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ABSTRACT

The Optimistic Concurrency Control (OCC) method has been com-

monly used for in-memory databases to ensure transaction serial-

izability — a transaction will be aborted if its read set has been
changed during execution. This simple criterion to abort transac-
tions causes a large proportion of false positives, leading to exces-
sive transaction aborts. Transactions aborted false-positively (i.e.
false aborts) waste system resources and can significantly degrad

system throughput (as much as 3.68x based on our experiments)"1

when data contention is intensive.

Modern in-memory databases run on systems with increasingly
parallel hardware and handle workloads with growing concurrency.
They must efficiently deal with data contention in the presence
of greater concurrency by minimizing false aborts. This paper
presents a new concurrency control method named Balanced Con
currency Control (BCC) which aborts transactions more carefully
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of the database systems for the in-memory data. Of the concur-
rency control methods that have a great impact on database per-
formance, Optimistic Concurrency Control (OCC) [17] has been
favored by recent in-memory databases for high performance and
scalability [18, 8, 30, 31, 33, 21].

With the OCC method, a database executes each transaction in
three phases: read, validation, and write. In the read phase, the

glatabase keeps track of what the transaction reads into a read set

nd buffers the transaction’s writes into a write set in the transac-
tion’s private storage. In the validation phase, the database validates
the transaction’s read set. If the transaction’s read set has been
changed, the transaction must be aborted. Otherwise, the trans-
action proceeds to the write phase, in which the database installs
the transaction’s writes to the database storage. The validation and
write phases must be executed in the critical section.

OCC isoptimisticin the read phase. It assumes that all the

than OCC does. BCC detects data dependency patterns which caffansactions can proceed concurrently. Transactions in the read
more reliably indicate unserializable transactions than the criterion phase cannot block the execution of other transactions. Being op-

used in OCC. The paper studies the design options and implementa-

tion techniques that can effectively detect data contention by iden-
tifying dependency patterns with low overhead. To test the perfor-
mance of BCC, we have implemented it in Silo and compared its
performance against that of the vanilla Silo system with OCC and
two-phase locking (2PL). Our extensive experiments with TPC-W-
like, TPC-C-like and YCSB workloads demonstrate that when data
contention is intensive, BCC can increase transaction throughput
by more than 3x versus OCC and more than 2x versus 2PL; mean-
while, BCC has comparable performance with OCC for workloads
with low data contention.

1. INTRODUCTION

The rapid increase of memory capacity has made it possible to
store the entire OLTP database in the memory of one single server.
With memory-resident data, database’s performance bottleneck ha
shifted from disk I/O to software related overhead such as locking
and buffer management [15, 9]. This has triggered the re-design
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timistic maximizes concurrency level, leading to high scalability
and throughput. However, OCC beconpessimistidn the val-
idation phase. It excessively aborts transactions to ensure serial-
izability. Some aborted transactions may not affect serializability
because change in a transaction’s read set is not a sufficient con-
dition that the transaction schedule cannot be serialized. Based on
the serializability theory, only transactions forming a cycle in their
dependency graph cannot be serialized and should be aborted [13].
The paper refers to the transactions aborted false-positivédyses
aborts to differentiate them from the transactions that actually vi-
olate the serializability requirement.

A false abort happens when a transaction is aborted by OCC (i.e.
read set changed) but it meets the serializability requirement (i.e.,
not in a cycle in dependency graph). The differences between these
two criteria can be illustrated with the following two transactions:
T1: r(A) w(B) and T,: r(A) w(A). Figure 1 shows a schedule ®f

gedez. According to OCC's validation criteriorf, can success-

fully commit since its read set is not changed, whilemust be
aborted since its read set has been changel biowever, based

on the serializability theory, since there is no cycle in the serializa-
tion graph (i.e. Ty v, T,), both Ty and T, should be committed.

If both of them were allowed to commit, the database state would
be the same as that aft€; and T, execute serially. Sinc&; is
aborted by OCC though it should be allowed to commit based on
the serializability requirement, the abort is a false abort.

When data contention is low, aborts, as well as false aborts, are
rare, being pessimistic in transaction validation will not cause seri-
ous performance issues. For example, in-memory OCC databases
can achieve throughput of over 500,000 transactions per secend un



Transaction history: and workload scalability. Meanwhile, BCC has comparable perfor-
mance with OCC for low contention workloads.

2. BALANCED CONCURRENCY CONTROL

BCC is an optimistic concurrency control method in nature. The

rlA]— w[B]——— a,

A ] — w,[A ]/ ¢,

rw key difference between BCC and other optimistic methods lies in
Serialization graph: Tl ———» T2 the validation phase — how to determine if a transaction sched-
ule is unserializable. In this section we first review the concepts
Figure 1: A schedule of the two transactiofisand T, (r:read, of transaction history and data dependency in databases. Then we
w:write, a:abort, c:commit) and the corresponding serialization Present BCC's transaction model and the essential dependency pat-
graph.T; will be unnecessarily aborted by an OCC database. terns that BCC utilizes in its validation to guarantee serializability.

After that we explain how BCC detects the essential patterns and

discuss BCC's overhead.

der low-contention workloads [30, 31]. However, when data con-
tention becomes intensive, an increasing number of transactionsz'l BaCkground
may be aborted false-positively. Data contention becomes intensive  Transaction history. A transaction history is an execution of
with the increase of CPU core counts. Data sets with skewed char-database transactions which specifies a partial order of transac-
acteristics, e.g., those in OLTP workloads [28], also intensify con- tional operations on database tuples. Similar to previous work [4,
tention. Based on our experiments, false aborts can reduce systen3], we useri[xj] to represent that transactidpreads the versiof
throughput by 3.68x under a TPC-W-like workload. It is important of tuple x, wi[x;] to represent thaf; writes the versionj of tuple
for databases to provide good performance in both low contention X, Ci to represent thalj is committed ane to represent thar; is
and high contention scenarios. aborted. Given a tuples two versionsy; is generated beforg if

To completely remove false aborts, database systems must abort < j.
transactions based on cycle detection in serialization graphs. The Data dependency. Data dependencies happen between transac-
idea of detecting partial cycle dependency to guarantee serializ-tions when they operate on the same tuple and at least one of the
ability was first proposed by Cabhill et al. [5] for disk-based snap- operations is write. The types of dependencies are determined by
shot isolation databases. However, the techniques are not directlythe operation type (read or write) and the order in which the trans-
applicable to in-memory databases where transactions are usuallyactions commit.
very short due to their prohibitive cost. Detecting cycles requires  There are three types of data dependencies.
the database to operate on shared data structures such as wait-for e Write-Read ¥r) dependency: if transactio) reads a tuple

graphs, which will significantly impact the system’s scalability, es- that has been committed earlier by another transadtioh
pecially for low contention workloads [6]. is wr dependent off;, denoted ag; T;.

The dilemma lies between improving the validation with an ac- o Write-Write (ww) dependency: if transactiofy commits a
curate criterion to abort transactions and maintaining a low over- tuple that has been committed earlier by another transaction
head for transaction execution. In this paper, we resolve the dilemma T, Tj is ww dependent off, denoted ag; ww, T
by proposing thdalanced Concurrency Control (BCC) method « Read-Write fw) dependency: if transactioh; commits a
that seeks a sweet spot between being careful and fast. This bal- tuple that has been read earlier by another transagio)
ances the accuracy and the overhead of transaction validation well. is rw dependent ofi; (or T; is anti-dependent of), denoted

Specifically, in addition to detecting the anti-dependency as OCC W , ] .
does, BCC detects one additional data dependency in a confined WeallJSsET-_—»)TTJ-. tHoegligé)theatshZ:;-eziy :;%r;eg;y Tg%ﬁowr::&m
search space, which, together with the anti-dependency, forms Ny o above (Ije er]1denc fynas j aep ! gh any
essential dependency patteffhis pattern more reliably indicates P Y ypes.

the existence of a cycle in the transaction dependency graph (i.e.2. 2 Essential Dependency Patterns
unserializable transaction schedule) than OCC's criterion. We will BCC assumes the following transaction model

show that by examining one additional dependency BCC can ef- e Each transaction is executed in read, validation and write
fectively reduce false aborts. At the same time, since BCC limits phases '
the search space for the additional dependency, the overhead for « Each transaction can only read committed tuples.

dependency detectl.on can be effectlvely controlled through careful e The validation and write phases must be executed in the crit-
system design and implementation. ical section

The paper makes the following contributions. First, it proposes Note that BCC and OCC [17] have the same transaction model.

e e oo b, Soon'fhe  Inthevalcaon e, BCC exlossnialdependeny pa-
Y ' ' terns (or essential patterns for brevity) among transactions to de-

paper proposes an optimized BCC method leveraging the State'Of'termine unserializable transaction schedules. Each essential pattern

tk;:;}?gﬂ'&?;ﬁl%rgn?aszgﬁzfr;ﬁtnﬁg; ngii’r;r;eOS:%zaﬁugfjrng “specifies that certain data dependencies exist between transactions.

p q' . gru N " We will demonstrate that the existence of an essential pattern is a

to demonstrate BCC'’s effectiveness, we implement it in Silo [30], o . : e -
necessarygondition that a transaction schedule is unserializable in

whichis a_representatlve OCC-based in-memory Qatabase. Our Im'databases that satisfy BCC's transaction model. In this case, BCC
plementation makes a case of how to adopt BCC in an OCC-based AN - )
ensures serializability by avoiding the essential patterns.

concyrrency control kernel. Finally, we comprehensively evaluate The essential dependency patterns that BCC detects and prevents
BCC's performance on a 32-core machine. Our results demonstrateare described as follows
that BCC has a decisive performance advantage over OCC when ’

contention becomes intensive. This advantage is due to a reduc-Theorem 1 In databases that satisfy BCC's transaction model, when
tion in transaction aborts, and an increase in transaction throughputan unserializable transaction schedule is created, the schedule must
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Figure 2: Different types of essential patterns when an unserializailsaction schedule is created. The essential patterns from (a) to (c)
are created when transactibpcommits. The essential pattern in (d) is created when transagtioommits.

contain the following transactions; T T, and & such that(1) Tz is The first category contains three essential patterns that would be
the earliest committed transaction in the schedy®; T, ™% Ts; created at the time a transactidn commits, which are shown in
and(3) T — T, and T, commits after T starts. The data depen- Figures 2(a) to 2(c). To detect these patterns, the database needs
dency patterns formed by T1, T, and Tz are called the essential to validate if any transaction could g in the essential pattern by
patterns. checking: (1) if the transactiof is anti-dependent on a committed

. rw . . . . _
ProOF When an unserializable transaction schedule is created, transactionl, or T, — Tg; and (2) if the transactiol, is ww-, wr

ww
a cycle must exist in the transaction dependency graphT4.be or rw-dependent on any concurrent transacfignor Ty — T,
the first transaction committed in the schedule. To form the cy- T1 —— T20rTi — To. ) ) )
cle, T3 must be dependent on another transaction (i.e. it should The second category only manifests with snapshot transactions
be pointed by an arrow in the dependency cycle). Since a transac-that alv_vays operate on a consistent snapshot qf the database. The
tion can only read committed tuples, this dependency cannot be a€Ssential pattern that would be created at the time snapshot trans-
ww dependency or ar dependency (otherwise there would exist action Ti commits is shown in Figure 2(d). In this case, when
another transaction in the schedule that committed earlierfgan  11'S Snapshot time is befor&'s commit time andTy’s read op-

committed, which contradicts with the fact thgtis the first com- eration happens aftéf, commits, the dependendy 5 T can
mitted transaction in the schedule). Thus, this dependency must beonly be detected whefl; commits. To detect this pattern, the
arw dependency. Let the transactidy rw dependent on b& database needs to validate if any transaction could;bm the

(i.e. T, ™. T3). T3 must commit aftefl, starts. To form the cycle, ~ €ssential pattern by checking if the transactignis a snapshot
T, must also be dependent on a transaction in the cycle. Let the transaction and; is anti-dependent on a committed transacfipn

transaction bd; (i.e. Ty — T»). T1 must commit afteiT, starts, (Ty w, T,), which is in turn anti-dependent on another committed
becaus€els commits afterT, starts andl; commits later tharls transactionls (T w, T3). This requires the database to retain all
commits. [ anti-dependency information.

Algorithm 1 summarizes how BCC validates a transacfioio
Theorem 2 Transactions aborted by OCC may not be aborted by detect and prevent the essential patterns.
BCC, while transactions aborted by BCC will always be aborted
by OCC.

Algorithm 1 BCC's validation and write phases for a committing
PROOF The dependency, % T3 in the essential patterns is  transactiorT
the anti-dependency detected by OCC, and the essential patternsl: if T is anti-dependent on any committed transactizen
examine additional dependencies to decide whether a transaction 2:  recordT’s anti-dependency information;

should be aborted. ] 3: if T iswr-, ww-, or rw-dependent on any concurrent trans-
actionthen
BCC utilizes the essential patterns to ensure serializability for 4: abortT;

three reasons. First, based on Theorem 1, validation based on de-5:  end if
tecting essential patterns only commits serializable transactions. 6: if T is a snapshot transactiaand there exists a transac-

Second, based on Theorem 2, validation based on detecting essen- tion T’ such thafT is anti-dependent o’ and T’ is anti-
tial patterns reduces aborts compared to OCC. Third, the overhead dependent on a committed transactiban

of detecting the essential patterns can be effectively controlled by 7: abortT;

limiting the search space: BCC excludes all transaction T1 that 8: endif

commit before T2 starts. 9: end if

23 Detection of Essential Patterns 10: installT’s writes and commiT;
A BCC database aborts a transaction if committing the trans-
action would create an essential pattern. To detect the essential BCC examines two data dependencies to detect the essential pat-
patterns, the database needs to decide: (1) what data dependencidgerns. Theoretically, examining more dependencies can further re-
should be examined in each transaction’s validation phase; and (2)duce false aborts. However, the overheads will increase signifi-
what data dependency information should be kept for validating cantly. If detecting more dependencies, the dependencies can hap-
other transactions. pen not only between concurrent transactions, but also between
Figure 2 shows all possible essential patterns when an unserial-an active transaction and previously committed transactions that
izable transaction schedule is created. The essential patterns can b&ere concurrent with other active transactions. This makes the cost
divided into two categories based on when they would be created. of checking dependency increase exponentially. Even disk-based
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databases (e.g. PostgreSQL) avoid considering more than two de-contradicts with the fact thdg is the first committed transaction in
pendencies [26] because of the high overhead [24]. the dependency cycle.
In this case, the database only needs to validate if a transaction
can become the essential patterfpsto guarantee serializability.
The overhead of maintaining history anti-dependency information
3. ANOPTIMIZED BCC METHOD is avoided. Moreover, there is no need to maintain the read set of
In-memory databases can execute transactions as snapshot trangead-only snapshot transaction and validate it.
actions. In some state of the art in-memory databases, such as [30, This optimization technique targets long-running read-only trans-
31], read-only transactions are executed as snapshot transactionactions where a short execution delay is acceptable. Users can al-
while write transactions are not. There are two reasons for this ways choose to revert to the original BCC protocol (and accept the
design. First, read-only transactions may be continuously aborted additional overhead) if slight latency degradation is unacceptable.
when running with other write transactions. Running them as snap-

shot transactions guarantees that they will never be aborted, al-4, DETAILED BCC IMPLEMENTATION
though they may read stale data. Second, write transactions dom- . .
To support BCC in the database, two components must be im-

inate the transactions executed by the database. Running them as ) .
. h . . . plemented. One is a global clock to help detect data dependencies
snhapshot transactions could introduce expensive operations like ac+

o ; ; between concurrent transactions, the other is efficient management
quiring latches and locks for read operations in some concurrency .
) . \ of the tuples accessed by each transaction. These two components
control kernels, which will degrade the database’s performance and

scalability when the database has strived to avoid all centralized are |ntroduce(:]|n Secgon 4.1 dand Seetmg 4.2, reszectlvgly. Sectldqn
hotspots and scalability bottlenecks. 4.3 presents how to detect data dependency and Section 4.4 dis-

The BCC method requires the database to maintain a history of cusses phantom problems. In the last part of the section we explain

) ) . . how a BCC database executes transactions.
anti-dependency information to detect the essential pattern shown
in Figure 2(d). If this is naively implemented, it can add acen- 4.1 Global Clock
tralized hotspot to the in-memory database kernel and hurt BCC's S
scalability. The overhead is caused by the fact that when a transac- BCC needs a global clock to help decide if a data dependency

. . . w should be considered as part of the essential pattern.
tion T, is & snapshot transaction, the dependdficy~ T, may not Our design of the global clock relies on the following in-memory

exi;t W.h?nTZ .Commits‘ In this case, to avoi_d BCC's overhead of database’s features. First, to achieve good scalability, in-memory
maintaining historical dependency information, the database must y,51ases generate Transaction IDs (TIDs) in a decentralized way.
guarantee t_hat read-only snapshot transactions may never appear g, example, in Silo [30], which is a representative in-memory
any e_ss_entl_al pattern. . I database, each TID can be divided into three partsthig&gad in-
Existing in-memory OCC databases avoid v_alldatlng the SNap- gex which denotes the database thread that generated the TID; (2)
shot transaction by taking an early shapshot time. However, this i '\ o11e of the database threadisal counter and (3) the value of
does notworkin BCC. The reason is that the dependency cycle thatypa| enochwhich is a slowly advanced global timestamp in the
is shown in Figure .Z(d) can be created, with transac‘llc_inemg the atabase. A database thread can generate a TID by reading its local
snapshot trarjsa(;tlon, no matter when the. snapshot is taken. Base ounter and the global epoch without synchronizations. One im-
on BCC's valldatlpn criteria, both transactloT;_sandTg would be ortant property of the TIDs is that TIDs generated by the same
allowed to commit because no essential patterns are detected. Ty iabase thread increase monotonically. However, this property

guarantee serializability, the database has to validate the SnapShO&oesn’t hold for TIDs generated by different database threads. Se

transactionly, detect the essenti_al patt_ern, anc_i afigrt L ond, each tuple in the database has an associated metadata record-
We solve the problem by adding a light-weight synchronization . the TID of the latest transaction that has written the tuple.

point for snapshot transactions. The idea is that when a new read- The global clock is designed as a global TID vector. The num-
only snapshot transaction begins, the database doesn'timmediately).. o+ entries in the vector is the same as the number of available

start executing the snapshot transaction. Instead, it waits until all threads in the database. Each thread has a corresponding entry in
the active transactions are finished. During this period, no new o global clock, which records the thread’s most recently assigned

trapsactions will be executed. After all active transactions havg TID. A database thread must update its entry in the global clock
finished, the database takes a snapshot for the snapshot transactlog\/ery time it assigns a new TID.

and resumes executing transactions as normal.

. - The database can determine the order of a global clock value and
With the above snapshot mechanism, a read-only snapshot transy, 1 i, ywo steps. The database first finds the database thread that
action cannot bec."”.‘e part of the essential patterns. This can begenerated the TID. Then it compares the value in the thread’s global
proved by contradiction. Assume that a read-only snapshot trans- ¢, entry with the TID. The one with a smaller value happened
action could be part of the essential patterns. Since the snapsho}irst. The comparison process is shown in Figure 3.

transaction doesn't write any tuple, it cannotTagin the essential

patterns. Let the snapshot transactionTbe Then the essential {
pattern would bel; ™% T, ™ T. In this caseT; must commit s [Toe | vox | e | s |

beforeT, takes the snapshot, afiglmust commit afteil, takes the
snapshot. This meais commits earlier thaiiiz, which contradicts

with the fact thaffs is the first transaction committed in the depen- C
Step2:
Compare TIDs

Step1l: Find the database
thread that wrote the tuple

dency cycle. Let the snapshot transactionThe Then essential

pattern would bel; ~% T, ™ T5. The snapshot transaction can
only bewr dependent on another transaction to form a cycle. Let _| Sobar
the transaction thal; is wr dependent on b&. Top must commit Epoch
beforeT; starts. With our snapshot mechanisfa,and T3 cannot Atuple's TID

start earlier tharfy. ThusTg must commit earlier thaiiz, which

Local Thread
Counter Index

Figure 3: Comparison between the global clock and a tuple’s TID.
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The global clock is used in data dependency detections, which Algorithm 2 Hash table synchronization

will be described in Section 4.3. 1: read a tuple from database;
) 2: insert the tuple into the hash table ;
4.2 Transaction Data M anagement 3: whiletruedo

BCC requires the database to keep track of each transaction’s 4. read the same tuple from database;
read set and write set to detect data dependencies. In the validation5:  if tuple has changed after inserting into the hash teise

phase, the database checks if the transaction’s read set has beerf: discard the old tuple from hash table;
changed and if the transaction’s write set overlaps with other con- 7 insert the new tuple into the hash table;
current transactions’ read sets. In this case, the transaction’s write 8. dse

set can be simply kept in the database thread’s local storage and will 9 break;

be released when the transaction finishes. On the other hand, thel0:  end if
transaction’s read set must be stored in the shared memory. Nextl1: end while
we discuss how to efficiently manage the read sets.

~ Organization. We use hash table to organize the read set, since Garbagecollection. In the BCC database, a transactios hash

it may be searched by multiple database threads. A common ap-ap|e is kept in the database urilils concurrent transactions have
proach is to use a shared hash table to store the tuples read byinished. Itis possible that some tuples that storeéBrhash table

each transaction, but it requires synchronizations when accessing,aye peen garbage collected by the database when a database thread
the hash table. For example, if two transactions read the samegeacheds hash table. This does not cause any problem because
tuple, they will modify the same entry in the hash table, which 6 hagh table contains sufficient information (tuple’s address and
must be synchronized. To ease the synchronization overhead, IN-yple’s TID) to detect the data dependency. The search thread only

stead of maintaining one shared hash table across the databasee(s to check if the tuple is in the hash table. There is no need to
each database thread maintains a separate hash table for each trangz .ass the content of the tuple.

action. Each entry in the hash table contains a pointer to a tu-
ple and the tuple’s TID. A transaction’s hash table must be kept 4.3 Data Dependency Detection

!nhth(;e ﬂemﬁrg tl)JInm tlr;e tr?r:jszta)ctltc;]n’s ConClérrtt?n; peetrﬁ ha(\j/e fin- " Detect anti-dependency. The anti-dependency is detected with
IShed. Hash tables allocated Dy the same database thréad are oty o og criterion by checking whether T's read set has been changed.

ganized into a history list. Each entry_i_n the I.i5t is a trip{_e Detect wr and wwdependencies. The database thread first takes
TID, AddressRelease>, whereTID specifies which transaction a shapshot of the global clock wh@rstarts and stores the value as

the hash table belongs tApdressecords the hash table’s starting Startin T's local memory. To deteatr, Every timeT reads a tuple
memory address; arReleasaletermines when the hash table can 1 the thread compares the tuple’s T’ID wihart to decide if TID

be released. : )
) is generated afteBtart If TID is generated later thaBtart, wr has
Allocation and release. A database thread allocates a hash table happened. Thew dependency is detected afferenters the vali-

when it starts a transactidn It also allocates an entry in the history dation phase in a similar way. If any tuple in the transaction’s write

list to store the ha§h tableg memory address'E}'Bdl'ID. . set has a TID that is generated later tisiart, ww has happened.
I-I;)hel hlasIQ t?ble fe_ler?ses ser:_wnh the maX|mum_TIDh|n Lhe Detect rw dependency. The database thread first takes a snap-
global clock afterT finis es’. In this way, any transactlon.t.at a2 gshot of the global clock wheT starts and stores the value$tart
Iarge_r TIDtharReIeasen_fTs hash table must start aftérfinishes in T's local memory. The thread takes another snapshot of the
andis nlot con(’:urk:en;]wmtl)il. he datab hread global clock aftefT enters the validation phase and stores the value
: of the concurrent transactions thiatnay berw dependent on.

termined by checking if the minimum TID in the global clock is With Start and End, the database thread simply goes through

Iallrgekr_thlan the hﬁfﬁ tablte_FGeIteaself TlnlmuThTI(IjD Itn tt)he globalt ¢ to'[her thread’s history lists and checKTifs write set overlaps with
clock IS 1arger, all the active fransactions In the gatabase must star any hash table whose TID is generated later tBtart but earlier
afterT finishes. The hash table can be safely released.

The rel hanism | tve. At Tismash thanEnd. If there is overlaptw has happened.
€ release mecnanism 1S conservya V. A transadtismas Since taking the snapshot of the global clock doesn’t need syn-
table is not immediately released affes concurrent transactions

> ) chronizations, it is possible that while the thread is taking the sec-
h"?“’e finished. B.Ut '.t guarantees safe release of each hash tabl%nd snapshot, new transactions have started. These transactions
without synghrqmzaﬂops. - may not be considered as concurrent with T. This will not cause
Synchronizations. Slnce_a hash table can c_)nly be modified by any problem. The reason is that these new transactions cannot read
one database thread and is not released until all concurrent trans-the tuples ifT’s write set sinceT is in the critical section. Thus
actions have finished, the only scenario that needs synchronization '

is while a thread is inserting into the hash table, another one is cannot bew dependent on them.
searching the hash table fow dependency (i.€Ty w, T,). With- 4.4 Phantom

out synchronization, an actually happemaddependency may not

be detected by the searching thread, which can cause serializabilityra
problem. Protecting the hash table with latch can solve the prob-
lem, but it harms scalability thus we avoid it.

Phantom problem can happen when a transaction is executing a
nge query while a concurrent transaction inserts a new tuple into
the range. In the essential patterns, phantom can happen in two

We solve th blem b ifing th e after i N cases: (1) is the read transaction affd is the insert transaction
e solve the problem by verifying the tuple after inserting it into and (2)Ty is the read transaction arid is the insert transaction.

the hash table. If any change has happened, dependency may o BCC database avoids phantom in the same way as recent in-

not be detected. Thus the database thread must discard the old tUpl?nemory OCC database (e.g, [30, 31]) does, which will abort the
and re-read the tuple. This guarantees that eithewtftependency e '

can be detected later, or the thread will read the newest tuple. ThelThe delete operation only marks a tuple as deleted without remov-
synchronization process is shown in Algorithm 2. ing the tuple for snapshot transactions.
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read transaction if phantom happens. In the first case, phantomb. EXPERIMENTAL METHOD

will be detected in the validation i and;l'g will be aborted. In To evaluate BCC’s effectiveness, we have implemented BCC and
the second case, there is no need to ddieét> T, in the validation two phase locking (2PL) in Silo [30], which is a multi-threaded,

of T, sinceT; will be aborted when validating;. shared in-memory OCC database. Silo generates TIDs in a decen-
tralized way. It maintains a thread-local read-set and write-set for
45 Put Together; A Transaction’sLife each transaction. Tuples in the transaction’s write set are locked in a

deterministic order before validation starts. After that, Silo assigns
a TID to the transaction if the transaction writes to the database and

Algorithm 3 How a BCC database works in different phases validates the transaction using OCC's criterion.

1: Transaction Start: . .

2: assign a TID and update the global clock; 5.1 SiloWithBCC

3: take a snapshot of the global clock; Multi-Level Circular Buffers. Each thread in BCC database

4: allocate a new hash table and release history hash tables; requires a memory space to store history hash tables, which may

5: be allocated, released, and checked frequently. It is necessary to

6: Transaction Validation: manage this memory space efficiently.

7: enter the critical section; One way to manage the space is to organize it as a single re-

8: take a snapshot of the global clock; gion and use a free list to record the memory blocks available for

9: left_conflict = rightconflict = 0; new allocations. However, this approach would incur serious cache
10: if there exists anti-dependenidyen misses when each newly allocated hash table is filled with read
11:  rightconflict = 1; sets. This problem can be addressed by utilizing two special char-
12:  find concurrent transactions; acteristics of BCC thread’'s memory operations: (1) the hash tables
13: if T iswr, wworrw dependent on its concurrent transactions are always released in the same order as they are allocated; (2) the

then memory demand of each thread for storing history hash tables is

14: left conflict=1; usually low, and only occasionally jitters to its maximum require-
15:  endif ment (Section 6.3).
16: end if In our implementation, each thread partitions its memory space
17: if right.conflict == 1 and leftconflict == 1then into three smaller areas that are managed with three levels of cir-
18: set theReleasdield of the transaction’s hash table; cular buffers. The lowest-level circular buffer is the smallest and
19:  abort the transaction; can fit into the L1 CPU cache; the next one is slightly larger but
20: else is smaller than the L2 cache; the highest-level buffer is the largest
21: install the writes and commit the transaction; one and can be any size that satisfies the maximum memory re-
22: end if quirement of a thread. The database thread always tries to allocate
23: leave the critical section; memory from a lower-level circular buffer, and only resorts to a

higher one when the lower buffer space becomes depleted. In each
circular buffer, the memory is always allocated and released in a
With the above designs, we now illustrate how a BCC database chase-tailfashion. Since most OLTP transactions are short and the
works in different transaction execution phases. The process isaverage memory requirement of each database thread is low, this
shown in Algorithm 3. design ensures that most hash table operations can be satisfied in
When a transactiofl starts, the database first assighs new the L1 or L2 (or even L3) CPU cache.
TID and updates the corresponding entry in the global clock. Then ~ Global clock. We implement the global clock as a set of sub-
the database takes a snapshot shot of the global clock, which serveyectors. The number of sub-vectors equals to the number of CPU
as multiple purposes. First, it is used to help determine the con- sockets and each sub-vector is a continuous array aligned on a sin-
current transactions for the later validation. Second, it is used to gle cache line on each socket.
set theReleasdield of previous transaction’s hash table with the ~ TID generation. We use Silo’s distributed TID generator to gen-
maximum TID value in the global clock. Third, it is used to re- erate TIDs for every transaction. The original Silo only assigns
lease unused history hash tables by finding the minimum TID in TIDs to transactions that write to the database. We modify the TID

the global clock and releasing all hash tables whRsteaseare generator such that every transaction will be assigned a TID. Every
smaller than the minimum TID. The database also allocates a newtime a database thread generates a TID, it will update its entry in
hash table for the transaction. the global clock. For each database thread, we use the last TID gen-

When the transaction enters the validation phase, the databaserated by the thread to identify the current transaction’s hash table
first takes a snapshot of the global clock, which can be used to- since Silo generates TIDs in the validation phase.
gether with the clock taken in line 3 to determine concurrent trans- ~ Snapshot transactions. We add a synchronization point in the
actions. Then the database check3 ifs anti-dependent on any  database before a snapshot transaction begins. After the synchro-
committed transaction. If no anti-dependency exist, T will be com- nization, the database first advances the global epoch and then starts
mitted since no essential pattern will be created. Otherwise the €xecuting transactions. The snapshot is created based on the cur-
database checks T is dependent on any of its concurrent trans- rent Epoch value. Only tuples written in the previous Epoch can be
actions. This requires the database to find all the transactions thatread by the snapshot transactions.
are concurrent witil and check data dependencies between them. . .
The data dependency is checked in thepordewroﬁlvw andrw. If 5.2 SiloWith 2PL
any data dependency is detected, the transaction will be aborted. Our 2PL implementation is motivated by [25]. We avoid the
The database will also set tiReleasef the aborted transaction’s  centralized lock manager which generates suboptimal performance.
hash table such that the hash table can be immediately releasedinstead, we implement the per-tuple lock, and associate each tuple
Otherwise the transaction will be committed. with a shared read lock and an exclusive write lock. No lock lists
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are used. To avoid the deadlock detection overhead, we adopt the 1.4
wait-die 2PL mechanism [27]. A global timestamp allocator, which

is implemented as an atomic variable, assigns timestamp to each
transaction to differentiate the precedence of transactions.

5.3 Experimental Setup

All experiments are conducted on a 32-core machine with four
2.13GHz Intel Xeon E7-8830 CPUs and 128GB memory. Hyper-
threading is disabled to yield the best base performance of Silo [30].
The operating system is 64-bit Linux with 2.6.32 kernel. The ver- ‘ ‘ ‘ ‘ ‘ ‘ ‘
sion of GCC compiler is 4.8.2. 0 4 8 12 16 20 24 28 32

To avoid stalls due to user interaction, no network clients are Number of workers

involved in our experiments. Each database thread runs on a ded-_. ) . .
icated CPU core and has a local workload generator to generate':'gure 4: TPC-C transaction throughputs achieved by BCC, OCC

input transactions for itself. Database logging is also disabled. All and 2PL W't.h up to 32 threads (cores). The scale factor is set to be
table data are resident in main memory and no disk activities are the same with the number of threads.

involved during each measurement. For each measurement, we run

the experiment for 10 times, each lasting for 30 seconds, and theTable 1: Breakdown of BCC overhead for TPC-C workload at low

12 T2

Throughput (million txn/sec)

median results are reported. contention with 32 threads.
| Operations| Contributions to slowdown (%)
6. EXPERIMENT RESULTS Mm 4.76
Clock 2.42

In this section we present the performance results of BCC, OCC,
and 2PL based on the prototype implementation in Silo. The ex-
periment results confirm our expectations for BCC performance as
follows: threads and show how different kinds of operations in BCC con-

e BCC achieves comparable performance and scalability with tribute to the throughput degradation. The result is listed in Ta-
OCC when the workload contention is I¢&ection 6.1). ble 1. It can be seen that the overhead mainly comes from two
e BCC significantly improves transaction throughput for high-  sources: memory management (Mm), which lowers the throughput
contention workloads: BCC improves the throughput by 3.68x by a delta of 4.76%, and accessing global clocks (Clock), which

Others 0.11

over OCC and by 2x over 2R[Section 6.2). contributes 2.42% to the performance degradation. When the data
e BCC's overhead on memory consumption and increased transeontention is low, memory management operations mainly include
action latency is acceptabl&ection 6.3). bookkeeping the history list, and allocating and releasing memory

The performance results demonstrate BCC’s usefulness in prac-for history hash tables. In our implementation each database thread
tice, which can provide good performance in both low contention uses a small memory region residing on local NUMA node to store

and high contention scenarios. the history list and hash tables. In this case no inter-core communi-
. cation is needed for memory management operations. Since most
6.1 Low Contention OLTP transactions are short, the overhead due to memory manage-

We first evaluate how BCC performs when data contention is ment should remain almost constant regardless of the number of
low. TPC-C [1] and YCSB [7] benchmarks are used in the experi- cores on the target platform.
ments. Due to limited space, we only present TPC-C's results here. On the other hand, the overhead of accessing the global clock
YCSB's results are similar. is affected by the number of sockets on the machine. This is be-

TPC-C. TPC-C is an industry-standard benchmark for evaluat- cause the global clock in BCC is implemented as a distributed vec-
ing transaction database performance. It models the operations intor spread among the sockets. Each database thread needs to read
a wholesale store that consists of a number of warehouses. In thedll the distributed vectors at the beginning of a transaction, incur-
Silo implementation, TPC-C tables are partitioned across the ware-ing inter-socket communication. This overhead is mainly deter-
houses. We set the number of warehouses (i.e., the scale factor) tdnined by the number of sockets in the machine. However, since
be the same with the number of database threads. In this configu-the number of sockets in a system is typically small, we believe
ration, each thread will mostly operate on the data items in its own this overhead (only 2.42% with 4 sockets) is acceptable in practice.
warehouse, which makes the chance of data contention rare. Compared to 2PL, BCC achieves better performance and scala-

Figure 4 shows the transaction throughputs achieved by BCC, bility. With 32 threads, 2PL only delivers a throughput of 0.92M
OCC and 2PL as the number of threads increases. As can be seeffansactions per second, which is 19.9% and 25.8% lower than
from the figure, BCC performs comparably and scales near-linearly BCC and OCC respectively. In general, 2PL introduces extra over-
as OCC does for the TPC-C workload. When there are 32 threads,heads in two aspects. First, 2PL incurs extra locking operations for
BCC delivers an overall throughput of 1.15M transactions per sec- read operations compared to BCC and OCC. Each read operation
ond, which is only 7.29% lower than that achieved by OCC (1.24M). needs to acquire and release a latch-protected read lock. Second,
Despite the extra operations introduced by BCC for detecting the 2PL needs a centralized timestamp allocator to accurately deter-
essential patterns, inter-core communication induced for checking Mine the order of transactions to avoid deadlock, which becomes a
history hash tables is rare when there are few data contentions. Thigdottleneck with the increase of number of the threads.
makes BCC's overhead low, retaining OCC's performance benefits . .
for low-contention workloads. 6.2 High Contention

To better understand the causes of BCC's slight overhead com- This section compares the performance of BCC with OCC and
pared to OCC, we further break down the slowdown of BCC at 32 2PL when data contention is high. A modified TPC-W [2], TPC-C
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Figure 5: Throughput of modified TPC-WoCart andOrderPro- Figure 6: Throughput of TPC-W transactions with fixed 32 threads

cesstransactions as the per-thread contention probability is 100% as per-thread contention probability varies.

and the number of threads varies. .
goes through three stages: decrease-increase-decrease. $¥hen u

and YCSB [7] are used in the evaluation. ing 2PL, OrderProcess throughput decreases as the number of

TPC-W. TPC-W is a popular OLTP benchmark simulating the threads increases because the hot tuple is more likely to be read
operations of an online bookseller. Compared with TPC-C, TPC-W locked byDoCart, which blocksOrderProcess The reason for
has more complex read-only transactions. Since read-only transacthe decrease of 2PL’s throughput when the number of threads in-
tions are executed as snapshot transactions which Silo never abortsreases from 1 to 2 is that the decreased throughpQtraérPro-
with either OCC or BCC, their performance is similar under both cesss larger than the added throughputiiCart Note that 2PL’s
concurrency control methods. We thus exclude them from our ex- throughput with one database threa®islerProces's throughput.
periments with TPC-W, otherwise they would dominate the mea- As the number of threads increases from 2 to 16, 2PL’s throughput
sured system throughput. increases. The reason is tHadCarts throughput has increased

We experiment with the two update-intensive transactions from and it outweighs the decrease ©fderProcess throughput. As
the TPC-W benchmark: (1poCart adds a set of random items  the number of threads further increases, HatiCarts throughput
to the shopping cart and displays the cart; @@YlerProcesspro- andOrderProces's throughput decrease because of the high con-
cesses a set of random orders and updates the database (e.g., uention. Thus 2PL's throughput decreases.
dating the stock numbers of the ordered items). To simulate the Compared to 2PL, BCC doesn't perform as well as 2PL when the
high contention scenario, we use slightly modified versions of the number of threads is 4 or less. However, as the number of threads
two transactions: there is one hot item in the orders processed byincreases, BCC significantly outperforms 2PL. With 32 threads, the
each OrderProcess transaction, and dae@art transaction has a  throughput of BCC is 2.03x over that of 2PL (0.5M). The per-
certain probability to display the hot item. In all our experiments, formance differences are mainly determined by the relationship
we let one database thread execute@nderProcesgransactions, between 2PL's synchronization overhead and BCC's overhead of
while all other threads execute tB@Cart transaction. detecting essential patterns. With 2PL, the workloads are domi-

In our first experiment, we evaluate the performance of BCC, nated byDoCart transactions when the number of threads is 32.
OCC and 2PL when thBoCart transaction has the highest con- 2PL has to synchronize between different threads because each
tention probability with theOrderProcesdransaction. We set the  one tries to add a read-lock to the hot tuple. In an optimized in-
probability of DoCart adding the hot item to 100%, and measure memory database, the synchronization cost is non-trivial. On the
transaction throughputs as the number of threads varies. The resulbther hand, BCC’s validation doesn’t incur synchronizations for
is presented in Figure 5. read contention.

It can be seen that BCC scales much better than OCC in this The above experiment demonstrates how BCC performs under
experiment. As the number of threads increases, BCC gains in-the highest intensity of per-thread contention. To understand how
creasingly higher performance advantage. With 32 threads, BCC different contention intensity affects the transaction throughput, we
achieves a throughput of 1.03M transactions per second, which isfix the number of threads to 32 and vary the probability DaCart

3.68x over the throughput with OCC (0.28M). adds the hot item to shopping cart. When the probability is 100%, it
The performance improvement achieved by BCC over OCC is is the same with the previous experiment at 32 threads and the con-
mainly attributed to the reduction &lse-aborted DoCartransac- tention reaches the highest. When the probability is 0%, all items

tions. We can understand this conclusion from the following ob- in aDoCarttransaction are randomly chosen and the contention is
servations. First, there can be no data dependencies between twehe lowest. The result is shown in Figure 6.

DocCart transactions because eabbCart only modifies its own Compared to OCC, BCC performs slightly lower when the con-
private shopping cart. Second, the hot item displayed (read) by atention probability is less than 10%, (by up to 7.95%) due to the
DoCarttransaction has a high probability of having been modified overhead of shared memory management and inter-socket commu-
by anOrderProcesdransaction when thBoCart transaction tries nication incurred by accessing the global clock. With the increase
to commit. In this case, OCC must abort theCart transaction of contention probability, the throughput of OCC drops sharply,
due to the appearance of a anti-dependency on a committed transbottoming at only 285k transactions per second when the probabil-
action. However, itis actually unlikely that a data dependency cycle ity reaches 100%. On the other hand, BCC’s throughput decreases

would form because the rest tuple accesses in botbartandOr- at a much a slower rate. When the contention probability is 20% or
derProcessre random, making it false aborto abort theDoCart greater, BCC's benefit of reducing false aborts outweighs its over-
transaction. BCC effectively reduces such false aborts by checking head for detecting the essential patterns, which improves the overall
for one more data dependency besides the anti-dependency. throughput.

2PL performs differently. As can be seen, 2PL's throughput = We can see that 2PL has a similar performance trend with OCC,
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although 2PL performs better than OCC. When the contention prob-
ability is less than 40%, 2PL has comparable performance with
BCC. However, as the contention probability continuously increases

processed by 2PL (including both committed and aborted transac-
tions) is 0.31M per second, which is significantly lower than that
pf BCC (0.9M).

the performance of 2PL decreases much faster as that of BCC. This

is because of 2PL's higher synchronization cost as we have dis-
cussed previously.

TPC-C. In the TPC-C experiments we use the update-intensive
transactionsNewOrderand Payment which comprises of most
transactions in the TPC-C benchmark. We set the scale factor of
TPC-C to 2 and the workload mix executed by each thre48@8%,
50%}. Figure 7 shows the throughput of this TPC-C workload as
we increase the number of threads.
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Figure 8: Breakdown of TPC-C throughput by transaction types
with OCC, BCC and 2PL.

To better understand BCC's performance improvement over OCC
and 2PL on TPC-C, we break down the overall throughput by the
numbers contributed by different transaction types. The results are

shown in Figure 8.
OCC, BCC and 2PL perform differently foddewOrderandPay-
. . ment OCC favorsPaymenttransactions oveNewOrdertransac-
Figure 7: Throughput of TPC-GlewOrderand Paymentwith a tions while 2PL commits much momewOrdertransactions than
workload mix of 50%-50% as the number of threads varies. Paymentransactions. BCC'’s performance fsewOrderandPay-
It can be seen that BCC outperforms OCC when the number of mentlie between.
threads exceeds the number of warehouses. With up to 16 threads, Compared to OCC, BCC'’s performance advantage comes from
the throughput of BCC and OCC both increase with the increase the improved throughput of tidewOrdertransaction. The reason
of thread number, but BCC scales better than OCC. BCC improves is that many of thew dependencies that happen betwiiewOrder
the throughput by 37% over OCC with 16 threads. As the number and Paymentthat do not actually form a dependency circle, thus
of threads further increases beyond 16 threads, the performénce osuffering false aborts with OCC. Examining additional dependency
both BCC and OCC start degrading with similar trends, but BCC can greatly avoid the aborts and thus improve the overall through-
still maintains good performance improvement (up to 35.8%) above put. However, BCC cannot improve the throughputRafyment
OCC. This again confirms BCC's advantage over OCC through re- transactions. It performs even worse than OCC. This is because
ducing false aborts. each OCC-aborteBaymentransaction is likely to reside in a de-
The transactiondlewOrderand Paymentin TPC-C have much pendency cycle with another transaction of the same typet(ue.,
more complex data dependency patterns than the transaBtens  abort). Therefore the OCC-abortdthymentransactions will also
CartandOrderProcessn TPC-W do. When operating on the same be aborted by BCC. In this case, BCC's effort of examining ad-
warehouse, all types of data dependencies can happen between angitional dependencies only increases transaction execution latency,
two concurrent transactions, each of which can be eRleevOrder which in turn degrades the overall throughput.
or Payment Thus it is possible that a cycle would be created inthe  On the other hand, BCC outperforms 2PL because it performs
transaction dependency graph. For example, when two threads arenuch better on th@aymenttransactions. With 32 threads, 2PL
executing thePaymenttransactions on the same warehouse, they can barely commiPaymentransactions. 2PL's poor performance
both need to read and update the year-to-date payment, a depenen Paymentis caused by the following two reasons. First, there is
dency cycle containingw andwr dependencies would likely be  read write contention betweétewOrderand Paymentwhen they
formed and thus one of theaymenttransaction will be aborted operate on the same warehouse. When the contended tuple is read
by both BCC and OCC. This explains the performance decreaselocked by a NewOrder transaction, otHdewOrdertransactions
of both BCC and OCC when the contention becomes severe (with can continue adding read locks to the tuple wiymenttrans-
more than 16 threads). action has to wait. In this cas€aymenttransaction is likely to
BCC also performs better than 2PL. The throughput is improved be aborted to avoid deadlock. Second, the contentiorPayonent
by up to 1.84x. The poor performance of 2PL is mainly caused by transactions on the same warehouse cause aborts &agment
its high synchronization overhead and the lock thrashing behavior. transactions because they create dependency cycle.
For example, when multiple database threads are execBégg YCSB. YSCB (Yahoo Cloud Serving Benchmark) benchmark [7]
menton the same warehouse, they need to acquire both read lockmodels the workload generated from online key-value and cloud
and write lock on the contended tuple. It is likely that the tuple serving stores. The benchmark contains a single table with ten
is read locked by multiple threads thus only one thread can wait String columns and populated with one million data items. Each
for the write lock while the rest are aborted. These aborted trans- transaction randomly accesses 16 tuples with each one having a
actions cause unnecessary synchronization for others which limits20% probability of being an update. Accesses to the tuples follow
the number of transactions processed to the database. We observe Zipfian distribution. We set the conflict factérto 100 to make
that with 32 threads, the total number of transaction throughput the level of data contention high. In this case, all types of data de-

Number of workers
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Figure 9: YCSB throughputs achieved with BCC, OCC and 2PL Figure 10: BCC memory consumption for saving history hash ta-
as the number of threads (cores) increases. The level of workloadbles in each thread as the total number of threads varies for the
contention @) is set to 100. 50%-50% workload mix of TPC-GlewOrderand Paymentrans-

: . actions.

pendencies can happen between two transactions. The results are 80 ‘ ‘ ‘
shown in Figure 9. OCC-Aborted

As can be seen from Figure 9, BCC performs better than both 70 | X BCC-Abored
OCC and 2PL when the number of thread is 8 or greater. With 32 60
threads, BCC's throughput is 1.99x over that of OCC and 1.63x g 50 OT—
over that of 2PL. The reason for the different performance behav 3 s % o
iors is similar to the previous high contention benchmarks. BCC's g gl Foxe
performance improvement over OCC comes from BCC'’s reduction - .
of unnecessary transaction aborts. On the other hand, BCC out-
performs 2PL because of 2PL’s high synchronization cost and lock 10
thrashing behaviors. 0 o 4 8 12 16 20 o4 28

Number of workers

6.3 Memory Consumption and L atency

BCC improves transaction throughput through detecting the es- Figyre 11: Latency oewOrdertransactions aborted by both OCC
sential patterns, with shared memory usage and extra operations. Inyng BCC. The workload is the same with that used in Figure 10.
this part we illustrate BCC’s memory consumption and its impact

on transaction latency. latency, we divide thélewOrdertransactions processed with BCC
Memory Consumption. With BCC, each thread maintains a in the previous experiment into the following three categories: (1)
memory area to store (1) a list of entries for recent history trans- transactions that are committed with OCC'’s validation criterion;
actions, and (2) the hash tables of these transactions needed fo(2) transactions that are aborted even after BCC checks; and (3)
detecting the essential patterns. transactions that are aborted with OCC but committed with BCC.
The size of saved history hash tables determines the memoryThese three types of transactions do not overlap.
consumption of BCC. For a given workload with a fixed number of For the first type of transactions, BCC’s overhead mainly in-
threads, this overhead is usually stably low. Figure 10 shows the cludes memory management and accessing the global clock, which
average and maximum sizes of memory occupied by history hashare similar as the low contention workloads we discussed earlier in
tables in each thread, executing the TPGK&WOrderandPayment Section 6.1. For the second type of transactions, they are aborted
workload mix used in the previous subsection. It can be seen thatby both OCC and BCC. Besides memory management and global
the average per-thread memory consumption stays below 56KB clock operations, BCC performs extra data dependency checking
consistently across all thread counts, with the maximum memory before aborting a transaction. Figure 11 shows the total latency of
usage not exceeding 1.6MB. The high variance of the memory con- each abortetlewOrdertransaction in this case. BCC increases the
sumption between the average and the maximum is caused by thdatency by up to 26% with 32 threads. However, since the database
conservative hash table release mechanism, which achieves gooaheeds to cleanup an aborted transaction for re-execution, this makes
performance but relies on the process of all database threads to deBCC'’s overhead negligible.
termine when a hash table can be released. When a transaction For the third type of transactions, BCC commits a transaction
T’s hash table is released,’s concurrent transactions may have thatwould otherwise be aborted by OCC (i.e., B&@es transac-
already finished for some time. Similar results are observed with tion). This comes at the overhead of increased latency because the
other workloads used in our experiments as well. database thread needs to validate the transaction’s write set with the
In our experiments we set the number of entries in the history history hash tables on other threads. Figure 12 shows the latency
transaction list to 16K and the total size of memory for storing his- of transactions in this type, compared with transactions that OCC
tory hash tables to 4MB, which are more than enough for all the commits. As can be seen, the latency of transaction saved by BCC
workloads encountered in our experiments. This amounts the totalis almost twice as that committed by OCC. However, this over-
memory consumption of BCC with each thread to about 4.38MB, head is acceptable for two main reasons. First, in high contention
which is negligible compared with the tens of hundreds of giga- scenario, an OCC-aborted transaction may be aborted several times
bytes of memory present on a typical enterprise server. This alsobefore it can actually commit. Considering the high cost of transac-
justifies BCC's design of using one hash table per transaction for tion re-executions, the latency of BCC-saved transactions is often
the benefit of performance with low-contention workloads. justified. Second, the increased latency is still within tens of mi-
Latency. To illustrate how BCC affects transaction execution croseconds, which is sufficiently small for most real-world applica-
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60 T OCE Commitied ‘ T tributed systems and removed the need of locking during two-phase
~%- BCC-Saved P commit. ROCOCO [20] broke transactions into atomic pieces and
] executed them out of order by tracking dependencies, which signif-
a0 | e l icantly outperformed OCC. In comparison, BCC focuses on trans-
oo X action execution for single-node in-memory databases.
80 1 OLTP on modern hardware. Our design and implementation
20| | benefits from existing in-memory OLTP systems. Databases such
as Hyper [16] and H-Store [15] adopt the partitioning approach to
10 ¢ 1 scale. Harizopoulos et al. [15] analyzed the overheads of the Shore
‘ ‘ ‘ ‘ ‘ ‘ ‘ database. Pandis et al. [22] eliminated the overhead of centralized
0O 4 8 12 16 20 24 28 32 lock manager with partitioning. Porobic et al. [23] systemtically
Number of workers compared the performance of shared-nothing and shared-egerytin
OLTP system designs on multi-socket, multi-core CPUs. Faleiro et
Figure 12: Latency oNewOrdertransactions saved by BCC com- g, [10] redesigned the multiversion concurrency control method for
pared with that committed by OCC. The workload is the same with in-memory databases by avoiding bookkeeping operations for read
that used in Figure 10. and global timestamp allocator, but it requires all the transactions
to be submitted to the database before they can be processed.
Doppel [21] introduced an in-memory database designed for trans-
actions that contend on the same data item. It proposed splitting the
contended data item across cores such that each core can continue
7. RELATED WORK updating the data item in parallel. The per-core value was recon-
ciled before the data item can be read. Doppel’'s optimization is
orthogonal to BCC: Doppel improves performance whnem de-
pendencies happen, while BCC avoids false aborts caused by
dependencies.
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tions. We thus believe it is reasonable to trade the small increasing
of latency for the high improvement of transaction throughput.

Partial dependency detection. The idea of detecting partial
graph cycles to guarantee serializability was first proposed in the
snhapshot isolation concurrency control method [5, 11]. Snapshot
isolation (Sl) has been implemented in major database systems,
such as Oracle and PostgreSQL. Sl guarantees that read and writ
transactions won't block each other to increase system through-%- CONCLUSION
put. However, Fekete et al. [12] showed that Sl could not guaran-  In this paper we have presented the Balanced Concurrency Con-
tee transaction serializability, and Fekete et al. [11] further found trol (BCC) mechanism for in-memory databases. Unlike OCC that
a data dependency pattern (dangerous structure) that will alwaysaborts a transaction based on whether the transaction’s read set
happen when transactions cannot be serialized in snapshot isolahas changed, BCC aborts transactions based on the detection of
tion (SI). Cahill et al. [5] demonstrated how to implement the dan- essential patterns that will always appear in unserializable trans-
gerous structure in Berkeley DB. Ports et al. [24] further optimized action schedules. We implemented BCC in Silo, a representative
this method for PostgreSQL. Han et al. [14] further optimized Sl for OCC-based in-memory database and comprehensively compared
multicore systems. BCC'’s essential patterns contain different data BCC with OCC and 2PL with TPC-W-like, TPC-C-like and YCSB
dependencies compared to the dangerous structure, which is causebdenchmarks. Our performance evaluations demonstrate that BCC
by different record visibilities between Sl and the optimistic con- outperforms OCC by more than 3x and 2PL by more than 2x when
currency control model. In Sl a transaction cannot see writes which data contention is high; meanwhile, BCC has comparable perfor-
happen after the transaction starts. However, in BCC, any data de-mance to OCC in low-contention workloads.
pendency may exist between concurrent transactions. Moreover,
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