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ABSTRACT
Measuring the relative importance of each vertex in a net-
work is one of the most fundamental building blocks in
network analysis. Among several importance measures, be-
tweenness centrality, in particular, plays key roles in many
real applications. Considerable effort has been made for
developing algorithms for static settings. However, real net-
works today are highly dynamic and are evolving rapidly,
and scalable dynamic methods that can instantly reflect
graph changes into centrality values are required.

In this paper, we present the first fully dynamic method
for managing betweenness centrality of all vertices in a large
dynamic network. Its main data structure is the weighted
hyperedge representation of shortest paths called hypergraph
sketch. We carefully design dynamic update procedure with
theoretical accuracy guarantee. To accelerate updates, we
further propose two auxiliary data structures called two-ball
index and special-purpose reachability index. Experimental
results using real networks demonstrate its high scalability
and efficiency. In particular, it can reflect a graph change
in less than a millisecond on average for a large-scale web
graph with 106M vertices and 3.7B edges, which is several
orders of magnitude larger than the limits of previous dy-
namic methods.

1. INTRODUCTION
Measuring the relative importance of each vertex in a net-

work is one of the most fundamental tasks in network anal-
ysis. Among several importance measures, betweenness cen-
trality [2,16], in particular, plays key roles in many applica-
tions, e.g., finding important actors in terrorist networks [13,
24], estimating lethality in biological networks [14, 21], de-
tecting hierarchical community structures [19, 29]and iden-
tifying crucial intersections in road networks [28]. Owing to
its popularity, almost all descriptive literature on network
analysis introduces betweenness centrality [28, 37]. More-
over, betweenness centrality is often adopted in various net-
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work analysis software such as SNAP [26], WebGraph [9],
Gephi, NodeXL, and NetworkX.

Betweenness centrality measures the importance of each
vertex in terms of the number of shortest paths passing
through the vertex. For static settings, considerable effort
has been devoted to developing fast, exact, and approxi-
mate algorithms [3, 4, 10, 11, 18, 30, 32, 36]. Moreover, recent
approximation algorithms can accurately estimate the be-
tweenness centrality of all vertices in near-linear time, which
is sufficiently fast even for today’s very large networks with
billions of edges.

However, certain real-world networks today are highly dy-
namic and are evolving rapidly. Examples include, but not
limited to, online social networks. Furthermore, an indi-
vidual’s activities are often bursty with regard to temporal
locality [5]. Therefore, in order to realize and improve real-
time network-aware applications (e.g., burst detection, trend
analysis, and socially-sensitive search ranking), instantly re-
flecting graph changes into centrality values is crucial.

In this regard, even if we use the recent sophisticated al-
gorithms, the naive approach of re-running the static algo-
rithms after each update would be too expensive for the
large networks of today. Hence, considerable research is
being conducted to develop efficient dynamic methods [7,
20, 22, 23, 25]. However, current dynamic methods are still
limited in terms of scalability. Exact dynamic methods re-
quire Ω(n2) preprocessing time and Ω(n2) data structure
size [20, 22, 23, 25]. The only dynamic approximate method
by Bergamini et al. [7] is semi-dynamic, i.e., it does not sup-
port any removal. Moreover, although its scalability is fairly
better than those of exact dynamic methods, it can barely
processes graphs with tens of millions of edges, and it can-
not handle larger graphs with billions of edges. The method
by Bergamini et al. is based on shortest-path sampling by
Riondato et al. [32].

1.1 Contributions
In this paper, we present the first fully dynamic approxi-

mate betweenness centrality algorithm, which maintains the
betweenness centrality of all vertices along with the inter-
nal data structures. It is fully dynamic in the sense that it
can instantly reflect insertions and deletions of vertices and
edges. Our method has several orders of magnitude better
scalability, and unlike previous methods, it can handle net-
works with billions of edges, while maintaining a low error
rate. Moreover, even on very large networks, the proposed
method can update the internal data structure and central-
ity values of all the affected vertices in milliseconds, which is
an order of magnitude faster than Bergamini’s method [7].
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Our method is also based on sampling. However, unlike
Bergamini’s method [7], which selects a single shortest path
between each sampled pair of vertices, our focus is to main-
tain all the shortest paths between each sampled pair of ver-
tices. Thereby, the necessary number of pairs of vertices are
saved. We represent the shortest paths in a data structure
named hypergraph sketch, which is inspired from a previous
static method [36]. The betweenness centrality of any vertex
can be easily obtained from the hypergraph sketch.

Accordingly, our main technical challenge is correctly and
efficiently updating the hypergraph sketch. This is non-
trivial because the part of the hypergraph sketch that re-
quires modifications cannot be detected locally. Moreover,
even if we overlook efficient updating, it is far from trivial
to correctly update the hypergraph sketch without recon-
struction, because it is important to consider the probability
distribution of sampled pairs for accurate centrality estima-
tion.

We summarize our main technical contributions for ad-
dressing these challenges as follows:

• Hypergraph Sketch: Our main data structure is the
weighted hyperedge representation of shortest paths called
hypergraph sketch. We carefully design an update pro-
cedure that probabilistically replaces vertex pairs using
non-uniform distribution. We theoretically guarantee
that it ensures estimation accuracy against any sequence
of graph changes.

• Two-Ball Index: To efficiently detect the parts of hy-
pergraph sketches that require modification, we propose
an auxiliary data structure named two-ball index. It basi-
cally maintains subtrees of shortest path trees and is de-
signed to exploit small-world property of networks [27,34]
to achieve a small data structure size.

• Special-Purpose Reachability Index: Although solely
using the two-ball index is sufficiently efficient for (al-
most) strongly connected graphs, its performance de-
grades terribly when handling unreachable pairs. To
cope with this issue, as another auxiliary data structure,
we propose a special-purpose dynamic reachability index,
which maintains the reachability of fixed pairs of vertices
rather than all pairs.

We conducted extensive experiments using real large net-
works for demonstrating the performance of our method and
for empirically analyzing our new techniques. The results
validate the high scalability of our method, in that the pro-
posed method can handle large-scale complex networks with
over 1B edges in memory. In addition, each update is pro-
cessed in several milliseconds on all the datasets that were
examined in this study. Moreover, the proposed method’s
processing time is faster than that of previous state-of-the-
art algorithms for dynamic networks.

Organization. The remainder of this paper is organized as
follows. We discuss related work in Section 2. In Section 3,
we explain definitions and notations. We present our hyper-
graph sketches, two-ball index and special-purpose reacha-
bility index in Sections 4, 5 and 6, respectively. In Section 7,
we present experimental results. We analyze the time and
space complexity of our method in Section 8. Finally in
Section 9, we present our conclusion.

2. RELATED WORK

2.1 Algorithms for Static Networks
As explained in the previous section, many algorithms

have been proposed for static settings. The asymptotically
fastest exact betweenness centrality algorithm was proposed
by Brandes [10]. This algorithm computes, for each vertex
v, the contribution of v to the centrality of all other ver-
tices by conducting a single BFS and a backward aggrega-
tion. It runs in Θ(nm) time on unweighted networks and
Θ(nm + n2 logn) time on weighted networks, and requires
Θ(n+m) space. There have been a few attempts to speedup
Brandes’ algorithm by exploiting the characteristics of com-
plex networks [4,15,30], but these methods also need Θ(nm)
time to compute betweenness centrality in the worst case.
Therefore, computing exact betweenness centrality on large
real-world networks is prohibitively expensive.

To handle large real-world networks, many approximate
algorithms have been proposed [3,11,18,32,36]. These meth-
ods are based on random sampling and allow us to estimate
betweenness centralites of vertices with acceptable accuracy
in almost linear time. Brandes and Pich [11] and Geis-
berger et al. [18] estimate the betweenness centralities by
sampling a small set of vertices and accumulating their con-
tributions to the betweenness centralities of other vertices.
Bader et al. [3] estimate the centrality of one specified ver-
tex by adaptive sampling. Riondato and Kornaropoulos [32]
approximate the centrality values by sampling peer-to-peer
shortest paths instead of vertices. Yoshida [36] estimates
the centrality values by sampling vertex pairs. In algorithms
by [11,36], in order to guarantee that the error of estimated
centrality of every vertex is less than ε with probability 1−δ,
we need to sample Ω( 1

ε2
log n

δ
) vertices or vertex pairs. In

contrast, the method due to Riondato et al. only have to

sample Ω( 1
ε2

log VD(G)
δ

) shortest paths, where V D(G) is the
diameter of a graph G when we ignore the weight of edges.
We note that V D(G) is often much smaller than n on com-
plex networks.

2.2 Algorithms for Dynamic Networks
In recent years, several studies have proposed on exact

dynamic algorithms [20, 22, 23, 25]. These algorithms store
auxiliary data structures to avoid re-computing the between-
ness centralities from scratch. Lee et al. [25] decompose a
graph into subgraphs and reduce the search space for each
update. They achieve several times faster updates in com-
parison with Brandes’ exact algorithm. Kas et al. [22] ex-
tend the dynamic all-pair shortest path algorithm by Rama-
lingam et al. [31] to enable dynamic updates of betweenness
centrality. Green et al. [20] accelerates dynamic updates
by maintaining a shortest path tree (SPT) rooted at each
vertex in a graph and updating distance and the number
of shortest paths from a root. Kourtellis et al. [23] fur-
ther improve the scalability by storing SPTs on disk in a
compact format and distributing the computation. Among
exact dynamic algorithms, only this algorithm can handle
million-node networks, although it uses 100 machines and
16TB of space. However, all of these exact algorithms re-
quire Ω(n2) space to store their data structures and it is
difficult to handle large networks in memory.

The first semi-dynamic approximate algorithm was pro-
posed by Bergamini et al. [7], which can handle each edge
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insertion on million-node networks in less than ten millisec-
onds and yield further speedups by processing batches of
edge insertions. The betweenness centrality estimation method
of this algorithm is based on [32]. For each shortest path,
this algorithm stores an SPT rooted at one endpoint of it.
By maintaining the shortest path distance and the number
of shortest paths from the root of each SPT, the contribu-
tion of each shortest path is kept up to date. However, Ω(n)
space is required to store the information in each SPT and
thousands of SPTs might be used to estimate betweenness
centrality. As a result, this algorithm faces difficulty in han-
dling billion-scale real-world networks in memory.

3. PRELIMINARIES
Notations. In this study, a network is represented by
an unweighted directed graph G = (V,E), where V is a
set of n vertices and E is a set of m edges. For a ver-
tex v ∈ V , the set of out-neighbors and in-neighbors are

denoted by
−→
N (v) and

←−
N (v), respectively. Let d(u, v) be

the (shortest path) distance from a vertex u to a vertex
v. If there is no path from u to v, d(u, v) is considered as
∞. For two vertices s and t, let P (s, t) be the set of ver-
tices on at least one of the shortest paths from s to t, i.e.,
P (s, t) = {v ∈ V | d(s, v) + d(v, t) = d(s, t)}.
Betweenness Centrality. The number of shortest paths
from s to t is denoted by σ(s, t), and the number of shortest
paths from s to t passing through v is denoted by σ(s, t | v).
If s = v or t = v, let σ(s, t | v) be zero. The betweenness
centrality of a vertex v on a graph G is

C(v) =
∑
s,t∈V

σ(s, t | v)

σ(s, t)
.

3.1 Dynamic Graphs and Problem Definitions
When we consider dynamic networks, G denotes the latest

graph, and Gτ denotes the graph at time τ . For simplicity,
we assume that time is described by positive integers (i.e.,
graph snapshots are G1, G2, . . .). We add subscripts to in-
dicate the time we consider. For example, dτ (u, v) denotes
the distance between u and v in the graph Gτ .

In this paper, we study methods that, given a dynamic
graph, construct and manage a data structure to manage
the approximate value of betweenness centrality Cτ (v) for
each vertex v ∈ V , where τ denotes the latest time.

4. HYPERGRAPH SKETCH AND ITS EX-
TENSION TO THE DYNAMIC SETTING

In this section, we first introduce the data structure, called
the hypergraph sketch, which is used to estimate the be-
tweenness centrality of vertices. Then, we explain how to
update the hypergraph sketch when the graph is dynami-
cally updated. For simplicity, we only explain a high-level
description of our method in this section, which is sufficient
to verify its correctness. Although we use several auxiliary
data structures to achieve scalability, the detailed implemen-
tation is deferred to Sections 5 and 6.

4.1 Hypergraph Sketch for Static Graphs
We now describe the hypergraph sketch for static graphs.

Given a graph G = (V,E) and an integer M , we sample
a set S of M vertex pairs uniformly at random. For each

chosen vertex pair (s, t) ∈ S, a hyperedge with an auxil-
iary information on each vertex is added to a hypergraph
H. Specifically, est := {(v, σ(s, v), σ(v, t)) | v ∈ P (s, t)} is
added to H. We call H a hypergraph sketch. In the fol-
lowing sections, we simply call this set a hyperedge. For a
hyperedge est, V (est) denotes the set of vertices contained
in e, that is, P (s, t).

By conducting a (bidirectional) BFS from s to t, the set
P (s, t) and the number of shortest paths σ(s, v) and σ(v, t)
for every v can be computed in O(m) time. Hence, we
can construct a hypergraph sketch with M hyperedges in
O(Mm) time.

We define the weight of v on a hypergraph sketch H by

wH(v) :=
∑

(s,t)∈S
σ(s,t|v)
σ(s,t)

=
∑

(s,t)∈S
σ(s,v)·σ(v,t)

σ(s,t)
. Given a

vertex v, we output C̃H(v) = n2

M
wH(v) as an estimation of

C(v). The value C̃H(v) is an unbiased estimator of C(v)
that is well concentrated:

Theorem 1. [36] We have EH [C̃H(v)] = C(v) for any
v ∈ V . Moreover for ε, δ > 0, by choosing M = Ω( 1

ε2
log 1

δ
),

we have Pr[
∣∣C̃H(v)− C(v)

∣∣ ≥ εn2] ≤ δ for any v ∈ V .

In our method, we always keep the value of wH(v) with
respect to the latest graph for every v ∈ V . Hence, we can
answer the estimated betweenness centrality of any vertex
in O(1) time.

We also note that complex networks have vertices though
which most vertex pairs have a shortest path pass [6]. In
other words, betweenness centralities of those vertices are
Ω(n2). Since we are interested in only those vertices in many
applications, the guarantee given by Theorem 1 is sufficient
for practical purpose.

4.2 Dynamic Updates of Hypergraph Sketch
In this section, we describe how to dynamically update

the hypergraph sketch and verify its correctness.

4.2.1 Algorithm Description
Suppose that a graph Gτ is obtained by updating a graph

Gτ−1. We want to efficiently obtain the hypergraph sketch
for Gτ using the hypergraph sketch H for Gτ−1.

Adding or deleting an edge is trivial. We simply need
to update the distance information of hyperedges. What is
non-trivial is efficiently updating it, and we will look at this
issue in Sections 5 and 6.

When adding or deleting vertices, we sometimes need to
replace vertex pairs in the sampled set S since we need a set
of pairs that are uniformly sampled from the current vertex
set Vτ . The pseudo-code of our updating procedures is given
in Algorithm 1.

4.2.2 Correctness
Let H1,H2, . . . be the distribution of hypergraph sketches

for G1, G2, . . ., respectively, where Gτ is obtained from Gτ−1

by applying the update method described in the previous
section. For any τ and a hypergraph sketch H for Gτ con-

structed by our algorithm, the value C̃H(v) is an unbiased
estimator of Cτ (v) that is well concentrated:

Theorem 2. For any τ , the following hold: We have

EH∼Hτ [C̃H(v)] = Cτ (v) for any v ∈ V . Moreover for ε, δ >

0, by choosing M = Ω( 1
ε2

log 1
δ
), we have PrH∼Hτ [

∣∣C̃H(v)−
Cτ (v)

∣∣ ≥ εn2] ≤ δ for any v ∈ V .
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Algorithm 1 Vertex operations

1: procedure AddVertex(H, v)
2: Let Gτ be obtained from Gτ−1 by adding v.
3: for each est ∈ E(H) do
4: continue with probability |Vτ−1|2/|Vτ |2.
5: Sample (s′, t′) ∈ (Vτ × Vτ ) \ (Vτ−1 × Vτ−1).
6: Replace est by the hyperedge es′t′ made from (s′, t′).

7: procedure RemoveVertex(H, v)
8: Let Gτ be obtained from Gτ−1 by deleting v.
9: for each est ∈ E(H) do

10: if s 6= v and t 6= v then continue.
11: Sample (s′, t′) ∈ Vτ × Vτ uniformly at random.
12: Replace est by the hyperedge es′t′ made from (s′, t′).

In words, for any τ and a vertex v ∈ V , the probability that
CH(v) is far apart from Cτ (v) can be made arbitrarily small
by choosing M sufficiently large. In particular, the accuracy
of our method does not deteriorate over time.

Let Sτ be the distribution of the set S of vertex pairs at
time τ , that is, H ∼ Hτ is obtained by sampling S ∼ Sτ .
Then compute a hyperedge for each pair in S. To prove
Theorem 2, by Theorem 1, it suffices to show that S is a
uniform distribution over the sets of M vertex pairs in Vτ .

Proof of Theorem 2. We use the induction on τ . When
τ = 1, the distribution Sτ is clearly uniform from the con-
struction.

Let Gτ be the current graph, and assume that the distri-
bution Sτ−1 is a uniform distribution over sets of M vertex
pairs in Vτ−1. Suppose that we are to modify G. When
adding or deleting an edge, we do not modify the pairs, and
hence Sτ remains a uniform distribution. When adding or
deleting a vertex, Sτ remains a uniform distribution from
Lemmas 3 and 4, as given below.

Lemma 3. Suppose that Gτ = (Vτ , Eτ ) is obtained from
Gτ−1 = (Vτ−1, Eτ−1) by adding a vertex v, and Sτ−1 is a
uniform distribution over sets of M vertex pairs in Vτ−1.
Then, the distribution Sτ is also a uniform distribution over
sets of M vertex pairs in Vτ .

Proof. Since Sτ−1 is a uniform distribution, the process
of sampling S ∼ Sτ can be regarded as follows. Each time
we sample a pair (s, t) ∈ Vτ−1 × Vτ−1 uniformly at random,
we keep it as is with probability |Vτ−1|2/|Vτ |2, and replace it
with a pair sampled from (Vτ×Vτ )\(Vτ−1×Vτ−1) uniformly
at random with the remaining probability. Hence, Sτ is also
a uniform distribution.

Lemma 4. Suppose that Gτ = (Vτ , Eτ ) is obtained from
Gτ−1 = (Vτ−1, Eτ−1) by deleting a vertex v, and Sτ−1 is
a uniform distribution over sets of M vertex pairs in Vτ−1.
Then, the distribution Sτ is also a uniform distribution over
sets of M vertex pairs in Vτ .

Proof. Since Sτ−1 is a uniform distribution, the process
of sampling S ∼ Sτ can be regarded as follows. Each time
we sample a pair (s, t) ∈ Vτ−1 × Vτ−1 uniformly at random,
we keep it as is if (s, t) ∈ Vτ × Vτ and replace it with a
pair sampled from Vτ × Vτ uniformly at random otherwise.
Hence, Sτ is also a uniform distribution.

5. TWO-BALL INDEX
In order to compute approximate betweenness centrality

in a dynamic setting, we need to be able to update the hy-
peredge est efficiently for each vertex pair (s, t) ∈ S in the

hypergraph sketch. In this section, we describe our two-ball
index (TB-index ), which addresses this issue.

5.1 Data Structure
For each sampled vertex pair (s, t) ∈ S, the hyperedge est

must be updated when the set of shortest paths from s to
t is changed by dynamic updates. Hence, quickly detecting
the change of shortest paths from s to t is important to
efficiently update the approximate betweenness centralities.

A straightforward way of detecting the change of shortest
paths from s to t is conducting a (bidirectional) BFS from
s to t. Obviously, traversing the whole graph is inefficient
for computing shortest paths between thousands of vertex
pairs. Another approach is to maintain the shortest path
tree (SPT) rooted at the vertex s. Several dynamic algo-
rithms [7, 20, 23] are based on variants of this approach be-
cause the incremental updates of an SPT can be processed
quickly. However, keeping thousands of SPTs on billion-
scale networks requires huge amount of space, and it is dif-
ficult to handle such networks in memory.

To achieve both high performance and scalability, we con-
struct and store data structures using balls. We define a set

of pairs
−→
B (v, dv) and

←−
B (v, dv) as follows.

−→
B (v, dv) = {(w, d(v, w)) | d(v, w) ≤ dv}
←−
B (v, dv) = {(w, d(w, v)) | d(w, v) ≤ dv}

These sets have important roles in our method. We describe−→
B (v, dv) and

←−
B (v, dv) balls whose centers are v and radius

are dv. The set of vertices whose distance from v is less than

or equal to dv is denoted by V (
−→
B (v, dv)). Let

−→
B (v, dv)[w] =

d(v, w) if w ∈ V (
−→
B (v, dv)). Otherwise,

−→
B (v, dv)[w] = ∞.

We define V (
←−
B (v, dv)) and

←−
B (v, dv)[w] in the same way as

V (
−→
B (v, dv)) and

−→
B (v, dv)[w].

Then, our data structures are as follows.

• A set ∆s,t = {δs(v) | v ∈ P (s, t)}. Here δs(v) is sup-
posed1 to be d(s, v). This information is not needed to
estimate the betweenness centrality, but it is useful to
detect the change of shortest paths from s to t when an
edge or a vertex is deleted.

• Two sets
−→
β s and

←−
β t of vertices with distance informa-

tion, which are supposed to be the balls
−→
B (s, ds) and

←−
B (t, dt), respectively. Here, two non-negative integers
ds and dt satisfy ds + dt + 1 = d(s, t) − x. The values
of ds and dt are determined when the two balls are con-
structed. The newly formed shortest paths from s to t
by edge insertions are detected by using these balls.

The data structures are parameterized by a non-negative
integer x, which allows the trade-off between the index size
and the update time: As the value of x increases, the in-
dex size and the update time of edge deletions decrease
whereas the update time of edge insertions increases. Two

balls
−→
B (s, ds) and

←−
B (t, dt) never overlap. When x = 0, two

balls are directly connected by an edge on a shortest path
between s and t, i.e., the distance between the two balls is
1. By increasing x, two balls become smaller, and the two
balls become distant.

1 We use the expression “supposed to be” here because,
while δs(v) usually corresponds to d(s, v), during update
procedure, δs(v) may temporarily differ from d(s, v).
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The set of triplets

I =
{

(∆s,t,
−→
β s,
←−
β t) | (s, t) ∈ S

}
is the TB-index for the set S of sampled vertex pairs.

The worst-case space complexity of each triplet (∆s,t,
−→
β s,
←−
β t)

is O(n). However, the size of
−→
B (s, ds) and

←−
B (t, dt) tends

to be much smaller than n on real-world complex networks
in practice. This is because these networks have the small-
world property, i.e., the average distance between two ver-
tices is often O(logn) [34]. Hence the radius of two balls
ds and dt tend to be quite small. Moreover, the size of the
hyperedge est is further smaller than the size of two balls.
The compactness of the TB-index on real-world networks is
empirically shown in Section 7.

5.2 Index Construction
In this subsection, we explain how to efficiently construct

a triplet (∆s,t,
−→
β s,
←−
β t) for a fixed vertex pair (s, t). Then,

the construction of I is simply performed by computing the
triplet for each sampled vertex pair (s, t) ∈ S. This pro-
cedure is used when we start dealing with a new dynamic
graph, as well as when sampled pairs are changed due to
vertex addition and removal (see Section 4.2).

First, two balls
−→
B (s, ds) and

←−
B (t, dt) are computed based

on bidirectional BFS. We initialize ds and dt to be zero.

Then, as long as
−→
B (s, ds) and

←−
B (t, dt) share no vertex, we

increment ds if the size of
−→
B (s, ds) is smaller than that of

←−
B (t, dt), and increment dt otherwise. Then, we set

−→
β s =

−→
B (s, ds) and

←−
β t =

←−
B (t, dt). If we find

−→
B (s, ds + 1) =

−→
B (s, ds) or

←−
B (t, dt+1) =

←−
B (t, dt) along the way, then there

is no path from s to t. In this case, we simply set
−→
β s =

−→
β t =

∅ to save space.

When we find that
−→
B (s, ds) and

←−
B (t, dt) share a vertex,

the vertex set P (s, t) is computed by using
−→
B (s, ds) and

←−
B (t, dt) . Let C = V (

−→
B (s, ds)) ∩ V (

←−
B (t, dt)) be the set

of shared vertices. Let Ps and Pt be the set of vertices on
the shortest paths from s to C and the shortest paths from
C to t, respectively. Note that P (s, t) equals Ps ∪ Pt ∪ C,
because C = {v ∈ P (s, t) | d(s, v) = ds} and every shortest
path from s to t passes through C. Two vertex sets Ps and
Pt can be easily obtained by conducting BFSes from C to s
and t. After the vertex set P (s, t) is obtained, we decrease
the radius ds and dt one by one as long as ds + dt + 1 >
d(s, t) − x holds in order to save space. More specifically,
in each iteration, the radius of the larger ball is decreased.
Finally, the set ∆s,t is computed by conducting a BFS on

P (s, t) (when
−→
β s and

←−
β t are empty, we simply set ∆s,t = ∅

to save the space). Since the number of vertices in P (s, t) is
much smaller than n, the BFS on P (s, t) can be conducted
quickly. Similarly, we update the distance information in est
by conducting BFSes on P (s, t).

Since the sizes of P (s, t) and the two balls
−→
B (s, ds) and

←−
B (t, dt) are often much smaller than n on real-world net-
works, we use hash tables to keep σ(s, v) and σ(v, t) for each

v ∈ V (est),
−→
β s[v] for each v ∈ V (

−→
β s), and

←−
β t[v] for each

v ∈ V (
←−
β t) in order to save the space. As with balls,

−→
β s[v]

denotes d(s, v), which is stored in the hash table.

Algorithm 2 Update
−→
B (s, ds) after edge (u, v) is inserted

1: procedure InsertEdgeIntoBall(u, v,
−→
β s)

2: Q← An empty FIFO queue.

3: if
−→
β s[v] >

−→
β s[u] + 1 then

4:
−→
β s[v]←

−→
β s[u] + 1; Q.push(v).

5: while not Q.empty() do
6: v ← Q.pop().

7: if
−→
β s[v] = ds then continue.

8: for each (v, c) ∈ E do

9: if
−→
β s[c] >

−→
β s[v] + 1 then

10:
−→
β s[c]←

−→
β s[v] + 1; Q.push(c).

5.3 Incremental Update
In this subsection, we present how to efficiently update

each triplet (∆s,t,
−→
β s,
←−
β t) in the TB-index as well as the hy-

peredge est when the graph is dynamically updated. Through-
out this section, τ denotes the latest time.

5.3.1 Edge Insertion
Suppose that an edge (u, v) is inserted. Two balls

−→
β s

and
←−
β t are updated first; then, we update ∆s,t and the

hyperedge est. The value of ds and dt are not modified
although we may have a new shortest path between s and t.

Algorithm 2 shows the pseudo-code for updating each ball
after edge insertion. Balls are updated in a similar manner
as in the case of previous methods for maintaining SPTs [1,

17, 33]. In the case that
−→
β s[u] + 1 <

−→
β s[v], the distance

from s to v becomes smaller by passing through the new

edge (u, v), and
−→
β s[v] is updated to

−→
β s[u] + 1. Then we

recursively examine out-neighbors of v. In other words, the

ball
−→
β s is updated by conducting a BFS from v on vertices

whose distance from s is at most ds. The ball
←−
β t is updated

in the same manner as above.
The set ∆s,t is updated by using the updated balls

−→
β s =

−→
B τ (s, ds) and

←−
β t =

←−
B τ (t, dt). The change of ∆s,t occurs

when new shortest paths are formed by adding (u, v). To
quickly detect newly formed shortest paths, two more balls←−
B τ (u, du) and

−→
B τ (v, dv) are used. The radii of two balls

du and dv are initialized to zero. The radius of
←−
B τ (u, du)

is increased one by one by conducting a BFS from u while−→
B τ (s, ds) and

←−
B τ (u, du) share no vertex, and the radius of

−→
B τ (v, dv) is increased one by one as long as

−→
B τ (v, dv) and

←−
B τ (t, dt) share no vertex. However, if vertices u and v are
distant from vertices s and t, a large part of the graph might

be visited before the whole
←−
B τ (u, du) and

−→
B τ (v, dv) are ob-

tained even when there is no newly formed shortest paths
passing through the edge (u, v). To avoid such an unneces-
sary computation, we carefully introduce upper bounds ru
and rv on du and dv, respectively, and stop BFSes when the
radii reach these upper bounds. We consider the following
four cases:

1. The case where u ∈ V (
−→
B τ (s, ds)) and v ∈ V (

←−
B τ (t, dt)):

In this case, we can immediately detect that a new short-
est path from s to t is formed.

2. The case where u ∈ V (
−→
B τ (s, ds)) and v 6∈ V (

←−
B τ (t, dt)):

In this case, we already know that d(s, u) =
−→
B τ (s, ds)[u] =

−→
β s[u]. Thus, the following lemma holds.
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Lemma 5. If there exists a shortest path from s to
t passing through the edge (u, v), then there exists dv ≤
dτ−1(s, t)−

−→
B τ (s, ds)[u]−dt−1 such that V (

−→
B τ (v, dv))∩

V (
←−
B τ (t, dt)) 6= ∅.

Therefore, we can set rv = dτ−1(s, t) −
−→
β s[u] − dt − 1.

Note that the index has the information of dτ−1(s, t).

3. The case where u 6∈ V (
−→
B τ (s, ds)) and v ∈ V (

←−
B τ (t, dt)):

As in the previous case, we can set ru = dτ−1(s, t) −
←−
β t[v]− ds − 1.

4. The case where u 6∈ V (
−→
B τ (s, ds)) and v 6∈ V (

←−
B τ (t, dt)):

In this case, the following lemma holds.

Lemma 6. If there exists a shortest path from s to t
passing through the edge (u, v), then there exist du, dv ≤
x such that V (

−→
B τ (s, ds)) ∩ V (

←−
B τ (u, du)) 6= ∅ and

V (
−→
B τ (v, dv)) ∩ V (

←−
B τ (t, dt)) 6= ∅.

Proof. Assume that there are no such du and dv.

If V (
−→
B τ (s, ds)) ∩ V (

←−
B τ (u, du)) = ∅, then we have

dτ (s, u) + dτ (u, v) + dτ (v, t) ≥ dτ (s, u) + 1 + dt

>ds + x+ 1 + dt = dτ−1(s, t)

Hence, there is no newly formed shortest path from s
to t, which is a contradiction. Similarly, the case where

V (
−→
B τ (v, dv)) ∩ V (

←−
B τ (t, dt)) = ∅ reaches a contradic-

tion.

From the lemma above, we can set ru = rv = x.

If there exist du ≤ ru and dv ≤ rv such that V (
←−
B (u, du))∩

V (
−→
B (s, ds)) 6= ∅ and V (

−→
B (v, dv)) ∩ V (

←−
B (t, dt)) 6= ∅, then

there may exist a newly formed shortest path passing through
the edge (u, v). In this case, the set of vertex Pτ (s, t) is con-
tained in the vertex set P := V (est) ∪ Pτ (s, u) ∪ Pτ (v, t).
Therefore, ∆s,t and est can be efficiently updated by con-
ducting BFSes on P . We note that P is often small because
of the small average distance.

5.3.2 Edge Deletion
Suppose that an edge (u, v) is deleted from the graph. We

first present a procedure for updating the ball
−→
β s. The ball←−

β t can be updated similarly.

Ball
−→
B (s, ds) changes only if {u, v} ⊆ V (

−→
B τ−1(s, ds)) and

−→
B τ−1(s, ds)[u]+1 =

−→
B τ−1(s, ds)[v] hold. In this case,

−→
β s is

updated in the same way as the procedure for maintaining
SPTs [17]. Algorithm 3 shows the pseudo-code for updating
a ball after an edge deletion. This algorithm mainly consists
of two steps.

Step 1: The set U of vertices whose distances from s are
increased is obtained by conducting a BFS from v. We first
push v into a queue Q.

Let w be the vertex popped from Q. Each neighbor c
of w is examined and checked whether there still exists a
vertex p that satisfies (p, c) ∈ E and

−→
β s[p] + 1 =

−→
β s[c]. If

there is no such vertex, it implies that the distance d(s, w)
is increased after the edge deletion. In this case, w is added
to U and enqueued to Q, and neighbors of w are examined
recursively.

Algorithm 3 Update
−→
B (s, ds) after edge (u, v) is deleted.

1: procedure HasParent(w,
−→
β s)

2: for each (p, w) ∈ E do

3: if
−→
β s[p] + 1 =

−→
β s[w] then return true.

4: return false.

5: procedure DeleteEdgeFromBall(u, v,
−→
β s)

6: if {u, v} 6⊆ V (
−→
β s) ∨

−→
β s[u] + 1 6=

−→
β s[v] then return

7: Step 1: Collect vertices w with d(s, w) increased.

8: D ← ∅.
9: Q← An empty FIFO queue.

10: if not HasParent(v,
−→
B (s, ds)) then

11: D ← {v}.
12:

−→
β s[v]←∞; Q.push(v).

13: while not Q.empty() do
14: w ← Q.pop().
15: for each (w, c) ∈ E do

16: if
−→
β s[c] <∞∧ not HasParent(c,

−→
β s) then

17: D ← D ∪ {c}.
18:

−→
β s[c]←∞; Q.push(c).

19: Step 2: Update
−→
β s[w] for each w ∈ D.

20: Q′ ← An empty min-based priority queue.
21: for each w ∈ D do

22: dwmin ← minp∈V
{−→
β s[p] | (p, w) ∈ E

}
.

23:
−→
β s[w]← dwmin + 1; Q′.push(w).

24: while not Q′.empty() do
25: w ← Q′.pop().

26: d←
−→
β s[w].

27: if d = ds then continue.
28: for each (w, c) ∈ E do

29: if
−→
β s[c] > d+ 1 then

30:
−→
β s[c]← d+ 1; Q′.push(c).

31: for each w ∈ D do

32: Remove w from
−→
β s if

−→
β s[w] > ds.

Step 2: In this step, for each w ∈ U , the distance dτ (s, w)

is computed so as to determine
−→
β s[w]. For each vertex

w ∈ U ,
−→
β s[w] is initialized to dwmin + 1, where dwmin =

minp∈V
{−→
β s[p] | (p, v) ∈ E

}
and pushed into a min-based

priority queue Q′.

Suppose that a vertex w with the minimum
−→
β s[w] is

popped from Q′. The distance dτ (s, w) is determined for
each w ∈ U by conducting Dijkstra’s algorithm using the
priority queue Q′. After the algorithm ends, for each w ∈ U ,

the vertex w is deleted from
−→
β s if

−→
β s[w] is larger than ds.

Now we describe how to update the hyperedge est. We
only use the information of ∆s,t to update est. Note that est
should be updated only if the set of shortest paths from s
to v is changed, i.e., {u, v} ⊆ V (est)∧∆s,t(u) + 1 = ∆s,t(v)
hold. There are two cases to consider:

1. dτ (s, t) 6= dτ−1(s, t): This case happens if and only if
στ−1(s, u) = στ−1(v, t) = 1 holds. This condition can be
easily checked by looking at variables σ(s, u) and σ(v, t)

in est. If this happens, the triplet (∆s,t,
−→
β s,
←−
β t) as well

as the hyperedge est are constructed from scratch again.

2. Otherwise: In this case, although dτ (s, t) = dτ−1(s, t)
holds, the number of shortest paths may have changed.
Since the vertex set Pτ (s, t) is contained in V (est), we
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can obtain est after the edge deletion by conducting a
BFS from s to t on V (est).

5.3.3 Vertex Operations
First, we update the vertex pair as described in Section 4.

If the vertex pair is replaced, then we construct the hyper-
edge as well as the triplet from scratch.

When adding a vertex, we have nothing to do. When
removing a vertex, the update procedure is similar to the
update procedure when an edge is deleted. We first update

two balls
−→
β s and

←−
β t. Then, we detect the set U of ver-

tices such that the distances from the centers of balls are
increased, and then, the distances from the centers are de-
termined using Dijkstra’s algorithm from U . We also update
the hyperedge est if v is contained in V (est). If the distance
from s to t is changed after the vertex removal, the triplet

(∆s,t,
−→
β s,
←−
β t) is constructed from scratch. Otherwise, the

updated hyperedge est is obtained by conducting BFS from
s and t on V (est).

6. SPECIAL-PURPOSE
REACHABILITY INDEX

The algorithm explained in the previous section works well
on social networks. However, on web graphs, the perfor-
mance of our method becomes much worse than that on so-
cial networks. This is because most web graphs are directed
and there are many pairs of vertices that are unreachable
from each other. Since we only keep a triplet of three empty
sets for each unreachable vertex pair (s, t) ∈ S in the TB-
index in order to save space, we have to check whether there
exists a path from s to t after each edge insertion. Checking
the reachability of thousands of vertex pairs is not accept-
able for handling dynamic updates efficiently.

Therefore, to efficiently process the update after edge in-
sertions, we need to construct an index that quickly answers
and maintains reachability of each vertex pair (s, t) ∈ S. In
this section, we present an index for this purpose. By ex-
ploiting the structure of web graphs [12], we construct a
highly scalable index. Our index outperforms in terms of
the performance and scalability compared to state-of-the-
art methods that are designed to answer the reachability of
any vertex pair [35,38].

6.1 Data Structure
To quickly answer the reachability of vertex pairs, we want

to manage a vertex set Rs for each vertex pair (s, t), where
Rs is the set of all vertices that can be reached from s. The
reachability from s to t can be easily answered by checking
whether t ∈ Rs or not. Obviously, keeping all the reachable
vertices spoils the scalability of our method owing to the
large number of reachable vertices. To reduce the number
of vertices stored in the index, we exploit the structure of
web graphs. On web graphs, the size of vertex set Rs tends
to be large when the largest strongly connected component
of the graph, called the SCC [12], can be reached from s.

We introduce another data structure with which we can
reduce the size of the index size for a vertex pair (s, t) such
that there is a path from s to t passing through the SCC.

To maintain the reachability of such vertex pairs, we use
SPTs rooted at vertices in the SCC. As distance information
is not necessary here, any data structure that can maintain
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Figure 1: An example of index size reduction. Ver-
tex color indicates its status: Blue is a vertex that
should be maintained for vertex pair (s, t), Red is a
vertex that can be reached from a vertex r, Gray
is a vertex that can reach r, and Yellow is a vertex
contained in the same SCC with r.

reachable vertices from a single vertex suffices. However,
SPTs can be updated more easily than other alternatives.

Let r be a vertex contained in the SCC. Let
−→
T r and

←−
T r

be the SPT rooted at r on the original graph and the graph
with each edge reversed, respectively.

We define the reduced reachable vertices RTrst from s as
follows.

RTrst =


∅ if s ∈ V (

−→
T r) ∧ t ∈ V (

←−
T r),

Rs \ V (
−→
T r) if t /∈ V (

−→
T r),

Rs otherwise.

Using
−→
T r,
←−
T r and RTrst , the reachability from s to t can be

easily answered.

Lemma 7. There exists a path from s to t if and only if

s ∈ V (
−→
T r) ∧ t ∈ V (

←−
T r) or t ∈ RTrst holds.

Figure 1 shows an example of index size reduction using
our technique. Let us consider a graph and a vertex pair
(s, t) as shown in Figure 1a. In this graph, all the vertices in
the graph can be reached from a vertex s. Hence, without

pruning by using
−→
T r and

←−
T r, all the vertices in the graph

should be maintained for (s, t). Let us choose a vertex r in

the graph as the root of two SPTs
←−
T r and

−→
T r. As shown in

Figure 1b, the vertex t is not contained in V (
−→
T r), and re-

duced reachable vertices RTrst becomes Rs\V (
−→
T r). Thus, we

only have to maintain four vertices included in RTrst instead
of ten vertices that can be reached from s (Figure 1c).

Since the SCC will change over time, it is difficult for us to
quickly check which vertex is contained in the SCC. Hence,
we randomly choose a set of K vertices {r1, r2, . . . , rK} as
roots of SPTs. If we set the value K to a moderate value,
at least one of the chosen vertices will be contained in the
SCC with high probability because of a large number of the
vertices belong to the SCC [12]. We define the set T of pairs
of SPTs as follows.

T =
{

(
−→
T r1 ,

←−
T r1), (

−→
T r2 ,

←−
T r2), . . . , (

−→
T rK ,

←−
T rK )

}
We denote the set of roots that can be reached from a
vertex v by Tin(v) =

{
ri | (

−→
T ri ,

←−
T ri) ∈ T , v ∈ V (

←−
T ri)

}
.

We denote the set of roots that can reach a vertex v by

Tout(v) =
{
ri | (

−→
T ri ,

←−
T ri) ∈ T , v ∈ V (

−→
T ri)

}
. The follow-

ing lemma holds from the definition of Tin and Tout.

Lemma 8. There exists a path from s to t passing through
at least one of the vertices in {r1, r2, . . . , rK} if and only if
Tin(s) ∩ Tout(t) 6= ∅ holds.
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Now we define, by generalizing the notion of RTrst , the set
of reachable vertices RTst reduced by T for each vertex pair
(s, t) as follows:

RTst =

{
∅ if Tin(s) ∩ Tout(t) 6= ∅,
Rs \

⋃
1≤i≤K:t/∈V (

−→
T ri )

V (
−→
T ri) otherwise.

We note that RTst is represented as an SPT to support incre-
mental updates, i.e., not only vertices in RTst but also their
distances from s are stored in memory.

In the case where Tin(s) ∩ Tout(t) = ∅ holds, the reduced
reachable vertices RTst is computed by conducting a pruned
BFS from s using the information of T . Most procedures in
pruned BFS are the same as standard BFS. The difference
between them is that, when we examine a neighbor w of
a vertex v, we skip processing w if Tout(w) ∩ T out(t) 6= ∅
holds, where T out(t) = {r1, r2, . . . , rK} \ Tout(t). We note
that Tout(w) ∩ T out(t) 6= ∅ implies there is no path from w
to t since otherwise there exists a path from ri ∈ Tout(w) ∩
T out(t) to t via w, which contradicts ri ∈ T out(t).

By means of T and RTst we can easily check the reachabil-
ity from s to t.

Lemma 9. There exists a path from s to t if and only if
Tin(s) ∩ Tout(t) 6= ∅ or t ∈ RTst.

Let R =
{
RTsiti | 1 ≤ i ≤M

}
. Then, the index for reach-

ability query is the pair of two sets (T ,R). The set T is
obtained by conducting BFSes 2K times, and the set R is
obtained by conducting pruned BFSes M times. Since the
value K does not have to be large, say less than 30, the con-
dition Tout(w)∩T out(t) = ∅ can be checked in O(1) time by
representing sets of roots Tout(w) and Tout(t) with a bit vec-
tor. Thus, the time complexity of pruned BFS is also O(m),
and the overall time complexity of our reachability index is
O((K + M)m). Our index consumes O((K + M)n) space,
but the actual memory usage is much smaller in practice.

6.2 Incremental Update
When an edge is inserted or deleted, all the SPTs in T are

updated first. Each SPT is updated in the same way as the
update of balls except that the distance from the root is not
limited. Then, for each vertex pair (s, t), the vertex set RTst
is re-computed. If the set of roots Tout(t) is changed after the
update, the vertex set RTst is also significantly changed. In
this case, reduced reachable vertices RTst are computed from
scratch by conducting pruned BFSes again. Otherwise, we
update RTst in a way described below.

Edge Insertion. Assume that an edge (u, v) is inserted
into the graph. Some vertices will be newly added to RTst
because of the appearance of paths passing through the edge
(u, v). These vertices is detected and added to RTst by con-
ducting a pruned BFS from v in the same manner as the
update of balls. In some cases, there exists a vertex w ∈ RTst
satisfying Tout(w) ∩ T out(t) 6= ∅ owing to the change in
Tout(w), i.e., the vertices included in RTst becomes a super
set of the original definition of RTst. However, our reachabil-
ity index still answers the reachability between each vertex
pair correctly.

Edge Deletion. Assume that an edge (u, v) is deleted
from the graph. A vertex w ∈ V may be reached from s
with pruned BFS if Tout(w) ∩ T out(t) = ∅ holds after the
update. Let U1 be the set of such vertices. Let U2 be the
set of vertices whose distance from s increased after the edge

deletion. U2 is obtained in the same way as Step 1 of Al-
gorithm 3. Let U = U1 ∪ U2. For each w ∈ U , it is pushed
into a min-based priority queue in the same way as Step 2
of Algorithm 3. The distance from s to each vertex w ∈ U is
determined through Dijkstra’s algorithm by using the prun-
ing method in pruned BFS. For each vertex v ∈ U , v is
added to RTst if d(s, v) <∞.

Vertex Operations. When adding a vertex, we have
nothing to do. When removing a vertex, we first remove it
from each SPT in T . For each sampled vertex pair (s, t) ∈
S, if Tout(t) is changed after vertex removal, we compute
RTst from scratch. Otherwise, we collect the vertex set U
whose distances from s are changed, and we update RTst as
is done when edges are removed. When some root vertex
ri is removed from a graph, we choose a new root vertex
uniformly at random.

7. EXPERIMENTS
We conducted experiments on many real-world complex

networks. The index size, the performance, and the accu-
racy of our method were compared with other state-of-the-
art algorithms. In this section, we refer to the algorithm
proposed by Bergamini et al. [7] as BMS. Since exact dy-
namic methods [20,22,23,25] require Ω(n2) space and it was
difficult to examine them on large networks, only BMS was
used as our competitor for performance comparison. Unless
otherwise mentioned, our indices are constructed with 1,000
chosen vertex pairs and ten roots of SPTs, that is, M = 1000
and K = 10.

Environment. All the algorithms were implemented with
C++11 and Google Sparse Hash and compiled with gcc 4.8.3
with -O3 option, which will be available from our websites.
All experiments were conducted with a single thread on a
Linux server with Intel Xeon E5-2670 2.60GHz CPU and
512GB memory.

Datasets. All experiments were conducted on real-world
social networks and web graphs that are publicly available.
The information of datasets is shown in Table 1. The av-
erage distance is estimated by 10,000 random vertex pairs.
Five networks twitter-2010, in-2004, indochina-2004, it-2004
and uk-2007 were downloaded from Laboratory for Web Al-
gorithmics [8, 9]. The other networks used in the exper-
iments were downloaded from Stanford Network Analysis
Project [26].

Scenario. We first randomly deleted 200 edges from the
graph. Second, we constructed indices to measure the con-
struction time and data structure size. Then, we inserted
the 200 edges into the graph one by one, and measured the
average edge insertion time. Next, we deleted these edges
from the graph one by one and measured the average edge
deletion time. After that, we added 200 new vertices to the
index constructed from each dataset and measured the aver-
age vertex insertion time. Finally, we deleted 200 randomly
chosen vertices from the graph and measured the average
vertex deletion time. Unless otherwise mentioned, we re-
peated this procedure five times and the average values are
reported.

7.1 Construction Time
Table 2 shows that our index can be efficiently constructed

on all datasets. Since the index construction time is not
strongly affected by the value of the trade-off parameter x,
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Table 1: Information of datasets. The average de-
gree and average distance are denoted by d and D,
respectively.

Dataset Type n m d D

HepPh social(d) 35K 422K 12.2 11.7
Enron social(u) 37K 368K 10.0 4.0
Slashdot0811 social(d) 77K 905K 11.7 4.1
Pokec social(d) 1.6M 31M 18.8 5.3
LiveJournal social(d) 4.8M 69M 14.2 5.9
Orkut social(u) 3.1M 117M 38.1 4.2
twitter-2010 social(d) 42M 1.5B 35.3 4.5
Friendster social(u) 66M 1.8B 27.5 5.0

NotreDame web(d) 326K 1.5M 4.6 11.4
Google web(d) 876K 5.1M 5.8 11.7
BerkStan web(d) 685K 7.6M 11.1 13.7
in-2004 web(d) 1.4M 17M 12.2 15.3
indochina-2004 web(d) 7.4M 194M 26.2 15.7
it-2004 web(d) 41M 1.2B 27.9 15.0
uk-2007 web(d) 106M 3.7B 35.3 15.4

the maximum average construction time among x = 0, 1, 2
is reported.

The index can be constructed in about 40 minutes for
Friendster, which is the largest social networks used in our
experiments. On other networks, our index can be con-
structed in 15 minutes. Thus, the construction time of our
index is highly efficient in comparison with the computation
time of exact betweenness centrality.

7.2 Data Structure Size
The total index size of our method and the average size of

data structures stored to support efficient updates of each
hyperedge are listed in Table 3. We also report the memory
usage for naturally representing each graph, i.e., each edge
appears twice in forward and backward adjacency lists, and
represented by four-byte integers.

As shown in Table 3, we successfully constructed indices
on both billion-scale social networks and web graphs. Espe-
cially on uk-2007, which is the largest network used in our
experiments, the index size becomes smaller than the orig-
inal graph size. In comparison with the index of BMS, our
index is 20 times smaller on all datasets even when x = 0.

We can see that the size of data structures for each sam-
pled vertex pair in our method is several orders of magnitude
smaller than the size of each SPT stored in BMS. This in-
dicates the high scalability of our method with regard to
hyperedges. For example, even if we increase the number of
hyperedges M from 1,000 to 10,000, the index size of our
method on uk-2007 would be smaller than 60 GB. As shown
in Table 3, we can further reduce the data size for each hy-
peredge by increasing the parameter x. Especially on social
networks, it becomes 10 times smaller by increasing x from
zero to two, which have a great impact when M is large.

7.3 Update Time
Average update times for insertions and deletions of edges

and vertices are also listed in Table 2. As shown in the
table, each edge insertion is processed in two milliseconds
on almost all datasets when x = 0. This processing time
is three orders of magnitude faster than full re-computation
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Figure 2: The processing time of batch updates.

time of the index. It can also be seen from Table 2 that
the edge insertion time increases as the parameter x gets
larger. This bears the trade-off of the index size and the
edge insertion time.

The average edge deletion time is less than one millisecond
on all datasets when x = 0. Moreover, when we increase the
parameter x, the edge deletion time becomes even faster.
This is because deleted edges affect balls less often when
the balls are small.

Vertex insertion/deletion times are also shown in Table 2.
Since the update times for vertex insertions and deletions are
not strongly affected by the value of the trade-off parameter
x, the maximum average update time among x = 0, 1, 2 is
reported.

Vertex insertion time ranges from 0.1 milliseconds to 35.0
milliseconds. Vertex deletion time ranges from 0.2 millisec-
onds to 7.3 milliseconds. Although these update times are
slower than edge insertion/deletion times, this performance
is acceptable because the number of vertex operations tends
to be fewer than the number of edge operations.

Batch Update. As BMS can gain update speed by han-
dling multiple edge insertions as a batch, we also evaluated
the insertion time when multiple edges are inserted at once
and handled as batches. In this experiment, our method still
processes each edge insertion one by one. Figure 2 shows the
insertion time per edge for different sizes of batches of mul-
tiple edge insertion. The results of our method with x = 2
are not shown because the processing time is slower than the
single edge update of BMS. The processing time for a single
edge update of our method with x = 0 is at least five times
faster than that of BMS. Even when the size of a batch is
1,024, on social networks, the processing time per edge of
our method is still faster than that of BMS.

7.4 Parameter M and Accuracy
We compared the accuracy of our method and BMS un-

der various number of samples M . We used BMS only since
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Table 2: The timing results of our index on real-world datasets. IT denotes the index construction time. EIx
and EDx denote the average edge insertion/deletion time, respectively, where x is the trade-off parameter.
VI and VD denote the average vertex insertion/deletion time. For IT, VI and VD of our method, maximum
values among x = 0, 1, 2 are reported. DNF means it did not finish in one hour or ran out memory.

Dataset
Ours BMS [7]

IT EI0 EI1 EI2 ED0 ED1 ED2 VI VD IT EI

Slashdot0811 626.4 ms 0.9 ms 6.8 ms 205.5 ms 0.2 ms 0.2 ms 0.1 ms 0.1 ms 0.3 ms 21.8 s 6.1 ms
Pokec 18.8 s 0.4 ms 3.4 ms 82.3 ms 0.2 ms 0.2 ms 0.2 ms 0.7 ms 0.2 ms 810.1 s 7.3 ms
LiveJournal 27.5 s 0.3 ms 3.3 ms 164.4 ms 0.2 ms 0.1 ms 0.1 ms 1.5 ms 0.2 ms 2491.1 s 8.0 ms
Orkut 87.1 s 1.1 ms 22.4 ms 3.3 s 0.5 ms 0.4 ms 0.4 ms 0.9 ms 1.0 ms DNF —
twitter-2010 931.1 s 219.6 ms 1.0 s DNF 0.3 ms 0.2 ms 1.2 ms 14.7 ms 7.3 ms DNF —
Friendster 2211.4 s 0.8 ms 17.6 ms 14.2 s 0.4 ms 0.3 ms 0.3 ms 24.4 ms 1.3 ms DNF —

NotreDame 564.3 ms 0.3 ms 0.9 ms 3.5 ms 0.2 ms 0.2 ms 0.1 ms 0.1 ms 0.5 ms 4.9 s 3.2 ms
Google 3.1 s 0.4 ms 1.4 ms 3.4 ms 0.2 ms 0.2 ms 0.2 ms 0.5 ms 0.2 ms 102.2 s 8.3 ms
BerkStan 4.3 s 0.8 ms 5.2 ms 16.5 ms 0.4 ms 0.3 ms 0.3 ms 0.4 ms 0.4 ms 71.1 s 14.3 ms
in-2004 3.1 s 0.5 ms 3.3 ms 35.7 ms 0.3 ms 0.3 ms 0.2 ms 0.5 ms 0.2 ms 85.8 s 3.9 ms
indochina-2004 23.5 s 0.7 ms 51.7 ms 12.0 s 0.4 ms 0.3 ms 0.3 ms 2.4 ms 0.6 ms 777.2 s 6.3 ms
it-2004 135.6 s 0.9 ms 16.0 ms 346.2 ms 0.5 ms 0.4 ms 0.4 ms 12.9 ms 0.5 ms DNF —
uk-2007 419.6 s 1.7 ms 31.8 ms 1.5 s 0.9 ms 0.8 ms 0.7 ms 35.0 ms 0.6 ms DNF —

Table 3: The index size on real-world datasets. ISx denote the total index size, and HSx denote the data
structure size for each vertex pair, where x is the trade-off parameter. PS denotes the size of each SPT in
BMS [7]. The memory usage for representing each graph is denoted by G.

Dataset
Ours BMS [7]

G
IS0 IS1 IS2 HS0 HS1 HS2 IS PS

Slashdot0811 23.0 MB 20.1 MB 19.9 MB 6.0 KB 3.1 KB 2.9 KB 542.7 MB 541.6 KB 7.2 MB
Pokec 394.6 MB 368.7 MB 362.8 MB 36.0 KB 10.1 KB 4.3 KB 11.4 GB 11.4 MB 245.0 MB
LiveJournal 1.1 GB 1.1 GB 1.1 GB 55.5 KB 14.2 KB 5.6 KB 34.0 GB 33.9 MB 552.0 MB
Orkut 867.3 MB 704.2 MB 683.3 MB 192.6 KB 29.5 KB 8.6 KB — — 937.5 MB
twitter-2010 9.3 GB 9.2 GB 9.2 GB 108.4 KB 22.9 KB 23.5 KB — — 11.7 GB
Friendster 14.7 GB 14.4 GB 14.4 GB 313.5 KB 34.8 KB 14.0 KB — — 14.4 GB

NotreDame 90.4 MB 89.3 MB 88.0 MB 18.9 KB 17.8 KB 16.4 KB 2.3 GB 2.3 MB 12.0 MB
Google 248.8 MB 230.1 MB 213.1 MB 56.5 KB 37.8 KB 20.8 KB 6.1 GB 6.1 MB 40.8 MB
BerkStan 290.9 MB 259.8 MB 229.1 MB 140.5 KB 109.3 KB 78.6 KB 4.8 GB 4.8 MB 60.8 MB
in-2004 514.9 MB 483.5 MB 451.2 MB 211.2 KB 179.9 KB 147.5 KB 9.7 GB 9.7 MB 135.3 MB
indochina-2004 2.2 GB 2.1 GB 1.9 GB 609.6 KB 453.3 KB 312.5 KB 52.0 GB 51.9 MB 1.6 GB
it-2004 10.3 GB 9.8 GB 9.5 GB 1.2 MB 704.4 KB 406.8 KB — — 9.2 GB
uk-2007 26.4 GB 25.5 GB 24.7 GB 3.3 MB 2.4 MB 1.6 MB — — 29.9 GB

other estimation methods are developed for the static set-
ting.

For each number of samples M = 250, 500, 1, 000, 2, 000,
4, 000, 8, 000, 16, 000, we compared the approximate cen-
tralities of vertices with the exact values obtained by Bran-
des’ exact algorithm [10]. Due to the high cost of exact
betweenness centrality computation, the comparisons were
conducted on small networks HepPh and Enron. The max-
imum and average absolute errors of estimated centrality
values were evaluated, where we define the error of an esti-

mated centrality of a vertex v as 1
n2

∣∣C(v)− C̃(v)
∣∣ right after

the index construction in order to compare the accuracy on
networks of varying size. In Figure 3a and Figure 3b, the
averages of these values for ten trials are shown. As shown
in Figure 3a, both methods show better accuracy by increas-
ing the number of samples, as suggested by their theoretical
guarantees. Figure 3a and Figure 3b show that our method
estimates centralities more accurately than BMS does in al-
most all settings, although BMS has better theoretical guar-
antee. It may be because hypergraph sketch uses more infor-
mation for each sampled vertex pair (s, t), i.e., the number
of shortest paths σ(s, v) and σ(v, t) for each v ∈ P (s, t), to
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Figure 3: Betweenness centrality estimation error
1
n2

∣∣C(v)− C̃(v)
∣∣ on small networks.

estimate betweenness centrality.

7.5 Parameter K and Reachability Index
We now show the index size and construction time of our

special-purpose reachability index under various number of
root vertices K. The results show the effectiveness of our
technique in reducing the index size and how many SPTs
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Figure 4: The statistical information of the index for
maintaining the reachability of 1,000 vertex pairs.

are required to sufficiently reduce the index size.

Index Size. The sizes of RTst over 1,000 vertex pairs
were evaluated under various numbers of SPTs up to 20.
The averages over ten trials on directed graphs are shown in
Figure 4a. Sampling ten root vertices seems to be enough
for reducing the number of vertices stored in RTst except for
NotreDame. By sampling ten root vertices, on average,

∣∣RTst∣∣
becomes at least 3,000 times smaller on indochina-2004 and
at least 100,000 times smaller on Google.

Construction Time. The construction time of the index
for maintaining the reachability of 1,000 vertex pairs were
also evaluated. The average construction time over ten trials
are shown in Figure 4b. As the number of SPTs increases,
the construction time at first quickly drops due to the de-
creasing size of RTst, but it gradually increases owing to the
increasing construction time of SPTs.

8. COMPLEXITY ANALYSIS
In this section, we compute the construction time and

space requirement of our data structure. We also roughly
analyze the running time of each update operation. For
the sake of simplicity, we assume that a hash table can be
accessed in a constant time and the size of a hash table is
linear in the number of items stored in it. Although the
analysis below lacks some rigidity for simplicity, it would
explain why our method is efficient on real-world datasets.

8.1 Construction Time and Space Requirement
Before starting analysis, we introduce several notations.

For an integer x, let
∣∣Bx∣∣ be the average size of two balls

for a vertex pair, i.e.,
∑

(s,t)∈S(
∣∣−→B (s, ds)

∣∣ +
∣∣←−B (t, dt)

∣∣)/∣∣S∣∣
under the parameter x that is given when the index is con-
structed, and ‖Bx‖ be the average number of edges incident

to a vertex in
−→
B (s, ds) or

←−
B (t, dt). Let

∣∣RK∣∣ be the average

size of reduced reachable vertices RTst and ‖RK‖ be the av-
erage number of edges incident to RTst when the size of the
set T of SPT pairs is K.

When constructing a TB-index, the bottleneck is perform-
ing M bidirectional BFSes to compute the distance between
each vertex pair and obtaining two balls, and its running
time is O(M‖B0‖). When constructing our special-purpose
reachability index, we need to perform 2K BFSes to ob-
tain the set of K pairs of SPTs and M pruned BFSes to
compute the reduced reachable vertices for each vertex pair,
and its running time is O(Km+M‖RK‖). Thus, the overall
construction time is O(M(‖B0‖ + ‖RK‖) + Km). We note

Table 4: Running time of each update operation.

Vertex
Addition O(M +K)

Removal O((M +K)TD)

Edge
Insertion O(MEx + (M +K)TEI)

Deletion O((M +K)TD)

that ‖Bx‖ and ‖RK‖ were at most 0.02m on million-node
networks in our experiments.

Since we need O(M
∣∣Bx∣∣), O(Kn), O(M

∣∣RK∣∣), and O(n)
space to store balls, SPTs, the set of reduced reachable ver-
tices, and the centrality values of vertices and other vari-
ables, respectively, the overall space requirement of our data
structure is O(M(

∣∣Bx∣∣ +
∣∣RK∣∣) + Kn).

∣∣Bx∣∣ and
∣∣RK∣∣ are

much smaller than n in practice; They were at most 0.01n on
million-node networks in our experiments. The space com-
plexity of our data structure becomes significantly smaller
in comparison with the algorithm proposed by Bergamini et
al. [7], which stores M SPTs.

8.2 Updating Time
In our data structure, we store 2M SPTs in the TB-index,

2K SPTs in the reachability index, and M SPTs for reduced
reachable vertices. Updating these SPTs is the bottleneck
of our update procedures. Hence, we first consider the time
complexity of updating SPTs.

Let C be the set of vertices whose distances from the root
of an SPT are modified by the update operation, ‖C‖ be
the number of edges incident to C, and D be the average
number of vertices whose distance from v ∈ C is less than
or equal to two, i.e.,

∑
v∈C

∣∣{w | d(v, w) ≤ 2}
∣∣/∣∣C∣∣. When

adding a vertex, we only have to allocate a new space for
the newly added vertex. When inserting an edge, we only
need to look at neighbors of vertices whose distances from
the root decreased. When removing a vertex or an edge,
we need O(D

∣∣C∣∣) time to compute the vertex set C, and
O(‖C‖ log ‖C‖) time to update the distance from the root
to each vertex in C. Hence, the time complexity of ver-
tex addition, edge insertion, and vertex/edge deletion are
O(1), TEI := O(‖C‖), and TD := O(D

∣∣C∣∣ + ‖C‖ log ‖C‖),
respectively. We remark that C is much smaller than V in
practice; The average of

∣∣C∣∣ on million-node networks was
at most 40 when removing a vertex from an SPT on the
whole graph and at most four in other cases.

Now we show the running time of each update operation
in Table 4. Except vertex addition, the bottleneck of the
update procedure is updating SPTs, and the time complex-
ity of each operation is O((M +K)TD). Precisely speaking,
we may replace several vertex pairs when processing vertex
operations, but we ignore its time complexity in our analy-
sis because the probability of occurring such a replacement
is only O( 1

n
). When inserting an edge, we have to check

whether new shortest paths are formed. Due to the small
size of balls, the probability that a randomly inserted edge
has an endpoint in a ball is quite small, and we only con-
sider the case that the inserted edge has no endpoint in a
ball. Thus, when an edge is inserted, O(MEx) additional
time is required to traverse a graph from this edge, where
Ex is the number of vertices whose distances from endpoints
of the inserted edge are less than or equals to x.
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9. CONCLUSION
In this paper, we present the first approximate between-

ness centrality algorithm for fully dynamic networks. Our
TB-index efficiently detects the change of shortest paths be-
tween vertex pairs and updates approximate betweenness
centralities of vertices after each update. The size of the TB-
index is maintained small enough to handle large scale com-
plex networks. We also proposed a fully dynamic special-
purpose reachability index for maintaining the reachability
of some fixed vertex pairs in order to further improve the
performance of the TB-index on directed graphs. The set of
SPTs rooted at vertices in the core substantially reduces the
number of vertices maintained in our reachability index. Ex-
perimental results showed the TB-index is compact enough
to handle dynamic updates on very large complex networks
with tens of thousands of vertices and over one billion edges
in memory. Moreover, each update after edge insertion and
edge deletion can be processed in several milliseconds.
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