFS/BiBFS (20 PPSP queries)
BFS BiBFS

System Giraph GraphLab Quegel Giraph GraphLab Quegel
Load 789.8 97.4 30.5 2607.8 129.0 48.3
Query 414.3 318.2 184.2 148.4 259.5 54.9
Dump 57.5 16.4 − 46.5 20.7 −
Access 75.4% 24.8%

BFS BiBFS
System Giraph GraphLab Quegel Giraph GraphLab Quegel
Load 1278.3 109.2 16.1 1211.9 104.3 16.6
Query 546.3 187.3 8.4 447.7 882.1 11.2
Dump 215.6 25.3 − 199.1 26.2 −
Access 1.2 % 2.3 %

(a) Performance on Twitter (unit: second)

(b) Performance on BTC (unit: second)

Twitter and BTC. For each dataset, we randomly generated 1000
queries. Since Giraph and GraphLab both use multi-threading, they
have access to all the 24 cores on each of the 15 machines.

Giraph needs to load the input graph G from HDFS for the eval-
uation of each query, and the high and dominating start-up over-
head cancels any performance benefit of Hub2 in query processing.
Thus, we only ran BFS and BiBFS on Giraph, and only for the first
20 queries since it takes too long to finish all 1000 queries.

GraphLab can keep G in main memory for repeated querying
after G is loaded. However, its design is not suitable for Hub2:
keeping L(v) as an attribute of each vertex v takes excessive mem-
ory space, since GraphLab adopts an edge-centric model which
makes duplicate copies of vertices. Moreover, during Hub2 index-
ing, synchronizing L(v) among replicas of every vertex v is expen-
sive. Thus, we simulated Hub2 indexing in GraphLab by perform-
ing each hub-sourced BFS query and dumping its result in serial.
In this way, a vertex v does not need to maintain L(v) during in-
dexing, but postprocessing is needed to obtain L(v), which is not as
user-friendly as with Quegel’s API.

Due to the above reasons, we also hard-code the upperbound dub
(obtained from Quegel) as an additional input for each query in
GraphLab (as what we did for GraphChi and GraphX), in order to
test of the effect of Hub2 in GraphLab. We will show that even with
this direct hard-coding of dub in each query, GraphLab is still much
slower than Quegel, which indicates that only our Quegel system is
able to fully explore the performance benefit brought by Hub2.

Table 3(a) and 3(b) report the cumulative time taken by Giraph,
GraphLab and Quegel on Twitter and BTC for the first 20 queries.
Here, Giraph’s loading time is contributed by all 20 queries, while
that of GraphLab and Quegel is one-off before query processing be-
gins. Also, we specify Quegel to report query results on the console
and hence there is no dumping time. For all experiments of Quegel,
we set the capacity parameter C = 8 unless otherwise stated. We
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Table 4: Cumulative time on Twitter (1k PPSP queries)
GraphLab

Top-1k
Quegel
Top-1k

Quegel
Top-100

Load 117.2 49.7 49.8
Index 35649 30342 3444
Save 7186 369.9 81.7

GraphLab Quegel
BFS BiBFS Top-1k BFS BiBFS Top-1k Top-100

Load 97.4 129.0 114.0 30.5 48.3 373.9 93.8
Query 13877 13094 11880 12164 3191 339.6 1129
Access 75.6% 28.7% 2.4% 75.6% 28.7% 2.4% 8.6%

(a) Hub2 Indexing Time (second) (b) Querying Time (second)

Table 5: Cumulative time on BTC (1k PPSP queries)
GraphLab

Top-1k
Quegel
Top-1k

Load 76.2 42.5
Index 11950 973.4
Save 19981 42.7

GraphLab Quegel
BFS BiBFS Top-1k BFS BiBFS Top-1k

Load 108.9 104.3 75.0 16.1 16.6 34.8
Query 9504 40781 11500 411.9 602.5 138.9
Access 1.2 % 2.3 % 0.03% 1.2 % 2.3 % 0.03%

(a) Hub2 Indexing (second) (b) Querying Time (second)

also show the average access rate of a query (i.e., the percentage of
vertices accessed) in the last row “Access”.

Table 3(a) shows that Quegel is significantly faster than Giraph
and GraphLab when bidirectional BFS is used to process the queries.
When BFS is used, Quegel is still considerably faster than Giraph
and GraphLab, but is 3 times longer than Quegel’s bidirectional
BFS. This can be explained by the access rate of the queries, which
actually demonstrates the effectiveness of Quegel’s specialized de-
sign for querying workload that accesses only a small portion of the
graph. The result also reveals that the other systems are not suit-
able for graph querying, as Giraph’s loading time is already much
longer than its actual querying time, while GraphLab’s querying
time is unsatisfactory when the access rate is small. Also note that
the loading time for BiBFS is usually longer than that for BFS,
since each vertex v needs to load Γin(v) in addition to Γout(v).

Table 3 (b) shows that the performance gap between Quegel and
the other systems is significantly larger than on Twitter, since the
access rate on BTC is much smaller than that on Twitter. This
demonstrates that the design of Quegel is highly suitable for pro-
cessing queries with small access rate. Another interesting obser-
vation is that, BFS has a smaller access rate than bidirectional BFS
on BTC. This is because BTC consists of many connected compo-
nents, and thus most queries (s, t) are not reachable. For such a
query, BFS terminates once all vertices in the connected compo-
nent of s are visited, while bidirectional BFS also visits the vertices
in t’s connected component, leading to a larger access rate.

Effect of Indexing. We next show that Hub2 indexing can signifi-
cantly improve Quegel’s query performance. For Twitter, we chose
hubs as the top-k vertices with the highest in-degree, out-degree,
and their sum, and found that the results are similar. Thus, we only
report the results for hubs with highest in-degree. Table 4(a) shows
the Hub2 indexing time of GraphLab and Quegel when k = 1000.
We can see that Quegel is faster than GraphLab, even though we do
not consider the postprocessing cost of GraphLab to obtain L(v).
We also show the results of Quegel when k = 100 to demonstrate
the effect of k. We can see from Table 4(a) that each hub-sourced
BFS takes about 30 seconds on average in Quegel, and thus, k can-
not be too large in order to keep the preprocessing time reasonable.

Table 4(b) reports the total time of processing the 1000 queries
by Quegel and GraphLab. Clearly, when index is applied, Quegel’s
performance is significantly improved, which can be explained by
the reduction in the access rate. The result demonstrates the ef-
fectiveness of graph indexing. Quegel’s loading time with Hub2

is longer than BFS and BiBFS since it needs to load L(v) of every
vertex v, but graph loading is a one-off preprocessing operation and
has no influence on subsequent query performance.

When k = 1000, Quegel processes 1000 queries in 339.6 seconds
with Hub2, which is about 10 times faster than with BiBFS. In con-
trast, Hub2 in GraphLab is only slightly faster than BiBFS even
though the access rate is much smaller, and it is 35 times slower
than Hub2 in Quegel.

We also built Hub2 on BTC, using the top-1000 vertices with
the highest degree. Table 5(a) shows the indexing time, where

Table 6: Effect of C and machine # (second)
C TQuery C TQuery

1 538.5 16 189.1
2 210.7 32 190.1
4 192.1 64 188.4
8 187.3 128 187.1

Mac # TIndex TQuery

8 61466 1003.7
10 45360 703.2
12 43007 404.5
14 35412 395.8

(a) Effect of C  (|Q| = 512) (b) Effect of Mac # (|Q| = 1k)

Quegel is 10 times faster than GraphLab. This is because BTC
consists of many connected components and each BFS from a hub
accesses only one component, and Quegel is able to benefit sig-
nificantly from the small access rate while GraphLab cannot. Ta-
ble 5(b) shows the time of processing the 1000 queries by Quegel
and GraphLab. The result shows that Hub2 significantly improves
the query performance, and Quegel can process over 7 PPSP queries
per second on BTC (82 times faster than GraphLab).

Effect of Capacity Parameter. We next examine how the capac-
ity parameter C influences the throughput of query processing in
Quegel, by processing the first 512 queries with Hub2 (k = 1000)
on Twitter with different values of C. Table 6(a) reports the total
time of processing the 512 queries, where we can see that process-
ing queries one by one (i.e., C = 1) is significantly slower than
when a larger capacity is used. For example, when C = 8, the to-
tal query processing time is only 1/3 of that when C = 1, which
verifies the effectiveness of superstep-sharing. However, the query
throughput does not increase when we further increase C, since the
cluster resources are already fully utilized. Similar results have also
been observed on the other datasets.

Note that Quegel took 538.5 seconds to process 512 queries on
Twitter when C = 1, and thus the average time of processing a query
is still around 1 second, which is similar to the response time on the
small Livej dataset (see Table 2). This shows that the interactive
querying performance of Quegel scales well to graph size.

Horizontal Scalability. We now show how Quegel scales with
the number of machines by processing the 1000 PPSP queries with
Hub2 (k = 1000) on Twitter with different cluster size. Table 6(b)
reports the total time of indexing and processing the 1000 queries.
The result shows that both the indexing time and querying time
continue to decrease as the number of machine increases.

Performance on XML Keyword Search. We evaluate the perfor-
mance of processing XML keyword queries in Quegel on the DBLP
dataset [2], as well as a larger XMark benchmark dataset [6]. Ta-
ble 1(b) shows the data statistics, where |V | refers to the number of
vertices in the XML tree, “Doc Size” refers to the file size of the
raw XML document, and “Graph Size” refers to the file size of the
parsed graph representation. Note that it is not clear how to imple-
ment our algorithms in other graph-parallel systems; for example,
they do not provide a convenient way to construct and utilize in-
verted index. We generated 1000 keyword queries for each dataset,
by randomly picking a query from a query pool each time, and
repeating it for 1000 times. The query pools were obtained from
existing work [24, 31, 32, 33], each contains tens of well-selected
keyword queries.
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Table 7: Results on XML keyword search

Dataset Time SLCA ELCA MaxMatchNaïve L-Aligned

DBLP

Load 17.2 33.1 33.7 26.3
Index 18.1 34.7 35.3 27.0
Query 594.3 524.2 661.7 1403
Access 0.35% 0.38% 0.36% 0.5%

XMark

Load 44.3 58.3 68.6 89.6
Index 47.7 61.9 72.2 93.1
Query 1550 1930 1986 5994
Access 5.9% 5.9 % 5.9% 10.1%

Table 7 reports the performance of computing SLCA, ELCA and
MaxMatch on the datasets using the 1000 queries. The reported
metrics include the one-off graph loading and inverted index con-
struction time, the total time of processing the 1000 queries (in-
cluding result dumping), and the average access rate of a keyword
query. The results verify that Quegel obtains good performance.
For computing SLCAs, the average processing time of each query
is only 0.5–0.6 second on DBLP. The time is longer on XMark,
which is because XMark queries are less selective, and thus their
access rates are much higher than those of DBLP queries. Finally,
we can observe that the level-aligned version of SLCA algorithm
is more efficient than the simple one on DBLP, but it is slower on
XMark. This is because, vertices at the upper levels of DBLP’s
XML tree have high fan-outs, and thus the level-alignment tech-
nique significantly reduces the number of messages; while the ver-
tex fan-out in XMark is generally small, and the cost incurred by
the aggregator out-weighs the benefit of message reduction.

7. CONCLUSIONS
We developed a distributed system, Quegel, for general-purpose

querying of big graphs. To our knowledge, this is the first work that
studies how to apply Pregel’s user-friendly vertex-centric program-
ming interface to efficiently process queries in big graphs. This is
also the first general-purpose system that applies graph indexing
to speed up query processing in a distributed platform. In addi-
tion to the good performance obtained for answering PPSP and
XML keyword queries presented in this paper, Quegel has also
been shown to achieve good performance for processing terrain
shortest path queries, point-to-point reachability queries, and graph
keyword queries. The details of using Quegel to process these
queries and the experimental evaluation results can be found in the
full version of this paper [27].

For future work, we will continue to improve the performance
of Quegel by designing various optimization techniques, proposing
efficient graph indexes to be adopted in Quegel, and developing
more applications of Quegel.
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