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ABSTRACT
We study the problem of introducing errors into clean data-
bases for the purpose of benchmarking data-cleaning algo-
rithms. Our goal is to provide users with the highest possible
level of control over the error-generation process, and at the
same time develop solutions that scale to large databases.
We show in the paper that the error-generation problem is
surprisingly challenging, and in fact, NP-complete. To pro-
vide a scalable solution, we develop a correct and efficient
greedy algorithm that sacrifices completeness, but succeeds
under very reasonable assumptions. To scale to millions of
tuples, the algorithm relies on several non-trivial optimiza-
tions, including a new symmetry property of data quality
constraints. The trade-off between control and scalability is
the main technical contribution of the paper.

1. INTRODUCTION
We consider the problem of empirically evaluating data-

cleaning algorithms. Currently, there are no openly-available
tools for systematically generating data exhibiting different
types and degrees of quality errors. This is in contrast to re-
lated fields, for example, entity resolution, where well-known
datasets and generators of duplicated data exist and can be
used to assess the performance of algorithms.

We allow the user to control of the data distribution by
providing a clean database (DB) into which our error gen-
erator, Bart1, introduces errors. Bart supports different
kinds of random errors (including typos, duplicated values,
outliers and missing/bogus values). Our main technical in-
novation, however, is related to the problem of generating
errors in the presence of data quality rules. Bart permits
a user to specify a set of data quality rules in the powerful
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language of denial constraints [21]. Denial constraints (DC)
are a rule-language that can express many data quality rules
including functional dependencies (FD), conditional func-
tional dependencies (CFD) [7], cleaning equality-generating
dependencies [16], and fixing rules [24]. In addition, Bart
permits a user to declare parts of a database as immutable,
and hence we can express editing rules [14] that use master
data to determine a repair.

Bart provides the highest possible level of control over
the error-generation process, allowing users to choose, for
example, the percentage of errors, whether they want a guar-
antee that errors are detectable using the given constraints,
and even provides an estimate of how hard it will be to re-
store the database to its original clean state (a property we
call repairability). This control is the main innovation of the
generator and distinguishes it from previous error generators
that control mainly for data size and amount of error. Bart
permits innovative evaluations of cleaning algorithms that
reveal new insights on their (relative) performance when ex-
ecuted over errors with differing degrees of repairability.

Solving this problem proves surprisingly challenging, for
two main reasons. First, we introduce two different vari-
ants of the error-generation problem, and show that they
are both NP-complete. To provide a scalable solution, we
concentrate on a polynomial-time algorithm that is correct,
but not complete. Even so, achieving the desired level of
scalability remains challenging. In fact, we show that there
is a duality between the problem of injecting detectable er-
rors in clean data, and the problem of detecting violations
to database constraints in dirty data, a task that is notori-
ously expensive from the computational viewpoint. Finding
the right trade-off between control over errors and scalability
is the main technical problem tackled in this paper.

Example 1: [Motivating Example] Consider a database
schema composed of two relations Emp and MD and the data
shown in Figure 1. Suppose we are given a single data qual-
ity rule (a functional dependency) d1 : Emp : Name→ Dept.

We can introduce errors into this database in many ways.
An example error is to change the Salary value of tuple t4
to “3000”. This change (ch0) creates an error that is not
detectable using the given data quality rule d1. On the
contrary, a second change (ch1) that changes the Name value
of tuple t2 to “John” introduces a detectable error since this
change causes tuples t1 and t2 to agree on employee names,
but not on department values. Of course, if other errors
are introduced into the DB (for example, t1.Dept is changed
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Emp Name Dept Salary Mng
t1 : John Staff 1000 Mark
t2 : Paul Sales 1300 Frank
t3 : Jim Staff 1000 Carl
t4 : Frank Mktg 1500 Jack

MD Name Dept Mng
tm1 : John Staff Mark
tm2 : Frank Mktg Jack

Figure 1: Example Clean Database

to “Sales”), then ch1 may no longer be detectable. Bart
permits the user to control not only the number of errors,
but also how many errors are detectable and whether they
are detectable by a single rule or many rules.

We not only strive to introduce detectable errors into I ,
we also want to estimate how hard it would be to restore
I to its original, clean state. Consider the detectable error
introduced by ch1. This change removed the value Paul
from the DB. Most repair algorithms for categorical values
will use evidence in the DB to suggest repairs. If Paul is not
in the active domain, then changing t2.Name to Paul may
not be considered as a repair. Bart lets the user control
the repairability of errors by estimating how hard it would
be to repair an error to its original value. 2

Error-Generation Tasks. We formalize the problem of
error generation using the notion of an error-generation task,
E, that is composed of four key elements: (i) a database
schema S, (ii) a set Σ of denial constraints (DCs) encoding
data quality rules over S, (iii) a DB I of S that is clean with
respect to Σ, and (iv) a set of configuration parameters Conf
to control the error-generation process. These parameters
specify, among other things, which relations are immutable,
how many errors should be introduced, and how many of
these errors should be detectable. They also let the user
control the degree of repairability of the errors.

We concentrate on a specific update model, one in which
the database is only changed by updating attribute values,
rather than through insertions or deletions. This update
model covers the vast majority of algorithms that have been
proposed in the recent literature [3, 5, 6, 8, 14, 16, 20, 24,
25]. And importantly, it suggests a simple, flexible and scal-
able measure to assess the quality of repairs, a fundamental
goal of our work, as we shall discuss in Section 7.

Contributions. Our main contributions are the following.

(i) We present the first framework for generating random
and data-cleaning errors with fine-grained control over error
characteristics. We allow users to inject a fixed number of
detectable errors into a clean DB and to control repairability.

(ii) We introduce a new computational framework based
on violation-generation queries for finding candidate cells
(tuple, attribute pairs) into which detectable errors can be
introduced. We study when these queries can be answered
efficiently, and show that determining if detectable errors
can be introduced is computationally hard.

(iii) We introduce several novel optimizations for violation-
generation queries. We show that extracting tuple sam-
ples, along with computing cross-products and joins in main
memory, brings considerable benefits in terms of scalabil-
ity. We also identify a fragment of DCs called symmetric
constraints that considerably extend previous fragments for
which scalable detection techniques have been studied. We
develop new algorithms for detecting and generating errors
with symmetric constraints, and show that these algorithms

have significantly better performance than the ones based on
joins. Finally, we discuss the benefits of these optimizations
when reasoning about error detectability and repairability.

(iv) We present a comprehensive empirical evaluation of our
error generator to test its scalability. Our experiments show
that the error-generation engine takes less than a few min-
utes to complete tasks that require the execution of dozens
of queries, even on DBs of millions of tuples. In addition, we
discuss the relative influence of the various activities related
to error generation, namely identifying changes, applying
changes to the DB, checking detectability and repairability.

(v) The generator provides an important service for data-
cleaning researchers and practitioners, enabling them to more
easily do robust evaluations of algorithms, and compare so-
lutions on a level playing field. To demonstrate this, we
present an empirical comparison of several data-repairing
algorithms over Bart data. We show novel insights into
these algorithms, their features and relative performance
that could not have been shown with existing generators.

Our error generator is open source and publicly available
(db.unibas.it/projects/bart). We believe the system will
raise the bar for evaluation standards in data cleaning.

The problem of error generation has points of contact with
other topics in database research, such as the view-update
problem [2], the problems of missing answers [19] and why-
not provenance [18], and database testing [4]. However, our
new algorithms and optimizations - specifically designed for
the error-generation problem - are what allows us to scale to
large error-generation tasks. These techniques have not pre-
viously been identified and will certainly have applicability
to any of the related areas.

Organization of the Paper. We introduce notation and
definitions in Sections 2 and 3. Section 4 formalizes the
error-generation problem. Section 5 presents the violation-
generation algorithm, followed by a number of important
optimizations in Section 6. Use cases of the system are pre-
sented in Section 7. We empirically evaluate our techniques
in Sections 8 and 9, and discuss related work in Section 10.
We conclude in Section 11.

2. CONSTRAINTS AND VIOLATIONS
We assume the standard definition of a relational database

schema S, instance I , and tuple t. In addition, we assume
the presence of unique tuple identifiers in an instance. That
is, tid denotes the tuple with identifier (id) “id ” in I. A cell
in I is a tuple element specified by a tuple id and attribute
pair 〈tid, Ai〉. The value of a cell 〈tid, Ai〉 in I is the value of
attribute Ai in tuple tid. As an alternative notation we use
tid.Ai for a cell 〈tid, Ai〉. A relational atom over a schema S
is a formula of the form R(x̄) where R ∈ S and x̄ is a tuple
of (not necessarily distinct) variables. A comparison atom
is a formula of the form v1 op v2, where v1 is a variable and
v2 is either a variable or a constant, and op is one of the
following comparison operators: =, 6=, >,<,≤,≥.

We use the language of denial constraints (DCs) [21] to
specify cleaning rules. We introduce a normal form for DCs:

Definition 1: Denial Constraint – A denial constraint (DC)
in normal form over schema S is a formula of the form

∀ x̄1, . . . , x̄n : ¬(R1(x̄1), . . . , Rn(x̄n),

m∧
i=1

(vi1 op v
i
2))

such that (i) R1(x̄1), . . . , Rn(x̄n) are relational atoms, where
variables are not reused within or between atoms, and (ii)
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∧m
i=1(vi1 op v

i
2) is a conjunction of comparison atoms, each

of the form xk opxl or xk op c, where c ∈ Consts. 2

Example 2: Continuing with Example 1, we introduce the
following sample declarative constraints.
(i) We already discussed FD d1 : Emp : Name→ Dept.
(ii) The FD Name→ Mng holds over table Emp, but only for
those employees in “Sales”. We specify this as a conditional
FD (CFD) d2 : Emp : Dept[“Sales”],Name→ Mng.
(iii) A standardization rule over table Emp states that all
employees working in department “Staff” must have a salary
of one-thousand dollars. We model this using a (single-
tuple) CFD d3 : Emp : Dept[“Staff”]→ Sal[“1000”].
(iv) An editing rule [14] d4 prescribes how to repair incon-
sistencies over Emp based on master-data from MD: “when
Emp and MD agree on Name and Dept, change Emp.Mng to
the value taken from MD.Mng”. This rule requires that MD

can not be changed (the MD table is immutable).
(v) Finally, we consider an ordering constraint d5 stating
that any manager should have a salary that is not lower
than the salaries of his or her employees.

Next we encode our sample constraints d1–d5 as a set of
DCs (universal quantifiers are omitted).

dc1 : ¬(Emp(n, d, s,m), Emp(n’, d’, s’,m’), n = n’, d 6= d’)
dc2 : ¬(Emp(n, d, s,m), Emp(n’, d’, s’,m’), n = n’, d = d’,

d = “Sales”,m 6= m’)
dc3 : ¬(Emp(n, d, s,m), d = “Staff”, s 6= “1000”)
dc4 : ¬(Emp(n, d, s,m),MD(n’, d’,m’), n = n’, d = d’,m 6= m’)
dc5 : ¬(Emp(n, d, s,m), Emp(n’, d’, s’,m’),m = n’, s’ < s) 2

To formalize the semantics of a DC, we introduce the no-
tion of an assignment to the variables of a logical formula
ϕ(x̄). DCs in normal form have the nice property that each
variable has a unique occurrence within a relational atom.
We can therefore define an assignment as a mapping m of
the variables x̄ to the cells of I . We formalize the notion of
a violation for a constraint using assignments.

Definition 2: Violation – Given a constraint dc : ∀ x̄ :
¬(φ(x̄)) over schema S, and an instance I of S. We say that
dc is violated in I if there exists an assignment m such that
I |= φ(m(x̄)). For a set Σ of DCs, I |= Σ if none of the
constraints in Σ is violated in I . 2

Consider constraint dc1 in Example 2. Assume two tu-
ples are present in the instance of Emp: t1 = Emp(John,
Staff, 1000,Mark), t6 = Emp(John, Sales, 1000,Mark). These tu-
ples are a violation of dc1 according to assignment m that
maps variables to cells and atoms to tuples as follows (we
omit s, s’, m, m’):

m(n) = t1.Name m(d) = t1.Dept m(Emp(n, d, s,m)) = t1
m(n’) = t6.Name m(d’) = t6.Dept m(Emp(n’, d’, s’,m’)) = t6

To determine if a constraint is violated, we must examine
values assigned to variables used in comparison atoms. To
emphasize this, we call the context variables of a constraint
dc in normal form those variables that appear in compar-
ison atoms (in our example, {n, n’, d, d’}). A context for a
violation is the set of cells associated with context variables
(in our example, {t1.Name, t1.Dept, t6.Name, t6.Dept}).
Definition 3: Violation Context – Given a constraint dc :
∀ x̄ : ¬(φ(x̄)) over schema S in normal form, and an instance
I of S, assume I contains a violation of dc according to
assignment m. The violation context for dc and m, denoted
by vio-contextdc(m), is the set of cells that are the image
according to m of the context variables of dc. 2

3. PROPERTIES OF ERRORS
Our primary concern is to provide users with fine-grained

control over the error-generation process. To do so, we con-
centrate on two important properties of the changes we make
to the clean instance, namely detectability and repairability.

Detectability. We define precisely when a cell change ch
introduces an error that is detectable using Σ. We say that
cell ti.A is involved in a violation with dc in instance I if
there exists an assignment m such that I violates dc accord-
ing to m, and ti.A ∈ vio-contextdc(m).

Definition 4: Detectable Errors – Consider a set of cell
changes Ch to instance I that yield a new instance Id =
Ch(I ). We say that a cell change ch = 〈ti.A := v〉 in Ch
introduces a detectable error for constraint dc if: (i) cell
ti.A is involved in a violation with dc in instance Id and (ii)
cell ti.A was not involved in a violation with dc in instance
I ′ = Ch′(I), where Ch′ = Ch− {ch}. 2

The cell-change ch1 = 〈t2.Name := “John”〉 from Exam-
ple 1 introduces a detectable error for dc1. Notice that
it does not introduce any violation to dc2-dc5. Hence, we
say that ch1 is detectable by exactly-one constraint in Σ =
{dc1, ...dc5}. This is not always the case. For example, the
change ch2 = 〈t4.Mgr = “John”〉 is detectable using both dc5
(managers must have a greater salaries than their employ-
ees), and dc4 (employees present in the master-data table,
must have the manager indicated by the master data). We
say that ch2 is at-least-one detectable, or simply detectable.

Reasoning about detectability is important. There are
repair algorithms [8, 20] that exploit simultaneous violations
to multiple constraints to select among repairs. Given a
set of constraints Σ, we want our error-generation method
to control the detectability of errors, and whether they are
exactly-one or at-least-one detectable.

Repairability. The notion of repairability provides an es-
timate of how hard it is to restore a DB with errors to its
original, clean state. It is clear that such an estimate de-
pends on the actual algorithm used to repair the data. To
propose a practical notion, we concentrate on a specific class
of repair algorithms. First, we restrict our attention to re-
pair algorithms that use value modification, i.e., they fix
violations by modifying one or more values in the dirty DB.
Second, we assume that these algorithms rely on a mini-
mality principle, according to which repairs that minimally
modify the given DB are to be preferred. We notice that
the vast majority of algorithms in the recent literature [3, 5,
6, 8, 14, 16, 20, 21, 24] fall in this category.

Consider again Example 1, and assume instance Id only
has the following tuples t10-t14:

t10 : Emp(John, Staff, . . .) t11 : Emp(John, Sales, . . .)
t12 : Emp(John, Sales, . . .) t13 : Emp(John,Mktg, . . .)
t14 : Emp(John,Mktg, . . .)

there are eight violation contexts for constraint dc1, each
one using two tuples with equal name and different depart-
ment. However, an algorithm that is inspired by the prin-
ciple of minimal repairs would be primarily interested in
knowing that these 8 contexts reduce to a group of 10 cells
(the name and dept cells of tuples 10-14). Variants of this
notion, initially called equivalence class [6], have been for-
malized under the names of homomorphism class [16] and
repair context [8]. We call this a context equivalence class.
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Definition 5: Context Equivalence Class – Given a con-
straint dc over schema S in normal form, and an instance I
of S, we say that two cells of I share a context if they share
a violation context for dc and I . A context equivalence class
E for dc and I is an equivalence class of cells induced by the
transitive closure of the relation “share a context”. 2

It is natural to reason about the repairability of a vio-
lation based on its context equivalence class. To formal-
ize the notion of repairability, we start from a cell change
ch = 〈t.A := vd〉 introducing a detectable error to dc. We
assume we have identified the context equivalence class E
for cell t.A and dc. From this, we derive a bag of candi-
date values, denoted by candidate-values(t.A, E , dc). Then,
we define the repairability as the probability of restoring t.A
to its original value by uniformly at random picking a value
from candidate-values(t.A, E , dc):
Definition 6: Repairable Error and Repairability – Given a
cell change ch = 〈t.A := vd〉 that changes the cell t.A in I
from a value vc to vd and assume t.A belongs to a violation
context for constraint dc, call E the context equivalence class
of cell t.A and dc. Let V = candidate-values(t.A, E , dc) be
the bag of candidate repair values from E for t.A and dc.
We say ch is a repairable error if vc ∈ V. The repairability
of ch is computed by dividing the number of occurrences of
vc in V by the size of V. 2

The definition of function candidate-values(t.A, E , dc) is
elaborate but quite standard in data repairing. For the sake
of readability, we introduce it by means of examples.

(i) Consider our sample equivalence class for tuples t10-t14.
For FD dc1 in Example 2 and change t11.Dept from “Sales”
to “Staff”, we select all values from cells of the Dept attribute
in the equivalence class: {Staff, Staff, Sales,Mktg,Mktg}. The
error is repairable, and the repairability is 1/5 = 0.2.

(ii) For a CFD, like dc3 in Example 2 (employees of the
staff department need to have salaries of $1000), and change
t1.Salary from 1000 to 2000, the only candidate value is dic-
tated by the constant, and is exactly 1000. Therefore, the
repairability is 1. This is similar to fixing rules. Editing
rules like dc4 in Example 2 use master-data tuples, i.e., im-
mutable cells, and are treated accordingly: candidate values
are taken from the master-data cells only.

(iii) Finally, consider ordering constraints like dc5 in Exam-
ple 2 (managers have higher salaries than their employees).
Assume we change Paul’s salary to 2000 in t2 to make it
higher than his manager’s salary. It is easy to see that there
are infinite real values that can be used to repair the viola-
tion. In this case, the repairability is 0.

Notice that a change may be detectable by several con-
straints, and thus have different repairability values. In this
case, we consider the maximum of these values.

4. FORMALIZATION OF THE PROBLEM
Recall that, given an instance I of S and a set Σ of DCs, to

detect violations we find assignments that generate violation
contexts. This can be done by running a violation-detection
query for dc and I . Recall that id is an attribute storing
the tuple id of a relation. For a constraint dc with multiple
relation atoms, we abuse notation by using īd in queries
to denote a vector of variables bound to all tuple ids from
these atoms. Given a DC of the form dc : ¬(φ(īd, x̄)), we

denote the context variables (i.e., variables that appear in a
comparison atom) of dc by x̄c, and the rest by x̄nc.

Definition 7: Vio-Detection Query – The violation-detection
(vio-detection) query for dc is a conjunctive query with free
variables īd, x̄c of the form: DQdc(īd, x̄c) = φ(īd, x̄c, x̄nc). 2

Consider our example dc1, its vio-detection query is the
following (notice how we add the predicate id < id’ to avoid
returning every pair of tuples twice):

DQdc1(id, id’, n, n’, d, d’) = Emp(id, n, d, s,m),
Emp(id’, n’, d’, s’,m’), n = n’, d 6= d’, id < id’

Injecting detectable errors into a clean DB requires the
identification of cells that can be changed in order to trigger
violations. To find cells with this property, we notice that
each comparison in the normal form of a DC suggests a
different strategy to generate errors.

Consider dc1 : ¬(Emp(n, d, s,m), Emp(n’, d’, s’,m’), n = n’, d 6=
d’) stating that there cannot exist two employees with equal
names and different departments. Given a clean DB, there
are two ways to change it to violate this constraint.

(i) Enforce the inequality : we may find tuples with equal
names, and equal departments (n = n’, d = d’), and change
one of the departments in such a way that they become
different (d becomes different from d’).

(ii) Enforce the equality : we may find tuples with different
names, and different departments (n 6= n’, d 6= d’) and change
one of the names in such a way that n becomes equal to n’.

Based on this intuition, we introduce the notion of a
violation-generation query (vio-gen query in the following).
These queries are obtained from a violation-detection query
for a DC by negating one of the comparisons.

Definition 8: Vio-Gen Queries – Given a constraint dc in
normal form, consider its vio-detection query, DQdc. A vio-
gen query GQdc,i for dc is obtained from DQdc by changing
a comparison atom of the form vi1 op v

i
2 into its negation,

¬(vi1 op v
i
2). The latter is called a target comparison. 2

In our example, we have two vio-gen queries, as follows
(target comparisons are enclosed in brackets):

GQdc1,1(id, id’, n, n’, d, d’) = Emp(id, n, d, s,m),
Emp(id’, n’, d’, s’,m’), n = n’, (d = d’), id < id’

GQdc1,2(id, id’, n, n’, d, d’) = Emp(id, n, d, s,m),
Emp(id’, n’, d’, s’,m’), (n 6= n’), d 6= d’, id < id’

Definition 9: Vio-Gen Cell – Given an instance I , a vio-
gen cell for vio-gen query GQdc,i is a cell in the result of
GQdc,i over I that is associated with a variable in the target
comparison of GQdc,i. 2

Consider our DB in Example 1. The two vio-gen queries
for dc1 identify cells t4.Dept and t1.Name that can be used
to inject errors, as follows:

GQdc1,1result change after change
t4 :Emp(Frank,Mktg, . . .) t4.Dept t4 :Emp(Frank, xxx, . . .)
t5 :Emp(Frank,Mktg, . . .) := “xxx” t5 :Emp(Frank,Mktg, . . .)

GQdc1,2result change after change
t1 :Emp(John,Staff, . . .) t1.Name t1 :Emp(Paul,Staff, . . .)
t2 :Emp(Paul,Sales, . . .) := “Paul” t2 :Emp(Paul,Sales, . . .)

Query GQdc1,1 identifies cells t4.Dept = t5.Dept = “Mktg”.
By making these cells different, we are guaranteed to intro-
duce a violation (the tuples have equal names). Similarly,
query GQdc1,2 captures the fact that we can introduce a
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detectable violation by equating cells t1.Name = “John”,
t3.Name = “Paul” (since they have different departments).

A few remarks are in order. Vio-gen queries also identify
a context for each vio-gen cell, i.e., a set of cells that are the
image of variables in comparison atoms. For example, the
context of cell t4.Dept is composed of cells {t4.Dept, t4.Name,
t5.Dept, t5.Name}. After we have identified a vio-gen cell,
then we need to identify an appropriate value to generate
the actual cell change and update the DB. Together, a vio-
gen cell and a context determine which values can be used to
update the cell. We need to keep track of contexts to avoid
new changes that are accidentally repairing other violations.
These aspects will be discussed in the next section.

We now define the error-generation problem for an error-
generation task E = 〈S,Σ, I ,Conf〉. For each constraint
dc ∈ Σ, a parameter ε(dc) in Conf determines the number
of detectable errors that should be introduced in I .

Definition 10: Error-Generation Problem – Given an error-
generation task E = 〈S,Σ, I ,Conf〉, find ε(dc) at-least-one
(resp. exactly-one) detectable errors in I for each dc ∈ Σ. 2

It turns out that both variants of the error-generation
problem are NP-complete.

Theorem 1: The exactly-one and at-least-one error-gen-
eration problems for a task E are NP-complete.

Before we present algorithms and optimizations to solve
the error-generation problem, we observe that the vio-gen
queries for a constraint dc are nothing else than vio-detection
queries for DCs that can be considered as being “dual” to dc.
Consider constraint dc1. The two vio-gen queries correspond
to the detection queries of constraints dc11, dc

2
1:

dc1 : ¬(Emp(n, d, s,m), Emp(n’, d’, s’,m’), n = n’, d 6= d’)
dc11 : ¬(Emp(n, d, s,m), Emp(n’, d’, s’,m’), n = n’, d = d’)
dc21 : ¬(Emp(n, d, s,m), Emp(n’, d’, s’,m’), n 6= n’, d 6= d’)

Since DCs are closed with respect to the negation of com-
parison atoms, this is a general property: any vio-gen query
for constraint dc coincides with the vio-detection query of a
constraint dc′. This highlights the duality between queries
for injecting new errors and those for detecting errors.

5. THE VIO-GEN ALGORITHM
We now develop a vio-gen algorithm to solve the error-

generation problem. To efficiently generate large erroneous
datasets, we aim for a solution that is in PTIME and scales
to large databases. Our algorithm is a correct, but not com-
plete, solution for the at-least-one error-generation problem.
When it succeeds, it returns a solution to the input task.

We use vio-gen queries to identify cells to change; also, we
avoid interactions between cell changes by enforcing that two
cell changes cannot share a context. Thus, our algorithm
may fail to find a solution if there is no solution without
shared contexts. However, as long as there are sufficient
vio-gen cells and non-overlapping contexts available, our al-
gorithm will succeed. Intuitively, whether this is the case
depends mainly on the requested error ratios (and to a lesser
extent on the constraints); in practice, ratios are typically
∼1%-10% of the DB size, and therefore the probability of
success is very high. The main tasks are as follows.

Task 1: Finding Vio-Gen Cells and Contexts. Given
dc and I , we generate the vio-gen queries for dc. Then, we

execute each vio-gen query over I to identify a set of vio-gen
cells (possibly all), and the associated violation contexts.

Task 2: Value Whitelists and Blacklists. For a vio-gen
cell and one of its contexts, we need to find a set of values
that would inject errors into the cell. That is, our algorithm
first determines the context and then determines the actual
changes that are admissible in this context. Here we make
use of a value whitelist (candidate values) and value blacklist
(values that cannot be used). Admissible values for a cell
are obtained by the set difference between the cell’s whitelist
and blacklist. These depend on the constraint, the context,
and the target comparison. In our previous examples:

(i) The target comparison of query GQdc1,1 is an equality
(d = d′), and we want to generate changes that falsify the
equality; therefore, once we have identified cell t4.Dept and
its value, “Mktg”, the whitelist contains any string – denoted
by “*” – and the blacklist is the single value {“Mktg”}.
(ii) The target comparison of query GQdc1,2 is a not-equal
(n 6= n′), and our changes should falsify it; therefore, once
we have identified cell t1.Name with value “John”, and the
value “Paul” in another cell t2.Name which shares a violation
context with t1.Name, the whitelist for cell t1.Name contains
{“Paul”}, the blacklist contains the original value {“John”}.

The process of identifying values to change vio-gen cells
has some additional subtleties. Consider query GQdc2,3 for
constraint dc2 in our running example:

GQdc2,3(id, id’, . . .) = Emp(id, n, d, s,m), Emp(id’, n’, d’, s’,m’),
n = n’, (d 6= d’), d = “Sales”,m 6= m’

Here, the value of variable d in the target comparison is con-
strained to be “Sales”. As a consequence, we cannot change
its value. This general rule is necessary for detectability:
any change we make to the DB for a vio-gen query must
break the target comparison but preserve all other compar-
isons within the query. Therefore, we can only change the
value of d′ and make it equal to “Sales”, that is, the whitelist
of vio-gen cells for d′ will only contain that value.

Overall, we determine valid values for vio-gen cells by
computing equivalence classes based on equality compar-
isons and use an interval algebra for ordering constraints.

Task 3: Handling Interactions. The purpose of this
step is to avoid possible interference among different changes
to the DB. To see the problem, following our discussion of
dc1, suppose vio-gen query GQdc1,1 suggests a change to cell
t4.Dept to make it equal to “xxx”. Assume after that query
GQdc1,2 suggests a change to the Name cell of the same tuple,
to make it equal to “Paul”. If we apply both changes to the
DB, we get the following instance:

clean DB change after changes
t4 :Emp(Frank,Mktg, . . .) t4.Dept t4 :Emp(Paul, xxx, . . .)
t5 :Emp(Frank,Mktg, . . .) := “xxx” t5 :Emp(Frank,Mktg, . . .)

t4.Name
:= “Paul”

It is easy to see that the instance obtained after these two
changes is not dirty for dc1, since the second change is re-
moving the detectable error introduced by the first one.

Our algorithm, while generating changes also stores their
violation contexts in main memory. We discard a candidate
change that may remove violations introduced by previous
changes. More precisely, a vio-gen cell is changed only if:
(i) the cell itself does not belong to the context of any other
previous change; (ii) none of the cells in its context have
been changed by previous changes.
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Task 4: Generating Random Changes. Bart gener-
ates the desired percentage of detectable errors for a con-
straint and an attribute in the task configuration. Recall
that error-percentages are expressed wrt the size of the DB
table, e.g., 1% of errors in the cells of attribute A in a table
R of 100K tuples corresponds to 1000 errors.

A crucial requirement is that, during this process, vio-gen
cells that may be needed later on are not discarded. In fact,
we do not know if the clean DB contains a sufficient number
of non-interacting vio-gen cells. Suppose we ask for 1000
errors for an attribute, but there are fewer vio-gen cells. In
this case, Bart will generate as many changes as possible,
and log a warning about the impossibility of meeting the
configuration parameter. To handle this, we resorted to a
main-memory sampling algorithm. The algorithm works as
follows. Assume we want to generate n changes for vio-gen
query GQ and attribute R.A:

(i) Before executingGQ, we select a random probability pGQ

within a range that can be configured by the user (usually
10% to 50%), and a random offset oGQ, again randomly
generated in a range from 1% to 10% of the size of R; these
parameters will be used to sample cells at query execution.

(ii) Then, we execute the GQ, and scan its result set; for
each tuple t, we extract the vio-gen cell and vio-gen context,
and check if it overlaps with the ones generated so far; in
this case, we discard the tuple; otherwise, we consider the
tuple as a candidate to generate a detectable change.

(iii) A candidate tuple can be either processed or skipped;
notice however that tuples that are skipped are not lost, but
rather stored in a queue of candidate tuples, in case we need
them later on; first, we skip the first oGQ tuples that would
generate valid vio-gen contexts; after this, for each candidate
tuple we draw a random number random(t): we process the
tuple and generate a new change whenever random(t) <
pGQ; otherwise, we store the tuple in the candidate queue.

(iv) The process stops as soon as we have generated n changes;
if, however, no more tuples are available in the query result
before this happens, then we go back to the queue of candi-
date tuples, and iterate the process.

We now state a correctness result. The proof and pseudo-
code for the algorithm are in our technical report [1].

Theorem 2: Given an error-generation task E = 〈S,Σ, I ,
Conf〉, call Ch the output of the vio-gen algorithm over E.
If the algorithm succeeds, then Ch is an at-least-one solution
for task E.

The cost of our vio-gen algorithm is dominated by query
execution. It is in PTIME in the instance size and the num-
ber of constraints and is NP-hard in the size of constraints.

Theorem 3: Let E = 〈S,Σ, I ,Conf〉 be an error-generation
task. The vio-gen algorithm runs in PTIME in ‖I‖ and ‖Σ‖
and is NP-hard in the maximal size (number of atoms) of
constraints in Σ.

Note that this is the worst-case complexity of the algo-
rithm. As we show in Section 8, the algorithm performs very
well in practice, because using sampling we seldom have to
fully evaluate a vio-gen query and the size of constraints is
typically limited to a few relational atoms.

Task 5: Checking Detectability and Repairability.
Theorem 2 guarantees that the vio-gen algorithm generates
detectable changes. Our algorithm only guarantees at-least-
one detectability, but may generate changes that violate

multiple constraints. If requested by a user, the system will
compute how many constraints are violated by a change.
This can be used to output exactly-one detectable changes.
In addition, it may also compute repairability and filter so-
lutions to guarantee a level of repairability if specified in the
task configuration (Definition 6). This is done as follows.
(i) After changes have been generated and applied to yield
the dirty DB Id, we run the detection query on Id for each
constraint dc in Σ to find all violation contexts for dc and Id;
recall that this task is essentially the same as Task 1 (vio-gen
queries and vio-detection queries are structurally identical);
we keep counters for each cell change to know how many
violation contexts the cell change occurs in, and how many
constraints it violates; notice that the size of the final set
of exactly-one changes is typically lower than the original
number of at-least-one detectable changes. Therefore, in
some cases the system may need to generate a larger number
of changes in order to output a desired number of exactly-
one detectable changes, as discussed in Section 8.
(ii) We compute repairability based on the context equiva-
lence classes (optimizations are discussed in Section 6.2).

6. OPTIMIZATIONS
We now discuss the scalability of the vio-gen algorithm.

The algorithm is designed to solve all subtasks of the error-
generation problem, i.e., find n changes with at-least-one de-
tectability, and compute detectability and repairability mea-
sures. The main cost factor is related to executing vio-gen
queries (in turn, vio-detection queries when measuring de-
tectability and repairability). These techniques do not scale
to large DBs, for two main reasons.

Problem 1: Computing Cross-Products. Some con-
straints may result in vio-generation queries with no equal-
ities. Such queries would end up being executed as cross-
products, and therefore have inherent quadratic cost. As an
example, consider query GQdc5,1 for constraint dc5:

GQdc5,1(id, id’, . . .) = Emp(id, n, d, s,m), Emp(id’, n’, d’, s’,m’),
(m 6= n’), s’ < s

This query has a very common pattern, one we have already
observed in the vio-gen queries of constraint dc1.

Problem 2: Computing Expensive Joins. Even when
equalities are present, and joins are performed, this may be
slow. In fact, the distribution of values in the DB might
lead to join results of very large cardinality. Consider an
FD d : Emp : Dept → Mngr, stating that department names
imply manager names. One of the vio-gen queries for d
would be:

GQd,1(id, id’, . . .) = Emp(id, n, d, s,m), Emp(id’, n’, d’, s’,m’),
(d = d’), (m = m’), id < id’

As we execute this query on a clean instance I , where equal
departments correspond to equal managers, the result of this
join may be much larger than the size of table Emp (e.g.,
when there are few departments).

These problems illustrate that the evaluation of vio-gen
queries to generate errors may not scale well to large DBs.
We introduce two important optimizations to greatly im-
prove performance. We first exploit the fact that we only
have to produce a certain percentage of errors by avoid-
ing the full execution of vio-gen queries involving cross-
products. Second, we identify a class of DCs, called sym-
metric constraints, for which the vio-gen queries can be sig-
nificantly simplified.
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6.1 Sampling Cross-Products
For testing data-cleaning algorithms, often we want to

generate a set of errors that is (much) smaller than all er-
rors that could potentially be introduced. Thus, we con-
sider sampling tables, and then computing cross-products
over these samples in main memory as an alternative to
computing the cross-product using a declarative query. To
understand our intuition, consider the typical vio-gen query
with inequalities for an FD, for example dc1:

GQdc1,2(id, id’, . . .) = Emp(id, n, d, s,m), Emp(id’, n’, d’, s’,m’),
(n 6= n’), d 6= d’, id < id’

We search for tuples with different names and departments.
In any DB with a sufficiently large number of tuples, we
should have a good probability of finding tuples that differ
from each other. Whenever we need to generate n changes:

(i) We scan the tables in the query to extract a sample of c·n
tuples (c being a configuration parameter), and materialize
them in memory.

(ii) We compute the cross-product in memory, filter results
according to the comparisons ((n 6= n’), (d 6= d’)), and use
the results for identifying vio-gen cells and their contexts;
we stop as soon as n contexts have been found.

(iii) If we are not able to find n non-overlapping contexts,
then we repeat the process, i.e., we choose a random offset,
re-sample the tables and iterate; an iteration limit is used
to stop the process before it becomes too expensive.

This strategy has a worst-case cost that is comparable (or
even worse) to that of computing the whole cross-product.
To avoid this cost, we limit the number of iterations. This
may only happen when the cross-product is empty, or has
very few results, both very unlikely cases. Our experiments
confirm that typically, our optimized version runs orders of
magnitude faster than computing the cross-product using
the DBMS, even when using the LIMIT clause to reduce
the number of results.

6.2 Symmetric Constraints
It is possible to find tuples that violate CFDs by running

join-free queries using the group-by operator [5, 12]. A sim-
ilar technique was used earlier for scalable consistent query
answering over schemas containing keys [15]. In this section,
we build on these results, and extend them in several ways:

(i) We generalize Bohannon et al.’s [5] treatment of CFDs
by formalizing the notion of symmetric denial constraints;
this significantly enlarges the class of constraints for which
this optimization can be adopted.

(ii) We develop a general algorithm to optimize the exe-
cution of symmetric queries with at least one equality and
arbitrary inequalities, and show how we can efficiently com-
pute both violation contexts and context equivalence classes.

(iii) We conduct an extensive experimental evaluation to
show the benefits of this optimization.

We now blur the distinction between DCs, vio-gen queries,
and detection queries, and speak simply about their logical
formulas. Consider a DC d : ¬(φ(x̄)) in normal form; as-
sume that φ(x̄) has no ordering comparisons (>,<,≤,≥),
and contains at least one equality. Intuitively, d is symmet-
ric if it can be “broken up” in two isomorphic subformulas.
To formalize this idea, we use the following definition.

Definition 11: Formula Graph – Given ¬(φ(x̄)) in normal
form, its formula graph, G(φ(x̄)), is defined as follows:

(i) It has a node for every relational atom, comparison atom,
variable and constant in φ(x̄).

(ii) A node for relational atom Ri(x̄i) has label Ri; a node
for comparison v op v′ has label op ; a node for variable x
(constant c) has label x (c, respectively).

(iii) There is an edge between the node for atom Ri(x̄i) and
each node for a variable x ∈ x̄i; if x appears within attribute
A, the edge is labeled by Ri.A.

(iv) There is an edge between the node for atom v op v′ (v, v′

either variable or constant) and the nodes for v, v′. 2

We are interested in subformulas that are isomorphic to
each other according to some mapping h of the variables.
Thus, given h, we use it to break up the graph, and look for
isomorphic connected components. Given a mapping of the
variables h : x̄→ x̄, we define the reduced formula graph for
h as the graph obtained from G(φ(x̄)) by removing all nodes
corresponding to comparisons of the form x oph(x).

Definition 12: Symmetric Formula – A formula in nor-
mal form ¬(φ(x̄)) with no ordering comparisons and at least
one equality is symmetric with respect to mapping h if its
reduced connection graph contains exactly two connected
components, and these are isomorphic to each other accord-
ing to h, i.e., (i) a variable label v can be mapped to h(v),
(ii) every other label is preserved. 2

In our example, both dc1 and dc2 are symmetric con-
straints (with mapping n → n’, d → d’, s → s’,m → m’).
The formula graph for dc2 is depicted in Figure 2. Notice
how, for the purpose of testing symmetry, we add the im-
plied comparison atom d′ = “Sales”.

Emp$

n$ d$ s$ m$
="
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Emp$

s’$ d’$ n’$
="

m’$

="

="

≠"
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De
pt
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Figure 2: Formula Graph for dc2

It is easy to see that DCs encoding FDs are all symmetric.
This is also true for CFDs, with the exception of single-
tuple constraints which do not require joins, like dc3 in our
example. Editing rules, like dc4, and ordering constraints,
like dc5, on the contrary, are not symmetric.

The vio-detection query for a symmetric constraint is al-
ways symmetric. However, not all vio-gen queries for a sym-
metric constraint need to be symmetric as some may not
have equalities. For example, we know dc1 is symmetric
(n = n’, d 6= d’), and among its vio-gen queries, one is sym-
metric (n = n’, d = d’), the second one is not (n 6= n’, d 6= d’).

Symmetric constraints significantly reduce the number of
joins required to execute the corresponding queries. The
intuition is that we can only consider one of the isomorphic
subqueries, and avoid redundant work. We represent these
subcomponents of the original queries by means of relational
atoms with adornments. An adornment for a variable x ∈ x̄i
is a superscript of the form = or 6=, denoted by x= or x6=.
We use adornments to track the constraints that are imposed
over variables within the original symmetric query.
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Given a symmetric formula φ(x̄) in normal form, to opti-
mize its execution we generate a reduced formula with adorn-
ments, denoted by reduce(φ(x̄)). Following are the reduced
formulas for the symmetric vio-gen queries of dc1, dc2 (we
use boldface to mark the variables that were involved in the
target comparison of the original query):

reduce(GQdc1,1) = Emp(id, n=, d=, s,m)
reduce(GQdc2,1) = Emp(id, n=, d=, s,m=), d = “Sales”

reduce(GQdc2,2) = Emp(id, n 6=, d=, s,m6=), d = “Sales”

reduce(GQdc2,3) = Emp(id, n=, d=, s,m6=), d 6= “Sales”

Intuitively, we use reduce(GQdc1,1) to derive a (join-free)
SQL query that will give us all tuples t in Emp such that
there exists a tuple t′ with a different tuple id, equal name
and equal department. Similarly for reduce(GQdc2,1) (equal
names, equal departments both “Sales”, equal managers).
Reduced formulas are constructed using the following algo-
rithm (ids are treated separately).
(i) Start with φ(x̄) and variable mapping h; consider the
formula φ′(x̄′) corresponding to one of the connected com-
ponents of the reduced formula graph for φ(x̄) and h.
(ii) For each comparison x oph(x) in φ(x̄), add to variable
x in φ′(x̄′) adornment op .

Following is a more complex constraint. It states that an
FD dc6 : Emp : Name→ Manager holds for tuples of Emp that
correspond to master-data tuples on Name and Dept:

dc6 : ¬(Emp(n, d, s,m),MD(n’, d’,m’), n = n’, d = d’,
Emp(n”, d”, s”,m”),MD(n”’, d”’,m”’), n” = n”’, d” = d”’,

n = n”,m 6= m”)

The constraint is symmetric and this is the reduced formula
of one of its symmetric vio-gen queries (as usual, we explic-
itly mention id attributes in the formula) :

reduce(GQdc6,1) = Emp(id, n6=, d, s,m6=),MD(id’, n’, d’, s’,m’),
n = n’, d = d’

6.3 The Benefits of Symmetry
Reduced formulas suggest an alternative query execution

strategy that is based on a limited use of joins and favors
group-by clauses. This strategy was previously used to find
tuples involved in violations of (multi-tuple) CFDs [5]. We
extend those algorithms to a larger class of constraints. Our
work can handle multiple inequality adornments, while the
original technique only considered one inequality at a time.

We first summarize the main ideas behind the use of
group-by clauses for formulas with at most one inequality,
then discuss the general case.

Simple Case: At Most One Inequality Adornment.
Context equivalence classes for symmetric queries with at
most one inequality can be computed by grouping tuples.
Consider constraint dc2 and the reduced formula for its sym-
metric vio-gen query:

reduce(GQdc2,1) = Emp(id, n=, d=, s,m6=), d = “Sales”

In this case, a vio-gen context consists of two tuples with
equal names and departments (equal to “Sales”), and dif-
ferent managers. A context equivalence class is composed
of all tuples that have equal values of names and depart-
ments (“Sales”), such that there exist at least two differ-
ent managers associated with them. Notice that this is a
general property. We call the set of variables with equal-
ity adornments in a reduced formula its equality variables
(corresponding to variables equated in original formula).

Property 1: Given a symmetric constraint dc with at most
one inequality, and instance I , two cells c1, c2 of I belong

to the same context equivalence class for dc and I if and
only if: (i) they belong to contexts vc1, vc2 for dc and I ; (ii)
vc1, vc2 have equal values for the equality variables of dc. 2

To construct contexts and equivalence classes, we generate
an SQL query with aggregates, denoted by sym-sql(reduce(Q)),
from the reduced formula. In our example:

SELECT id, name, dept, mngr FROM emp WHERE name, dept IN
(SELECT name, dept FROM emp WHERE dept = ’Sales’
GROUP BY name, dept HAVING COUNT(DISTINCT mngr) > 1)

ORDER BY name, dept

Contexts and equivalence classes are built as follows:

(i) We run query sym-sql(reduce(Q)).

(ii) We group tuples in the result with equal name and dept

attribute values, yielding all context equivalence classes.

(iii) To construct the actual contexts, tuples within an equiv-
alence class are combined in all possible ways in memory.

The General Case. Let us now consider a generic formula
with adornments, with at least one equality and multiple
inequalities, like the following:

reduce(GQdc2,2) = Emp(id, n 6=, d=, s,m6=), d = “Sales”

Here, we are looking for pairs of tuples that have equal de-
partments (with value “Sales”), and both different names,
and different managers. Handling both inequalities makes
the construction of contexts more complex. The intuition
behind the algorithm is to execute multiple aggregates within
our SQL query, one for each inequality, to identify cells that
are candidates to generate violation contexts. In our exam-
ple, sym-sql(reduce(GQdc2,2)) would be the following query:

SELECT id, name, dept, mngr FROM emp
WHERE dept, name IN (SELECT dept, name FROM emp

GROUP BY dept, name HAVING COUNT(DISTINCT name) > 1)
AND dept, mngr IN (SELECT dept, mngr FROM emp

GROUP BY dept, mngr HAVING COUNT(DISTINCT mngr) > 1)
ORDER BY dept

Notice, however, that Property 1 does not hold in this
case. Indeed, belonging to the result of this query is a nec-
essary but not sufficient condition for a cell to be in a vi-
olation context for GQdc2,2. In fact, we have no guarantee
that two tuples from the result of the SQL query above sat-
isfy all inequalities. To select the cells that actually belong
to contexts, we need to build the actual contexts, and keep
only those in which all inequalities are satisfied.

A crucial optimization, here, is to select a relatively small
set of candidate tuples for each context equivalence class.
To do this, we group the tuples in the result of the query
on the values of the equality variable (dept in our example).
Then, we combine the candidate tuples within each set to
generate the actual violation contexts.

Once the contexts have been generated, building the con-
text equivalence classes is straightforward: it suffices to hash
contexts based on the values of the equality variables, and
compute equivalence classes from the cells in each bucket.
We show experimentally in Section 8 that this strategy per-
forms very well even for large DBs.

Since symmetry guarantees good performance and helps
us avoid extensive sampling, whenever this is compatible
with the configuration parameters, our algorithm tries to
favor symmetric vio-gen queries over non-symmetric ones.

7. USE CASES OF THE TOOL
Use-Case 1: Generate Detectable Errors. The main
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purpose of Bart is to generate constraint-induced errors.
We control an error-generation task E by a set of configura-
tion parameters Conf. The main parameters are:

(i) Authoritative sources: names of DB relations that are to
be considered immutable (empty by default).

(ii) Error percentages: desired degree of detectable errors
for each vio-gen query. We specify percentages with respect
to the number of tuples in a table (e.g., 1% errors in a table
of 100K tuples means errors are introduced in 1000 cells).

(iii) Repairability range: users may also specify a range of re-
pairability values for each vio-gen query; Bart will estimate
the repairability of changes, and only generate errors with
estimated repairability within that range. This simplifies
the generation of configurations with controlled repairabil-
ity (e.g., low), as shown in our experiments.

Use-Case 2: Generate Random Errors. In addition
to detectable errors, Bart may also generate random errors
of several kinds: typos (e.g., ‘databse’), duplicated values,
bogus or null values (e.g., ‘999’, ‘***’), and outliers. Random
errors may be freely mixed with constraint-induced ones.

Use-Case 3: Computing Repairability. Given a set
of constraints Σ and a dirty DB Id, Bart can be used to
compute the repairability of the violations in Id with respect
to Σ, as per Definition 6. This can also be done in the case
in which Id was not generated by the tool itself.

Use-Case 4: Measuring Repair Quality. Our ulti-
mate goal is to benchmark data-repairing algorithms over
Bart data. Suppose we run some algorithm A over a dirty
instance Id as generated by Bart, and we obtain a re-
paired instance Irep,A by a set ChA of cell changes, i.e.,
Irep,A = ChA(Id). The tool adopts a natural strategy to
measure the performance of A over a task E.

We call Ch−1 the set of cell changes that are needed to
bring Id back to its original state, I . Since we assume that
I , Id and Irep,A all have the same set of tuple ids, we define
the quality of A over E as the F-Measure of the set ChA,
measured with respect to Ch−1. That is, we compute the
precision and recall of A in fixing the errors introduced in
the original clean instance I . The higher the F-measure, the
closer Irep,A is to the original clean instance I .

Since data-repairing algorithms have used different met-
rics to measure the quality of repairs, Bart has been de-
signed to be flexible in this respect. Precision and recall
may be computed using the following measures:

(i) Value: we count the number of cells that have been re-
stored to their original values.

(ii) Cell-Var: in addition to cells restored to their original
values, we count (with 0.5 score) the cells that have been
correctly identified as erroneous, and changed to a variable.

(iii) Cell: we count the cells that have been identified as
erroneous, regardless of the value assigned by the algorithm.

8. EXPERIMENTAL RESULTS
We describe a detailed evaluation of the Bart Java proto-

type over synthetic and real-world datasets. We ran experi-
ments on a machine with 8GB RAM, 2.6 GHz Intel Core i7,
MacOS 10.10, and PostgreSQL 9.3.

Tasks. We tested five tasks, based on synthetic and real
datasets (full details are reported in our technical report [1]).
We briefly list them here: (i) Employees is the running exam-
ple used in the paper; (ii) Customers is a synthetic scenario
from Geerts et al. [16]; (iii) Tax is a synthetic scenario from

Fan et al. [13]; (iv) Bus is a real-world scenario from Dal-
lachiesa et al. [11]; and (v) Hospital is a real-world scenario
used in several data repairing papers (e.g., [11, 14, 16]).

Note that all datasets have different characteristics. Hos-
pital and Bus have higher redundancy in their data. Tax
and Employees are the only datasets with constraints con-
taining ordering (<, >) comparisons. Some datasets have
master-data and CFDs, while others have only FDs. All
these differences help to validate our techniques.

Settings. To measure the scalability of error generation, we
focus on execution times. Each task has been run five times
and we report the average execution time. Because our focus
is on error generation for testing data-cleaning algorithms,
we report our study on different % of errors. We first study
the range (1% - 10%), in which most cleaning algorithms can
perform reasonably well, and then (25% - 75%). To show the
effectiveness of our optimizations for symmetric constraints,
we compare them against the standard execution.

Scalability. Figures 3.a-c report Bart’s execution times
on synthetic data sets, over an increasing number of tuples
for 1%, 5%, and 10% injected errors, respectively. As ex-
pected, execution times increase both with the size of the
input (number of tuples) and the number of changes (% of
required errors). Our system is very fast, taking at most 6.6
minutes for one million tuples in the worst scenario (10%
errors). The same observations apply for real-world data, as
we show in the first three pairs of bars in Figure 3.d. Notice
that, without our optimizations, the execution of all scenar-
ios exceeds the time threshold we set (30 minutes). For this
reason we do not report the data.

Symmetric Queries. For each scenario, we extracted all
symmetric vio-gen queries and executed them with and with-
out our optimization (we report the number of symmetric
queries per scenario in Figure 4). Figure 3.e and f report the
execution times over an increasing number of tuples and 5%
injected errors for the synthetic datasets, with and without
the symmetric optimization, respectively. Figure 3.d reports
results for real datasets in the last two pairs of bars, using a
10 minutes timeout for each symmetric vio-gen query. Note
how the symmetric strategy scales linearly with the size of
the data, while the same observation does not hold for the
standard join-based strategy (the DBMS adopts a nested-
loop execution plan). Our symmetric optimization runs up
to two orders of magnitude faster on these datasets.

Success Rate. Our algorithm trades completeness for scal-
ability. It may fail to return the required number of changes,
even if these exists, because it non-optimally uses violation
contexts. To gain more insight on this aspect, we studied
the behavior of the algorithm when 25%, 50%, and 75% of
the size of the DB is required to be made dirty. In Figure 3.g
we report the fraction of changes that have been generated.
Figure 3.h reports the breakdown of the success rate for ev-
ery constraint of Customers. To limit the incidence of the
distribution of data on the experiment, for each constraint
we first computed an estimate of the maximal number of
detectable changes that can be generated. Then, when run-
ning the actual experiments, we made sure to never ask for
a number of changes per constraint higher than this esti-
mate. It is interesting to note that in all scenarios, the algo-
rithm generates 100% of the required changes for scenarios
with 25% error rate. This can be considered satisfactory for
most error-generation applications. The percentage reduces
progressively for 50% and 75% errors.
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Figure 3: Experimental Results

45



Datasets Type and Size #Tables #Attributes #Constraints
#Vio-Gen 
Queries

#Symmetric 
Queries

#Non Symmetric 
Queries 

#Queries with 
No Equalities

Employees Synthetic, 100K to 1M 2 7 5 12 4 5 3
Customers Synthetic, 100K to 1M 3 16 8 22 7 12 3

Tax Synthetic, 100K to 1M 1 13 5 18 12 2 4
Bus Real 250K 1 5 12 24 10 2 12

Hospital Real, 100K 1 19 7 16 11 0 5

Figure 4: Datasets and Tasks

Total Execution Time. Figures 3.i-k report total exe-
cution times over an increasing number of tuples and 5%
injected errors for datasets Employees, Customers, and Tax,
respectively. Not surprisingly, most of the time is consumed
by the updates to the DB (there are thousands of updates,
which are known to be slow). Error generation does not
dominate the total time and is stable over the different
scenarios, while the computation of detectability and re-
pairability vary significantly depending on the characteris-
tics of the constraints. Again, Tax is the scenario with the
most complex constraints, and this is reflected in the exe-
cution time for the detection (note the different scale in the
y axis). Real-data in Figure 3.l is also consistent with syn-
thetic datasets of the corresponding size in the distribution
of the time for the different tasks. Hospital requires less time
because of the size and the smaller set of constraints.

Detectability and Repairability. Figure 3.m shows how
the ratio between at-least-one and exactly-one detectable
changes depends on the constraints and the data. For ex-
ample, Hospital has redundant data and overlapping rules,
thus it is less likely to find exactly-one detectable changes.

To further study this relationship, we used 10 experiments
with different DB sizes and error percentages over the three
synthetic datasets. We report in Figure 3.n the average per-
centage of exactly-one detectable changes, with 95% confi-
dence intervals. We observe that, given an error-generation
task, it is fairly easy to estimate the number of at-least-
one detectable changes to request in order to obtain a given
number of exactly-one detectable changes.

Figures 3.o-q report the average repairability of errors in
Customers per constraint, using three configurations (i.e.,
high, medium, and low repairability). Every constraint has
the same required amount of errors (5%), and all config-
urations used the same clean instance of 200k tuples. In-
tuitively, a high repairability configuration involves mostly
rules with master data and CFDs, while a low repairability
one involves FDs. Results for medium-repairability config-
urations on the remaining scenarios are in Figures 3.r-t.

9. DATA REPAIRING TOOL EVALUATION
In this section, we present an empirical comparison of sev-

eral data-repairing algorithms over Bart data. We show a
number of novel insights into these algorithms that could
not have been shown with existing error generators.

Tools and Algorithms. We used two publicly available
tools, namely Llunatic [17] and Nadeef [11], to run four
data-repairing algorithms: (i) Greedy [6, 9]; (ii) Holistic [8];
(iii) Llunatic, the chase-based algorithm [16]; and (iv) Sam-
pling [3]. In addition, we obtained a copy of the (v) SCARE
[25] statistics-based tool from the authors.

Tasks. We tested four tasks, three of these constraint-based
and one statistics-based (i.e., random errors). For testing
constraint-based algorithms, we used (i) Hospital, (ii) Bus,
and (iii) Tax. We restricted the set of DCs to FDs and
CFDs as only these can be handled by the algorithms under
consideration. We selected a clean instance of 20K tuples,

and made it dirty with 5% errors and different repairability
levels: High (approximately 0.8 rep.), Med (0.5 rep), and
Low (0.25 rep.). For testing SCARE [25], we used task (iv)
Tax-Rnd. We injected errors of different kinds in the Tax
dataset: (a) 5% missing values, (b) 5% typos, and (c) 5%
outliers over numerical attributes.

We only report results for the constraint-based algorithms
over detectable errors (tasks (i)–(iii)), and for SCARE over
random errors (task (iv)). As expected, the performance of
the algorithms is quite poor when they are applied to errors
that are outside of their scope.

Results. The purpose of this evaluation is not to assess
the quality of repair algorithms, rather to show how Bart
can be used to uncover new insights into the data-repairing
process. We measured the quality of repairs in terms of pre-
cision/recall using the Value, Cell-Var, and Cell metrics as ex-
plained in Section 7. When multiple repairs were returned,
we chose the best one. We show the results in Figure 3.u–x.

(a) We notice a wide degree of variability in quality among
all algorithms, from excellent repairs to low-quality ones
(a trend observed in Figures 3.u–w). This variability does
not clearly emerge from evaluations reported in the liter-
ature, an observation that suggests there is no definitive
data-repairing algorithm yet.

(b) We observe different trends with respect to repairabil-
ity: (b.1) some of the algorithms return very good repairs
when sufficient information is available (i.e., high repairabil-
ity); however, their quality tends to degrade quickly as re-
pairability decreases; (b.2) on the contrary, the Sampling al-
gorithm [3] – for which we return the best and average qual-
ity among a random sample of 500 repairs – is less affected
by different levels of repairability.

(c) For Task (iv) (as shown in Figure 3.x), (c.1) different
kinds of random errors pose challenges of different complex-
ity, with missing values being the easiest ones to detect;
(c.2) interestingly, these errors are more easily detected than
fixed, as shown by the differences between the Cell and Value
metrics (the first one only counts cells that have been cor-
rectly identified as erroneous, while the second one requires
that they have been restored to their original value).

A key observation that emerges from this study is that
repairability has a strong correlation with the quality of the
repairs, thus capturing the “hardness” of the problem. Our
study also shows the importance of having systematic error-
generation tools for evaluating data-repairing solutions.

10. RELATED WORK
Many researchers have had to consider the problem of in-

jecting errors into clean data in order to evaluate a cleaning
method. Typically, these approaches inject random errors
by scanning DB attributes involved in data-quality rules and
changing attribute values with some fixed probability [3, 6,
8, 11, 16]. While often not described in detail, none of this
work claims to control the properties of errors like their de-
tectability or repairability. In some approaches, each (indi-
vidual) injected error is (at-least-one) detectable [9], but no
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guaranteed is made that a set of X errors introduces X de-
tectable errors. No claim is made that their error injection
process would work for constraints beyond those considered
in their experiments or that it is scalable.

Missing Answers and Why-Not Provenance. Given
a query Q and a DB I , a solution to the missing answer
problem is an explanation for why Q(I ) does not include
one or more tuples. Instance-based approaches [18, 19] de-
termine how the input instance can be changed to make the
missing answer appear in the result. We view the problem
of introducing errors into a clean instance as an instance-
based missing answer problem, i.e., how to modify the DB
to make vio-detection query results non-empty. As we strive
to perform only updates of attributes values, approaches
that insert or delete tuples to explain missing answers are
inapplicable to our problem. While Huang et al.’s tech-
nique [19] supports updates, it is known to produce some
incorrect answers (see [18]). How-To queries as supported
by Tiresias [22] could also be used to encode error genera-
tion. Since these approaches rely on constraint solvers and
on possible world semantics, they need to consider multiple
solutions and minimize the presence of non-expected tuples
in the queries (i.e., side-effects). In contrast, by applying
at-least-one detectability we do not have to compute mul-
tiple solutions and minimize side-effects. Furthermore, we
introduce a novel optimization for symmetric queries which
has not been considered by missing answer approaches.

View Update. The missing answer problem and also ours,
are essentially a new take on the view update problem [2].
The problem of introducing errors is equivalent to inserting
tuples into views corresponding to the violation-detection
queries. Here we only consider approaches that translate
view insertions into updates to the base data. While an
overview of this problem is beyond the scope of the present
work, two examples are the work of Shu [23], who proposes
to encode the problem as constraint satisfaction, and Cong
et al. [10], who study the complexity of the problem and its
relationship to annotation propagation. One major cost fac-
tor in view update is computing a translation that minimizes
the side-effects on the view and/or the instance. We avoid
that cost with our at-least-one detectability semantics.

11. CONCLUSIONS AND FUTURE WORK
We have presented the first scalable error-generation tool

that provides a high degree of control over the generation
process. Bart generates errors by value modification and
we are currently exploring the introduction of insertions and
deletions. The main technical challenge to be solved is that
this completely changes the nature of the quality metric and
in its full generality, would require identifying tuple homo-
morphisms among two databases, a problem for which there
are currently no scalable algorithms.
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