
Ego-net Community Mining Applied to Friend Suggestion

Alessandro Epasto∗
Brown University

epasto@cs.brown.edu

Silvio Lattanzi
Google, New York

silviol@google.com

Vahab Mirrokni
Google, New York

mirrokni@google.com
Ismail Oner Sebe

Google, Mountain View

sebe@google.com

Ahmed Taei
Google, Mountain View

ataei@google.com

Sunita Verma
Google, Mountain View

sunitav@google.com

ABSTRACT
In this paper, we present a study of the community structure
of ego-networks—the graphs representing the connections
among the neighbors of a node—for several online social
networks. Toward this goal, we design a new technique to
efficiently build and cluster all the ego-nets of a graph in
parallel (note that even just building the ego-nets efficiently
is challenging on large networks). Our experimental findings
are quite compelling: at a microscopic level it is easy to
detect high quality communities.

Leveraging on this fact we, then, develop new features
for friend suggestion based on co-occurrences of two nodes
in different ego-nets’ communities. Our new features can
be computed efficiently on very large scale graphs by just
analyzing the neighborhood of each node. Furthermore, we
prove formally on a stylized model, and by experimental
analysis that this new similarity measure outperforms the
classic local features employed for friend suggestions.

1. INTRODUCTION
The advent of online social networks has opened new op-

portunities to analyze the evolution and the structural prop-
erties of social networks at macro and microscopic level. Re-
searchers have now access for the first time in human history
to large online social network datasets that can be easily an-
alyzed using commodity hardware.

A central question in social network analysis is the study
of the community structure of social graphs. Several models
have been introduced to capture the community structure
of social networks [25, 28, 30] and several empirical studies
describe community structures at a macroscopic level [20,
31, 30]. Among those works, the one of Leskovec et al. [30]

∗Work partially done while intern at Google, Mountain
View. Work partially supported by the NSF Award IIS-
1247581; MIUR-PRIN National Project ARS TechnoMedia
2010N5K7EB (Algorithmics for Social Technological Net-
works); and Google Focused Award.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 4
Copyright 2015 VLDB Endowment 2150-8097/15/12.

stands out for its rich and deep analysis. The main find-
ing of the paper is the lack of a clear macroscopic commu-
nity structure in online social networks. More precisely, the
authors show that it is very rare to observe medium size
communities of small conductance.

Those results have been confirmed by recent studies that
observed that real life communities hardly follow the as-
sumptions of the most commonly used algorithms [1]. They
strongly overlap with each other and often have more con-
nections outside than inside themselves. This makes it hard
to even define communities at the global graph level.

In contrast with these findings, it has been observed that
while communities might be difficult to find at a global level,
their structure seems to be much more clear at a microscopic
level [12]. This is particularly true at the level of node-
centric structures called ego-networks (or ego-nets) which
are the subgraphs representing the connections among the
neighbors of a given node.

Intuitively, this happens because, while nodes participate
in many communities, usually there is a single (or a lim-
ited number of) context in which two specific neighbors in-
teract. Nevertheless, to the best of our knowledge, no ex-
tensive study of the ego-net community structure has been
performed on different large-scale datasets to confirm these
observations.

In this paper, we argue that it is possible to address im-
portant graph mining tasks by analyzing the ego-nets of a
social network and performing independent computations on
them. In particular, we study extensively, both through ex-
perimentation on large-scale graphs and formally, the prop-
erties of such ego-net community structure and its possible
application to the important problem of friend suggestion.

More precisely, our first contribution is to verify this intu-
ition through an extensive analysis of the community struc-
ture of the ego-networks of several large-scale graphs (in-
cluding an anonymized snapshot of the entire public Goo-
gle+ graph). Thanks to this analysis we show that even if
communities are hard to detect at a global level, they are
easily detectable at a microscopic level.

To further validate this finding, our second contribution
is to show the first large-scale study on on-line social circle
detection showing that simple clustering algorithms, based
solely on the graph structure, are able to match user-defined
communities with great accuracy. Notice that while previ-
ous studies have only been applied to graphs with hundred
of nodes we test the algorithms on the entire Google+ graph
with hundred of millions of nodes.

Toward this end, our third contribution is the introduction

324

of a simple and efficient algorithmic framework for the par-
allelization of community detection algorithms on ego-nets
in MapReduce for which we provide theoretical guarantees
on its scalability1.

We then turn our attention to possible applications of
ego-net mining. Our forth and the most important empir-
ical contribution is the definition of novel, and easily com-
putable, similarity measures among nodes in a graph, which
we name ego-network friendship scores. These scores are
based solely on the analysis of the community structure of
the ego-nets and, despite its simplicity and the fact that
its computation involves only information in the immedi-
ate neighborhood of a node, we show experimentally with
real data that it is able to predict link formation with good
accuracy. The simplest such feature counts the number of
ego-net clusters that two nodes participates in. Other fea-
tures also take into account the quality of those clusters or
the relevance of each node for each cluster. Via an em-
pirical evaluation on a large real-world Google+ data set,
first observe that even the simplest feature of these features
outperforms all the most commonly used similarity mea-
sures based on the immediate neighborhood of a node. In
order to gather an understanding of these phenomena, we
also introduce a simple model of random networks for which
we show formally the accuracy of this simple measure. Fi-
nally, we confirm our result by running a live experiment
on Google+ using several features based on the ego-network
scores. Our live experiment shows that adding such features
improves the performance of the friend suggestion system in
production. In particular, it improves the the probability of
accepting the suggestion by 1%, and it decreases the prob-
ability of explicitly rejecting the suggestion by 3%.

The rest of the paper is organized as follows. In Section 2
we briefly review the literature relevant to our work. Then
in Section 3 we define formally the ego-nets and some use-
ful community quality metrics. In Section 4 we present our
framework and the community detection algorithms we used
in our experiments. Then in Section 5 we presents our find-
ings on the properties of the ego-nets in our datasets. Later,
in Section 6 we present our new friend suggestion technique
and its results. Finally, in Section 7 we draw our conclusions
and point at possible future directions.

2. RELATED WORKS
The definition of ego network as a central concept in soci-

ology dates back to the seminal work of Freeman [19]. After
their introduction, the analysis of ego networks established
itself at the basis of social network analysis [10, 15, 18, 46].

Recently, great attention has been devoted in the com-
puter science community on mining ego-nets. In their pio-
neering work, Rees and Gallagher [37] proposed to the use
of ego-networks to find a global clustering of the graph. The
core idea of their algorithm is to find basic communies by
computing the weakly connected components for each ego-
network after removing the ego from it. Then to obtain a
global clustering they merge communities that overlap sig-
nificantly. Coscia et al. [12] built on this work employing

1Note that a näıve algorithm would take time
Ω(
∑
u∈V d(u)2) only for building the ego-nets. For

this reason it is fundamental to design efficient algorithms
to build and cluster egonetworks.

label propagation algorithms to cluster the ego-nets and an-
alyzing different merging strategies.

In a different line of works, McAuley and Leskovec [35]
provided a machine learning approach to cluster ego-nets
using both the graphs and the attributes of the nodes. Sub-
sequently Yang et al. [48] proposed an extension of this
model for directed and undirected graphs. Finally Li et al.
[32] extended their learning model to capture also hidden
attributes that are not explicitly present in the input.

Thanks to the recent availability of user defined communi-
ties, such as Google+ circle [35] or Facebook friend list [35],
some recent papers focused on the analysis of their struc-
tural properties. Steffen and Braurer [9] analyzed circles in
Google+ and observed that they are more densely connected
with the outside of the circle than normal “communities”.
Indeed they observe in their studies that most of the circles
have conductance > 0.90. La Gala et al. [26], instead, de-
fined new metrics for the strength of a ties in an ego-nets
and also tested the Dunbar circles’ hypothesis [15]. Finally,
user defined social circles have also been used to design com-
munity detection algorithm by Hemank and Ramasuri [27]
that clustered together nodes that are assigned to the same
circle by many common neighbors.

Ego-nets have also been used to design various machine
learning algorithm to solve several problems. Gleich and Se-
shadhri [21] noted the ego networks are good seed for the
Personalize PageRank clustering. Akoglu et al. [3] showed
that simple statistics on ego-nets help find suspicious and
spam nodes. Wang and Li [45] employed ego-nets for min-
ing citation networks. Finally, confirming the importance of
ego-nets Sharma et al. [41] showed that suggestions based
solely on information on the neighbors of node give perfor-
mance in line (and sometimes superior) to using the entire
graph.

Related topics to ego-nets includes the center-piece sub-
graph [44] notion: the subgraph of the most connected nodes
to an arbitrary set of query nodes Q. This extends the def-
inition of ego-nets which consist of the subgraph of nodes
directly connected to a single node (the ego). Also related
to ego-nets are local community [11, 4]—subgraphs in the
vicinity of a node optimizing a certain quality function—and
the viewpoint neighborhoods [6]—the set of nodes of most
direct interest to a center node.

Another related topic is that of friend suggestion algo-
rithms. The literature in this area is gigantic, and for this
reason we focus here only on the most related results. In a
classic paper in social network analysis [2] Adamic and Adar
defined a first measure of similarity between not adjacent
nodes in a social network. In a subsequent work [33] Liben-
Nowell and Kleinberg compared several notions of similar-
ity between nodes for friend suggestion. In [23] Gupta et al.
proposed a friend suggestion algorithm for Twitter based on
a combination of top-k Personalized PageRank ranking and
a SALSA-like hubs and authority algorithm. Finally, Schall
[39] analyzed different features that are useful for friend sug-
gestion in directed graphs.

3. PRELIMINARIES
Let G(V,E) be a (possibly directed) graph. Let N(u) be

the set of neighbors of u in the graph and d(u) = |N(u)|.
When we work with directed graph we use N+(u) (N−(u))
and d+(u) (d−(u)) to refer respectively to the out- (in-)

325

neighborhood of node u and its out- (in-) degree, we also
define N(u) = N+(u) ∪N−(u) and d(u) = d+(u) + d−(u).

We define the ego-net for a node u ∈ V as the graph
induced on G by u ∪N(u) (u ∪N+(u) for direct graph). In
the rest of the paper we denote the ego-net of a node u as Su.
Often we are interested in analyzing the properties of the
graph represented by the ego-net of node u without the ego
node u itself. The ego-net without ego graph of u is defined
as the graph induced on N(u) (N+(u) for direct graph), in
the rest of the paper we denote the ego-net without ego of
a node u as Zu.

In the paper we make extensive use of community detec-
tion algorithms (a.k.a clustering algorithms). In order to
evaluate the quality of a cluster we will look at two well
known metrics: density [22] and conductance [24]. For com-
pleteness, here we recall their definitions.

Definition 1 (Conductance). Let G(V,E) be a graph
and let W ⊆ V . The conductance φ(W) of W is defined as:

φ(W) = |cut(W,V \W)|
V ol(W)

, where cut(X,Y) is equal to the set of

edges between X and Y and V ol(X) =
∑
v∈X d(v).

Furthermore, we define the conductance of a clustering
C = (C1, C2, . . . , Ck) as: Φ(C) = maxi φ(Ci).

Definition 2 (Density). Let G(V,E) be a graph and
let W ⊆ V , we define density of W and we denote it as ψ(W)

as: ψ(W) = V ol(E)
|W |(|W |−1)

. Similarly, the density of clustering

C = (C1, C2, . . . , Ck) is defined as: Ψ(C) = mini φ(Ci).

4. ALGORITHMS
In this section we introduce our algorithmic framework

for the study of ego-nets’ clusters in large-scale networks.
The main challenge that we address is in efficiently com-
puting a clustering of the ego-nets in communities for all
nodes in the graph in parallel. We will define an efficient
technique, implementable in MapReduce, that is applicable
to any clustering algorithm.

The main challenge in this step is that a naive algorithm
would take time Ω(

∑
u∈V d(u)2) only for constructing the

ego-networks. Furthermore this is true even when we add
a threshold on the maximum size of the ego-nets that are
analyzed. In fact, also in this case, high degree nodes would
send their neighborhoods to all their neighbors to let them
build their ego-nets. For this reason we need to develop
efficient techniques to build and cluster them.

In the section we first describe briefly the clustering al-
gorithms that we use to cluster ego-nets. Then we present
our new technique to compute the clustering of all the ego-
networks in a graph efficiently. Finally we discuss how to
parallelize this technique in MapReduce in order to scale to
very large networks.

4.1 Clustering algorithms
In the community detection literature, several algorithms

have been introduced [31] to cluster social networks. In
this paper, we mainly focus on five algorithms: Personal-
ized PageRank partitioning, Personalized PageRank overlap-
ping clustering, Label Propagation clustering using Absolute
Potts Model, Overlapping Label Propagation Clustering us-
ing SLPA, Hierarchical Clustering using k-cores. We give a
brief description of the algorithms in Appendix A.

4.2 Efficient ego-network clustering
In this subsection, we define our framework that allows

efficient computation of ego-nets’ clusterings for all nodes in
a graph, using an arbitrary community detection algorithm.
The basic idea is to use a technique similar to Schank’s algo-
rithm [40] for triangle counting and its parallelization [42].

Suppose that a clustering algorithm runs on a graph with
m edges in time t(m). A trivial approach to this problem
would be to first construct, for all nodes v ∈ V , the ego-nets
of v by exploring the adjacency list of each node w ∈ N(v)
and by computing N(w) ∩ N(v). Then we will apply the
clustering algorithm on the ego-net of v.

Observe that this procedure can be implemented in time∑
v∈V

(
t(mv) +

∑
w∈N+(v)(d(w)2)

)
, where mv is the num-

ber of edges in the ego-net of v. This can be bounded to
O
(
n · t(∆2) + n3

)
, where ∆ is the maximum degree in the

graph and n is the number of nodes. Clearly this technique
does not scale in large graphs (not even using paralleliza-
tion) as nodes might have very high degrees.
Efficient ego-network computation. Our first algorith-
mic contribution is to design a technique to compute all the

ego-networks in a graph in time O
(
m

3/2
)

. The main ob-

servation is that (v, z) ∈ N(u) is an edge in the ego-net Su
if and only if u, v, z form a triangle in G(V,E). We can
then use for our problem a simple variation of the efficient
Schank’s algorithm that enumerates all triangles in a graph.
We first recall Schank’s algorithm and then show how to
adapt it to compute ego-network.

The intuition behind Schank’s algorithm is to look sequen-
tially at triangles around a minimal degree node and then
by deleting the already analyzed nodes (see Algorithm 1 for
a pseudo-code).

Algorithm 1 Schank’s algorithm for enumerating triangles

Input: G(V,E)
Output: All triangle of G
while V 6= ∅ do

u→ node of minimal degree.
for ∀v, z ∈ N(u) do

if (v, z) ∈ E then
Output triangle u, v, z

end if
end for
Delete node u and its adjacent edges.

end while

Schank [40] showed that such algorithm requires O
(
m

3/2
)

time. Based on this result and our observation above, we de-
sign a fast algorithm to compute the ego-nets. The pseudo-
code of this algorithm is described in Algorithm 2.

As corollary of the Schank result we have:

Corollary 1. It is possible to construct all the ego-net-

works in a graph in time O
(
m

3/2
)

.

Bounding the clustering running time. Note that by
Corollary 1 we also obtain that the total number of edges

over all the ego-networks is O
(
m

3/2
)

. Assume that the

running time of a clustering algorithm on a subset S, t(·), is a

326

Algorithm 2 Fast ego-network construction

Input: G(V,E)
Output: All ego-nets of nodes of G.
while V 6= ∅ do

u→ node of minimal degree.
for ∀v, z ∈ N(u) do

if (v, z) ∈ E then
Add (u, v) to Sz
Add (v, z) to Su
Add (u, z) to Sv

end if
end for
Delete node u and its adjacent edges.

end while

convex function in the number of the edges in S.2. Using the
previous observations and a basic fact on convex functions
we can obtain a simple bound on the total running time of
the clustering algorithm applied to all ego-nets.

Fact 1. Let f be a convex function, and let x1, x2, . . . , xn
be such that

∑
i xi = n and maxi xi = C, then f is maxi-

mized when b n
C
c variables are set to C, one variable is set

to (n mod C) and the remaining variables are set to 0.

Proof. Suppose that this is not true, it means that there
are 2 variables xi, xj with xi, xj 6= 0 and xi, xj < C. As-
sume without loss of generality that xi > xj , then we will
prove that f ((1 + ε)xi) + f ((1− ε)xj) ≥ f (xi) + f (xj).

Note that by definition of convex function f((1+ε)xi)−f(xi)
ε

≥
f(xj)−f((1−ε)xj)

ε
.

Suppose that A is any graph clustering algorithm with
time complexity t (|ES |) where t is convex function of the
size of the set ES edges in subgraph S in input. As the
number of edges in an ego network is O(m) and by Fact 1
we can prove the following properties.

Corollary 2. The running time of algorithm A on all
the ego-networks is O(

√
m · t(m)).

Combining the two Corollaries we get the following lemma:

Lemma 1. The total running time to compute the ego-
networks and to run the clustering algorithm A on all of
them is O(

√
mt(m) +m

3/2).

Parallel implementation. The previous results show how
to implement ego-network clustering efficiently in a sequen-
tial setting. To parallelize the algorithm in the MapReduce
framework we employ similar techniques to the ones used in
[42] to parallelize Schank’s algorithm.

Before giving the pseudo-code for our algorithm we briefly
recall the main aspect of the MapReduce framework [13]. In
the MapReduce framework the input/output data is repre-
sented by a pairs 〈key, value〉. In each round of MapReduce
a Map and a Reduce functions are executed in parallel on
several machine. In the Map phase each 〈key, value〉 is as-
signed to an arbitrary mapper and the Map function is ex-
ecuted on them. The map function’s output is a set of new

2Note that is true for all the algorithm presented in the pa-
per and in general for any ”reasonable” community detection
algorithm.

pairs 〈key′, value′〉. In the reducer phase all the pair having
the same key are analyzed by the same Reduce function.

The parallel Shank’s algorithm first partitions the nodes
in the graph in ρ ∈ Ω(

√
n) random partitions V1, V2, . . . Vρ.

Then instead of counting the triangle in the whole graph
at the same time, it enumerates them in parallel for all the
graph G(Vi ∪ Vj ∪ Vz, EVi∪Vj∪Vz), ∀0 < i, j, z ≤ ρ and i 6=
j 6= z.

Using similar techniques we can define our algorithm for
efficiently computing ego-nets in parallel (see Algorithm 3
for the pseudo-code).

Algorithm 3 Fast parallel ego-network construction

Map: Input: edge (u, v)
{Let h(·) be a universal hash function into [0, ρ]}
i← dh(u)e
j ← dh(v)e
if i == j then

for z ∈ {1, 2, . . . , ρ} ∧ z 6= i do
for w ∈ {1, 2, . . . , ρ} ∧ w 6= i, z do

Output (sorted(i, z, w), (u, v))
end for

end for
else

for z ∈ {1, 2, . . . , ρ} ∧ z 6= i, j do
Output (sorted(i, j, z), (u, v))

end for
end if
Reduce: Run Algorithm 2 on the input graph

Note that after constructing the ego-nets we can run in
parallel on each of them our clustering algorithm A in an-
other step of MapReduce.

As a corollary of the results in [42] and Lemma 1 we can
bound the total parallel work for our framework algorithm:

Lemma 2. Then the total amount of parallel work to com-
pute the ego-nets and to run the clustering algorithm A on
them is O(

√
mt(m) +m

3/2) and the algorithm executes only
2 MapReduce iterations.

Very high degree nodes. Notice that while our tech-
niques significantly improves the scalability of ego-net min-
ing in graphs with high degree nodes (avoing the quadratic
running time of the naive algorithm), still the ego-nets of
highly popular nodes might be large to store and analyze.
Indeed, in the worst case, for a node connected to the entire
network, the ego-net is as large as the entire graph. We ob-
serve that this is not, however, a fundamental issue for many
of the applications of ego-net mining. The ability of people
to maintain significant social ties with a large number of con-
tacts is constrained by the so-called cognitive capacity (as
witnessed by the celebrated Dunbar’s number theory [14,
30]). So we can expect that the study of extremely large
ego-nets to be less relevant.
Experiments. Our experiments confirm the theoretical in-
sight on the speedup achieved by the algorithm presented.
For graphs of moderate size we compared the execution of
the naive sequential O(

∑
u deg2(u)) algorithm with that of

the fast sequential algorithm based on Schank’s technique
(Algorithm 2) as well as our distributed algorithm (Algo-
rithm 3). In our Livejournal dataset, for instance, the fast
sequential algorithm has a speedup of 5x (w.r.t. to the naive

327

algorithm) while the distributed algorithm has a speedup of
11x.

5. REAL-WORLD EGO-NET PROPERTIES
In this section, our main focus is to understand the sta-

tistical properties of the community structure of ego-nets
in real-world graphs. To this end, we apply our previously
defined algorithms to efficiently compute (and cluster) the
ego-nets of several large-scale graphs, including the entire
Google+ network. In particular we focus on the following
question: do ego-networks have a good clustering?

To study this topic in depth we first analyze the clustering
of the ego-networks of 8 publicly available datasets: Amazon
co-purchase network, Astro Physics collaboration network,
Enron email network, Slashdot social network, patents ci-
tation network, Facebook social network, LiveJournal social
network and Twitter social network. In this version of the
paper we present results only for Patents, Facebook, Live-
Journal, Twitter and Google+ in interest of space, the re-
sults for the other networks are very similar. The datasets
are described in Table 1.

Graph |V | |E|
Patents [29] 3774768 16518948
Facebook [35] 4039 88234
LiveJournal [7] 4847571 68993773
Twitter [35] 81306 1768149
Google+ XXXM XXXM

Table 1: Number of nodes and edges for graphs an-
alyzed in the experiment. Exact figures for the pro-
prietary Google+ graph are not disclosed.

Then we compare the clusters retrieved by our algorithms
with user defined circles. For this purpose, we analyze a
snapshot of the entire public Google+ network containing
hundreds of millions of users and edges with the complete
list of public circles. In this analysis, we also describe some
interesting properties of Google+ circles.

5.1 Egonetwork community structure
In this subsection, we analyze the clustering structure of

the ego-networks of our publicly available datasets. We start
by looking at the conductance of all the clustering obtained
by our 5 clustering algorithms, the results of this analysis
are shown in Figure 1 (note that the x axis is in log scale).

There are a few interesting results to observe. First, over-
all all the clustering algorithms are able to find clusters with
very low conductance. In particular most of the clusters re-
trieved by all the algorithms have conductance close to 0
or actually zero. Second, the k-core algorithm and the la-
bel propagation algorithm (lp) generate a larger number of
clusters. This is not surprising because the lp algorithm is
designed to find small communities and the k-cores can be
numerous for small k value. Nevertheless it is interesting
to note that the quality of the communities is still gener-
ally high. It is also interesting to note that the PPR-based
algorithms find communities with lower conductance, as ex-
pected, while the label propagation one find several clusters
with larger conductance (for example look at Figure 1(c)).

Now we turn our attention to Figure 2 where we analyze
the density of the clusters. The results that we obtain in this
case are less homogeneous than the one that we had for the
conductance. In particular, we observe that in social graphs

(a) Patents (b) Facebook

(c) LiveJournal (d) Twitter

Figure 1: Number of clusters with a specific con-
ductance.

(a) Patents (b) Facebook

(c) LiveJournal (d) Twitter

Figure 2: Number of clusters with a specific density.

as Facebook, Livejournal and Twitter (Figures 2(b), 2(c)
and 2(d), respectively) few clusters have very high density.
Nevertheless for all the graphs and for all the clustering
algorithms most of the retrieved clusters have density larger
than 0.2 which is particular surprising, as it implies that in
the graph induced by the most of the retrieved clusters there
is at least one edge every 5 possible edges, so those clusters
look almost like a clique.

A possible explanation for those results is that many of the

328

(a) Patents (b) Facebook

(c) LiveJournal (d) Twitter

Figure 3: Number of egonets with a specific conduc-
tance.

retrieved clusters are of small size and not really meaningful.
To address this question, we consider the same conductance
and density metric at ego-network level and not at clustering
level. As presented in Section 3, we define the conductance
of a ego-network to be equal to the maximum conductance
of a cluster in the ego-network clustering. For the density
of a clustering we use the min density.

Interestingly, even by analyzing our clustering at this level
of granularity the results do not change significantly. In fact,
looking at the plots describing the ego-network conductance
(Figure 3), it is possible to observe that the conductance
of the retrieved clusters is typically very low and that the
PPR-based algorithms find clusters with lower conductance
than the other and that label propagation algorithms yields
slightly higher conductance clustering.

Finally, we turn our attention to the density of the clus-
ters at the ego-net level (Figure 4). Also in this case, the
results are similar to the one observed at the cluster level.
The clusters have typically very high density and the label
propagation algorithm retrieves clusters with slightly higher
conductance.

It is interesting to note that at ego-net level the k-core
algorithm finds clusters of low density. This may look sur-
prising at first sight, but it is not because the k-core algo-
rithm enumerates all k-core clusters also for small k. So it
is not surprising that the cluster of minimum density in an
ego-network has actually a low density.

5.2 Egonetwork communities vs circles
Now we turn our attention to a comparison between the

communities that we retrieve using our clustering algorithms
and the user defined circles. Intuitively user defined circles,
if available and updated, are good clustering of the ego-

(a) Patents (b) Facebook

(c) LiveJournal (d) Twitter

Figure 4: Number of egonets with a specific density.

nets. For this reason we compare our clustering with them3.
For our analysis we use the entire Google+ public graph for
which we possess hundreds of millions of user-defined circles.
Note that our analysis is the first analysis on circles involving
hundreds of millions of nodes and their circles.

First, we look at some basic statistics on circles properties.
We briefly summarize the results in the following Table 2.

Metric Values
Average density 0.352

Average conductance 0.1438
Average number of wcc 4.981

Average fraction of number in largest wcc 0.726

Table 2: Basic metrics for several circles properties.

Algorithm N. Pr. N. Rc. E. Pr. E. Rc.
k-core 0.77 0.64 0.80 1.0

lp 0.86 0.49 0.87 0.96
ppr 0.86 0.48 0.87 0.93

over. ppr 0.84 0.55 0.86 0.94
slpa 0.85 0.53 0.86 0.98

Table 3: Overlap between circles and clusters re-
trieved by different clustering algorithms. N. and
E. stand for node and edge, respectively, while Pr.,
Rc. stand for Precision, Recall respectively.

For each circle we compute its density, conductance, num-
ber of weakly connected components and the fraction of
nodes in the largest weakly connected component. Previous
findings focused on the macroscopic scale of the graph [9]
observed high conductance in Google+ circles making them
difficult to separate with clustering algorithm. In contrast
to this study we focus on the ego-net level scale where we

3Note that our goal here is not to retrieve circles but just
to evaluate the quality of our clustering from a different
prospective

329

observe that user defined clusters have typically low conduc-
tance and high density so they resemble the classic notion
of clusters.

We compared user defined circles with the communities
retrieved by our clustering algorithms. For this analysis we
use as ground-truth communities the connected components
of each circles. In particular we study how different cluster-
ing algorithms generate clusters that resemble user defined
ground-truth circles. Before describing our results, we in-
troduce four metrics that we will consider.
Node-Pair Precision/Recall The node-pair error rate
computation is obtained by modeling the problem of recon-
structing circles as an information retrieval problem. We
define the set of pairs of nodes in the same circle, U =
{(x, y)|x, y ∈ C}, as the set of items to retrieve. Then the
set of pairs of node that ends up in the same cluster is con-
sidered to be the set of items retrieved. This allows to eval-
uate the accuracy of the clustering using all the well-known
information-retrieval measures of precision and recall.
Edge Precision/Recall This measure is similar to the
previous one but instead of using the set of pairs of nodes
in the same cluster as ground-truth, we use the set of edges
inside a circle.

The results are reported in Table 3. It is interesting to
notice that despite the simplicity (and scalability) of the
approach all the algorithms are quite good in retrieving user
defined circles. In fact they all have precision > 80% and
recall at least 60%. We observe that k-core algorithm has
highest score considering Node Recall while slpa outperforms
the other algorithms for Edge scores4. Our experiments on
friend suggestion, reported in Section 6, will confirm these
two algorithms to be among the best performing ones also
for that task.

6. FRIEND SUGGESTION VIA EGONETS
CLUSTERING

In the previous section, we have observed that ego-net
clusters obtained by community detection methods, closely
match user-defined circles. We now study a practical appli-
cation of ego-networks clustering to the important task of
friend suggestion. As a driver of social engagement, friend
suggestion is a fundamental tool for online social networks.
Designing a high quality system is very challenging and the
state of the art friend suggestions tools are based on a mul-
titude of features combined by efficient machine learning
algorithms.

A very effective family of features for friend suggestion is
the set of graph based features. In this family, it is pos-
sible to distinguish between two main groups: (i) Features
computed on the entire structure of the graph [35, 48], (ii)
Features computed locally by analyzing the neighborhood
of a node [2, 33]. In the rest of this section we show theoret-
ically and experimentally that ego-networks clustering can
be used to produce a new local network feature that outper-
form all the previous network features and that is impactful
in real world experiments.

One of the most intuitive and commonly used feature for
friend suggestion is the number of common friends between
two users. This feature is easy to compute even for very large
graph and it has a very intuitive meaning. Nevertheless it

4It is interesting to note that also when we restrict our anal-
ysis to circles of size at least 10 we obtain similar results.

has also few limitations, high degree nodes generate a lot
of suggestions even if they have only “weak” links. Second
this feature tends to suggest more often high degree nodes.
Finally a user is typically member of several social groups
and this feature tends to suggest unrelated contacts as it
ignores the social groups to which these common friendships
belong.5

To provide an intuition for the latter problem consider the
following real-life example. Users A and B have 4 common
friends X1, X2, X3, X4 while A and C have only 3 common
neighbors Y1, Y2, Y3. Although from the point of view of
Xi’s A and B belong to different social circles: for instance
A is a family member of X1 while B is instead a co-worker
of X1, etc. On the other hand for all Yi’s A and B belong
to the same circle of Yi (e.g. they are both co-workers of
Y1, family member of Y2, etc.). In this case it is more likely
that A and C are friends w.r.t. to A and B despite having
fewer common neighbors.

To solve the problem of high degree nodes several tech-
niques have been proposed, Adamic and Adar [2] proposed
to score a suggestion with weight inversely proportional to
the degree of the common friend between two nodes. The
second problem can be solved by considering the Jaccard
coefficient between the neighborhood of two users. Never-
theless the third problem seems more complex and to the
best of our knowledge no formal technique has been devel-
oped to solve these issues.

In the following, we show how to tackle these issues via
clustering ego-nets. The main idea is to cluster Zu, the ego-
network minus ego of user u, in social groups so that then we
suggest two users if and only if they share a cluster in some
ego-net clustering. In particular, the simplest ego-network
friendship score between two nodes v and w can be defined
as:

W (v, w) =
∑

u:v,w∈N(u)

{
1 if v, w in the same cluster of Zu
0 otherwise.

Essentially, for a target node v, W (v, w) values the sug-
gestion of nodes w (to node v) as the number of joint friends
u of v and w s.t. from the point of view of u’s ego-net both
v and w belong to the same sub-community of the friends of
u. The social intuition is that pairs of nodes v, w that be-
longs to the same ego-net sub-community of many common
friends have higher probability of forming a link (indeed one
of these common friend might have introduced them to each
other).

Note that this score can be generalized to take into ac-
count other properties of the communities to which v, w
belong in the same ego-net, such as the degrees of v and w,
the density of the cluster, the fraction of edges of u or v in
the cluster and other features as we do in our live exper-
iments. However, for the sake of comparing to previously
studied features, we mainly compare with the above simple
score.

Notice also that this measure can be computed easily in
a single MapReduce step. In fact, each ego-net cluster pro-
duced in the previous phase can be analyzed independently
of the others, in parallel, thus enabling the scalability of our
methods to very large datasets.

5Note that this is an issue also for methods that ensem-
bles path of length bigger than one between the user and a
possible suggestion.

330

Finally, this score naturally discounts the importance of
celebrity nodes for two reasons. First, we define the ego-nets
as the out-neighborhood of a node. Hence, the suggestions
induced by a celebrity ego-net will not affect the large num-
ber of followers of the celebrity (the in-neighbors) but in-
stead on only the significantly smaller number of users added
by the celebrity in his/her circles (they out-neighbors).6 Sec-
ond, while celebrity nodes will be present in many ego-nets,
they will only be suggested to a user u, if they are clustered
in the same community of user u in many ego-nets of friends
of u. Arguably, in this case, the celebrity could be a good
suggestion.

6.1 A simple theoretical model
To prove the strength of our new feature, we introduce

a new simple theoretical model in which we formally prove
that the simple ego-network friendship score defined above
performs better than the number of common friends and
the Adamic Adar score. The model that we analyze here
is simplistic (at the end of this section we comment on its
limitations), but it allows us to mathematically formalize
the intuition behind the interesting properties of our new
score. Our model has similarities with the models in [5, 8].

In our model, each of n people has a set of interest I of
size k > 1 (possibly with repetitions), where k is the same
for all nodes in the graph. We assume that k interests of
a user are selected uniformly at random (with replacement)
from a set of n

log2 n
possible interests. Given these interest

relationships, the social graph is formed by creating an edge
between two people with probability p > 0 if they share at
least one interest. Note that our graph is built by composing
two types random graphs, the first one is a bipartite random
graph between people and interest(an affiliation network)
and the second one is a random graph defining friendships
within any pair of interest.

Given a social graph G as input, we want to generate good
friend suggestions without knowing the interest set for each
person. We define a friend suggestion to be good or valid if
the two people involved in the suggestion share at least one
interest. We define a suggestion bad otherwise.

It is possible to show that in this model, the number
of common friends similarity score and the Adamic Adar
score provides the same set of friend suggestions containing
a similar fraction of good and bad suggestions. In partic-
ular we show that the set of good suggestions J+ is of the
same order of magnitude that the set of bad suggestions J−

provided by this measure (hence we have an overall poor
performance). On the other hand, we show that w.h.p.7

the ego-network friendship score using a very simple cluster-
ing algorithm returns all the good suggestions in J+ with
a significantly small number o(|J+|) bad suggestions. So
ego-network friendship score provably outperforms the other
techniques.

For simplicity, the clustering algorithm that we consider in
the proofs in this section is the simple connected component
algorithm. This may look a bit artificial, however, in the
next section we will show also experimentally, with real data,

6Many social networks caps the number of users that can
be followed but instead the number of followers can be ex-
tremely high.
7We say that an event happens with high probability (w.h.p)
it is happens with probability 1−o(1) for n number of nodes
that goes to infinity.

that this simple clustering algorithm (applied in our ego-net
based similarity score) outperforms the number of common
friends and the Adamic Adar score. Nevertheless, we also
observe that in practice it is possible to obtain better results
by using more sophisticated clustering algorithms and we
cojecture that our theoretical result could be extended to
many other algorithms.

In order to show our theoretical results, we first prove
some properties of our model. First we find a bound on the
size of any given community.

Fact 2. Let ε be any constant ε > 0 for any interest i,
the number of people interested to a specific interest i, Vi
is (1 − ε)k log2 n < |Vi| < (1 + ε)k log2 n with probability
1−O(n− logn).

Proof. Let Xv(t) be the indicator variable that it is 1
if the t-th interest of v is i and 0 otherwise. Then E[Vi] =∑
v∈V

∑k
t=1Xv(t) = nk log2 n

n
= k log2 n. Furthermore the

Xv(t) are i.i.d. random variables in [0, 1] so we can apply the
Chernoff bound and obtain that P (|Vi−E[Vi]| > εk log2 n) ≤
O(n− logn). Now there are in total n

log2 n
interests, so by

applying the union bound we get the result.

Then we bound the number of people sharing more than
one interest 8.

Fact 3. The number of pairs of users that share more
than one interest is w.h.p. O(log5 n).

Proof. Let Xu,v be the indicator variable that is 1 if u
and v share more than one interest. E[Xu,v] = P (Xu,v) ≤(
k
2

) (
k log2 n

n

)2
∈ O

(
log4 n/n2

)
. So the total number of ex-

pected pairs, Y , that share more than one interest is E[Y] ≤
n2E[Xu,v] ∈ O

(
log4 n

)
. So using the Markov inequality

we get that the probability that the number of pairs of
users that share more than one interest is O(log5 n) is 1 −
O (1/logn).

Fact 4. Let G = G(log2 n, p) be a random Erdős-Rényi
graph [17]. If p > 0 is constant, then the subgraph induced
by the neighborhood of any node in G is connected with prob-
ability 1−O(n−C logn), for positive constant C.

Proof. (Sketch) The core idea behind the proof is to
show that, even if two neighbors of a node are not connected,
there is a third neighbor connecting them.

Let v be any node in G, note that N(v) is in expectation
p log2 n so using the Chernoff bound we have that the prob-
ability that p

2
log2 n ≤ |N(v)| ≤ 2p log2 n is 1−O(n− logn).

In the rest of the proof we assume p
2

log2 n ≤ |N(v)| ≤
2p log2 n. Pick an element z in N(v), the expected size

of |N(z) ∩ N(v)| is bigger or equal than p2

2
log2 n so using

the Chernoff bound again we have that the probability that

|N(z) ∩ N(v)| ≤ p2

4
log2 n is O(n− logn). So in the rest of

the proof we assume that |N(z) ∩ N(v)| ≥ p2

4
log2 n (Note

that this happens with probability 1−O(n− logn)).
Now consider any element w ∈ N(v) \ N(z), we show

that even if w is not directly connected to z there is a third
neighbor in N(v) \ N(z) that connects them. Note that

8Note that the bounds that we present here are not tight,
in our exposition we decide to trade some logn factors to
simplify the proofs.

331

the probability that w is not connected with any element

in N(z) ∩ N(v) is (1 − p)|N(z)∩N(v)| ≤ (1 − p)
p2

4
log2 n ∈

O(n−p
2 logn). So by taking the union bound on the elements

in N(v) \ N(z) we have that all the elements in N(v) are
either connected to z or connected to it with a path of length

2 with probability 1−O(n−p
2 logn).

Using the previous three Facts, we can prove the main
Lemma of this section (we note that similar lemma can be
proved for Adamic-Adar score).

Lemma 3. Let J+ be the set of good suggestions and J−

be the set of bad suggestions for the friend suggestion prob-
lem produced by the number of common friend feature in our
model. Then w.h.p. |J+| ∈ Θ(|J−|). Furthermore w.h.p. all
the suggestions in J+ are produced also by the ego-network
friendship score but the number of bad suggestion for the
ego-network friendship score is o(|J+|).

Proof. (Sketch) From Fact 2 and by the Chernoff bound
we know that every node has w.h.p. O(log2 n) neighbors
spitted in a constant number of communities of roughly
equal size. Thus |J+|, |J−| ∈ Θ(log4 n) w.h.p.

Now consider ego-network friendship score by Fact 4 we
know that w.h.p. for every node u, the nodes N(u) that
share an interest are connected w.h.p. so if we run connected
components on all the ego networks we recover all the good
suggestions. So w.h.p. ego-network friendship score makes
all the suggestions in J+.

Furthermore if ego-network friendship score makes a bad
suggestion when it analyzes a node v if and only if the con-
nected component algorithm clusters together two groups
of people that share different interests in N(v). But this
happens only if v share two interests with another node
and by Fact 3 this happens w.h.p. only O(log5 n) times.
So w.h.p. the number of bad suggestions produced by ego-
network friendship score is o(J+).

Limitation of our theoretical model. We note that our
model has a few important limitations: the degree of the
nodes in the graph is almost regular and also the number
of people interested to each interest in the graph is almost
regular. Those two assumption are not realistic, nevertheless
we think that our model gives good intuitions on why the
ego-network friendship score is an effective feature as we will
show experimentally in the next subsection.

6.2 Experimental results
As our first experiment, we analyze the prediction power

of the simplest ego-network friendship score on a real-world
data set, and compare it with the number of common friends
and the Adamic-Adar score. We analyze an anonymized
snapshot of the entire public Google+ graph, and computed
link suggestions using the number of common friends, the
Adamic-Adar and the ego-network friendship score com-
puted with different clustering algorithms including con-
nected components. Then we observe the evolution of the
network in the following two weeks and we check how many
of the newly added edges where predicted by the three score.
The precision and recall plots for the experiment are pre-
sented in Figure 5, Figure 6 and Figure 7.

Figure 5: Precision of different features for friend
suggestion at position i. Where the position is com-
puted considering the descending feature score or-
dering. See Appendix for algorithms.

Figure 6: Recall of different features for friend sug-
gestion at position i. Where the position is com-
puted considering the descending feature score or-
dering. See Appendix for algorithms.

Figure 7: Precision/Recall plots of different features
for friend suggestion. See Appendix for algorithms.

From the figures, it can be observed that the new simple
ego-network friendship score is very powerful and outper-
forms significantly the previously defined features. More-
over, ego-net friendship score defined based on different clus-
tering algorithms have comparable performance, and among
all clustering techniques the ego-net friendship score which is
computed based SPLA has the best performance among the
clustering methods that we tried. LPA and k-core comes
next showing surprisingly close performances to the sim-
ple C.C. algorithm. The variations of PPR rank lower but
still significantly better than common neighbors or Adamic
Adar. Notice that the relative order of the algorithms is
similar to the ones observed in the reconstruction of the
circles as reported in Section 5.2 where SPLA and k-core
out-perfome the PPR-based algorithms.
Real-world live experiment. Finally, we also run live

332

experiments using ego-net-based features. In these live ex-
periments, we went beyond the simple ego-net-based score
and introduce other variants of this score. In particular, we
add to the Google+ production model four features based
on ego-network similarity:

W1(v, w) =
∑

u:v,w∈N(u),
v,w∈C,
C⊆Zu

1, W2(v, w) =
∑

u:v,w∈N(u),
v,w∈C,
C⊆Zu

ψ(C)

W3(v, w) =
∑

u:v,w∈N(u),
v,w∈C,
C⊆Zu

|NC(v) ∩NC(w)|

W4(v, w) =
∑

u:v,w∈N(u),
v,w∈C,
C⊆Zu

min{|NC(v)|, |NC(w)|}
|C|

where C is a cluster of Zu, ψ(C) and NC(u) are the density
of the cluster C and the set of neighbor of u induced on C,
respectively.

Note thatW1(v, w) is the simple ego-network similarity we
defined in the previous section. In addition to this simple
score, we also consider W2(v, w) that takes into account the
cluster density, W3(v, w) that takes in account the closeness
of two nodes inside a cluster and W4(v, w) that takes in
account the node connectivity inside clusters.

To better understand the differences between this four fea-
tures we study the correlation between their values and the
apply rate for the Google+ friend suggestion. In particu-
lar, we look at a week of Google+ data and for each past
suggestion we compute its feature score using the 4 differ-
ent scoring function. In Figure 8 we show the correlations
between the scores and the apply rates.

Figure 8: Correlation between feature scores and
apply rates. Exact apply rates and feature scores
are not disclosed.

It is possible to observe that all the features have positive
correlation and that W4 has stronger correlations.

Now we turn our attention to the performance of the new
features in a live experiment with the Google+ friend sug-
gestion system. In the experiment we added these 4 features
to the Google+ production model which contains several se-
mantic and network based features. Interestingly, even if
the current production model is very complex and highly
optimized, the ego-network similarity features had a clear
positive impact on the prediction task.

On Google+, users receive a certain number of friend sug-
gestions. A user may either accept a suggestion (adding a
new user to his/her circles), explicitly reject a suggestion
(which will not be shown by the system again) or simply
not act on the suggestion (no user action is observed). We

define the acceptance rate as the ratio of suggestions that
are accepted, and the rejection rate as the ratio of explicitly
rejected suggestions. We run a live experiment in G+ for 10
days (3/10/2015 - 3/20/2015) and after adding these new
features to our supervised learning method we observed an
increase in the acceptance rate by more than 0.5% and a
decrease of the rejection rate by more than 1.4%. Further-
more those results are even stronger when we restrict our
attention to more active users (those who take 20 actions
per day), in fact in this case we observed an increase in the
acceptance rate by more than 1.5% and a decrease of the
rejection rate by more than 3.3%. Note that this result in
is inline with our previous theoretical and empirical results:
friend suggestion score improves over the standard measures
(like common neighbors) both in our theoretical model and
in the off-line experiments.

7. CONCLUSIONS AND FUTURE WORKS
In this paper we focus on analyzing the structural prop-

erties of ego-networks. Our findings are quite interesting,
ego-networks are easily clusterable and the user defined cir-
cles are somehow similar to the cluster retrieved by classic
clustering algorithms. Toward this end we also developed
an efficient technique to cluster all the ego-networks in a
graph in parallel efficiently. Finally, we develop a new fea-
ture for friend suggestion, the ego-network friendship score,
and prove theoretically and experimentally that our new
feature outperforms the most well-known features that are
based on the immediate neighborhood of a node.

We believe that many future directions of work might
stem from our preliminary results. For instance, ego-net-
works mining and the study of ego-nets structure in bipartite
graphs might be worth to be explored. Also, ego-net mining
could be potentially used to detect spam requests to join
circles. Moreover, better performances in friend suggestion
could be obtained by combining the result of the application
of different clustering methods.

Another possible direction is that of accounting for the
dynamicity of nowadays social networks by extending our
framework for ego-net mining to the context of dynamic
graph streams. Previous works on triangle counting in graph
streams [34] might be beneficial to this direction (due to the
strong connection between ego-net and triangles) as well as
dynamic community detection algorithms [16].

Finally, while we showed that our scoring technique in-
creases accuracy in friend suggestion by restricting recom-
mendations within the community of the user, we recognize
that this might prevent the user from exploring new interest-
ing circles. This might result in a social filter bubble akin to
that experienced in other recommendation systems [36]. An
interesting future direction of work would be to explore the
tradeoffs between exploitation of current community struc-
ture and exploration of further circles, in order to provide
better and more comprehensive suggestions to the users.

Acknowledgements
We thank Chayant Tantipathananandh for his help and Ed
Chi for the useful discussions.

333

8. REFERENCES
[1] B. D. Abrahao, S. Soundarajan, J. E. Hopcroft, and R. D.

Kleinberg. A separability framework for analyzing
community structure. TKDD, 2014.

[2] L. A. Adamic and E. Adar. Friends and neighbors on the
web. Social Networks, 2003.

[3] L. Akoglu, M. McGlohon, and C. Faloutsos. oddball:
Spotting anomalies in weighted graphs. In PAKDD 2010,
2010.

[4] R. Andersen, F. R. K. Chung, and K. J. Lang. Using
pagerank to locally partition a graph. Internet
Mathematics, 2007.

[5] S. Arora, R. Ge, S. Sachdeva, and G. Schoenebeck. Finding
overlapping communities in social networks: toward a
rigorous approach. In EC, 2012.

[6] S. Asur and S. Parthasarathy. On the use of viewpoint
neighborhoods for dynamic graph analysis. Technical
report, Technical Report Sept 2008
OSU-CISRC-9/08-TR50, 2008.

[7] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In ACM SIGKDD,
2006.

[8] M. Balcan, C. Borgs, M. Braverman, J. T. Chayes, and
S. Teng. Finding endogenously formed communities. In
SODA 2013.

[9] S. Brauer and T. C. Schmidt. Are circles communities? A
comparative analysis of selective sharing in google+. In
ICDCS, 2014.

[10] R. Burt. Structural Holes: The Social Structure of
Competition. Harvard University Press, 1995.

[11] F. Chung. A local graph partitioning algorithm using heat
kernel pagerank. Internet Mathematics, 2009.

[12] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi.
Uncovering hierarchical and overlapping communities with
a local-first approach. TKDD, 2014.

[13] J. Dean and S. Ghemawat. Mapreduce: a flexible data
processing tool. Commun. ACM, 2010.

[14] R. I. Dunbar. Neocortex size as a constraint on group size
in primates. Journal of Human Evolution, 1992.

[15] R. I. M. Dunbar and S. G. B. Roberts. Communication in
social networks: Effects of kinship, network size and
emotional closeness. Personal Relationships, 2010.

[16] A. Epasto, S. Lattanzi, and M. Sozio. Efficient densest
subgraph computation in evolving graphs. In WWW, 2015.

[17] P. Erdős and A. Rényi. On the evolution of random graphs.
In Hungarian Academy of Science, 1960.

[18] M. Everett and S. P. Borgatti. Ego network betweenness.
Social Networks, 2005.

[19] L. C. T. Freeman. Centered graphs and the structure of ego
networks. Mathematical Social Sciences, 1982.

[20] M. Girvan and E. J. Newman. Community structure in
social and biological networks. PNAS, 2002.

[21] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low
conductance cuts, and good seeds for local community
methods. In KDD, 2012.

[22] A. V. Goldberg. Finding a maximum density subgraph.
Technical report, 1984.

[23] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and
R. Zadeh. WTF: the who to follow service at twitter. In
WWW ’13, 2013.

[24] M. Jerrum and A. Sinclair. Conductance and the rapid
mixing property for markov chains: the approximation of
the permanent resolved (preliminary version). In STOC,
1988.

[25] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar,
A. Tomkins, and E. Upfal. Random graph models for the
web graph. In FOCS, 2000.

[26] M. La Gala, V. Arnaboldi, M. Conti, and A. Passarella.
Ego-net digger: A new way to study ego networks in online
social networks. In HotSocial ’12, 2012.

[27] H. Lamba and R. Narayanam. Circle based community
detection. In I-CARE ’13, 2013.

[28] S. Lattanzi and D. Sivakumar. Affiliation networks. In
STOC 2009.

[29] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters. TKDD,
2007.

[30] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters. Internet
Mathematics, 2009.

[31] J. Leskovec, K. J. Lang, and M. W. Mahoney. Empirical
comparison of algorithms for network community detection.
In WWW 2010.

[32] R. Li, C. Wang, and K. C. Chang. User profiling in an ego
network: co-profiling attributes and relationships. In
WWW, 2014.

[33] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. J. Am. Soc. Inf. Sci. Technol.,
2007.

[34] Y. Lim and U. Kang. Mascot: Memory-efficient and
accurate sampling for counting local triangles in graph
streams. In KDD, 2015.

[35] J. J. McAuley and J. Leskovec. Learning to discover social
circles in ego networks. In NIPS, 2012.

[36] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and
J. A. Konstan. Exploring the filter bubble: The effect of
using recommender systems on content diversity. In WWW,
2014.

[37] B. S. Rees and K. B. Gallagher. Overlapping community
detection by collective friendship group inference. In
ASONAM, 2010.

[38] P. Ronhovde and Z. Nussinov. Local resolution-limit-free
potts model for community detection. Phys. Rev. E, 2010.

[39] D. Schall. Link prediction in directed social networks.
Social Netw. Analys. Mining, 2014.

[40] T. Schank. Algorithmic Aspects of Triangle-Based Network
Analysis. PhD thesis, 2007.

[41] A. Sharma, M. Gemici, and D. Cosley. Friends, strangers,
and the value of ego networks for recommendation. In
ICWSM, 2013.

[42] S. Suri and S. Vassilvitskii. Counting triangles and the
curse of the last reducer. In WWW, 2011.

[43] G. Szekeres and H. Wilf. An inequality for the chromatic
number of a graph. Journal of Combinatorial Theory, 1968.

[44] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In KDD, 2006.

[45] H. Wang and W. Li. Online egocentric models for citation
networks. In IJCAI, 2013.

[46] S. Wasserman and K. Faust. Social network analysis:
methods and applications. Cambridge University Press,
1994.

[47] J. Xie, B. K. Szymanski, and X. Liu. Slpa: Uncovering
overlapping communities in social networks via a
speaker-listener interaction dynamic process. In ICDMW
’11, 2011.

[48] J. Yang, J. J. McAuley, and J. Leskovec. Detecting cohesive
and 2-mode communities indirected and undirected
networks. In WSDM, 2014.

APPENDIX
A. DESCRIPTION OF CLUSTERING AL-

GORITHMS
Personalized Page-Rank based Partitioning (PPR).
The Personalized PageRank (PPR) clustering algorithm is
a well-known non-overlapping algorithm that optimizes con-
ductance [4]. The algorithm is based on the computation of
the PPR scores. For a given node v (the so-called seed), and

334

for a probability α, the PPR score from v to u is the proba-
bility that the PPR random walk for v is in u: At each step,
the PPR random for v jumps back to node v with probabil-
ity 1

2
α, and 1

2
(1 − α), the walk moves to a neighbor of the

current node uniformly at random. Finally with probability
1
2

remains in u.
Our first partitioning algorithm uses PPR clustering [4]

as a building block. The algorithm takes as input a target
conductance β and an induced subgraph S and it works as
follows. During the execution of the algorithm each node
in S is labeled as unclustered, clustered or checked. At the
beginning all the nodes in S are labeled as unclustered, then
we iteratively pick a node v labeled unclustered uniformly
at random and compute a cluster Cv around it using the
PPR clustering on the graph induced by the nodes labeled
unclustered or checked. If φ(Cv) ≥ β, we labeled all the
nodes in Cv as clustered and we add Cv to the final clustering
C . Otherwise we labeled the node v as checked. We stop
when all nodes are either labeled checked or clustered and we
output a partitioning C of S composed by C plus a singleton
cluster for each node labeled checked. In our experiments we
set α = 0.15, β = 0.3.
Overlapping Clustering Based on Personalized Page-
Rank (Over.-PPR). Our second clustering algorithm is
again based on the PPR random walk. The algorithm takes
as input a target conductance β, an induced subgraph S, a
maximum overlap threshold γ and it works as follows. For
each node v ∈ S we compute a cluster Cv around v using the
PPR clustering on the graph induced by S. Then we add
Cv to C if and only if φ(Cv) ≥ β. After this first phase, the
algorithm iteratively merges together any pair of clusters in
C whose pairwise Jaccard coefficient is more than γ percent.
In our experiments we set α = 0.15, β = 0.3 and γ = 0.8
Label Propagation Clustering Based on Absolute
Potts Model (LP).

We used a label propagation algorithm based on the Ab-
solute Potts Model technique [38]. The algorithm takes as
input the graph to cluster G(V,E) and three constant α, β
and T and proceeds in as a series of rounds. Initially all
nodes are assigned a unique label (the node id). At each
iteration (until a convergence criteria is met) the algorithm
select a random permutation of all nodes. Then nodes are
evaluated in order of the permutation, one at a time.

Consider the evaluation of current node u, in a given iter-
ation. Let N+(u) = x1 . . . xt be the set of the out-neighbors
of u. Let L(xi) be the current label of node xi. For a
given label l, let Cu(l) be the number of out-neighbors of u
that have label l. Let T (l) be total number of nodes in the
graph with label l. The algorithm updates the label of u
with the label l that maximizes the following function fu(l):
fu(l) = Cu(l)− α · (T (l)− Cu(l)) (breaking ties randomly).
Intuitively the algorithm chooses the most common label in
the neighborhood of u after penalizing with parameter α the
number of nodes with the same label that are not connected
to u.

The algorithm continues until at least one of the two fol-
lowing conditions is met: (i) A maximum number of iter-
ations T is reached. (ii) In the last iteration less than a
fraction β of nodes changed their label.

The algorithm is very scalable as each iteration is O(n+
m), n number of nodes, m number of edges in the subgraph,
so the total cost is O(k(n+m)) for k iterations. The space
is O(n + m) as well. In our experiments we set α = 0.3,

k = 20.
Overlapping Label Propagation Clustering (SLPA).
The third algorithm evaluated is a variation of the label
propagation algorithm known as Speaker-Listener Propaga-
tion Algorithm SLPA [47]. This algorithm naturally gen-
eralize label propagation to generate overlapping clusters:
For each node, instead of possessing a single label, the node
stores all the labels received during the execution of the al-
gorithm. This implies that at the end of the execution, a
node possesses a distribution over the communities in the
graph, given by the frequency with which the node has ob-
served each label id. This distribution can be used to assign
nodes to multiple communities.

More formally, the algorithm has three parameters T , α
and β. At all times, each node possesses a list of possibly re-
peated labels that is initialized, for each node, with a unique
label. For T iterations, nodes are analyzed in random or-
der. When node u is evaluated, the node considers the list of
its labels (including repetitions) and sends a label selected
uniformly at random to all outgoing neighbors that conse-
quently update their lists including the new label. Labels
are never removed from the list and the list hence grows by
O(d−(v)) labels per iteration per each node v. At end of
the procedure, if node u has received label id l more than a
fraction α of the iterations, then node u joins community l.
If no label has been observed for more than such fraction,
than node u joins the most frequent label community.

As in the previous overlapping clustering, at the end,
we merge communities whose pairwise Jaccard coefficient
is larger than β. In our experiments, we set α = 5 and
β = 0.8.
Connected Components (CC). We also examine the
connected components as a baseline for comparison.
Hierarchical Clustering using k-cores (K-Core). Fi-
nally, we consider the k-core-based overlapping clustering
algorithm. A k-core [43] is a subset C of the nodes such
that any node in C has degree ≥ k in the induced subgraph
of C. The algorithm produces a hierarchical clustering of V
by computing the k-cores of the graph in an iterative way
use a different values of the threshold k.

The algorithm initializes C as the empty set. In the first
iteration, k is equal to input parameter α, then at each iter-
ation, k is increased by multiplying it with input parameter
γ > 1.

The algorithm computes the k-core Vk of G and includes
in C the set of all the connected components of G[Vk]. The
method ends when all the nodes in the graph are removed
for a certain k.

The algorithm takes O(logγ(n)) = O
(

log(n)
γ−1

)
iterations,

which is O(logn) for constant γ > 1. The total cost of the
algorithm, for constant γ > 1, is hence O(m log(n)). Sim-
ilarly to previous algorithm, we finally merge communities
whose pairwise Jaccard coefficient is larger then β. In our
experiments we set α = 1, γ = 2 and β = 0.8.

335

