
Perturbation Analysis of Database Queries∗

Brett Walenz
Duke University

bwalenz@cs.duke.edu

Jun Yang
Duke University

junyang@cs.duke.edu

ABSTRACT
We present a system, Perada, for parallel perturbation analysis of
database queries. Perturbation analysis considers the results of a
query evaluated with (a typically large number of) different pa-
rameter settings, to help discover leads and evaluate claims from
data. Perada simplifies the development of general, ad hoc pertur-
bation analysis by providing a flexible API to support a variety of
optimizations such as grouping, memoization, and pruning; by au-
tomatically optimizing performance through run-time observation,
learning, and adaptation; and by hiding the complexity of concur-
rency and failures from its developers. We demonstrate Perada’s
efficacy and efficiency with real workloads applying perturbation
analysis to computational journalism.

1 Introduction
Data-driven decision making is playing an increasingly important
role today in many domains, from health, business, sports and en-
tertainment, to public policy. Decisions are often driven by database
queries, which derive insights, identify trends and issues, and jus-
tify actions. Asking the right queries is critical to decision mak-
ing. “Bad” queries (intentionally or otherwise) can present cherry-
picked views, introduce bias, and result in misleading or potentially
dangerous conclusions. By “tweaking” a database query in various
ways and studying how its result changes, perturbation analysis
provides a framework for finding the right queries and guarding
against bad ones.

A noteworthy application of perturbation analysis is in computa-
tional journalism [7, 6], and particularly in finding leads and check-
ing facts using data.

Example 1 (CBB/streak). “Danny Ferry scored 11 points or more
in 33 consecutive games during the 1988–89 season. Only once
has this record been beaten in the history of Duke University Men’s
Basketball.”

∗The authors are supported by NSF grants IIS-1408846 and IIS-1320357,
a Google Faculty Research Award, and Google Research Cloud Credits.
Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not necessarily reflect the
views of the funding agencies.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 14
Copyright 2016 VLDB Endowment 2150-8097/16/10.

Sports reporters and team publicists routinely come up with this
kind of claim (called prominent streaks in [25]). Naturally, one
wonders how we can find such claims, and whether they are truly
significant. Perturbation analysis offers us insights to both ques-
tions. By considering other players and different runs of games, we
can obtain all combinations of point minimum and streak length,
and further select those dominated by at most one other instance.
The final set of results gives us all claims that are as “interesting”
as the original one (thereby finding leads). The size of the final
set also tells us how unique the original claim is (thereby checking
facts)—if analogous claims can be made about many other players,
then Danny Ferry’s streak is not really significant, even though it
appears so (being dominated by only one other instance).

Example 2 (Congress/vote, adapted from [23]). “Jim Marshall, a
Democratic incumbent from Georgia, voted the same as Republi-
can Leader John Boehner 65 percent of the time in 2010.” This
claim came from a TV ad in the 2010 elections and was checked by
factcheck.org.

Campaign ads frequently invoke such claims to strengthen their
own candidates or to attack opponents. Again, perturbation anal-
ysis can find and check such claims. By perturbing the legislators
involved in comparison, we can see what other pairs of legislators
from different parties have similarly high agreement percentages,
and evaluate how unique the original claim is in the broader con-
text. Moreover, by perturbing the time period of comparison, we
see how robust the claim is. Here, if we expand the comparison to
2007–2010, then Marshall agreed with Boehner only 56 percent of
the time, which is not very high compared with other Democrats.
These and other uses of perturbation analysis for fact-checking are
discussed in depth in [23].

Conceptually, both examples follow a similar procedure of per-
turbation analysis: given a database and a parameterized query
“template,” we evaluate the query with various parameter settings
to obtain a set of results (or “perturbations”) representing the “big-
ger picture”; then we filter, rank, or summarize the results to find
interesting claims or to assess the significance of particular claims.
Even if the database itself is not big, the space of perturbations can
be enormous. With current technologies, timely perturbation anal-
ysis remains challenging.

Using a database system, a developer familiar with SQL can
write the query template as a prepared SQL statement, and eval-
uate it with each parameter setting; the results can be collected into
a table and then post-processed using another SQL query. An expe-
rienced SQL developer may even be able to write the entire analysis
as a single SQL query—albeit a very complex one, with the help of
view definitions and/or WITH clauses. However, both approaches
are prohibitively expensive (as we will experimentally verify later)
as database systems are not designed for this type of workloads.

1635

Another approach is to develop specialized algorithms for spe-
cific query templates and applications, as in, e.g., [22, 25, 23]. Un-
fortunately, developing such algorithms for ad hoc situations re-
quires a level of expertise and effort that is simply unavailable to
typical users. Data journalism, for example, has been called “social
science done on deadline,” [16] and is often performed with very
constrained resources. Because of the time, expertise, and cost re-
quired by their development, efficient specialized algorithms often
turn out to be less practical than easy-to-implement solutions that
are efficient “just enough” to get the job done.

Therefore, there is a need for a better system for perturbation
analysis. This system needs to be easy to scale to a large num-
ber of perturbations under a deadline. It needs to be general, with
versatile optimization techniques applicable to different query tem-
plates. It needs to be simple to use—developers should be able to
program ad hoc analysis quickly, without worrying about low-level
implementation details and performance tuning.

We are developing a system called Perada (Perturbation analysis
of database queries) to meet these requirements. A key challenge
is the degree to which we can automate optimization while still de-
livering acceptable performance for complex ad hoc perturbation
analysis. Perada identifies a suite of optimizations that are gener-
ally effective in perturbation analysis: parallelization (trivially, we
can evaluate all perturbations in parallel); grouping (we can eval-
uate some perturbations more efficiently as a group); memoization
(we can cache the result of a piece of computation and reuse it
when we encounter the same inputs later); pruning and incremen-
tal computation (we can use the results cached for one set of inputs
in more sophisticated ways to help prune or compute for a different
set of inputs). Perada provides hooks for developers to enable these
optimizations easily.

More importantly, developers are not committing themselves to
invoking all these optimizations in particular ways. As we will see
later, performance depends on appropriate optimization settings—
e.g., whether memoization and pruning are worth their overhead, or
how to strike a balance between parallelism and serialism (the lat-
ter of which enables memoization, pruning, and incremental com-
putation). However, appropriate settings may depend on factors
difficult to foresee by developers, such as data characteristics. Per-
ada removes the burden of specifying optimization settings from
developers; instead, it monitors execution and adjusts optimization
settings dynamically and adaptively.

Therefore, with Perada, developers can focus on specifying the
analysis and optimization opportunities through the Perada API
(using Python and SQL); Perada implements useful functions such
as distributed caching and parallel randomized enumeration of pa-
rameter settings, and handles all details of tuning and execution
using modern cluster computing tools (Spark [10] and Redis [13]).
Perada also protects developers from some rather nasty implemen-
tation pitfalls that arise from failures and concurrency. In this paper,
we describe the design and implementation of Perada, show how it
helps us implement perturbation analysis for a number of real-life
scenarios in computational journalism, and demonstrate its efficacy
and efficiency through experiments.

2 Problem Statement
Suppose we have a database D. We are given a parameterized
query template q over D with parameters settings drawn from a
(typically multi-dimensional) parameter space P . Let q(p) denote
the result of evaluating q over D with parameter setting p ∈ P .
Let R = {(p, q(p)) | p ∈ P} denote the collection of results
(or perturbations) obtained by evaluating q over the entire param-
eter space. We are further given a post-processing query χ over R,

which computes the final answer set for the perturbation analysis.
Hence, a perturbation analysis problem is specified by (D, P, q, χ).

The post-processing query χ may simply filter or aggregate R.
However, in many cases, χ can do more, such as ranking or cluster-
ing R, so in general, it may be impossible to determine whether or
how much a particular perturbation contributes to the final answer
set without examining other perturbations. The following exam-
ples illustrate a range of possibilities for the problem definition.
For ease of exposition, we have simplified the database schemas
below (some tables are in reality join views).

Example 3 (CBB/streak). Recall Example 1. Here:

• The database D records per-player and per-game statistics for
Duke Men’s Basketball Team in a table (season, game-date,
player, points, rebounds, . . .).

• The query template q is parameterized by (player, start-date,
end-date), where the dates specify a sequence of consecutive
games in the same season played by player. The query com-
putes (length, points), where length is the number of games be-
tween start-date and end-date, and points is the minimum points
scored by the given player in these games.

• Given the set of perturbations R, the post-processing query χ
returns those in R whose (length, points) pairs are “dominated”
by no more than κ other pairs (κ = 1 in Example 1). We say
that (x, y) dominates (x′, y′) if x ≥ x′ and y ≥ y′ and at least
one inequality holds.

Example 4 (Congress/vote). Recall Example 2. Here:

• D (source: govtrack.us) records the votes by each legislator
in each roll call of the U.S. Congress in a table (person, party,
roll-call-id, date, vote).

• q is parameterized by (person1, person2, start-year-month,
end-year-month), where person1 is a Democratic legislator and
person2 is a Republican legislator. The query computes a single
number agree%, the percentage of the times that the two legis-
lators agree in their votes during the specified time period.

• χ simply selects those perturbations with agree% ≥ τ (in Ex-
ample 2, τ = 65).

Example 5 (MLB/dom). “Only one other player has ever beaten
Ryan Howard’s 2006 season where he had 182 hits, 58 home runs,
and a .310 batting average.” This type of claims are called “one of
the few” in [22]. Here:

• D records statistics for Major League Baseball players by sea-
son and by player, in a table (season, player, hits, home-runs,
batting-avg, earned-run-avg, . . .). More than twenty stat columns
are available.

• q is parameterized by (player, season), and computes domcount,
the number of rows in the stats table that dominate the row with
the given (player, season) on a set of stat columns M (in the
claim above, M = {hits, home-runs, batting-avg}). The notion
of dominance here is a straightforward generalization of that in
Example 3 to higher dimensions; also, for some stats smaller
values are better (e.g., hits-allowed for pitchers).

• χ simply selects those perturbations with domcount ≥ κ (in the
claim above, κ = 1).

This example can be seen as a simpler version of Example 3. Here,
the measures involved in dominance test are already stored in the
database; in Example 3, they have to be computed first, so domi-
nance computation occurs in χ there.

1636

3 Opportunities and Challenges
Beyond Parallelization The simplest way to speed up pertur-
bation analysis is to parallelize. The bulk of the workload is in-
deed embarrassingly parallel: each perturbation can be evaluated
independently. However, this approach misses several opportuni-
ties mentioned in Section 1. We present several examples of how
grouping, memoization, and pruning help.

Example 6 (CBB/streak; grouping). Recall Example 3. Consider
all perturbations pertaining to a given player and season. All valid
(start-date, end-date) intervals correspond to different subsequences
of games in the season, and there is considerable overlap among
these subsequences. Rather than querying each subsequence inde-
pendently, it is more efficient to compute all perturbations for the
same (player, season) in one go.

Example 7 (MLB/dom; memoization). Recall Example 5 and sup-
pose we are interested in stats M = {hits, home-runs}. Suppose
(x, y) is the stats for some (player, season). Once we compute
domcount for (x, y)—with a 2-d range aggregation query against
D—we can remember this result and have it keyed by (x, y). Later,
if we encounter another (player, season) that happens to yield the
same (x, y), we can reuse the result remembered, avoiding a dom-
inance counting query. How often does memoization help? Sur-
prisingly often for some workloads. In this case, there are 656,214
(player, season) pairs, but they map to only 8,791 distinct (hits,
home-runs) value pairs, because these two stats have relatively
small value domains. Thus, memoization would result in a 98%
reduction in the number of dominance counting queries.

Example 8 (MLB/dom; pruning). Continuing with the above ex-
ample, further suppose that κ = 10; i.e., we are interested in per-
formances dominated no more than ten other occurrences. As in the
above example, once we find that a stat value pair (x, y) has dom-
count c, we will remember (x, y, c). If we encounter a previously
unseen pair (x′, y′), instead of immediately computing its dom-
count on D, we first check those entries we remembered to see if we
can find some entry (x?, y?, c?) where (x?, y?) dominates (x′, y′)
and c? ≥ 10. If yes, then we know, by transitivity of dominance,
that the current perturbation we are considering has no chance of
passing χ because its domcount is at least 11, even though we do
not know exactly what it is. (This example can be easily expanded
to illustrate incremental computation; see our technical report [21]
for details.)

Note that Example 8 above illustrates how we can “push down” a
filter in the post-processing query χ into the computation of pertur-
bations, and then using this filter to help prune computation. Prun-
ing based on χ can give substantial savings, but to expose such
opportunities in general, we need to do more than simply pushing
down predicates “local” to a perturbation. Shortly, at the beginning
of Example 9, we shall see how pruning works in CBB/streak even
though its χ is based on an aggregate over all perturbations.

Perada needs to provide mechanisms to exploit these opportuni-
ties in a way that allows them to work together effectively. First,
we need to strike a balance between parallelism and sequentiality.
To one extreme, evaluating each perturbation independently maxi-
mizes the degree of parallelism, but there would be no saving from
memoization, pruning, and incremental computation because they
rely on evaluations done earlier in time. To the other extreme, serial
execution maximizes opportunities of reusing earlier evaluations,
but we lose the speedup from parallelization. A similar trade-off
exists for the granularity of parallelism, where grouping may favor
coarser grains of parallelism. Our challenge is to design a system
that allows such trade-offs to be explored, rather than hard-coded.

Caching Challenges With parallel execution in a cluster of nodes,
the conceptually simplest method to enable memoization, pruning,
and incremental computation is through a global cache, which al-
lows information from earlier units of computation to be passed to
later ones (even if they run on different nodes). Memoization, as
illustrated by Example 7, can be easily realized using any one of
high-performance distributed key-value store available today (we
use Redis [13]). On the other hand, pruning and incremental com-
putation generally requires a much richer interface for accessing
cached data. For instance, pruning in Example 8 involves a multi-
dimensional range query against the cache. Ideally, we would like
the cache to be a SQL database, which offers proper indexing and
querying support. However, challenges arise in coping with con-
currency and failures, while keeping the overhead low to preserve
the benefit of pruning. To illustrate, we use an example.

Example 9 (CBB/streak; pruning and caching challenges). Con-
sider the following possible parallel implementation of CBB/streak
(recall Example 3). We fire up multiple nodes in a cluster to find
streaks for different (player, season) pairs. Meanwhile, we main-
tain a global SQL cache of (length, points) entries for streaks found
so far, to help prune perturbations that cannot be in the final an-
swer. Specifically, once we discover a streak with length x and
points y, we check if (x, y) is dominated by two or more entries
already in the cache (recall that κ = 1). If yes, we simply stop con-
sidering the current streak, because its domcount can only increase
further as the execution progresses and we see more streaks. Oth-
erwise, we continue, and insert (x, y) into the cache. This example
illustrates how we can prune based on χ even though χ cannot
be “pushed down” simply (as we cannot evaluate domcount here
locally with a single perturbation), as alluded to earlier.

Suppose, however, that the node fails right after inserting (x, y)
but before it completes processing the current streak. To recover,
we need to redo this perturbation, which may cause (x, y) to be
inserted again into the cache. Subsequently, streaks dominated
by (x, y) can be incorrectly pruned because of the two copies of
(x, y), only one of which should be counted in reality.

Workarounds are possible for this simple, specific example. For
instance, we could make insertions into the cache idempotent, by
tagging each insertion by its perturbation id, and ignoring an in-
sertion if an entry with the same id already exists. However, this
workaround fails if we want to find streaks that are dominated or
matched at most once (with the pruning query against the cache
adjusted accordingly). Suppose (x, y) is dominated by one other
streak but never matched. During redo, however, the pruning query
will pick up both the dominating streak and the earlier inserted
(x, y), thereby rejecting (x, y) incorrectly. To fix the problem, we
would also have to rewrite the pruning query to ignore cache en-
tries with the same id as the perturbation being processed.

But this fix may still not be general enough when developers
modify a SQL cache in ways other than insertions. For instance, a
developer may decide to keep the cache small by maintaining only
the 2-skyband [15] of the streaks seen so far (which is sufficient
for pruning). In this case, seeing a new streak may cause deletions
from the cache as well.

As the example above shows, it is unrealistic to rely on devel-
opers to devise adequate workarounds to handle potential failures.
One alternative is to rely on the standard transaction support of a
database system. However, operating a database system as a global
SQL cache with transactional updates incurs considerable over-
head. Our challenge is to provide a highly efficient caching layer
with good abstraction that frees developers from having to worry
about concurrency and failures. From a performance perspective,

1637

Figure 1: Pruning rate over the course of serially executing MLB/dom,
with different κ and different stats for testing dominance.

the bottom line is that information exchange among different exe-
cution threads incurs cost, which can add up and offset the bene-
fit of pruning. While immediate information exchange maximizes
pruning opportunities, doing so with a global SQL cache may not
pay off because of its overhead. We would like to offer the conve-
nience of a SQL cache, while relaxing its transactional semantics
to offer more flexible control over when to exchange information
globally; we must also do so with clean semantics to avoid the po-
tential pitfalls illustrated in Example 9.
Optimization Challenges As discussed earlier in this section,
various trade-offs may affect the performance of perturbation anal-
ysis. We now argue that simply exposing these “knobs” to devel-
opers is not enough, as they can be difficult to tune by hand.

Example 10 (MLB/dom; factors affecting pruning rate). Consider
MLB/dom, with the pruning procedure described in Example 8.
Suppose M = {hits, home-runs, stolen-bases} and κ = 50. Fig-
ure 1 (ignore the dashed-line plot for now) shows the pruning rate
(averaged over a moving window) over the entire course of execu-
tion. Near the beginning of execution, we see that the pruning rate
picks up quickly, as we are accumulating a good sample of per-
turbations in the cache for pruning. Once we have a reasonable
approximation of the “decision boundary” separating stat tuples
inside and outside the final answer set—geometrically, the last tier
of the (κ+ 1)-skyband in the 3-d space of stat points—the pruning
rate plateaus. This effect of “diminishing returns” should inform
our choice of when to exchange information among parallel execu-
tion threads: we should exchange more often early on and less over
time, as the benefit of growing a global cache decreases.

Now consider the same analysis, but with M = {hits-allowed,
strikeouts, earned-run-average} and κ = 5000. Figure 1 also plots
the pruning rate over the course of executing this analysis. Com-
paring with the other case, we see that the pruning rate here in-
creases more slowly, and converges to a lower percentage. The
reason is with a bigger κ and the fact that strikeouts and earned-
run-average tend to be anti-correlated, the decision boundary (last
tier of the 5001-skyband in 3-d) is much bigger, and the fraction of
perturbations that cannot be pruned (because they are in the an-
swer set) is also bigger.

As this example illustrates, the appropriate setting for the fre-
quency of information exchange changes over the course of execu-
tion, and can differ for different applications of the same analysis,
even on the same dataset. We also note that this example simplifies
reality: it uses no parallelization or memoization, both of which can
affect the pruning rate. In reality, these additional factors, as well
as data characteristics, make tuning optimization knobs by hand
impractical. Our challenge is to enable Perada to make intelligent
optimization decisions dynamically and automatically.

4 System
Overview We now discuss how Perada addresses the challenges
presented in Section 3. At a high level, Perada provides an API to
program perturbation analysis as a sequence of jobs, where each

Plan next epoch

Master

(G
lo

bK
V

ca
ch

e)

Task
TaskTaskTaskFor each cunit in task:

Evaluate

Epoch

G
lo

ba
l k

ey
/v

al
ue

 st
or

e

Local database

Data and/or intermediate results

SyncSQL cache

Master database

Data and/or intermediate results

SyncSQL cache

DeltasIntermediate
results

Task
TaskTaskTaskFor each cunit in task:

Evaluate

Epoch

Local database

Data and/or intermediate results

SyncSQL cache

Broadcast sync

Figure 2: Overview of Perada job execution and optimization.

executes as a (usually large) number of cunits (units of computa-
tion) on a cluster, thereby enabling parallelization. Each cunit can
evaluate one or more perturbations (with grouping optimization).

To enable exchange of information that helps memoization, prun-
ing, and incremental computation, Perada provides two types of
caches for cunits to use. The GlobKV cache is a global key/value
store for supporting memoization; one cunit’s results become im-
mediately visible to others. The SyncSQL cache is a SQL database
local to each thread of execution for supporting pruning and in-
cremental computation. To keep overhead low, its contents are
synchronized across the cluster only at specific times. Behind the
scene, Perada controls the timing dynamically by dividing job ex-
ecution adaptively into a sequence of epochs, with synchronization
only on epoch boundaries.

Perada provides several other features to simplify development
and tuning. It supports parallel random sampling of the parameter
space by default, which makes many pruning methods effective.
With the Perada API, developers can specify ochoices, Boolean
flags controlling which specific optimizations in the code to enable.
Instead of relying on developers to set ochoices, Perada explores
them at run time to find the optimal combination to apply. Finally,
Perada recovers from cluster node failures automatically.

Figure 2 illustrates how Perada executes a job in parallel using
the two types of caches, and how it dynamically optimizes the re-
maining work at the end of each epoch. The remainder of this sec-
tion describes the Perada system and API in detail; we leave the
automatic optimizer to Section 5.

4.1 Parallel Execution
As mentioned earlier, a Perada program consists of a sequence of
jobs, and each job consists of a number of cunits, each a unit of
computation indivisible from Perada’s perspective. All cunits in a
job run the same code but work on different inputs, which we call
cunit parameters. The input database D to the program is available
read-only to all cunits in all jobs. The output of a job is the col-
lection of output from all cunits in the job. The final answer set is
the output of the last job in the program. We start with a simple,
single-job example below:

Example 11 (MLB/dom; cunits). Recall Example 5. We implement
this analysis with a single job, where each cunit is parameterized
by a (player, season) pair. The cunit determines whether the given
stat record’s domcount with respect to M is at least κ; if yes, it
outputs (player, season, domcount). Here, there is no grouping, so
each cunit evaluates one perturbation and applies the χ filter to it.

1638

Our next example uses multiple jobs and grouping. In a program
with multiple jobs, the output of a job is accessible to all subse-
quent jobs, either as a read-only database, or as input cunit param-
eters; for the former, the Perada API allows an relational schema
to be declared for the output. Note that cunit parameters in general
are not necessarily from the parameter space P of the perturbation
analysis—they may come from earlier job output, or, because of
grouping, they may be “meta-parameters” each corresponding to a
group of parameter settings in P .

Example 12 (CBB/streak; multiple jobs and grouping). Recall Ex-
ample 3. We use two jobs to implement this analysis. In the first job,
each cunit is parameterized by a (player, season) pair as described
in Example 6, and is responsible for considering all perturbations
with parameters (player, start-date, end-date) where the dates spec-
ify a sequence of consecutive games by player in season. Using
caching (to be further discussed in Section 4.2), the cunit outputs
a perturbation (player, start-date, end-date, length, points) only if it
can potentially contribute to the final answer set (we cannot know
for sure at this point because we have not seen all streaks yet).

We make the output set of candidate streaks from the first job
available as a database to the second job. The second job is simi-
lar to the job in Example 11. Each cunit considers one candidate
streak, and outputs it with its domcount in the candidate set (with
respect to (length, points)) if domcount ≤ κ.

Note that both jobs contribute to the evaluation of χ: the first job
prunes away some perturbations from further consideration, while
the second job further processes the remaining candidates to find
the final answer set.

As mentioned in the overview, we divide all cunits in a job into a
sequence of epochs. Suppose we have n slots available in the clus-
ter for parallel execution. Given this limit, Perada further partitions
the cunits in an epoch in into nw tasks, where w, the number of
waves, is a small integer. Within an epoch, tasks are scheduled to
run on the n slots independently of each other. Within each task,
cunits execute serially. We defer the discussion of how cunits share
information through caching to Section 4.2.
Implementation with Spark Perada currently uses Spark [10]
as the underlying platform for parallel execution. Developers are
not directly exposed to the Spark API, so it is possible to replace
Spark with other platforms should the need arise. Perada runs a
master that manages a Spark cluster. A Perada job is a Spark job, a
Perada epoch corresponds to a Spark stage, and a Perada task runs
as a Spark task. However, our use of Spark stages departs from
their standard usage. In Spark, stages are derived from a work-
flow graph and generally involve different computation. However,
Perada epochs in the same job consist of identical computation on
different inputs. As we will further discuss in Sections 4.2 and 5.3,
we purposefully divide parallelizable computation into a sequence
of epochs to control the rate of information exchange through the
SyncSQL cache. By carefully constructing the Spark workflow,
Perada ensures its desired mapping of epochs to Spark stages.

Using Spark’s broadcast mechanism, Perada replicates the input
database D as well as any database created from earlier job output.
The data is made available as an in-memory read-only SQLite [1]
database local to each task. If data size ever becomes an issue, it is
easy to replace the replicated database with a distributed one with-
out affecting user code. We have not found the need to do so for our
workloads, because the scalability challenge for perturbation anal-
ysis tends to arise from the large space of perturbations instead of
a large D. In the event that intermediate job output is large, Perada
offers the option of leaving output distributed in the Spark cluster
instead of putting it into a single database.

Perada relies on Spark’s built-in scheduler to assign the nw tasks
in each epoch to the n slots. By setting w > 1, Spark can offer
some automatic protection against stragglers. In our experience,
however, we found w = 1 to suffice because by default we ran-
domly assign a number of cunits to each task, so the chance for any
task to receive a disproportionally high amount of work is low.

Perada also relies on Spark for failure recovery—a failed task
will be rerun automatically. Because of caching, however, com-
plications may arise as illustrated in Example 9. We discuss how
Perada handles these complications in the next section.

4.2 Caching
Perada recognizes the different cache usage patterns in perturbation
analysis and the different levels of performance offered by various
caching architectures—there is no “one-size-fits-all.” Hence, Per-
ada offers two types of caches, which we describe in detail below.
GlobKV: Global Key/Value Cache This cache is intended for
memoization. It supports storage of key/value pairs, and equality
lookups by keys. Importantly, Perada disallows updates that change
values—it will raise an error if one attempts to store a different
value with an existing key. Perada exposes this restriction to de-
velopers, to guard against possible misuses of GlobKV as a general
global store, which could lead to subtle bugs involving concurrency
and failures. This restriction does not limit memoization, because
if we are caching the result of a function using its input as the key,
there cannot be different results with the same key. The following
example illustrates the use of the GlobKV cache.

Example 13 (MLB/dom; GlobKV). Recall Example 7. Cunits can
use the GlobKV cache to store and look up stats-to-domcount map-
pings. As soon as a cunit adds an entry to the GlobKV cache, the
entry will benefit all cunits that follow in time, be they from the
same or other tasks.

Note that two cunits from two concurrent tasks could examine
the same combination of stat values at about the same time. It
is possible that both cunits check the cache and fail to find this
key, so both proceed with domcount evaluation and write to the
cache. However, both should compute the same domcount value,
and the order of writes does not matter. In this case we did not
avoid redundant computation, but such occurrences do not affect
correctness, and should be quite rare.

Perada implements the GlobKV cache using Redis [13], though
any other scalable modern key/value store will do. Note that the
GlobKV cache also helps with failure recovery: when we redo a
failed task, its cunits will benefit from any entries that were com-
puted and cached earlier by the failed run.
SyncSQL: Local SQL Caches with Between-Epoch Synchro-
nization This cache supports pruning and incremental computa-
tion by offering SQL access to cached data, which is more powerful
than the GlobKV cache. The SyncSQL cache operates as follows.
The Perada master maintains a master cache, whose contents are
replicated to a database local to each task at the beginning of each
epoch. The cunits in the task can interact with the local database
with full SQL. No information is exchanged directly among the
local databases. At the end of the task, Perada computes a delta—
which represents the new information added to the local database
by this task’s cunits—and ships it to the master. The master consol-
idates the deltas from all tasks and updates the master cache at the
end of the epoch. The new version of the master cache will then be
replicated for the next epoch.

This design allows information to be passed to later epochs, but
not between tasks within the same epoch. A cunit can benefit from
the collective knowledge of all cunits in previous epochs, as well as

1639

those cunits that precede this one in the same task; however, it does
not benefit from cunits in other tasks of the same epoch. By adjust-
ing the epoch sizes (discussed further in Section 5.3), Perada can
explore the trade-off between the cost and benefit of information
exchange among cunits.

The program needs to specify a function gen delta for com-
puting the delta from a local SyncSQL database, and a function
apply deltas for applying the deltas to the master cache. Perada
provides default implementations: gen delta by default returns
all entries in a local database at the end of the task that were not
present at the beginning of the task, and app deltas simply inserts
in all such entries into the master cache. Although developers need
to supply these two functions or verify that their default implemen-
tations suffice, they have unfettered SQL access to a local database
without having to worry about tricky issues involving concurrency
and failures, such as those in Example 9.

The following example illustrates the use of the SyncSQL cache:

Example 14 (MLB/dom; SyncSQL). Recall Example 8. We show
how to use the SyncSQL cache for pruning (in a more efficient way
than Example 8). Suppose a cunit is considering a perturbation
with stat values (x, y). We query the local SyncSQL database:

SELECT MAX(domcount +

(CASE WHEN hits > x OR home-runs > y THEN 1 ELSE 0))

FROM cache WHERE hits >= x AND home-runs >= y;

If the result is (non-NULL and) greater than κ, we can prune the
perturbation. Otherwise, we compute domcount for (x, y) on D;
suppose it is c. If c ≥ κ (which means (x, y, c) can be useful later
for pruning), we update the local SyncSQL database as follows:

DELETE FROM cache WHERE hits <= x AND home-runs <= y;
INSERT INTO cache VALUES(x, y, c);

Note that the DELETE statement does not decrease the pruning power
of the cache, because any perturbation that can be pruned by a
deleted entry can still be pruned by (x, y, c).

The default gen delta implementation works perfectly for this
SyncSQL cache. For app delta, we insert all delta entries into
the master cache, and then delete all but the skyline entries (with
respect to the stat columns of interest). Note that if we use the de-
fault app delta implementation, pruning will still work, although
we end up with larger master cache to replicate for the next epoch.

Perada implements each local SyncSQL database using SQLite.
Each task calls gen delta after completing all its cunits, and the
Perada master collects all resulting deltas via Spark. The master
then calls apply deltas to update the master cache, and uses
Spark’s broadcast mechanism to replicate it for tasks in the next
epoch. Currently, our default implementation of gen delta is
rather naive; a more efficient implementation should be possible
by examining the SQLite log.

Note that if a task fails, its associated local SyncSQL database is
simply lost; any SyncSQL cache updates performed by this failed
task have no effect on the rest of execution, including when redo-
ing the same task. The Perada master receives deltas only from
successfully completed tasks. Therefore, the problem discussed in
Example 9 is avoided.

4.3 Other Features
Enumerating Cunits Besides specifying what a cunit does, a de-
veloper also needs to tell Perada how to enumerate all cunits so
that they cover the entire parameter space for perturbation analysis.
Perada then assigns cunits to tasks in epochs. This assignment is
important—for instance, in Example 14, if we happen to process

less impressive stat records earlier, then pruning will not be effec-
tive. By default, Perada evaluates cunits in random order, which
works well in many situations because it gives Perada a good sam-
ple of perturbations early on. We now discuss how Perada imple-
ments this feature efficiently without overburdening the developer.

Recall that cunits are parameterized by cunit parameters. If the
number of possible settings is not huge (e.g., with grouping, there
will be far fewer cunit parameter settings than perturbations), Per-
ada will take a simple approach. The developer supplies a gener-
ator function that enumerates all possible cunit parameter settings
for the job. Using this function, Perada produces a list of all set-
tings and permutes the list randomly. It can then assign cunits to
tasks and epochs in order from the list; each task gets a sublist.

If the cunit parameter space is large, the approach above becomes
inadequate: enumeration and permutation will require lots of mem-
ory, and large lists of settings will be sent over the network. Perada
offers a more efficient approach that allows parallel enumeration of
cunit parameter settings in a random order. To enable this approach,
the developer supplies the following functions, for a cunit param-
eter space with d dimensions: 1) For each dimension k, sizek()
returns the number of possible parameter values for this dimension,
and valk(i) returns the i-th (0 ≤ k < sizek()) possible value
for the dimension. These values can be in arbitrary order. 2) A
Boolean function valid(v1, . . . , vd) tests whether a given com-
bination of parameter values is a valid cunit parameter setting to
be considered. A concrete example will be presented later in Ex-
ample 15. The product of the sets of possible values in individual
dimensions defines the candidate cunit parameter space C?, with
size

∏
k sizek(). Each element of C? can be labeled a unique

integer in [0, |C?|). Using LCGs (linear congruential generators)
with carefully chosen prime moduli and the leapfrog method [5],
Perada allows all tasks in each epoch to step through a specific
random perturbation of all labels (integers in [0, |C?|)) in parallel
while picking up labels in a round-robin fashion. Thus, all param-
eter settings are enumerated on the fly (see [21] for details).

Instead of relying on Perada’s random ordering of cunits and au-
tomatic tuning of epochs, developers can also dictate their prefer-
ences manually through our API (although we have not found the
need to exercise this option in our workloads). We omit the API
details because of space constraints.
Declaring Ochoices Oftentimes, developers come up with ideas
to optimize their program, e.g., memoization and pruning, but do
not know how they will play out for a given workload. Perada
allows developers to declare ochoices, Boolean flags used to turn
on and off specific optimizations in code. When writing the pro-
gram, developers enclose code blocks implementing a specific op-
timization with conditional statements that test the corresponding
ochoice. The most common uses of ochoices in our programs are
for controlling whether to perform memoization using a GlobKV
cache, or whether to perform pruning using a SyncSQL cache. We
give one example in Example 15.

Perada will explore ochoice settings at run time and automati-
cally pick the setting that maximizes performance; we will discuss
that aspect of the Perada optimizer in Section 5.2. Our current im-
plementation of the ochoice API is still rudimentary. We assume
that the ochoices are orthogonal, and we can adjust their settings
on a per-cunit basis. We have future plans to implement a more
sophisticated API that allows specifications of dependency among
ochoices and other granularities of adjustment.

4.4 A Complete Example
Example 15 (Congress/vote; implementation in Perada). We show
how to implement the analysis of Example 4 with one Perada job.

1640

Using grouping, we parameterize each cunit by a pair (d, r) of
Democrats and Republicans. The cunit finds all periods (spanning
whole months) over which agree% between d and r is at least τ .

To enable Perada’s default randomized enumeration of cunits
(Section 4.3), we simply list all Democrats (Republicans) in D by
id, and define size1() and val1(·) (size2() and val2(·), resp.)
according to this list. We define valid(d, r) to return true if d
and r served simultaneously in the same chamber of the Congress.

A straightforward implementation would retrieve the join (by
roll-call-id) of d and r’s votes from D into memory as a time se-
ries, compute agree% over all periods, and return those above τ .
Suppose the time series has L votes spanning ` months. A rea-
sonably efficient implementation can do the in-memory processing
in O(L + `2) time (see [21] for details). It does not appear that
different cunits can benefit from each other’s computation.

A developer with good domain knowledge, however, would note
that most legislators vote fairly closely with their own parties, and
that the Democratic majority and Republican majority—let us call
them d̄ and r̄, respectively—tend to agree far less than the thresh-
old τ of interest. This insight translates to the following strategy.
Before rushing to compare d and r directly, we first check how
they vote with their respective party majorities. Intuitively, if both
mostly agree with their parties and their parties disagree a lot, the
two legislators cannot have high agree% (see [21] for details). At
first glance, this strategy makes a cunit do more work: instead of
just comparing d vs. r, we would first compare d vs. d̄, r vs. r̄,
and d̄ vs. r̄, before we have a chance to avoid comparing d vs. r.
However, with memoization, this strategy is very appealing. Sup-
pose there are O(K2) cunits. The result of comparing d vs. d̄ (and
similarly, r vs. r̄) can be cached and reused for all O(K) cunits
involving d (and similarly, those involving r); the result of com-
paring d̄ and r̄ can be cached and reused for all O(K2) cunits.
Overall, the total number of such comparisons is only O(K), but
their results may eliminate many of theO(K2) direct comparisons.

To implement this optimization, we add one code block to the
cunit before it directly compares d and r. In this code block, we
would compare d vs. d̄, r vs. r̄, and d̄ vs. r̄—we first look in the
GlobKV cache to see if any comparison results are already avail-
able; if not, we perform the necessary computation and cache the
results. Based on the results, we determine the set I of candidate
periods for which we need to compare d vs. r directly; if I is empty,
the cunit can simply finish.

To allow Perada to turn this optimization on and off automati-
cally, we declare an ochoice. We then enclose the above code block
with a conditional statement testing the ochoice. Using another a
conditional statement testing the same ochoice, we have the rest of
the code in cunit consider either just I or all periods of interest.

Recall that our goal in this paper is not coming up with the best
algorithm for a specific perturbation analysis. Hence, we make no
claim of the optimality of our implementation in Example 15. In-
stead, with this example, we hope to illustrate how Perada can help
developers translate their insights quickly into implementation, and
relieve them from the burden of tuning the implementation on spe-
cific problem instances. For example, the majority-based optimiza-
tion can easily backfire if τ is low (or if partisan politics end mirac-
ulously in the Congress); Perada should be able to detect this situ-
ation and turn off the optimization automatically—which brings us
to the topic of the next section.

5 Automatic Optimizer
Perada needs to make important decisions on the settings of ochoices
and organization of cunits into epochs, yet it has relatively little in-

formation about the workload to begin with. Hence, Perada takes
the approach of observing, learning, and adapting during execution.
This section describes the optimizer in detail.

5.1 Cost Modeling
We focus on three relevant cost components: 1) Execution time of
cunits. 2) Extra time needed to start a new epoch, which reflects the
cost of synchronizing the SyncSQL cache between epochs as well
as other overheads. 3) Effect of output size on future jobs (if any) in
the program. We see this effect in CBB/streak (Example 12), where
caching affects the number of candidates produced by the first job,
which require further processing by the second job. To simplify
discussion, assume fixed ochoice settings for now; we will return
to the optimization of ochoices in Section 5.2.
Modeling Cunit Execution Time Motivated by the phenomenon
of diminishing returns observed in Example 10, we assume that in
a serial execution setting, the expected execution time of a cunit in
a job is a function of the job progress—a number between 0 and
1 representing the fraction of all cunits completed thus far. Intu-
itively, as more cunits complete and contribute to caches, optimiza-
tion opportunities such as memoization and pruning increase but
eventually plateau. Accordingly, expected execution time should
decrease and eventually converge to some minimum. Hence, we
choose to fit expected cunit execution time to an offsetted expoen-
tial decay function of job progress t ∈ [0, 1): Cc(t) = a+ be−λt.
This function form can also handle cases where optimizations are
very effective (large λ) or not at all (λ close to 0). In our real work-
loads, we observe that the actual average cunit execution times fol-
low this trend quite well, as the following examples show. These
examples also illustrate an important technicality in how we de-
fine, in a parallel setting, the appropriate t for a cunit c. Intuitively,
t should reflect the fraction of cunits whose execution benefits c—
this subtlety is crucial in modeling the non-immediate nature of the
SyncSQL caches.

Example 16 (Congress/vote; cunit execution time). Recall Exam-
ple 15. We study an execution trace with n = 16, w = 1, and one
job divided into two epochs with 2 : 98 split of cunits. Only the
GlobKV cache is on. We pick one task from each of the two epochs,
and show in Figure 4 the execution times vs. t for all cunits in each
task (other tasks in the same epoch exhibit a similar pattern). Here,
t corresponds to “global” progress. As an example, for a cunit c
near the end of a task in the first epoch, its t would be close to
2%, even though the task itself only produces 1/n of this progress.
The justification is that c benefits from almost all cunits in the epoch
(including those from concurrent tasks) through the GlobKV cache,
where information exchange is immediate.

Note there is significant variance in the execution times of indi-
vidual cunits. Slowest are those cunits that perform comparisons
with the party majorities for the first time; fastest are those us-
ing previously cached comparison results to eliminate most periods
from consideration. Over time, density shifts to lower execution
times. Therefore, the rolling average of execution times decreases.
Overall, we see that the fitted Cc(t) captures this trend well.

Example 17 (MLB/dom; cunit execution time). Recall Example 14.
We study an execution trace with n = 4, w = 1, and one job di-
vided into two epochs with 2 : 98 split of cunits. Only the SyncSQL
cache is on this time. In the same fashion as Example 16, for one
task from each of the two epochs, Figure 4 shows the execution
times vs. t for all cunits in the task.

However, t is determined differently here. For example, consider
again a cunit c at the end of a task in the first epoch. Its t would
be only be about 0.5%, corresponding to those cunits that executed

1641

0 25 50 75 100
0.00

0.01

0.02

0.03

0.04

0.05
T

im
e

(s
)

0 25 50 75 100
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Completion percentage

Figure 3: Cunit execution times over the course of running Congress/vote
with τ = 45%. Here, n = 16 and w = 1, there are two epochs, and the
GlobKV cache is on. See Section 6 for details on the experimental setup.

0 5 10
0.00

0.01

0.02

0.03

0.04

0.05

T
im

e
(s

)

0 5 10

0.00

0.02

0.04

0.06

0.08

0.10

Completion percentage

Figure 4: Cunit execution times over the course of running MLB/dom with
{hits-allowed, strikeouts, earned-run-avg} and κ = 5000. Here, n = 4 and
w = 1, there are two epochs, and the SyncSQL cache is on. See Section 6
for details on the experimental setup.

before c in the same task. The reason is that the local SyncSQL
database does not yet see updates from other concurrent tasks. As
soon as the epoch completes, however, t leaps forward, because
synchronization makes information from all tasks visible. Thus,
Figure 4 shows a gap in t between data from the two epochs.

Despite this difference, we again see that Cc(t) fits the trend in
cunit execution times quite well.

Each Perada task monitors the execution times of its cunits and
maintains a small summary sufficient for fittingCc(t). Perada takes
care in aligning each cunit with the appropriate t as illustrated in the
examples above (using function T (·) further discussed below). At
the end of an epoch (if it is not the last in a job), the Perada master
collects these summaries and fits (or refits) Cc(t). In the case of
on-demand cunit enumeration (Section 4.3), Perada also observes
the selectivity of valid(·), and is able to produce an estimate for
N , the total number of cunits in a job, by the end of its first epoch.

UsingCc(·), it is straightforward to derive an estimate for the ex-
ecution time of an epoch e as Ce(s, δ), where s is the progress be-
fore e starts, and δ is the amount of progress to be made by e. Since
the epoch has nw tasks in w waves, each task is responsible for
δN
nw

cunits. Perada estimates the execution time of a task in the j-th
wave as Ct(s, δ, j) =

∑ δN
nw
i=1 Cc(s + T (δ, i, j)), where T (δ, i, j)

helps calculate the appropriate t for the i-th cunit in the task: if
the cunits use the SyncSQL cache, this calculation follows the rea-
soning in Example 17; otherwise, Example 16 is followed. Given
the exponential form of Cc(·), it is straightforward to simplify the
summation and derive a closed-form formula for Ct(s, δ, j). We
omit the details. Then, the estimated execution time of the epoch is
simply Ce(s, δ) =

∑w
j=1 Ct(s, δ, j).

Note that Perada’s execution time modeling relies on only high-
level execution statistics; it does not require detailed knowledge
about the program—developers can write in a general-purpose pro-
gramming language, and need not tell Perada what constitutes cache
hits or successful pruning. So far, we have found our simple ap-
proach to be effective—we attribute its success to our randomized
processing order of cunits, which fits the assumption of diminishing
returns nicely, and to our limited use of Cc(·) (only in summation),
which reduces variances in estimates.

Modeling New Epoch Overhead Following an epoch e that pro-
gresses the job from s to s+ δ, Perada assumes that the extra time
C†(s, δ) involved in having an new epoch after e is some fixed
overhead plus a synchronization component proportional to the to-
tal amount of “effort” spent in e. (Note that we charge all cost of
synchronization—some of which is carried out at the end of e—
to C†(s, δ) instead of Ce(s, δ).) Intuitively, more effort implies a
higher chance of producing new information worthwhile caching,
which translates to a higher synchronization cost. As the caches be-
come more effective, less effort is required in evaluating cunits, and

less is synchronized. Perada defines the effort of e as the total exe-
cution time over all tasks, so C†(s, δ) has the form a+ bnCe(s, δ),
where a and b need to be learned.

When the first epoch in a job begins, Perada observes the start-
up time, which serves as an estimate for a. Perada also estimates a
per-byte broadcast cost, by noting the amount of data broadcasted
(including D but no cached data at this point) and time taken. When
the first epoch ends, Perada knows 1) the actual effort of the epoch,
2) the elapsed time attributed to computing deltas and applying
them, and 3) the amount of cached data to be broadcasted, which
provides a projection for the additional time needed to broadcast
cached data. Taken together, these quantities give another data
point to fit C†(s, δ) with. Perada revises C†(s, δ) at the end of
every subsequent epoch (except the last in the job).

Modeling Output Impact on Subsequent Jobs As noted either,
in a program with multiple jobs, optimization decisions made for
one job could affect its output size, which in turn affects the cost
of subsequent jobs (Example 12). To account for this effect, Per-
ada charges a cost to each unit of output produced, estimated as
γa, where a is the average cunit execution time for the current job
(estimated from Cc(·) as discussed earlier), and γ is a discount fac-
tor. We use γ = 1/5, reflecting our assumption that subsequent
jobs usually require less processing. Perada further assumes that
the output size of each epoch is proportional to its effort (as defined
for C†(·)); the coefficient b is estimated by monitoring the amount
of effort and the actual output size so far in the job. In sum, we
model the effect of output from an epoch that progresses from s to
s+ δ as Co(s, δ) = γabnCe(s, δ).

5.2 Ochoice Probing
For simplicity, Section 5.1 has assumed fixed ochoice settings. In
reality, Perada does not know the appropriate settings in advance,
so it explores them at run time to pick the optimal setting. Cur-
rently, Perada employs a simple strategy that works fine as long
as the number of ochoices per job is low. Suppose there are h
available ochoices. Formally, an ochoice setting is a bit string of
length h; there are 2h possible settings. Recall from Section 4.3
that each cunit can use its own ochoice setting. In the first epoch
of a job, Perada focuses on exploring: each task executes an equal
fraction of its cunits using each of the possible 2h settings. Dur-
ing each epoch, Perada tracks the cunit execution times by their
ochoice settings, and at the of the epoch, it fits a Cc(·) for each
setting. Suppose the setting that gives the fastest execution times
is b?. In the next epoch, each task would execute the majority (we
currently use 75%) of the cunits using b?, and divide the remain-
ing cunits equally among the other 2h − 1 settings. This strategy
allows Perada to continue monitoring all possibilities and detect
when a different setting may become optimal later. Of course, if
the next epoch happens to the last in the job, Perada will instead go
“all-in” with b?.

1642

A few more intricacies need to be handled when we allow a task
to run its cunits with a mix of ochoice settings. Let f denote the
configuration for this mix, where f(b) is the fraction of cunits
executing with ochoice setting b in the current epoch. We need
to modify the function T (·) described in Section 5.1 to account
for f—subtleties arise because cunits using settings that turn off
caching using GlobKV should effectively decrease T (·) for cunits
that use this type of cached data. The summation in the definition
of Ct(·) (Section 5.1) also needs to be modified to consider config-
uration f and use the individually fitted Cc(·) for each setting with
the modified T (·). We omit the details.

5.3 Epoch Organization
Finally, we turn to the discussion of how to organize cunits in a
job into epochs to provide a good trade-off between cost and bene-
fit of synchronization. Perada always uses a small epoch to start a
job—by default we set it to stop at 2% progress. This brief explo-
ration period helps Perada gain initial knowledge of various cost
functions. At the end of an epoch finishing at progress point s, if
s < 1 (i.e., the job still has work remaining), Perada decides what
to do next as follows.

1. Using Cc(·) fitted for each ochoice setting, Perada finds the
ochoice setting b? that minimizes the time Ce(s, 1 − s) if we
execute all remaining work in one epoch where all cunits use the
given ochoice setting. (Note that this objective also minimizes
output by our assumption in Section 5.1.)

2. Perada considers the following alternatives:

(a) Execute all remaining work in one epoch where all cunits
use ochoice setting b?. The total cost is Ce(s, 1 − s) +
Co(s, 1 − s). (We do not include the cost of starting this
epoch because all alternatives need to start at least one epoch
and pay the same cost.)

(b) Execute all remaining work in two epochs e1 and e2, first
from s to s+δ and then to 1. As described in Section 5.2, we
execute e1 with configuration f1, where 75% of the cunits
use b? and the remaining are divided evenly among other
ochoice settings; we execute e2 with configuration f2, where
all cunits use b?. The total cost is the sum of Ce(s, δ) +
Ce(s+δ, 1−s−δ) (executing e1 and e2), C†(s, δ) (starting
e2), and Co(s, δ) + Co(s + δ, 1 − s − δ) (effect of output
from e1 and e2).

Perada picks the alternative with the lowest total cost, which in-
volves searching through possible δ for the 2-epoch alternative.

We note that this optimization procedure cuts several corners.
First, Perada optimizes the ochoice setting first (by assuming a sin-
gle epoch for the remaining work); considering ochoice setting and
epoch organization jointly would yield a bigger search space. Sec-
ond, in Step 2 above, Perada does not enumerate alternatives using
more than two epochs for the remaining work; considering them
would significantly expand the search space.

Perada chose to cut these corners for several reasons. Most im-
portantly, we want to keep the optimization time low. Also, it may
be unwise to overdo advance planning as cost models could con-
tinue evolving during execution. Finally, in reality, Perada invokes
the above procedure at the end of every epoch, so there is oppor-
tunity for further reorganization. Even if we decide to go with two
epochs e1 and e2 for now, as we come to the end of e1, we may
decide to divide e2 further; we will see some real examples with
more than two epochs in Section 6.

6 Experiments
Hardware and Software Setup The experiments were performed
on Google Compute Engine using varying number of machines
with instance type n1-standard-4 (4 virtual CPUs and 15GB
memory per node). Thus, in this section, the number n of slots
available for parallel execution is 4 times the number of machines.
All machines run Ubuntu 14.04, Spark 1.5, Python 2.7, and Pan-
das .16. The local databases use SQLite 3.7.13, while the GlobKV
cache uses Redis 3.0.5. Perada itself is implemented in Python.
Workloads We experimented with examples used throughout this
paper, which represent real tasks in sports and politics journalism:
• MLB/dom/bat: Example 5 with batting-related stats M =
{hits, home-runs, stolen-bases} and maximum domcount κ =
50. The player parameter is restricted to batters only. The
database includes all yearly statistics from seanlahman.com.
• MLB/dom/pitch: Example 5 with pitching-related stats M =
{hits-allowed, strikeouts, earned-run-avg} and maximum dom-
count κ = 50. The player parameter is restricted to pitchers
only. The database is the same as in MLB/dom/bat.
• Congress/vote: Example 4 with minimum agree% τ = 45. The

database includes all votes and legislators in the U.S. Congress
during 2002–2014, from govtrack.us.
• CBB/streak: Example 3 with maximum domcount κ = 25.

The database includes all historical per-game statistics of Duke
Men’s basketball team.

The following table list some relevant descriptive statistics about
these workloads. Here, |D| denotes the number of rows in the in-
put database, |P | denotes the number of possible parameter set-
tings, and “# cunits” is the number of cunits in the first job (recall
that CBB/streak uses two Perada jobs; others use one).

Workload |D||D||D| |P ||P ||P | # cunits
MLB/dom/bat 656,214 598,722 598,722
MLB/dom/pitch 656,214 277,716 277,716
Congress/vote 8.8× 106 6.0× 106 318,833
CBB/streak 23,227 2.6× 106 4,857

Note that MLB/dom/bat has a larger |P | than MLB/dom/pitch be-
cause there are more batters than pitchers. For Congress/vote and
CBB/streak, because they use grouping, the number of cunits is
significantly lower than that of parameter settings.

6.1 Overall Comparison
For each workload, we run its Perada-based implementation with
varying degree of parallelism (n = 8, 16, 32) and compare its
performance against three alternative implementations on top of a
database system. The first, SQL/I(ndependent), considers each per-
turbation independently using a SQL query. The second,
SQL/C(ombined), divides the parameter space among the n slots,
and considers all perturbations assigned to a slot using a single
SQL query (with heavy use of WITH clauses)—the goal here is to let
the database system optimize all perturbations as a whole. Lastly,
SQL+M(QO) is a hand-coded implementation approximating what
a database system armed with state-of-the-art multiple-query pro-
cessing (MQO) techniques (further discussed in Section 7) might
do in the best case.

We implemented SQL/I, SQL/C, and SQL+M on PostgreSQL 9.4,
because its optimizer is more capable than SQLite. We spent rea-
sonable effort tuning these implementations. We replicated the
database and created all applicable indexes. For MLB/dom and
Congress/vote, we wrote queries in SQL/I and SQL/C to also ap-
ply post-processing (SQL/C required considerable tweaking be-
cause the PostgreSQL optimizer is less capable of pushing selec-
tions down into temporary tables defined using WITH [2]). For CB-

1643

n = 8 n = 16 n = 32
Workload Perada SQL/I SQL/C SQL+M Perada SQL/I SQL/C SQL+M Perada SQL/I SQL/C SQL+M
MLB/dom/bat 257.5 > 8hr > 8hr 4019.4 209.1 16405.2 15439.7 1989.8 157.9 8202.4 7668.1 1058.4
MLB/dom/pitch 153.1 25428.9 6524.2 3704.3 122.5 12706.2 2676.0 1937.1 78.0 6367.5 1269.0 961.8
Congress/vote 1103.5 > 8hr > 8hr 4270.1 599.3 22312.1 > 8hr 2587.2 333.8 11101.4 > 8hr 1293.2
CBB/streak 82.2 145.0 622.8 199.8 71.6 78.5 311.4 85.4 58.9 36.2 155.7 56.6

Table 1: Execution times of Perada vs. other alternatives (in seconds unless otherwise noted) across workloads, with varying degrees of parallelism.

B/streak, both SQL/I and SQL/C require two steps: the first step
computes all candidate streaks in parallel, and after we collect the
set of all candidates, the second step computes domcount for can-
didates in this set in parallel.

To implement SQL+M, we identified techniques from the MQO
literature most suitable for each workload and implemented them
by hand, since most of them are not supported by existing database
systems. For MLB/dom and CBB/streak (step 2), we ensured shar-
ing of common subexpressions to achieve a similar effect as mem-
oization; however, we note that existing MQO techniques are un-
likely to find this optimization automatically (see [21] for a de-
tailed explanation). For Congress/vote and CBB/streak (step 1), we
adapted techniques for sharing sliding-window aggregates from [3]
(again, see [21] for details); we had to implement this part of the
processing in Python. Overall, we believe SQL+M approximates
what existing MQO techniques could achieve in the best case.

We present results comparing Perada with these alternatives in
Table 1. In all cases (except one to be discussed further below),
Perada is the winner, and most of the time by a huge margin—
often more than an order of magnitude. Among the rest, SQL+M
tends to be the fastest and SQL/I the slowest, but there are other
considerations. First, as discussed above, we gave SQL+M more
advantage than others, and it is not viable in practice currently.
SQL+M and SQL/C were more difficult to develop than SQL/I,
and SQL/C has some performance quirks—in some cases, it ma-
terialized massive temporary tables dozens of GB in size. Finally,
while SQL+M and SQL/C may take less time to produce all an-
swers, SQL/I can produce some answers earlier (Perada also pro-
duces individual answers as early as possible, besides producing all
answers the fastest).

Even though SQL+M was able to benefit from parallelization,
grouping, and memoization (thanks to manual tweaks and imple-
mentation of specialized algorithms), it performs much worse than
Perada. We attribute Perada’s advantage to its ability to prune
based on the post-processing query (Examples 8, 9, and 15). Lack-
ing knowledge of the post-processing query, MQO techniques can-
not exploit pruning by themselves. Grouping all perturbation and
post-processing queries into a single query does not help either, as
database systems currently lack support for pruning optimization.

In Table 1, there is one case—CBB/streak when n = 32—where
the simple approach of SQL/I overtakes Perada, and SQL+M also
is slightly better. Here, the database and the amount of work per
execution slot are so small that the various overheads of Perada start
to become significant. Nonetheless, the gap is small, in contrast to
consistently large gains that Perada achieves for bigger workloads.

Finally, based on our experience implementing various alterna-
tives, we observe that while SQL is declarative, it can be awk-
ward to use when coding complex perturbation analysis, and worse,
when using it to implement (or “coaxing” it to enable) specific op-
timizations. Overall, we found Perada’s Python/database combina-
tion easier to develop with than SQL/C and SQL+M.

6.2 Benefit and Choice of Caching
We now study the benefit of caching and how effective Perada is at
enabling appropriate caching-based optimizations (through its au-
tomatic setting of ochoices). Here, we compare Perada with three

variants where we turn off the optimizer and hard-code all ochoice
settings: “SyncSQL only” and “GlobKV only” always enable op-
timizations using the respective cache while disabling those using
the other cache; “no caching” disables all caching-based optimiza-
tions. We make these variants use the same epoch sizes as Perada.
Table 2 summarizes the results for n = 16.

Across workloads, we see that turning on caching helps (except
that our Congress/vote implementation does not use the SyncSQL
cache). A more interesting observation is that the benefit of each
cache type depends on the specific workload. For example, con-
sider MLB/dom/bat and MLB/dom/pitch, which apply the same
analysis (and code) to the same dataset, and differ only in what
stats they compare. The GlobKV cache helps MLB/dom/bat far
more than it does MLB/dom/pitch (10× vs. 4× speedup compared
with no caching). The reason is that all stats in MLB/dom/bat are
integer-valued, so the possible number of stat value combination
for this case is far less than that for MLB/dom/pitch, where the
floating-point earned-run-avg has far more possible values. For
both workloads, the SyncSQL cache is more effective than the
GlobKV cache, though the opposite is true for CBB/streak. Re-
gardless of who the winner is, Perada’s performance is close to or
even better than the winner—which is good considering that Perada
does not know who the winner is in advance.

Table 3 further shows, for the workloads in Table 2, which caching
strategy Perada chooses eventually (in the last epoch of each job;
recall that CBB/streak has two). Here, we see how Perada is able
to achieve its performance in Table 2. As an example, for CB-
B/streak, Perada learns that in its second job using SyncSQL and
GlobKV together is better than using either alone; this observation
allows Perada to beat both “SyncSQL only” and “GlobKV only” in
Table 2. Turning on both caches is not always optimal, however.
As another example, for MLB/dom/pitch, Perada recognizes that
SyncSQL’s benefit overshadows GlobKV’s, and that the marginal
gain of adding GlobKV is not worth its overhead (because of the
large stat value space). Therefore, Perada decides to go with Sync-
SQL alone; the extra time over “SyncSQL only” in Table 2 is the
price Perada paid for acquiring this knowledge (in the first epoch).

Our next experiment delves into CBB/streak, a two-job work-
load, to study how job output size affects the rest of execution, and
how caching influences this effect. Figure 5 plots two group of bars.
For the first group, we let Perada optimize the first job; for the sec-
ond, we manually turn off all caching in the first job. The first bar
in each group shows the size of the first job’s output, which serves
as the input to the second job. We see that Perada’s caching signif-
icantly reduces the output size, because SyncSQL is very effective
in pruning non-promising streaks from further consideration. Then,
in the second job, we again try two strategies: one where we manu-
ally turn off caching, and one where Perada decides. The resulting
end-to-end execution times for these two strategies are shown as the
second and third bars in each group. From Figure 5, we see that a
smaller intermediate output translates to proportionally faster total
execution time, even if the second job makes a poor (no) caching
decision. A bigger immediate output would have had a disastrous
impact, but in this case it is significantly mitigated by Perada’s ef-
fective caching in the second job. Nonetheless, we achieve the best

1644

Workload Perada SyncSQL only GlobKV only No caching
MLB/dom/bat 209.1 170.3 1081.3 11945.6
MLB/dom/pitch 122.5 116.1 2080.4 8028.7
Congress/vote 599.3 3043.8 581.3 3043.8
CBB/streak 71.6 130.1 80.1 2634.0

Table 2: Execution times of Perada vs. variants with explicitly set ochoices for caching-
based optimizations. Here n = 16.

Workload Strategy
MLB/dom/bat SyncSQL + GlobKV
MLB/dom/pitch SyncSQL
Congress/vote GlobKV
CBB/streak job 1 SyncSQL
CBB/streak job 2 SyncSQL + GlobKV

Table 3: Perada’s ochoice setting in the last epoch of each
job for workloads in Table 2.

Both None
0

20000

40000

60000

N
um

be
r

of
 C

an
di

da
te

s

0

1000

2000

3000

4000

E
xe

cu
tio

n
T

im
e

(s
)

Job 1 output size
Time (No Cache Job 2)
Perada Time (Cache Job 2)

Figure 5: Comparison of intermediate output size and total execution time
for CBB/streak across various options as explained in Section 6.2.

10 20 30 40 50
Size of first epoch (%)

100

125

150

175

200

T
im

e
(s

)

MLB/dom/pitch
MLB/dom/bat

Figure 6: Execution times of MLB/dom/bat and MLB/dom/pitch vs. ini-
tial epoch size, with the number of epochs is fixed at 2. Perada’s default 2%
setting is marked.

performance overall only with intelligent caching decisions in both
jobs, in a way cognizant of the effect of intermediate output sizes.

6.3 Effect and Choice of Epochs
We now examine study how epochs affect performance and how
effective Perada is in choosing epoch sizes. We start with an ex-
periment testing how the size of the initial epoch affects the overall
performance (recall that Perada defaults it to 2%). This experi-
ment also illustrates the trade-off involved in the SyncSQL cache
synchronization. In Figure 6, we show the total execution times of
MLB/dom/bat and MLB/dom/pitch as functions of the initial epoch
size, while forcing Perada to always use two epochs. Both func-
tions follow a similar trend—they first decrease, and then increase—
which we also observe in other workloads that use SyncSQL. In-
tuitively, if the initial epoch is too small, the resulting SyncSQL
cache after synchronization will not be effective enough for the
second epoch. On the other hand, if the initial epoch is too big,
then the first epoch would be suboptimal. The initial epoch sizes
that yield fast execution times tend to be small, which justifies our
default setting of 2%.

Next, let us consider the effect of the number of epochs. For this
experiment, we use MLB/dom/bat. After the the initial epoch, Per-
ada decides to go with one epoch for all remaining work; however,
we try alternatives with different number of equal-sized epochs.
Figure 7 shows the cumulative execution times of these alterna-
tives: each point on a plot shows the time elapsed since the begin-
ning of the job when each epoch ends. For comparison, we also
show Perada with a single epoch with the optimal ochoice setting.
In this case, single epoch performs better than Perada’s two epochs,
but only slightly; furthermore, Perada does not know the optimal
ochoice setting in advance, so this small overhead is the price to
pay for acquiring this knowledge. As for alternatives with more
epochs, they underperform Perada by a big margin, as they suffer
from the overhead of synchronization and starting new epochs.

The above experiment does not imply that one or two epochs
always work best. Let us now consider a third experiment. In Sec-
tion 4.3, we described how developers can override Perada’s cunit
enumeration method. Figure 8 shows a scenario where
MLB/dom/pitch with κ = 5000 receives a parameter allocation
that is not randomized. Because of lack of randomization, some
tasks have underperforming caches in the initial epoch, yielding
a poor pruning rate and a slowly improving model in the opti-
mizer. Here, we see that the single-epoch alternative performs
drastically slower than the other two due to ineffective local Sync-
SQL databases, whereas the three-epoch alternative outperforms
the two-epoch one (albeit slightly). In this case, the ability of Per-
ada to use multiple epochs acts as a “guard” against such situa-
tions, by providing a larger sample of executions to its cache and
optimizer before executing the final epoch.

6.4 Scaling with Workload Size
Our next experiment tests the ability of Perada to scale with the
size of its workload. As we vary n, the degree of parallelism, we
also adjust the total amount of work accordingly such that 1/n of
this amount remains roughly constant. As the parameter spaces
of the workloads in our early experiments are already quite com-
prehensive, we start with them for our biggest n, and downsample
them to create smaller workloads (instead of inventing unrealistic
parameter settings to grow them further). Figure 9 shows the exe-
cution times for varying n and workload size. We see that Perada
scales well across workloads. As expected, for most of workloads,
the execution times follow an increasing trend, as a bigger clus-
ter leads to higher overhead (such as synchronization). The good
news is that this growth is generally small; the only exception, CB-
B/streak, is a very light workload even at its full size. Interestingly,
one workload, MLB/dom/pitch, sees a decreasing trend. We the-
orize that with a larger n, more entries become available in the
SyncSQL cache after the first epoch, making the cache more ef-
fective. MLB/dom/bat does not exhibit this behavior because its
highly effective GlobKV cache dilutes this benefit.

7 Related Work
The problem of efficiently evaluating a large number of “similar”
or “related” queries has been considered in many different con-
texts, such as multiple-query optimization (MQO) [18], scalable
continuous query processing [4], and keyword search in relational
databases [24] (the references here are intended as starting points
of literature search and are by no means complete). Various tech-
niques have been developed to share common subexpressions and
group-process filters and aggregates. Some of the high-level ideas
in Perada can be seen in these contexts: e.g., grouping and mem-
oization in multiple-query optimization and scalable continuous
query processing, and pruning in keyword search. However, pertur-
bation analysis workloads are different in many ways: our queries
are identical except for their parameter settings; our query tem-
plate can be far more complex and the number of instantiations is
huge; finally, we also have a potentially complex post-processing
step over all query results. These differences lead us to rather dif-
ferent foci and techniques. For example, compared with MQO,

1645

Figure 7: Cumulative execution times (by epoch)
of MLB/dom/bat, with varying number of epochs.

Figure 8: Cumulative execution times (by epoch)
of MLB/dom/pitch with κ = 5000. Note that the
horizontal axis has a logarithmic scale.

4 8 16 32
Number of slots

25

50

75

100

125

150

E
xe

cu
tio

n
T

im
e

(s
)

MLB/dom/pitch
MLB/dom/bat
Congress/vote
CBB/streak

Figure 9: Execution times of Perada for different
workloads, as their sizes increase linearly with the
degree of parallelism.

Perada’s pruning based on the post-processing query is a unique
and powerful optimization that underpins the significant advantage
over SQL+M illustrated in Section 6.1. While we believe Perada’s
current suite of techniques captures the most important optimiza-
tions for perturbation analysis, there is certainly room to continue
improving our toolbox with techniques from other contexts.

Efficient algorithms have been developed for many problems that
can be cast as perturbation analysis. A (non-comprehensive) list of
examples include iceberg queries [9], one-of-the-few objects [22],
prominent streaks [25], as well as fact-checking window aggregate
comparison and time-series similarity claims [23]. However, they
focus on very specific query templates. As discussed in Section 1,
Perada aims instead at enabling general, ad hoc perturbation analy-
sis for common developers, who may not have the expertise or time
to develop specialized algorithms.

There have been a few notable efforts at solutions for more gen-
eral query templates. Query flocks [20] generalize associate-rule
mining to a broader class of parameterized conjunctive queries with
monotone filters. Searchlight [12] supports searching for data “re-
gions” (multi-dimensional subarrays) with desired properties, which
can be seen as parameterized multi-dimensional selection followed
by aggregation. Both rely heavily on pruning, and Searchlight also
exploits parallelism. Perada is more general, and a developer can
implement similar pruning ideas in Perada; the price for this gen-
erality is the extra development effort and potentially some missed
opportunities compared with these more specialized solutions.

There is an interesting connection between query perturbation
analysis and work on explanations in databases (surveyed in [14]).
Problems such as searching for the best predicate interventions [17]
or refined queries [19] to explain unexpected results can be seen as
searching a space of possible query perturbations for those return-
ing expected results. Another interesting but less obvious connec-
tion is with probabilistic databases [8]. Given a query template,
it may be possible to regard the parameter space P as a distribu-
tion for an uncertain “parameter setting tuple,” such that its “join”
with the query template would yield the the distribution of pertur-
bations. Probabilistic query evaluation techniques, such as those of
MCDB [11], may be applicable to some types of post-processing
queries in perturbation analysis, especially when approximation is
allowed. We plan to investigate these connections as future work.

8 Conclusion and Future Work
In this paper, we have introduced a novel system called Perada for
perturbation analysis of database queries. Perada provides a paral-
lel execution framework tailored towards processing a large num-
ber of perturbations. Perada’s flexible API and dual-cache support
make it easy to implement general, ad hoc perturbation analysis
with a variety of optimizations such as grouping, memoization, and
pruning, and hide the complexity of concurrency and failures. Per-
ada’s automatic optimizer observes, learns, and adapts during ex-
ecution, eliminating the need for manual performance tuning. Ex-

periments with real computational journalism workloads demon-
strate Perada’s advantage over alternatives solutions.

While this paper focuses on computational journalism applica-
tions, Perada and its techniques apply to many other domains where
query perturbation analysis is useful. Perada represents our first
step towards supporting perturbation analysis of database queries.
Although Perada has greatly simplified implementation and tuning,
it is still not fully declarative system. To further improve usability,
we are actively working on automatic derivation of memoization
and pruning opportunities from declarative specifications. Other
vectors of future research include more dynamic, finer-grained op-
timization and adaptation, as well as a number of interesting con-
nections to other database research problems as discussed in Sec-
tion 7. In conclusion, we believe that perturbation analysis is a
practically important and technically interesting modern database
feature that deserves more research.

References
[1] SQLite. URL http://sqlite.org/.
[2] PostgreSQL 9.4.6 documentation. 2016. URL http://www.postgresql.

org/docs/9.4/static/queries-with.html.
[3] Arasu and Widom. Resource sharing in continuous sliding-window aggregates.

In VLDB 2004.
[4] Chen, DeWitt, Tian, and Wang. NiagaraCQ: A scalable continuous query system

for internet databases. In SIGMOD 2000.
[5] Coddington. Random number generators for parallel computers. Technical Re-

port 13, Northeast Parallel Architecture Center, 1997.
[6] Cohen, Hamilton, and Turner. Computational journalism. CACM, 54(10):66–71,

2011.
[7] Cohen, Li, Yang, and Yu. Computational journalism: A call to arms to database

researchers. In CIDR 2011.
[8] Dalvi, Ré, and Suciu. Probabilistic databases: Diamonds in the dirt. CACM, 52

(7):86–94, 2009.
[9] Fang et al. Computing iceberg queries efficiently. In VLDB 1998.

[10] The Apache Software Foundation. Apache Spark: Lightning-fast cluster com-
puting. URL http://spark.apache.org/.

[11] Jampani et al. The Monte Carlo database system: Stochastic analysis close to
the data. TODS, 36(3):18, 2011.

[12] Kalinin, Çetintemel, and Zdonik. Searchlight: Enabling integrated search and
exploration over large multidimensional data. PVLDB, 8(10):1094–1105, 2015.

[13] Redis Labs. Redis. URL http://redis.io/.
[14] Meliou, Roy, and Suciu. Causality and explanations in databases. PVLDB, 7

(13):1715–1716, 2014.
[15] Papadias, Tao, Fu, and Seeger. Progressive skyline computation in database

systems. TODS, 30(1):41–82, 2005.
[16] Remington. Social science done on deadline: Research chat with ASU’s Steve

Doig on data journalism, 2014. URL http://goo.gl/a55LDT.
[17] Roy and Suciu. A formal approach to finding explanations for database queries.

In SIGMOD 2014.
[18] Sellis. Multiple-query optimization. TODS, 13(1):23–52, 1988.
[19] Tran and Chan. How to ConQueR why-not questions. In SIGMOD 2010.
[20] Tsur, Ullman, Abiteboul, Clifton, Motwani, Nestorov, and Rosenthal. Query

flocks: A generalization of association-rule mining. In SIGMOD 1998.
[21] Walenz and Yang. Perturbation analysis of database queries. Technical

report, Duke University, 2016. URL http://db.cs.duke.edu/papers/
2016-WalenzYang-perturb.pdf.

[22] Wu, Agarwal, Li, Yang, and Yu. On “one of the few” objects. In KDD 2012.
[23] Wu, Agarwal, Li, Yang, and Yu. Toward computational fact-checking. PVLDB,

7(7):589–600, 2014.
[24] Yu, Qin, and Chang. Keyword search in relational databases: A survey. IEEE

Data Engineering Bulletin, 33(1):67–78, 2010.
[25] Zhang, Jiang, Luo, Wang, and Li. Discovering general prominent streaks in

sequence data. TKDD, 8(2), June 2014.

1646

