
SlimShot: In-Database Probabilistic Inference for
Knowledge Bases ˚

Eric Gribkoff
University of Washington

eagribko@cs.washington.edu

Dan Suciu
University of Washington

suciu@cs.washington.edu

ABSTRACT
Increasingly large Knowledge Bases are being created, by
crawling the Web or other corpora of documents, and by
extracting facts and relations using machine learning tech-
niques. To manage the uncertainty in the data, these KBs
rely on probabilistic engines based on Markov Logic Networks
(MLN), for which probabilistic inference remains a major
challenge. Today’s state of the art systems use variants of
MCMC, which have no theoretical error guarantees, and, as
we show, suffer from poor performance in practice.

In this paper we describe SlimShot (Scalable Lifted In-
ference and Monte Carlo Sampling Hybrid Optimization
Technique), a probabilistic inference engine for knowledge
bases. SlimShot converts the MLN to a tuple-independent
probabilistic database, then uses a simple Monte Carlo-based
inference, with three key enhancements: (1) it combines
sampling with safe query evaluation, (2) it estimates a con-
ditional probability by jointly computing the numerator and
denominator, and (3) it adjusts the proposal distribution
based on the sample cardinality. In combination, these three
techniques allow us to give formal error guarantees, and
we demonstrate empirically that SlimShot outperforms to-
day’s state of the art probabilistic inference engines used in
knowledge bases.

1. INTRODUCTION
Motivation Knowledge Base Construction (KBC) [36] is

the process of populating a structured relational database
from unstructured sources: the system reads a large num-
ber of documents (Web pages, journal articles, news stories)
and populates a relational database with facts. KBC has
been popularized by some highly visible knowledge bases con-
structed recently, such as DBPedia [3], Nell [6], Open IE [16],
Freebase [17], Google knowledge graph [37], Probase [42],
Yago [21]. There is now huge demand for automating KBC,
and this has lead to both industrial efforts (e.g. high-profile

˚This work was partially supported by NSF AITF 1535565
and IIS-1247469.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 7
Copyright 2016 VLDB Endowment 2150-8097/16/03.

start-up companies like Tamr and Trifacta) and to several re-
search prototypes like DeepDive [36], Tuffy [28], ProbKB [8],
SystemT [27], and DBLife [35].

As explained in [36], a KBC engine performs two ma-
jor tasks. The first is grounding, which evaluates a large
number of SQL queries to produce a large database called
a factor graph. While this was the most expensive task in
early systems [2], recently Tuffy [28] and ProbKB [8] have
significantly improved its performance by first formulating
it as a query evaluation problem then developing sophisti-
cated optimizations; we do not discuss grounding in this
paper. The second task is inference, which performs sta-
tistical inference on the factor graph: the output consists
of a marginal probability for every tuple in the database.
All systems today use Markov Chain Monte Carlo (MCMC)
for probabilistic inference [2, 28, 44], more specifically they
use a variant called MC-SAT [31]. They suffer from two
major problems. First, while MCMC converges in theory,
the theoretical convergence rate is too slow for any practical
purposes: current systems simply run for a fixed number of
iterations and do not provide any accuracy guarantees. Sec-
ond, in order to guarantee even those weak convergence rates,
current implementations need to sample uniformly from a set
of satisfying assignments, and for that they rely on Sample-
SAT [40], which, unfortunately, is only a heuristic and does
not guarantee uniform samples. As a consequence, MC-SAT
may not converge at all. In one KBC engine, statistical
inference is reported to take hours on a 1TB RAM/48-core
machine [36] and, as we show in this paper, accuracy is
unpredictable, and often very bad. In short, probabilistic
inference remains the major open challenge in KBC.

Our Contribution This paper makes novel contributions
that pushes the probabilistic inference task inside a relational
database engine. Our system takes as input a probabilistic
database, a Markov Logic Network (MLN) defining a set of
soft constraints (reviewed in Section 2), and a query, and re-
turns the query answers annotated with their marginal prob-
abilities. Our approach combines three ideas: lifted inference
on probabilistic databases (developed both in the database
community under the name safe query evaluation [39] and in
the AI community [13]; reviewed in Subsection 2.1), a trans-
lation of MLN into a tuple-independent database (introduced
in [24]; reviewed in Subsection 2.2), and a novel approach
of combining lifted inference with sampling, for which we
provide provable and practical convergence guarantees. To
the best of our knowledge, SlimShot is the first system to
completely push complex probabilistic inference inside the
relational engine.

552

After the translation of the MLN, query evaluation be-
comes the problem of computing a conditional probability,
PpQ|Γq, in a tuple independent probabilistic database; here
Q is the user query, and Γ a constraint. A naive way to
compute this probability would be to compute separately
the numerator and denominator in PpQ^ Γq{PpΓq. If both
Q and Γ are very simple expressions then both probabilities
can be computed very efficiently using lifted inference, but
in general lifted inference does not apply. An alternative
is to estimate each of them using Monte Carlo simulation:
sample N worlds and return the fraction that satisfy the
formula. However, for guaranteed accuracy, one needs to run
a number of simulation steps that is inversely proportional
to the probability. Since Γ is a @˚ sentence, its probability is
tiny, e.g. 10´9

´ 10´20 in our experiments, which makes MC
prohibitive. In other words, even though PpQ|Γq is relatively
large (say 0.1 to 0.9), if we compute it as a ratio of two
probabilities then we need a huge number of steps because
PpΓq is tiny.

Our new idea is to combine sampling with lifted inference,
in a technique we call SafeSample; this is an instance of a
general technique called in the literature collapsed-particle
importance sampling, or Rao-Blackwellized sampling [26].
SafeSample selects a subset of the relations such that, once
these relations are made deterministic, the query is liftable,
then uses MC to sample only the selected relations, and
computes the exact query probability (using lifted inference)
for each sample. Instead of estimating a 0/1-random variable,
SafeSample estimates a random variable with values in r0, 1s,
also called discrete integration.

To make SafeSample work, we introduce two key optimiza-
tions. CondSample evaluates the numerator and denomi-
nator of PpQ^ Γq{PpΓq together, by using each sample to
increment estimates for both the numerator and the denomi-
nator. This technique is effective only for a r0, 1s-estimator,
like SafeSample. If applied to a 0/1-estimator, it becomes
equivalent to rejection sampling, which samples worlds and
rejects those that do not satisfy Γ: rejection sampling wastes
many samples and is very inefficient. In contrast, SafeSample
computes the exact probability of both Q^ Γ and Γ at each
sample, and thus makes every sample count. We prove a key
theoretical result, Theorem 3.6, showing that the convergence
rate of CondSample is inverse proportional to PpQ|Γq and
a parameter called the output-tilt of Γ, defined as the ratio
between the largest and smallest value of the r0, 1s-function
being estimated. In other words, our technique reduces the
number of steps from an impractically large 1{PpΓq in a naive
MC simulation, to a realistic 1{PpQ|Γq times the output-
tilt. The second optimization, ImportanceSample, further
decreases the output-tilt by weighting samples in inverse
proportion to the probability of Γ.

Thus, SlimShot enables the entire probabilistic inference
task of a KBC to be pushed entirely inside a SQL engine. In
doing so, SlimShot disposes of the grounding task in KBC,
and, instead, performs probabilistic inference by repeatedly
computing a SQL query (corresponding to a safe plan), once
for every sample. As explained earlier, query optimization
techniques have been used before for the grounding task of
KBC, but never for the probabilistic inference task: ours is
the first system to push probabilistic inference in the database
engine, and thus enables database optimization techniques
to be applied to the probabilistic inference task. We describe
several such optimizations, then validate SlimShot experi-

mentally by comparing it with other popular MLN systems,
and show that it has dramatically better accuracy at similar
or better performance, and that it is the only MLN system
that offers relative error guarantees; our system can compute
a query over a database with 1M tuples in under 2 minutes.

Related Work Our approach reduces MLNs to Weighted
Model Counting (WMC). Recently, there have been three
parallel, very promising developments for both exact and ap-
proximate WMC. Sentential Decision Diagrams [11] (SDDs)
are an exact model counting approach that compile a Boolean
formula into circuit representations, where WMC can be
done in linear time. SDDs have state-of-the-art performance
for many tasks in exact weighted model counting, but also
have some fundamental theoretical limitations: Beame and
Liew prove exponential lower bounds even for simple UCQ’s
whose probabilities are in PTIME. WeightMC [7] is part
of a recent and very promising line of work [15, 7], which
reduces approximate model counting to a polynomial number
of oracle calls to a SAT solver. Adapting this techniques
to weighted model counting is non-trivial: Chakraborty [7]
proves that this is possible if the models of the formula have
a small tilt (ratio between the largest and smallest weight of
any model). The tilt is a more stringent measure than our
output-tilt, which is the ratio of two aggregates and can be
further reduced by using importance sampling. Finally, a
third development consists of lifted inference [30, 5, 38, 13,
20], which are PTIME, exact WMC methods, but only work
for a certain class of formulas: in this paper we combine
lifted inference with sampling, to apply to all formulas.

In summary, our paper makes the following contributions:

‚ We describe SafeSample, a novel approach to query
evaluation over MLNs that combines sampling with
lifted inference, and two optimizations: CondSample
and ImportanceSample. We prove an upper bound on
the relative error in terms of the output-tilt. Section 3.

‚ We describe several optimization techniques for eval-
uating safe plans in the database engine, including
techniques for negation, for tables with sparse content
or sparse complement, and for evaluating constraints
(hence CNF formulas). Section 4.

‚ We conduct a series of experiments comparing SlimShot
to other MLN systems, over several datasets from the
MLN literature, proving significant improvements in
precision at similar, or better, runtime. Section 5

2. BACKGROUND
We fix a relational vocabulary σ “ pR1, . . . , Rmq, and

denote DB “ pRDB
1 , . . . , R

DB
mq a database instance over σ. We

identify DB with the set of all tuples, and write D Ď DB

to mean RDi Ď RDB
i for all i. A First Order formula with

free variables x “ px1, . . . , xkq in prenex-normal form is an
expression:

Φpxq “ E1y1E2y2 . . . E`y`ϕpx,yq

where each Ei is either @ or D and ϕ is a quantifier-free
formula using the logical variables x1, . . . , xk, y1, . . . , y`. A
sentence is a formula without free variables. In this paper
we consider two kinds of formulas: a query is a formula
with quantifier prefix D˚, and a constraint is a formula with
quantifier prefix @˚; note that both queries and constraints

553

may have free variables. A query can be rewritten as Q “
C1 _ C2 _ ¨ ¨ ¨ where each Ci is a conjunctive query with
negation, while a constraints can be written as ∆1^∆2^¨ ¨ ¨

where each ∆i is a clause with quantifier prefix @˚.
Equivalence of queries Q ” Q1 is NP-complete [33], and, by

duality, equivalence of constraints Γ ” Γ1 is coNP-complete.

2.1 Probabilistic Databases
A tuple-independent probabilistic database, or probabilistic

database for short, is a pair pDB, pq where p : DBÑ r0, 1s is
a function that associates to each tuple t P DB a probability
pptq. It defines a probability space on the set of possible
worlds, where each tuple t is included independently, with
probability pptq. Formally, for each subset D Ď DB, called
a possible world, its probability is PDB,ppDq “

∏
tPD pptq ¨∏

tPDB´Dp1´ pptqq. The probability of a sentence Φ is:

PDB,ppΦq “
∑

DĎDB:D|ùΦ

PDB,ppDq

If Qpxq is a query, then its output is defined as the set of
pairs pa, pq, where a is a tuple of constants of the same arity

as x, and a, p
def
“ PDB,ppQra{xsq. We drop the subscripts

from PDB,p when clear from the context.
A relation R is called deterministic, if for every tuple

t P RDB, pptq P {0, 1}, otherwise it is called probabilistic. We
sometimes annotate with a subscript Rd the deterministic
relations. We denote A the active domain of the database,
and n “ |A|.

Query Evaluation. In general, computing PpΦq is #P-hard
in the size of the active domain. The standard approach
for computing PpΦq is to first ground Φ on the database DB,
which results in a Boolean formula called the lineage [1], then
compute its probability; we do not use lineage in this paper
and will not define it formally. If Φ is an D˚ sentence, then
the lineage is a DNF formula, which admits an FPTRAS
using Karp and Luby’s sampling-based algorithm [25]. But
the lineage of a @˚ sentences is a CNF formula, and does not
admit an FPTRAS unless P“NP [32].

An alternative approach to compute PpΦq is called lifted
inference in the Statistical Relational Learning literature [13],
or safe query evaluation in probabilistic databases [39]. It al-
ways runs in PTIME in n, but only works for some sentences
Φ. Following [39], lifted inference proceeds recursively on
Φ, by applying the rules in Table 1, until it reaches ground
atoms, whose probabilities are looked up in the database.
Each rule can only be applied after checking a certain syn-
tactic condition on the formula Φ; if no rule can be applied,
lifted inference fails. For example, the independent @ rule
says that Pp@xΦq “

∏
aPA PpΦra{xsq, but only if x is a

separator variable, which is defined as a variable that oc-
curs in every probabilistic atom, and, if two atoms have
the same relational symbol, then it occurs in the same po-
sition in both. When the rules succeed we call Φ safe, or
liftable; otherwise we call it unsafe. For a simple illustra-
tion, if Td is a deterministic relation, then Γ1 “ @x@ypRpxq_
Spx, yq_Tdpyqq is safe, because x is a separator variable, and
therefore PpΓ1q “

∏
aPA PpRpaq _ Spa, yq _ Tdpyqq, where

PpRpaq _ Spa, yq _ Tdpyqq “ 1 ´ p1 ´ PpRpaqqq ¨
∏
bPAp1 ´

PpSpa, bqqq ¨ p1´PpTdpbqqq. On the other hand, if all three
relations are probabilistic, then @x@ypRpxq_Spx, yq_T pyqq
is #P-hard: we call it unsafe, or non-liftable. We refer the

S(x,y) Td(y)

A(x,y) :- S(x,y) ∨ Td(y)

B(x) :- ∀y A(x,y)

R(x)

C(x) :- R(x) ∨ B(x)

Γ1:- ∀x C(x)

positive
ground
atom

independent
union

independent
union

independent ∀

independent ∀

Figure 1: Safe plan for Γ1 “ @x@ypRpxq _ Spx, yq _ Tdpyqq.

reader to [39] for more details on lifted inference. We note
that in the literature the term lifted inference sometimes
refers to symmetric databases [12]: a relation R is called
symmetric if all ground tuples Rptq over the active domain
have the same probability, and a probabilistic database is
called symmetric if all its relations are symmetric. In this
paper we do not restrict databases to be symmetric, and will
use lifted inference to mean the same thing as safe query
evaluation.

Safe plans. Following other systems [4, 29], SlimShot per-
forms lifted inference by rewriting the query into a safe query
plan, which is then evaluated inside a relational database
engine. The leafs of the plan are relations with a special
attribute called p, representing the probability of the tuple.
There is one operator for each rule in Table 1, which com-
putes the probabilities of the output in terms of the input.
For example the independent join operator multiplies the
probabilities of the left and the right operand, while the
independent @ aggregates all probabilities in a group by mul-
tiplying them. We describe more details of the safe plans in
Sec.4. For example, the query Γ1 has the safe plan shown in
Figure 1.

2.2 Markov Logic Networks
An MLN is a set of pairs pw,∆pxqq, where ∆pxq is a

constraint with free variables x, and w P r0,8s is a weight.
If w “ 8 then we call ∆ a hard constraint, otherwise a soft
constraint. For example:

p3, Smokerpxq ^ Friendpx, yq ñ Smokerpyqq (1)

is a soft constraint with weight w “ 3. Notice that the
constraint has free variables x, y, and the weight 3 is ap-
plied for every grounding of x, y where the constraint holds.
Intuitively, it says that, typically, friends of smokers are
smokers.

For a fixed domain A, a possible world D is a set of ground
tuples over the domain A that satisfies all hard constraints.
Its weight is computed as follows: for each soft constraint
pw,∆pxqq and for each tuple of constants a such that ∆paq

554

Φ PpΦq Rule name Conditions to check
Rptq ppRptqq Positive ground atom ´

 Rptq 1´ ppRptqq Negated ground atom ´

Φ1 ^ Φ2 PpΦ1q ¨PpΦ2q Independent join no common probabilistic relation symbol in Φ1,Φ2

Φ1 _ Φ2 1´ p1´PpΦ1qq ¨ p1´PpΦ2qq Independent union no common probabilistic relation symbol in Φ1,Φ2

@xΦ
∏
aPA Φra{xs Independent @ x is a separator variable (see text)

DxΦ 1´
∏
aPAp1´ Φra{xsq Independent D x is a separator variable (see text)

Φ1 _ Φ2 PpΦ1q `PpΦ2q ´PpΦ1 ^ Φ2q I/E for constraints ´

Φ1 ^ Φ2 PpΦ1q `PpΦ2q ´PpΦ1 _ Φ2q I/E for queries ´

Table 1: Safe Query Evaluation Rules for PDB,ppΦq.

holds in D, multiply its weight by w:

WMLN pDq “
∏

pw,∆pxqqPMLN,aPA|x|:wă8^D|ù∆ra{xs

w (2)

For example, considering an MLN that consists only of
the soft constraint (1), the weight of a possible world is
3N , where N is the number of pairs a, b such that the im-
plication Smokerpaq ^ Friendpa, bq ñ Smokerpbq holds in
D. The probability of a possible world D is defined as
the normalized weight: PMLN pDq “ WMLN pDq{Z, where
Z “

∑
DWMLN pDq. The probability of a query Q is

PMLN pQq “
∑
D:D|ùQ PMLN pDq.

A tuple-independent probabilistic database is a special case
of an MLN, where each tuple Rpaq becomes a soft constraint
pw,Rpaqq with w “ ppRpaqq{p1´ ppRpaqqq.

State of the art. MLN’s have been used in information ex-
traction, record linkage, large scale text processing, and data
collection from scientific journals [14, 28, 43]. MLN systems
like Tuffy [28] and DeepDive [43] scale up by storing the evi-
dence (hard constraints consisting of a single ground tuple) in
a relational database system, and split query evaluation into
two parts: grounding and probabilistic inference. Grounding
is performed in the database engine [28], probabilistic infer-
ence is done entirely outside the database engine. Inference
remains the major challenge to date: all MLN systems use
MCMC, which, as we show in Section 5, can suffer from poor
accuracy in practice.

Translation to Probabilistic Databases. Somewhat sur-
prisingly, every MLN can be converted into a tuple-independent
probabilistic database. One simple way to do this is to re-
place each soft rule pw,∆pxqq with two new rules:

pw,Rpxqq p8,@xRpxq ô ∆pxqq (3)

where Rpxq is a new relational symbol (a new symbol for each
rule), of the same arity as the free variables of ∆pxq. After
this transformation, the new MLN consists of the new tuple-
independent relations Rpxq, plus hard constraints of the form
(3); denote by Γ the conjunction of all hard constraints. Let
PMLN and P be the probability space defined by the MLN,
and by the tuple-independent probabilistic database. The
following can be easily checked, for any query Q:

PMLN pQq “ PpQ|Γq “ PpQ^ Γq{PpΓq (4)

In other words, we have reduced the problem of computing
probabilities in the MLN to the problem of computing a
conditional probability over a tuple-independent probabilistic
database. Notice that Γ is a @˚ sentence, hence PMLN pQq

no longer admits an FPTRAS, because the grounding of a
@
˚ sentence is a CNF formula.
In this paper we use a more effective translation from

MLN’s to probabilistic databases, adapted from [24]: replace
each soft rule pw,∆pxqq by the following two new rules,

pw ´ 1, Rpxqq p8,@x Rpxq _∆pxqq (5)

The advantage of this translation is that, if ∆ is a single
clause (the typical case in MLN), the translated formula is
also a single clause. Eq.(4) still holds for this translation. To
see this, consider a world D over the vocabulary of the old
MLN, and a tuple of constants, a. If D ­|ù ∆paq, then a does
not contribute to the weight of D in Eq.(2): in the new MLN,
the hard constraint (5) requires Rpaq to be false, and a also
does not contribute any factor to the weight. If D |ù ∆paq,
then in the old MLN the constants a contributed a factor
of w, and in the new world there are two possibilities Rpaq
is true or is false, and these two worlds contribute jointly a
weight pw ´ 1q ` 1 “ w.

2.3 Chernoff Bound and Monte Carlo Simu-
lation

If X1, . . . , XN P r0, 1s are i.i.d. with mean x, then Cher-
noff’s Bound is [22]:

Pp
∑
i“1,N

Xi ě p1` δqNxq ďexp (´N ¨Dpp1` δqx||xq) (6)

where Dpz||xq
def
“ z ¨ lnp z

x
q ` p1 ´ zq ¨ lnp 1´z

1´x
q is the binary

relative entropy. By using the inequality Dpp1 ` δqx||xq ě
x ¨hpδq, where hpxq “ p1`xqlnp1`xq´x, and further using
hpδq ě δ2

{3 for δ ď 1{2, the probability on the right simplifies
to expp´Nxδ2

{3q. All variants of Chernoff bounds discussed
in this paper have both upper bounds (Pp

∑
Xi ě ¨ ¨ ¨ q)

and lower bounds (Pp
∑
Xi ď ¨ ¨ ¨ q), with slightly different

constants, but to simplify the presentation we follow common
practice and discuss only the upper bound.

If f is a real-valued random variable, the Monte Carlo
estimator for x “ Erf s consists of computing N independent
samples of f , denoted X1, . . . , XN , then returning:

x̂ “
∑
i“1,N

Xi{N (7)

If f P r0, 1s, then Chernoff’s bound applies, and it follows
that we need N Á 1{pxδ2

q samples (ignoring a small constant
factor) in order for the estimator x̂ to have relative error δ
with high probability. In practice, of course, x is unknown,
however Dagum [9] describes a dynamic stopping condition
that guarantees the error bound δ, without knowing x. In

555

summary, the Monte Carlo estimator guarantees an error
bound, requiring 1{pxδ2

q simulation steps.

3. SlimShot
SlimShot takes as input a probabilistic database, a Markov

Logic Network (MLN), and a query, and computes the query
answers annotated with their marginal probabilities. It trans-
lates the MLN using Eq.(5), then computes PMLN pQq as:

PpQ|Γq “
PpQ^ Γq

PpΓq
(8)

We denote x “ PpQ|Γq throughout this section. The main
contribution in SlimShot is a novel approach to computing
Eq.(8), which consists of combining sampling with lifted
probabilistic inference.

If both numerator and denominator in Eq.(8) are liftable,
then x can be computed efficiently inside the database engine,
as outlined in Subsection 2.1, but in general Γ is too complex
and none of the two expressions are liftable. In that case, a
naive approach is to estimate the numerator and denominator
separately, using Monte Carlo sampling. Throughout this
section we define f as the 0/1-function fpDq “ 1 when
D |ù Γ, and fpDq “ 0 otherwise, where D is a possible world,
and denote y “ Erf s “ PpΓq. A Monte Carlo estimator for
Erf s is impractical because it requires Op1{yq steps, and y is
a tiny quantity (10´9

´ 10´20 in our experiments) because Γ
is a @˚ sentence. In contrast, x “ PpQ|Γq is relatively large,
say 0.1 to 0.9, but to compute it we need to divide two tiny
quantities.

SlimShot makes three contributions. (1) It combines
sampling with exact lifted inference (a technique called
SafeSample), (2) it computes together the numerator and
denominator in Eq.(8) (a technique called CondSample) and
provides a novel theoretical accuracy guarantee, reducing
the number of steps from 1{y to 1{x times the output-tilt;
(3) it uses importance sampling to reduce the output-tilt
and thus further improve the convergence rate (a technique
called ImportanceSample).

3.1 SafeSample
SafeSample combines sampling with lifted inference. It is

an application of the general principle of collapsed-particle
or Rao-Blackwellized sampling [26], which replaces the es-
timation of 0/1-function f to a r0, 1s-function g. We start
with a definition:

Definition 3.1. Let Φ be a sentence, and T be a set of
relation names. We say that Φ is safe modulo T if it becomes
safe after making all relation names in T deterministic.

Throughout this section we denote gpTD
q “ PpΓ|T “

TD
q “ ERrf |T “ TD

s, where TD is a possible world for
the relations T. If Γ is safe modulo T , then the function
gpTD

q can be computed in polynomial time. For example
the constraint @x@ypRpxq _ Spx, yq _ T pyqq is unsafe, but it
is safe modulo T , because once we make T deterministic, the
constraint becomes safe; the function gpTDq is computed by
the safe plan in Figure 1. We will usually denote T a relation
in T, and denote R any other relation1

SafeSample is the naive Monte Carlo algorithm applied to
the r0, 1s-valued function g, instead of the 0/1-function f , to

1Suggesting deTerministic and Random, although the rela-
tions T are not deterministic.

compute PpΓq. It samples N possible world TDi , i “ 1, N ,
then returns the estimate

ŷ “

∑
i“1,N gpT

Diq

N
(9)

This is unbiased, because ETrgs “ ETrERrf |T “ TD
ss “

Erf s “ y.
The advantage of SafeSample over a naive MC is that it

samples from the smaller space of relations T as opposed to
the entire space of possible worlds. Concretely, this leads
to a reduction in the variance: by Rao-Blackwell’s theorem
we know that the variance cannot increase, but in fact we
can show exactly by how much it decreases, namely by the
quantity σ2

pfq ´ σ2
pgq “ Erf2

s ´ETrg
2
s “ ETrERrf

2
|T “

TD
ss ´ ETrE

2
Rrf |T “ TD

ss “ ETrσ
2
Rrf |T “ TD

ss ě 0. In
other words, it decreases by the variance in R (since we no
longer sample R but use lifted inference instead); the only
variance that remains is due to T. To see how the variance
affects the number of simulation steps, we prove:

Proposition 3.2. Let g ě 0 be a random variable s.t. g ď c
from some constant c, with mean y “ Ergs and variance
σ2
“ Erg2

s ´E2
rgs. Let ŷ be the estimator in Eq.(9). Then,

for all δ ď σ2
{p2cyq:

Ppŷ ě Np1` δqyq ď2expp´
Nδ2y2

3σ2
q

Proof. Bennett’s theorem states that, if X1, . . . , XN are iid’s
s.t. |Xi| ď c with mean 0 and variance σ2, then Pp

∑
iXi ě

tq ď expp´Nσ2

c2
hp ct

Nσ2 qq. By setting Xi “ gpDiq ´ y, t “

N ¨δ ¨y we obtain Ppŷ ě Np1`δqyq ď expp´N σ2

c2
hp ct

Nσ2 qq “

expp´N σ2

c2
hp cδy

σ2 qq, and finally we use the fact that hpxq ě

x2
{3 for 0 ď x ď 1{2 (Subsection 2.3).

It follows that the number of steps required by (9) to
estimate y with an errorď δ isN Á 3σ2

{py2δ2
q, and therefore

SafeSample is faster than a 0/1-Monte Carlo estimator by a
factor equal to the ratio of the variances, σ2

pfq{σ2
pgq, which

is always ě 1 (since σ2
pfq ě σ2

pgq).
We illustrate with two examples: one where SafeSample

has an exponentially large speedup, the other where it
plateaus at a small constant factor.

Example 3.3. Consider Γ “ @xpRpxq _ T pxqq, and a sym-
metric probabilistic database over a domain of size n, where,
for all i P rns, the tuple Rpiq has probability ppRpiqq “ r and
T piq has probability t. We show that the speedup σ2

pfq{σ2
pgq

grows exponentially with the domain size. We have PpΓq “
Erf s “ Erf2

s “ pr ` t´ rtqn, hence:

σ2
pfq “ pr ` t´ rtqn ´ pr ` t´ rtq2n

If TD has size |TD| “ n´ k, then gpTDq “ Erf |T “ TDs “
rk, which implies ET rgs “

∑
k

(
n
k

)
tn´kp1´ tqkrk “ pt`p1´

tqrqn, and similarly ET rg
2
s “ pt` p1´ tqr2

q
n, or

σ2
pgq “ pt` p1´ tqr2

q
n
´ pt` p1´ tqrq2n

When r “ t “ 1{2, then the variance decreases from σ2
pfq “

p3{4qn ´ p9{16qn “ p12n ´ 9nq{16n to σ2
pgq “ p5{8qn ´

p3{4q2n “ p10n´9nq{16n. Their ratio σ2
pfq{σ2

pgq “ p12n´
9nq{p10n ´ 9nq « p6{5qn.

Example 3.4. Consider now Γ “ @x@ypRpxq _ Spx, yq _
T pyqq. As before, we consider for illustration a symmetric

556

database, where R “ T “ rns, S “ rns ˆ rns, and the tuples
in R,S, T have probabilities r, s, t respectively. We show that
here the speedup is only a small constant factor. We sample
T , and let R,S be the random relations. If |TD| “ n´k, then
gpTDq “ PpΓ|TDq “ pr`skp1´rqqn, because for every value
of the variable x “ i, the sentence @y P rkspRpiq _ Spi, yqq
must be true. Thus, we have

PpΓq “ Erf2
s “

∑
k“0,N

(
n

k

)
tn´kp1´ tqkpr ` skp1´ rqqn

ET rg
2
s “

∑
k“0,N

(
n

k

)
tn´kp1´ tqkpr ` skp1´ rqq2n

Here the decrease in variance is only by a constant factor
because, if we group the terms in Erf2

s ´ET rg
2
s by k, then

for each k ą 0, the difference pr`skp1´rqqn´pr`skp1´rqq2n

is ď pr ` skp1 ´ rqqnp1 ´ rqp1 ´ sq. That, is except for the
first term k “ 0 (whose contribution to the sum is negligible),
all others decrease by a factor of at most p1´ rqp1´ sq.

As the last example suggest, SafeSample alone is insuffi-
cient, which justifies our second technique.

3.2 CondSample
CondSample computes the numerator and denominator

in Eq.(8) together. We prove that CondSample requires a
number of steps proportional to 1{x times the output-tilt of
g, which is the ratio of the largest and smallest values of
g. Given a set of relations T such that both Q ^ Γ and
Γ are safe modulo T, CondSample estimates Eq.(8) by the
following quantity:

x̂ “

∑
i“1,N PpQ^ Γ|TDiq∑
i“1,N PpΓ|TDiq

(10)

For any fixed N , x̂ is a biased estimator of x; however,
x̂ converges to x when N Ñ 8 (it is called a consistent
estimator in the literature).

Chakraborty [7] define the tilt of a Boolean formula as the
ratio between the largest and smallest weight of any of its
models. We adapt their terminology to a random variable:

Definition 3.5. The output-tilt of a random variable Y ě 0
is T “ maxY {minY .

We prove:

Theorem 3.6. Let pX1, Y1q, . . . , pXN , YN q be i.i.d. such
that for all i, Xi P r0, 1s and has mean x “ ErXis, and
Yi ě 0. Let T be the output-tilt of Yi. Then:

P

(∑
i“1,N XiYi∑
i“1,N Yi

ě p1` δqx

)
ď expp´ND{T q (11)

where D “ Dpp1` δqx||xq.

Proof. We use the following lemma:

Lemma 3.7. Let y1, . . . , yN ě 0 be N real numbers, and let
M “ p

∑
i yiq{pmaxi yiq; notice that M ď N . Let X1, . . . , XN

be i.i.d.’s, where each Xi P r0, 1s and has mean x “ ErXis.
Then, for any δ ą 0:

Pp
∑
i

Xiyi ą p1` δqxp
∑
i

yiqq ď expp´M ¨Dq

(where D “ Dpp1` δqx||xq).

Intuitively, the lemma generalizes two extreme cases: when
all weights yi are equal, then M “ N and the bound becomes
the Chernoff bound for N items; and when the weights are
as unequal as possible, y1 “ y2 “ . . . “ yM , yM`1 “ . . . “
yN “ 0, then the bound becomes the Chernoff bound for
M items. The proof is included in the tech report for this
paper.

To prove the theorem, we condition on the outcomes of
the variables Yi, then apply the lemma:

Pp¨ ¨ ¨ q “EY1,...,YN

[
PX1,...,XN

(∑
i“1,N XiYi∑
i“1,N Yi

ě p1` δqx

)]
ďEY1,...,YN rexpp´p

∑
i“1,N

Yiq{pmax
j“1,N

Yjq ¨Dqs

ďEY1,...,YN rexpp´N{T ¨Dqs “ expp´N{T ¨Dq

proving the claim.

By setting Xi “ PpQ|Γ, TDiq and Yi “ PpΓ|TDiq, Eq.(10)
becomes

∑
iXiYi{

∑
i Yi, which gives us the error bound

(11) for the estimator x̂. It suffices to run N Á T {Dpp1 `
δqx||xq « 3T {pxδ2

q simulation steps (Dpp1`δqx||xq Á xδ2
{3,

Subsection 2.3), in other words the number of steps depends
on the mean x of Xi and the output-tilt T of Yi; it does
not depend on the mean y of Yi. In Theorem 3.6 Xi, Yi do
not have to be independent2, which justifies using the same
sample TDi both in the numerator and the denominator.

The reader may wonder why we don’t estimate x “ PpQ|Γq
directly, as

∑
i PpQ|Γ, T

Diq{N , which would only require
N Á 3{pxδ2

q steps. The problem is that we need to sample
possible worlds TD1 , TD2 , . . . from the conditional distribu-
tion PpTD|Γq, a task as difficult as estimating PpΓq [23].

The speedup given by Theorem 3.6 is only possible for a
r0, 1s-random variable; a 0/1-variable has output-tilt 8, and
the theorem becomes vacuous. In that case CondSample be-
comes rejection sampling for computing PpQ|Γq: repeatedly
sample a world Di, ignore worlds that do not satisfy Γ, and
return the fraction of worlds that satisfy Q, which is known
to require N Á 1{PpΓq steps, because we need as many steps
in expectation to hit Γ once. Rejection sampling wastes sim-
ulation steps. In contrast, SafeSample makes every sample
count, by using lifted inference to compute PpΓ|TD

q exactly,
no matter how small, and requires N Á T {PpQ|Γq steps.

We show two examples, one where the output-tilt is large
(T Á 1{PpΓq), and CondSample is not much better than
SafeSample, the second where the output-tilt is T ! 1{PpΓq.

Example 3.8. Consider first Γ “ @x@ypRpxq _ Spx, yq _
T pyqq in Example 3.4. As we have seen, if |TD| “ n´k, then
Y “ PpΓ|TDq “ pr ` skp1 ´ rqqn, (because for every value
of the variable x “ i, the sentence @y P rkspRpiq _ Spi, yqq
must be true). The maximum value of Y is 1 (for k “ 0) and
the minimum is pr ` snp1´ rqqn « rn respectively, thus the
output-tilt is T “ 1{rn Á 1{PpΓq “ 1{

∑
kpr`s

k
p1´rqqn. In

general, when maxpY q “ 1, then the output-tilt is 1{minpY q
and this is bigger than 1{ErY s because the minpY q ď ErY s ď
maxpY q.

Example 3.9. Consider next Γ “ @x@ypR1pxq _ S1px, yq _
T pyqq ^ pR2pxq _ S2px, yq _ T pyqq. This constraint is safe
modulo T , but now we no longer have PpΓ|TDq “ 1, for
any value TD, and we show that the output-tilt is much

2But pXi, Yiq has to be independent of pXj , Yjq, for i ‰ j.

557

smaller than 1{ErY s. Notice that, one can show (by repeat-
ing the argument in Example 3.4) that SafeSample alone is
insufficient to compute this query much faster than a naive
Monte Carlo simulation, so CondSample is necessary for a
significant speedup. To compute the output-tilt, note that
Y “ PpΓ|TDq “ pr1 ` s

k
1p1´ r1qq

n
pr2 ` s

n´k
2 p1´ r2qq

n and,
assuming r1 “ r2 and s1 “ s2, the maximum/minimum
values are pr ` snp1 ´ rqqn « rn (for k “ 0 or k “ n) and

pr ` sn{2p1 ´ rqq2n « r2n (for k “ n{2) respectively. The
output-tilt is T “ 1{rn ! 1{ErY s. To see this, assume for
illustration that t “ 1{2, then we claim that ErY s ď 3r2n. Ex-
pand ErY s “

∑
k

(
n
k

)
1

2n pr`s
k
p1´rqqnpr`sn´kp1´rqqn, and

split the sum into two regions: for k P rnp1´δq{2, np1`δq{2s
the contribution of the sum is ď pr`snp1´δq{2p1´rqq2n « r2n,
while for k R rnp1´ δq{2, np1` δq{2s the contribution of the
sum is3 is ď 2rnexpp´nδ2

q. It suffices to choose δ such that

e´δ
2

ď r (which is possible when r ą 1{e « 0.36) to prove
our claim.

The examples suggest that CondSample works best for
complex MLNs, where no setting of the relations T can
make Γ true (and, thus, maxY ! 1); still, it is insufficient for
speeding up all queries. Our third technique further improves
the convergence rate by adding importance sampling.

3.3 ImportanceSample
Importance sampling [10] chooses a proposal distribu-

tion for the random variable T, P1pTq, then computes the
expected value E1rg1s of a corrected function, g1pTD

q “

gpTD
q ¨PpTD

q{P1pTD
q’. This is an unbiased estimator: to

see this, we apply directly the definition of Ergs as a sum
over all possible worlds:

Ergs “
∑
TD

gpTD
qPpTD

q “
∑
TD

g1pTD
qP1pTD

q

Ideally we would like to set P1pTD
q „ gpTD

q ¨ PpTD
q, be-

cause in that case g1 is a constant function with output-tilt
1, but computing this P1 is infeasible, because the normal-
ization factor is precisely the quantity we want to compute,∑

TD gpTD
q ¨PpTD

q “ Ergs.

Instead, we define P1pTD
q as a function of the cardinal-

ities of the relations TD in TD. We first describe a naive
ImportanceSample, assuming T “ {T} consists of a single

relation. For every k “ 1, naritypT q (recall: n is the size
of the active domain), sample one relation TDk of size k,

and compute pk “ PpΓ|TDk q. Let q “
∑
k

(
naritypT q

k

)
pk be

the normalization factor, and define proposal distribution

P1pTDq
def
“ pk{q, where k “ |TD|. Intuitively, this decreases

the output-tilt of g1, because the spread of probabilities
PpΓ|TDq decreases if we fix the cardinality of TD. In fact,
we prove that in the special case of symmetric databases,
the output-tilt becomes 1. Symmetric structures have been
studied in the AI literature motivated by their applications
to MLNs [13, 12].

Proposition 3.10. If the probabilistic database is symmet-
ric, and Γ is safe modulo a set of unary relations, then the
output-tilt of g1 is 1.

3Let Zi be i.i.d. in {0, 1} s.t. PpZi “ 0q “ PpZi “
1q “ 1{2. Then the following stronger version of Cher-

noff’s bound holds: Pp
∑
Zi ě p1 ` δqn{2q ď e´nδ

2

. Thus,∑
k“np1`δq{2,n

(
n
k

)
1

2n ď e´nδ
2

.

The proof follows from the observation that, if T is a unary
relation, then in a symmetric database PpΓ|TDq depends
only on the cardinality of TD.

To reduce the output-tilt on asymmetric databases, we
optimize ImportanceSample as follows. First, we transform
all non-sampled relations R into symmetric relations, by
setting PpRpaqq to the average probability of all tuples in
R. Then we compute pk “ PpΓ||TD| “ kq: we compute
the latter probability exactly, even if the relations T are not
symmetric, by adapting techniques from lifted inference over
symmetric databases [12]. Notice that, when all relations are
symmetric, then the optimized ImportanceSample coincides
with the naive ImportanceSample.

Example 3.11. Continuing Example 3.8, ImportanceSample
computes pk “ PpΓ||TD| “ kq “ pr ` sn´kp1 ´ rqqn, for
each k “ 0, n. Define q “

∑
k

(
n
k

)
pk. The proposal distri-

bution is PpTDq “ p|TD |{q, and the corrected function is

g1pTDq “ pr ` sn´kp1 ´ rqqntkp1 ´ tqn´k{pk. It each itera-
tion step i “ 1, N , SlimShot samples a value k “ 0, n with
probability

(
n
k

)
pk{q, then uses reservoir sampling to sample a

set TDi of cardinality k, and computes XiYi “ PpQ^Γ|TDiq

and Yi “ PpΓ|TDiq using lifted inference, adding the quanti-
ties to Eq.(11). The value of Yi is constant (it is always q),
because the relations R,S, T are symmetric; if the query Q
contains any non-symmetric relations, then XiYi is a ran-
dom variable, and Eq.(11) converges to x after N Á 3{pxδ2

q

steps; if Q uses only symmetric relations, then XiYi is also
a constant, and Eq.(11) converges after 1 step.

We note that ImportanceSample is, again, only possible
in combination with SafeSample. If g were a 0/1-random
variable, then the corrected function g1 is also a 0/1-random
variable, and its output-tilt remains infinity.

3.4 Summary
To summarize, Algorithm 1 first convertsDB and the MLN

to a tuple-independent database (Subsection 2.2), chooses
the relations T s.t. Q^Γ and Γ are T-safe, precomputes safe
plans for PpQ^ Γ|TD

q and PpΓ|TD
q (Subsection 2.1), and

precomputes the proposal distribution pk (Subsection 3.3).
Next, it computes Q using Eq.(10), by repeatedly sampling
deterministic relations TD and adding PpQ ^ Γ|TD

q and
PpΓ|TD

q to the numerator and denominator (it uses the safe
plans and computes them in the SQL engine). It stops either
after a fixed number of iterations steps N , or after N “

3T̃ {pxδ2
q steps, where T̃ is the empirical output tilt (ratio

of largest to smallest value of PpΓ|TD
q). SlimShot currently

supports proposal distributions only for unary relations T:
otherwise, it samples T directly from the distribution P.

4. SYSTEM ARCHITECTURE
SlimShot is written in Python and relies on Postgres 9.3 as

its underlying query processing engine. Any other database
engine could be used, as long as it supports standard query
processing capabilities: inner and outer join, group by, ran-
dom number generation, and mathematical operators such as
sum and logarithm. The MLN is given in text file containing
first-order @˚ sentences with associated weights. SlimShot
converts these rules offline into hard constraints Γ and a set
of new probabilistic tables (Subsection 2.2, Eq.(4)). The new
relations are materialized in Postgres, with tuple weights
converted to probabilities (p “ w{p1 ` wq), stored in an
additional attribute.

558

Algorithm 1 SlimShot

Input: DB, MLN, Q
Output: PMLN pQq
1: Convert DB, MLN to DB1,Γ (Eq. 4)
2: Select T s.t. both Q^ Γ and Γ are T-safe
3: Compute safe plans for PpQ^ Γ|TD

q, PpΓ|TD
q

4: Compute pk (Subsection 3.3)
5: num “ denom “ 0
6: For i “ 1 to N do (see text for N)

7: Sample TD with P1pTD
q

def
“ pk, where k “ |TD

|

8: num` “ PpQ^ Γq ¨PpTD
q{P1pTD

q (use safe plan)
9: denom` “ PpΓq ¨PpTD

q{P1pTD
q (use safe plan)

10: Return x “ num{denom

SlimShot supports unions of conjunctive queries, but in
typical MLN applications the query Q consists of a single
relation name, e.g. Qpxq “ Smokespxq, and the inference
engine returns the per-tuple probabilities of all tuples in the
Smokes relation.

4.1 Choosing the relations T

The choice of relations T s.t. both Q^Γ and Γ are T-safe
is done by brute force enumeration: in all our experiments,
the cost of this step was negligible.

4.2 Review of Safe Plan Evaluation
The operators of a safe plan correspond to the eight rules

in Table 1. The first two, positive/negative atoms, are the
leafs of the plan, all others are the unary or binary operators.
The entire plan is the converted into a SQL query that
manipulates probabilities explicitly, and then evaluated in
postgres. For example, a join multiplies probabilities p1p2, a
union computes 1´ p1´ p1qp1´ p2q, while the independent
@ and D are group-by queries returning probabilities

∏
i pi

and 1 ´
∏
ip1 ´ piq respectively. For example, referring to

Figure 1, if we assumed that the relations R and B have the
same sets of tuples, then independent-union Rpxq _Bpxq is:

select R.x, 1-(1-R.p)*(1-B.p) as p

from R join B on R.x = B.x

where B is a sub-query. But since R,B may have different
sets of tuples, SlimShot uses an outer-join instead.

4.3 Enhanced Safe Plan Evaluation
We discuss here several enhancements/optimizations.
Product aggregate Unfortunately, most popular database

engines do not have a product-aggregate operator
∏
i pi. [19,

18]. We considered two options. First is to express it using
logarithm and sum, as exppsumiplog piqq. This requires a
slightly more complex logic to correctly account for tuples
with probability zero, or close to zero, or for missing tuples.
The second is to define a user-defined aggregate function,
UDA.

Independent Union If implemented as suggested above,
independent union requires a query with outer joins and
two case statement to account for missing/present tuples.
Instead, we simulate it using a group-by and aggregate, for
example the SQL expression above becomes:

select T.x, 1-prod(1-T.P)

from (R union B) as T group by T.x

Missing Tuples The MLN semantics is based on the
standard active domain semantics, where the answer to an
expression like Spx, yq _ Tdpyq in Figure 1 includes all tuples
pa, bq where a is any constant in the domain, and b P Td.
MLN implementations support this semantics naively, by
simply representing explicitly the entire active domain, such
that every relation of arity k contains all nk tuples. Missing
tuples have probability 0, and after a negation their prob-
ability becomes 1. Since our goal is to deploy SlimShot in
database applications, representing explicitly all tuples in
the active domain is prohibitive: instead we allow tuples
to be missing, and treat them specially depending on the
context. For example, in a join like Rpxq ^Bpxq, a missing
B-tuple is considered to have probability 0 and simply not
included: the SQL query is a standard join. However, in
the query Rpxq ^ Bpxq, a missing B-tuple must be treated
like a tuple with probability 1: the SQL query is now a left
outer-join, with a case statement to compute the output
probability as either p1p1´ p2q or p1, depending on whether
the value x is present in B or not.

Batch processing To reduce the number of calls to the
database system, we grouped multiple simulation steps into
one. More precisely, we generate b samples TDi , i “ 1, b and
compute all probabilities PpQ^ Γ|TDiq for i “ 1, b using a
single SQL query, and similarly for PpΓ|TDiq, i “ 1, b. For
that, we added a new column to all relations in T representing
the sample number, and modified the safe plan to return⋃b
i“1{i}ˆ ΓpTDiq.

4.4 Further Optimizations
We briefly mention here other optimizations in SlimShot.

Generic Constants: this refers to computing the probability
for all query answers using a single query plan. That is, we
have a single query plan to compute PpQpxq|Γq, returning
all pairs pa, pq, rather than the naive way of iterating over all
constants a in the domain and computing PpQra{xs|Γq. We
note that MC-SAT algorithm used by existing MLN systems
already obtains the probabilities of all outputs x at the same
time. QRel refers to an optimization that is possible when
the query relation Q is a member of the sampled relation
set T. In the case we can avoid computing PpQ ^ Γ|TDiq

(since it is either 0 or 1): instead we only need to compute
PpΓ|TDiq and check if TDi |ù Q.

5. EXPERIMENTS
We validated SlimShot through a series of experiments

comparing its performance to other MLN systems on several
datasets reported in the literature. We addressed the follow-
ing questions. How accurate are the probabilities computed
by SlimShot compared to existing systems? How does its
runtime performance compare to that of existing systems?
How does SlimShot handle more complex sets of MLN rules?
How effective are the optimizations in SlimShot? And how
does SlimShot compare to other, general-purpose weighted
model counters?

Datasets We used two datasets from the published litera-
ture, Table 2, and three queries, Table 3. Smokers MLN [38]
models a social network and the influence of friendship on
smoking habits and lung cancer, while the Drinkers MLN [13]
adds a new Drinks relation. SlimShot converts the MLNs
to tuple-independent probabilistic databases by introducing
a new relation name for each rule in Table 2 with two or

559

MLN Constraint w
 Smokespxq 1.4

Smokers Cancerpxq 2.3
 Friendspx, yq 4.6
Smokespxq ñ Cancerpxq 1.5
Smokespxq ^ Friendspx, yq ñ Smokespyq 1.1

Drinkers Drinkspxq ^ Friendspx, yq ñ Drinkspyq 1.1

Table 2: The Smokers MLN and the Drinkers MLN.

MLN Query
Smokers and Q1pxq :´ Smokespxq
Drinkers Q2pxq :´ Cancerpxq
Drinkers only Q3pxq :´ Drinkspxq

Table 3: Experiment Queries

more literals. The Smokers MLN is safe modulo Smokes,
while the Drinker MLN is safe modulo Smokes and Drinks.

We considered three variations on these datasets: sym-
metric, asymmetric unary, and asymmetric. In the first, all
probabilities are given by the weights in Table 2. In the
second, the binary relation Friends is symmetric while all
unary relations have distinct, randomly-generated probabili-
ties. Finally, in the asymmetric dataset the Friends relation
is a randomly-generated graph with fixed fan-out 3, and edge
probabilities randomly generated. The database applications
of interest to us are captured by the third scenario (fully
asymmetric), but we needed the first two in order to compute
the exact probabilities (ground truth) for most experiments.
No system to date can compute the exact probabilities for
the asymmetric data. We used datasets up to 1M tuples.

MLN Systems We ran SlimShot using either CondSample
only or using ImportanceSample, and report both results; we
use “SlimShot” to refer to ImportanceSample. We compared
to two popular MLN systems: Alchemy version 2.0 [2] and
Tuffy version 0.4 [28]. Both use MC-SAT for probabilistic
inference [31], but they differ in how they perform grounding
and their internal implementations of SampleSAT [40]. In
earlier work, the first author found several flaws in Tuffy’s
implementation of MC-SAT, the foremost being a failure to
perform simulated annealing steps to explore the solution
space before returning a sample within the SampleSAT code,
and developed a modified version of Tuffy, currently avail-
able at the Allen Institute for Artificial Intelligence (AI2): it
incorporates a new implementation of MC-SAT along with
a number of other performance improvements such as elimi-
naton of redundant clauses. We refer to the two versions as
Tuffy-Original and Tuffy-AI2.

All our experiments were conducted on a RHEL 7.1 system
with 2xIntel Xeon E5-2407v2 (2.4GHz) processors and 48GB
of RAM.

5.1 Accuracy
We compared the accuracy of SlimShot to the other MLN

systems on queries 1 and 2 over the Smokers MLN. We used
only symmetric and unary asymmetric data, because we
needed to compute the ground truth; we used a domain of
size n “ 100, resulting in 10200 random variables4. Figure 2

4SlimShot’s translation to a probabilistic database intro-
duced 10000` 100 additional tuples.

100 101 102 103 104

Number of Samples (log)

10-2

10-1

100

101

M
a
x
im

u
m

 R
e
la

ti
v
e
 E

rr
o
r

(l
o
g
)

Maximum Relative Error: Domain Size 100, 10200 Random Variables

Alchemy (0.09)
Tuffy - Original (2.29)
Tuffy - AI2 (0.18)
CondSample (0.08)
Cond bound for δ=0.10 (1.41E+04 samples)

ImportanceSample (0.03)
IS bound for δ=0.10 (2612 samples)

(a) Query 1, Asymmetric Unary

100 101 102 103 104

Number of Samples (log)

10-4

10-3

10-2

10-1

100

M
a
x
im

u
m

 R
e
la

ti
v
e
 E

rr
o
r

(l
o
g
)

Maximum Relative Error: Domain Size 100, 10200 Random Variables

Alchemy (0.01)
Tuffy - Original (0.04)
Tuffy - AI2 (0.03)
CondSample (0.00)
Cond bound for δ=0.10 (3265 samples)

ImportanceSample (0.00)
IS bound for δ=0.10 (284 samples)

(b) Query 2, Asymmetric Unary

Figure 2: Maximum Relative Error on the Smokers MLN

shows the maximum relative error5 for all answers returned
by the query, as a function of the number of iterations N
on unary asymmetric data (symmetric results are similar
and omitted due to space constraints). The probability of
the constraint, y “ PpΓq was around 10´10 while the query
probability x “ PpQpaq|Γq ranged between 0.04 and 0.9. In
all experiments SlimShot (ImportanceSample) outperformed
all others. For SlimShot we also measured the empirical tilt
and report the number of iterations where the theoretical
formula (11) predicts that the probability of exceeding the
relative error δ “ 0.1 is ă 0.1: this is the empirical stopping
condition used in SlimShot. In all cases, the stopping condi-
tion for ImportanceSample was around N “ 1000 iterations.
On symmetric data CondSample had a larger tilt, leading
to a much worse stopping condition; PpΓq is less evenly dis-
tributed over possible samples for the lower average tuple
probabilities in the symmetric data, and CondSample ends
up in regions of very small probability for most of its samples.

5We also measured the mean Kullback-Leibler (KL) diver-
gence. The overall conclusions remain the same, but we
found KL to be too forgiving by hiding grossly inaccurate
probabilities for some tuples.

560

Symmetric
Q1

Symmetric
Q2

Asymmetric
Unary Q1

Asymmetric
Unary Q2

0

200

400

600

800

1000

1200
S
e
co

n
d
s

Runtimes for 10,000 Samples

Alchemy

Tuffy - Original

Tuffy - AI2

CondSample

ImportanceSample

Figure 3: Absolute runtimes on 10K random variables.

Symmetric
Q1

Symmetric
Q2

Asymmetric
Unary Q1

Asymmetric
Unary Q2

100

101

102

103

104

S
e
co

n
d
s

(l
o
g
)

0.
44

0.
14

5.
74

0.
24

2.
29

0.
29

0.
48

0.
18

6.
29

1.
43

0.
13

Runtimes Until Max Rel Error < 0.1

Alchemy

Tuffy - Original

Tuffy - AI2

CondSample

ImportanceSample

Figure 4: Runtimes (log scale) as a function of accuracy with
10K random variables. Systems which fail to achieve a max
rel error of 0.1 are annotated with their final max rel error.

5.2 Performance and Scalability
Next, we conducted three rounds of experiments to com-

pare SlimShot’s runtime performance to the other systems.
Figure 3 shows the runtime for a fixed number of samples
(N “ 10, 000), on queries 1 and 2 over the symmetric and
unary asymmetric Smokers MLN (same as in the previous
section) with 10,000 random variables; here and in the next
experiment we stopped at 10, 000 random variables because
Alchemy and Tuffy did not scale well beyond that. The
fact that all binary relations are complete puts SlimShot at
a disadvantage: like any relational plan, the safe plans in
SlimShot benefit from sparse relations. In contrast, one sim-
ulation step in MC-SAT is rather cheap, favoring Alchemy
and Tuffy. Nevertheless, in our experiments the runtime per
iteration in SlimShot was within the same order of magnitude
as the most efficient system, sometimes better.

Second, Figure 4 compares the (much more meaningful)
runtime to achieve a fixed relative error. While for SlimShot
we can derive a stopping condition from Eq.(11), no stopping
condition exists for MC-SAT. Instead, we allowed all systems
to run until they achieve for all tuples a maximum relative
error ď 0.1 compared to the ground truth, and to maintain
this for at least ten iterations: as before, we had to restrict
to symmetric, and unary asymmetric, data. For both queries
and both datasets, we can conclude that SlimShot converges
faster than the other systems.

100K 200K 300K 400K 500K 600K 700K 800K 900K 1M
Number of Tuples

100
101
102
103
104
105

S
e
co

n
d
s

(l
o
g
)

Runtimes for Query 1

100K 200K 300K 400K 500K 600K 700K 800K 900K 1M
Number of Tuples

101

102

103

104

105

S
e
co

n
d
s

(l
o
g
)

Runtimes for Query 2

Alchemy

Tuffy - AI2

Alchemy

Tuffy - AI2

CondSample

ImportanceSample

Figure 5: Runtimes for 100 iterations as a function of size in
an asymmetric Smokers MLN.

Third, we studied performance of SlimShot on much larger
datasets, up to 1,000,000 random variables. Unlike previous
datasets, where the data was symmetric or unary asymmet-
ric only, here we used fully asymmetric data, which is the
typical scenario targeted by SlimShot. Since we do not have
the ground truth for such data, we reverted to reporting the
runtime for a fixed number of iterations. Figure 5 shows
that, even for the largest dataset with 1M random variables
over a domain of size 1000, SlimShot computed the output
probabilities of all 1000 answers in about 100 seconds. Here
ImportanceSample is more efficient than CondSample be-
cause it favors samples of small size, resulting in slightly
better runtime for the SQL queries. We note that SlimShot
was orders of magnitude faster than Alchemy and Tuffy (the
scale is logarithmic). The reason for this is that SlimShot
scales linearly with the number of probabilistic tuples present
in the database. In contrast, Alchemy and Tuffy must in-
clude a unique MLN rule for each tuple missing from the
Friends relation, expressing that it’s probability is zero: the
runtime per sample increases quadratically with the domain
size. While Tuffy-AI2 is optimized for deterministic variables,
there is still significant overhead compare to SlimShot.

5.3 Richer MLNs
Next, we evaluated SlimShot on a richer MLN: the Drinkers

MLN [13], on up to 100,000 random variables. SlimShot must
now simultaneously sample two unary relations, Smokes and
Drinks, which slows down the computation of the proposal
distribution. The results for a fixed number of iterations on
asymmetric data are shown in Figure 6. While we do not have
ground truth for asymmetric data, the experiments of the pre-
vious two sections strongly suggest that ImportanceSample
is the only system that returns accurate results, so the run-
time performance numbers should be interpreted in that
light. Here the runtime is dominated by the time to com-
pute the proposal distribution, which takes Opn3

q steps,
because it needs to compute a probability for each combina-
tion of three cardinalities, |Smokes X Drinks|, |Smokes ´
Drinks|, and|Drinks ´ Smokes|. While the proposal dis-
tribution is independent of the query and could be com-
puted and stored offline, but in all our experiments we re-
port it as part of the total runtime. As a consequence,
ImportanceSample was slower than CondSample. We note

561

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
Number of Tuples

100

101

102

103

104

S
e
co

n
d
s

(l
o
g
)

Runtimes for Query 1

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
Number of Tuples

101

102

103

104

S
e
co

n
d
s

(l
o
g
)

Runtimes for Query 2

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
Number of Tuples

100

101

102

103

104

S
e
co

n
d
s

(l
o
g
)

Runtimes for Query 3

Alchemy

Tuffy - AI2

Alchemy

Tuffy - AI2

CondSample

ImportanceSample

Figure 6: Runtimes for 100 iterations as function of size in
the Smokers-Drinkers MLN using asymmetric data.

0

20

40

60

80

100

120

140

160

180

S
e
co

n
d
s

DNF CNF
Log

CNF
Prod

CNF
Prod
QRel

CNF
Prod
QRel

Sparse

CNF
Prod
QRel

Sparse
Batch

Effect of Optimizations

Figure 7: The runtime for 1,000 iterations of SlimShot with
progressively more optimizations enabled.

that Tuffy-AI2 implements certain logical simplifications,
keeping the size of the Smokers-Drinkers network equivalent
to that of the Smokers network, improving its performance.

5.4 Impact of Optimizations
As we developed our system we progressively added opti-

mizations, sometimes replacing rather naive first implemen-
tations. We report their effect in Figure 7 on Query 1, over
a domain size 100 and asymmetric, but dense data. Generic
constants: We actually started by computing a non-Boolean
query Qpxq as in theory textbooks: for each constant a in
the domain, compute PpQra{xs|Γq: switching to a safe plan
that computes all output probabilities in one query improved
the runtime by more than two orders of magnitude. All
runtimes in the figure use generic constants. DNF: Our first
implementation used standard safe plans for UCQ [39], by
expressing PpΓq “ 1 ´ Pp Γq. Since Pp Γq is very close
to 1.0, it required Postgres’s numeric data type to achieve
sufficient precision. This first column shows this runtime.

Domain Size Runtime in Seconds
(Number of Variables)
3 (15) 1.3
5 (35) 1.8
8 (80) 11.0
10 (120) 205.5
15 (255) Did not finish

Table 4: Runtimes for SDDs on Q1 over the Smokers MLN
with symmetric data

CNF: Implementing specific operators for CNF reduced the
runtime to the second column. Here we used logarithm to
express the product aggregate in terms of sum. Product:
Replacing the log-sum-exp with a UDA for product reduced
the runtime by 35% (third column). QRel: if the query
happens to be the sampled relation, then we can avoid com-
puting the second query PpQ^ Γ|TDiq, but instead simply
check whether TDi |ù Q. This reduces the runtime by half.
Sparse: Next, we show the benefit of adding extra logic to the
SQL query to omit tuples with probability 0. Note that the
dataset used here is dense: the savings comes entirely from
the sampled Smokes relation. Significant additional savings
occur on sparse data. Batch: Finally, the incorporation of
batched sampling decreases runtimes by a factor of 2x-10x.

5.5 Other Weighted Model Counters
Since our approach reduces the query evaluation problem

on MLNs to weighted model counting, as a ratio of two
probabilities PpQ^ Γq{PpΓq, we also attempted to compare
SlimShot with state of the art general purpose Weighted
Model Counting (WMC) systems.

A state of the art system for exact weighted model count-
ing uses Sentential Decision Diagrams [11] (SDDs). They
arose from the field of knowledge compilation, and compile
a Boolean formula into circuit representations s.t. WMC
can be done in linear time in the size of the circuit. SDDs
have state-of-the-art performance for many tasks in exact
weighted model counting. We use SDD v1.1 [34] and report
runtime results in Table 4. While SDDs have been reported
in the literature to scale to much larger instances, they fared
worse on the formulas resulting from grounding MLNs.

A state of the art system for approximate weighted model
counting is WeightMC [7], which is part of a recent and very
promising line of work [15, 7]. We downloaded WeightMC
from [41], but unfortunately, we were only able to run it on
a domain size of 3 before experiencing time-out errors.

Technical difficulties aside, general-purpose WMC tools do
not appear well-suited for MLN inference: to approximate
the ratio PpQra{xs ^ Γq{PpΓq accurately requires extremely
accurate approximations of each quantity individually, and
one has to repeat this for every possible query answer a.

5.6 Discussion
SlimShot is the only MLN system that can provide guar-

anteed accuracy: we have validated its accuracy on several
symmetric and unary-symmetric datasets (several omitted
for lack of space). The theoretical stopping condition is some-
times overly conservative. SlimShot’s runtime performance
per sample is comparable to other systems, however SlimShot
converges much faster than the other systems. The main
limitation of SlimShot is its dependency on the structure
of logical formula of the MLN. The runtime suffers if two

562

relations need to be sampled instead of one (while still being
competitive). At an extreme, one can imagine an MLN where
all relations need to be sampled, in which case SlimShot’s
performance would degenerate.

6. CONCLUSION
We have described SlimShot, a system that computes

queries over large Markov Logic Networks. The main innova-
tion in SlimShot is to combine sampling with lifted inference.
This reduces the sample space, and thus reduces the variance,
and also enables two additional techniques: estimation of
a conditional probability and importance sampling. The
lifted inference is performed entirely in the database engine,
by evaluating safe plans. We have described several opti-
mizations that improve the performance of safe plans. Our
experiments have shown that SlimShot returns significantly
better results than other MLN engines, at comparable or
better speed.

One limitation of SlimShot is that it only works if the
query and constraint can be made safe by determinizing
a small number of relation names. In extreme cases that
use a single relational predicate name, like the transitivity
constraint Epx, yq^Epy, zq ñ Epx, zq, SlimShot degenerates
to a naive Monte Carlo evalution. Future work includes
studying how SlimShot can be extended to such cases, for
example by partitioning the database.

7. REFERENCES
[1] S. Abiteboul, O. Benjelloun, and T. Milo. The active XML

project. VLDB J., 2008.

[2] http://alchemy.cs.washington.edu/.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. G. Ives. Dbpedia: A nucleus for a web of open data.
In ISWC 2007 + ASWC 2007, pages 722–735, 2007.

[4] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and
D. Suciu. MYSTIQ: a system for finding more answers by
using probabilities. In SIGMOD, pages 891–893, 2005.

[5] R. Braz, E. Amir, and D. Roth. Lifted first-order
probabilistic inference. In IJCAI. Citeseer, 2005.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,
and T. M. Mitchell. Toward an architecture for never-ending
language learning. In AAAI, 2010.

[7] S. Chakraborty, D. Fremont, K. Meel, S. Seshia, and
M. Vardi. Distribution-aware sampling and weighted model
counting for SAT. In AAAI, pages 1722–1730, 2014.

[8] Y. Chen and D. Z. Wang. Knowledge expansion over
probabilistic knowledge bases. In SIGMOD, 2014.

[9] P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal
algorithm for monte carlo estimation (extended abstract). In
FOCS, 1995.

[10] A. Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

[11] A. Darwiche. SDD: A new canonical representation of
propositional knowledge bases. In IJCAI, 2011.

[12] G. V. den Broeck, W. Meert, and A. Darwiche.
Skolemization for weighted first-order model counting. In
KR, 2014.

[13] G. V. den Broeck, N. Taghipour, W. Meert, J. Davis, and
L. D. Raedt. Lifted probabilistic inference by first-order
knowledge compilation. In IJCAI, pages 2178–2185, 2011.

[14] P. M. Domingos and D. Lowd. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan & Claypool
Publishers, 2009.

[15] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming
the curse of dimensionality: Discrete integration by hashing
and optimization. In ICML, pages 334–342, 2013.

[16] A. Fader, S. Soderland, and O. Etzioni. Identifying relations
for open information extraction. In EMNLP, pages
1535–1545, 2011.

[17] https://www.freebase.com/.

[18] W. Gatterbauer and D. Suciu. Oblivious bounds on the
probability of boolean functions. ACM Trans. Database
Syst., 39(1):5, 2014.

[19] W. Gatterbauer and D. Suciu. Approximate lifted inference
with probabilistic databases. PVLDB, 8(5):629–640, 2015.

[20] E. Gribkoff, G. Van den Broeck, and D. Suciu.
Understanding the complexity of lifted inference and
asymmetric weighted model counting. In UAI, 2014.

[21] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
Yago2: A spatially and temporally enhanced knowledge base
from wikipedia. Artif. Intell., 194:28–61, 2013.

[22] R. Impagliazzo and V. Kabanets. Constructive proofs of
concentration bounds. ECCC, 17:72, 2010.

[23] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random
generation of combinatorial structures from a uniform
distribution. Theor. Comput. Sci., 43:169–188, 1986.

[24] A. K. Jha and D. Suciu. Probabilistic databases with
markoviews. PVLDB, 5(11):1160–1171, 2012.

[25] R. Karp and M. Luby. Monte-carlo algorithms for
enumeration and reliability problems. In FOCS, pages 56–64,
1983.

[26] D. Koller and N. Friedman. Probabilistic Graphical Models -
Principles and Techniques. MIT Press, 2009.

[27] Y. Li, F. Reiss, and L. Chiticariu. Systemt: A declarative
information extraction system. In ACL, pages 109–114, 2011.

[28] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling up
statistical inference in markov logic networks using an
RDBMS. PVLDB, 4(6):373–384, 2011.

[29] D. Olteanu, J. Huang, and C. Koch. SPROUT: lazy vs.
eager query plans for tuple-independent probabilistic
databases. In ICDE, pages 640–651, 2009.

[30] D. Poole. First-order probabilistic inference. In IJCAI,
volume 3, pages 985–991. Citeseer, 2003.

[31] H. Poon and P. Domingos. Sound and efficient inference
with probabilistic and deterministic dependencies. In AAAI,
pages 458–463, 2006.

[32] D. Roth. On the hardness of approximate reasoning. Artif.
Intell., 82(1-2):273–302, 1996.

[33] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators. J.
ACM, 27(4):633–655, 1980.

[34] http://reasoning.cs.ucla.edu/sdd/.
[35] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.

Declarative information extraction using datalog with
embedded extraction predicates. In VLDB, 2007.

[36] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Ré.
Incremental knowledge base construction using deepdive.
PVLDB, 8(11):1310–1321, 2015.

[37] A. Singhal. Introducing the knowledge graph: things, not
strings. Official Google Blog, May, 2012.

[38] P. Singla and P. Domingos. Lifted first-order belief
propagation. In AAAI, pages 1094–1099, 2008.

[39] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

[40] W. Wei, J. Erenrich, and B. Selman. Towards efficient
sampling: Exploiting random walk strategies. In IAAI, 2004.

[41] http://www.cs.rice.edu/CS/Verification/Projects/
WeightGen/.

[42] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a
probabilistic taxonomy for text understanding. In SIGMOD,
2012.

[43] C. Zhang, V. Govindaraju, J. Borchardt, T. Foltz, C. Ré,
and S. Peters. Geodeepdive: statistical inference using
familiar data-processing languages. In SIGMOD, 2013.

[44] C. Zhang and C. Ré. Towards high-throughput gibbs
sampling at scale: a study across storage managers. In
SIGMOD, pages 397–408, 2013.

563

http://alchemy.cs.washington.edu/
http://reasoning.cs.ucla.edu/sdd/
http://www.cs.rice.edu/CS/Verification/Projects/WeightGen/
http://www.cs.rice.edu/CS/Verification/Projects/WeightGen/

	Introduction
	Background
	Probabilistic Databases
	Markov Logic Networks
	Chernoff Bound and Monte Carlo Simulation

	SlimShot
	SafeSample
	CondSample
	ImportanceSample
	Summary

	System Architecture
	Choosing the relations T
	Review of Safe Plan Evaluation
	Enhanced Safe Plan Evaluation
	Further Optimizations

	Experiments
	Accuracy
	Performance and Scalability
	Richer MLNs
	Impact of Optimizations
	Other Weighted Model Counters
	Discussion

	Conclusion
	References

