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ABSTRACT
We demonstrate F, a system for building regression models
over database views. At its core lies the observation that
the computation and representation of materialized views,
and in particular of joins, entail non-trivial redundancy that
is not necessary for the efficient computation of aggregates
used for building regression models. F avoids this redun-
dancy by factorizing data and computation and can outper-
form the state-of-the-art systems MADlib, R, and Python
StatsModels by orders of magnitude on real-world datasets.

We illustrate how to incrementally build regression models
over factorized views using both an in-memory implemen-
tation of F and its SQL encoding. We also showcase the
effective use of F for model selection: F decouples the data-
dependent computation step from the data-independent con-
vergence of model parameters and only performs once the
former to explore the entire model space.

1. WHAT IS F?
F is a fast learner of regression models over training data-

sets defined by select-project-join-aggregate (SPJA) views.
It is part of an ongoing effort to integrate databases and
machine learning including MADlib [2] and Santoku [3] and
goes beyond the state of the art in two fundamental ways [5].

(1) The database joins are an unnecessarily expensive bot-
tleneck for learning due to redundancy in their tabular rep-
resentation. To alleviate this limitation, F learns models
in one pass over factorized joins, where repeating data pat-
terns are only computed and represented once. This has
both theoretical and practical benefits. The computational
complexity of F follows that of factorized materialized SPJA
views [4, 1], which is the lowest worst-case complexity for
SPJA views known to date. For learning over acyclic joins,
this is linear time and thus worst-case optimal; in contrast,
the existing approaches rely on tabular view materializa-
tion, which may take exponential time and space [4]. This
complexity gap translates in practice to orders of magnitude
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performance improvement of F over state-of-the-art public
systems such as MADlib, Python StatsModels, and R [5].

(2) F decomposes the learning task into a data-dependent
step and a subsequent data-independent step.

The first step computes the aggregates necessary for re-
gression and the factorized view on the input database. The
output of this step is a matrix of reals whose dimensions only
depend on the arity of the view and is independent of the
database size. This matrix contains the necessary informa-
tion to compute the parameters of any model defined by
a subset of the features in the view. This step comes in
three flavors [5]. The first flavor computes the regression
aggregates on top of the factorized materialized view. The
second and fastest flavor is a memory-conscious algorithm
that pushes the regression aggregates in the factorized view
and avoids the materialization of this view. The third flavor
encodes F in SPJA SQL queries and is readily deployable
on any relational database management system.

The second step performs convergence of model parame-
ters on the computed matrix for a specific model or (forward,
backward, both-way) stepwise automatic model selection to
find the best prediction model for a given label.

F’s factorization and task decomposition rely on a rep-
resentation of data and computation as expressions in the
sum-product commutative semiring, which is subject to the
law of distributivity of product over sum. Results of SPJA
queries are naturally represented in the semiring with Carte-
sian product as product and union as sum. The deriva-
tives of the objective functions for Least-Squares, Ridge,
Lasso, and Elastic-Net regression models are expressible in
the sum-product semiring. Optimization methods such as
gradient descent and (quasi) Newton, which rely on first and
respectively second-order derivatives of such objective func-
tions, can thus be used to train any such model using F.

2. HOW DOES F WORK?
We next explain F by means of an example for learning a

least-squares regression model over a factorized join.

Factorized Joins. Figure 1(a) shows three tables and their
natural join. Branch records the location, products and
daily inventory of each branch store in the chain. There are
many products per location and many inventories per prod-
uct. Competition records the competitors (e.g., the distance
to competitor stores) of a store branch at a given location,
with several competitors per location. Sales records all daily
sales offered by the store chain for each product. For clarity,
we use value placeholders, e.g., p1 to p3, instead of actual

1573



Sales

P S

p1 s1
p1 s2
p2 s3
p2 s4
p3 s5

Branch

L P I

l1 p1 i1
l1 p1 i2
l1 p2 i3
l2 p2 i4
l2 p3 i5

Competition

L C

l1 c1
l1 c2
l2 c3
l2 c4

L C P I S

l1 c1 p1 i1 s1
l1 c1 p1 i1 s2
l1 c1 p1 i2 s1
l1 c1 p1 i2 s2
l1 c1 p2 i3 s3
l1 c1 p2 i3 s4

· · · · · · · · ·
above block for c2
· · · · · · · · ·

l2 c3 p2 i4 s3
l2 c3 p2 i4 s4
l2 c3 p3 i5 s5

· · · · · · · · ·
above block for c4

(a) Three tables and their natural join.
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(b) Factorized schema.
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∪

i5

∪

s5

(c) Factorized join.

Figure 1: (a) Database with tables Branch(Location, Product, Inventory), Competition(Location, Competi-
tor), Sales(Product, Sale), where the attribute names are abbreviated and values are not necessarily distinct;
(b) Factorized schema for the natural join of the tables; (c) Factorized join over the factorized schema.

values. It is standard for learning that all input values are
converted to reals and normalized prior to ingestion by F.

We would like to learn a regression model over the natural
join of these tables; while SPJA queries are used in prac-
tical settings, we focus in this example on joins since they
relate features from different tables and are very costly. The
widespread approach is to materialize the join result J and
use it as the training dataset. However, J exhibits a high de-
gree of redundancy: Since l1 is paired in Branch with i1 to i3
and in Competition with c1 and c2, all combinations of the
former and the latter values occur in the join result. We can
represent this local product symbolically instead of eagerly
materializing it. If we systematically apply this observation,
we obtain an equivalent factorized representation of the join
result that is much more compact than the tabular represen-
tation of the join result. Figure 1(c) shows a factorization of
the join result, called the factorized join. Each tuple in the
join result is represented once in the factorization and can
be constructed by following one branch of every union and
all branches of a product. Its nesting structure is depicted
in Figure 1(b): It is a union of L-values occurring in the
join of Branch and Competition on L. For each L-value l,
we represent separately the union of C-values paired with
l in Competition and the union of P -values paired with l
in Branch. That is, given l, the C-values are independent
of the P -values and can be stored separately. This is where
the factorization saves computation and space as it avoids an
explicit enumeration of all combinations of C and P -values
for a given l. Also, there are unions of S-values and of I-
values under each P -value. The factorization can be further
compacted by caching common expressions. For instance,
p2 occurs with the union s3 ∪ s4 from Sales regardless of
which L-values p2 is paired with in Branch. We can store
this union once and reuse it for every occurrence of p2.

Learning Regression Models with F. We next show how
F learns least-squares regression models with gradient de-
scent over the factorized join; F works similarly for the other
models and optimization techniques. Least-squares models

are defined by linear functions hθ(x) = θ0+θ1x1+. . .+θnxn
with parameters θ0, . . . , θn and features x1, . . . , xn. The pa-
rameters are computed iteratively using the update program

∀0 ≤ j ≤ n : θj := θj − α
m∑
i=1

(

n∑
k=0

θkx
(i)
k )x

(i)
j := θj − αSj ,

where i and k denote the indices of the record and respec-
tively of the feature in the training dataset, and α is the
learning rate. For simplicity, the label to predict is one of
the features x0, . . . , xn and its parameter is −1. The goal of
F is to compute the family of aggregates Cofactork,j :

Sj =

n∑
k=0

θk × Cofactork,j , where Cofactork,j =

m∑
i=1

x
(i)
k x

(i)
j .

F first computes the cofactors over the non-materialized
factorized join of the input tables [5]. It then performs pa-
rameter convergence directly on the cofactor matrix.

The factorization of the training dataset can be mirrored
in the computation of the cofactors. For the training dataset
in Figure 1(a), CofactorP,I exploits the algebraic factoriza-
tions

∑n
i=1 x → x · n and

∑n
i=1 x · ai → x ·

∑n
i=1 ai:

CofactorP,I = 2p1 · 2(i1 + i2) + 2p2 · 2i3 + 2p2 · 2i4 + 2p3 · i5

where the coefficients are the number of C-values that are
paired with P -values and I-values. Similarly, we can fac-
torize the pairs of values of independent features as follows:∑r
i=1

∑s
j=1(xi · yj)→ (

∑r
i=1 xi) · (

∑s
j=1 yj). For features P

and C, the cofactor would then be:

CofactorP,C = (4p1 + 2p2)(c1 + c2) + (2p2 + p3)(c3 + c4)

While exploring the factorized join, F computes aggre-
gates at each node that is the root of a factorization E:
constant (degree 0) aggregates corresponding to the num-
ber of tuples in the table represented by E; linear (degree
1) aggregates for each feature A of E, which are sums of
all A-values, weighted by the number of times they occur
in the table; and quadratic (degree 2) aggregates, which are
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I1 = i1 + i2

S1 = s1 + s2

I2 = i3

S2 = s3 + s4

I3 = i4 I4 = i5 S3 = s5

C1 = c1 + c2 C2 = c3 + c4

I5 = 2I1
S4 = 2S1

I6 = 2I2
S5 = S2

I7 = 2I3
S6 = S2

I8 = I4
S7 = S3

P1 = 4p1 + 2p2
I9 = I5 + I6
S8 = S4 + S5

P2 = 2p2 + 1p3
I10 = I7 + I8
S9 = S6 + S7

P3 = 2P1

I11 = 2I9
S10 = 2S8

C3 = 6C1

P4 = 2P2

I12 = 2I10
S11 = 2S9

C4 = 3C2

L1 = 12l1 + 6l2
P5 = P3 + P4

I13 = I11 + I12
S12 = S10 + S11

C5 = C3 + C4

θL θP θI θS θC
Σ0 12l1 + 6l2 2(4p1 + 2p2) + 2(2p2 + p3) 4(i1 + i2 + i3 + i4) + 2i5 4(s1 + s2 + s3 + s4) + 2s5 6(c1 + c2) + 3(c3 + c4)
ΣL 12l21 + 6l22 l1P3 + l2P4 l1I11 + z2I12 l1S10 + l2S11 l1C3 + l2C4

ΣP ΣZ/θP 2(4p21 + 2p22) + 2(2p22 + p23) 2(p1I5 + p2(I6 + I7) + p3I8) 2(p1S4 + p2(S5 + S6) + p3S7) P1C1 + P2C2

ΣI ΣL/θI ΣP /θI 4(i21 + i22 + i23 + i24) + 2i25 2(I1S1 + I2S2 + I3S2 + I4S3) I9C1 + I10C2

ΣS ΣL/θS ΣP /θS ΣI/θS 4(s21 + s22 + s23 + s24) + 2s25 S8C1 + S9C2

ΣC ΣL/θC ΣP /θC ΣI/θC ΣS/θC 6(c21 + c22) + 3(c23 + c24)

Figure 2: (Top) The factorized join annotated with constant (counts) and linear (weighted sums) aggregates
used for cofactor computation. (Bottom) Cofactor matrix based on the annotated factorized join (Column
for intercept θ0 not shown). For any model, the convergence of model parameters is run on top of this matrix.

products of values and/or linear aggregates, or of quadratic
and constant aggregates. These regression aggregates are
passed on to the parent of the current node and used to
compute the aggregates at that parent node. The quadratic
aggregates of the root node are the cofactors. Figure 2 dis-
plays the materialized factorized join, annotated with the
constant (circles) and linear aggregates (rectangles), and an
excerpt of the cofactor matrix for our training dataset.

Learning Regression Models with F/SQL. F’s compu-
tation of regression aggregates can be encoded in one SQL
query. This is constructed in one bottom-up pass over an
extension of the factorized schema Σ with one leaf node per
input table under its lowest attribute in Σ. For our schema
in Figure 1(b), we generate a query at each inner node fol-
lowing a template. Its instantiation for node P is below:

CREATE TABLE QP AS

SELECT L, In, Id, Branchn, Branchd,

Sn, Sd, Salesn, Salesd, Pn, Pd,

(Ideg + Sdeg + Pd) AS Pdeg,

sum(power(P, Pd) ∗ Iagg ∗ Sagg) AS Pagg

FROM QI NATURAL JOIN QS , Ptype

WHERE (Ideg + Sdeg + Pd) <= 2

GROUP BY L, In, Id, Branchn, Branchd,

Sn, Sd, Salesn, Salesd, Pn, Pd, Pdeg

The factorization over any subtree Σ of the schema tree
defines a table τ with attributes in Σ. The query con-
structed at the root of Σ computes all (constant, linear,
quadratic) regression aggregates over τ . The query QP at

node P is a natural join of the queries QI and QS con-
structed at its children and has an inequality join with a
new table Ptype over schema (Pn, Pd). This table has three
tuples (P, 0), (P, 1), (P, 2) encoding constant (0), linear (1),
quadratic (2) regression aggregates over the attribute P .
There is one such table for each node in Σ. QP computes
all aggregates (Pagg) of degree (Pdeg) up to 2 by combining
aggregates from children and for P . For each new aggregate
and its degree, QP also maintains the lineage of their com-
putation: This is recorded in the attributes with indices n
and d. Finally, QP also keeps the ancestor attribute L of
P in Σ to later join with QC in QL. For a leaf node repre-
senting a table X, Xtype = {(X, 0)} and the query QX is a
product of X and Xtype, where we add an extra attribute
Xdeg that is a copy of Xd and we set Xagg = 1.

3. HOW CAN USERS INTERACT WITH F?
Figure 3 depicts snapshots of F’s graphical user interface

showing step by step the interaction of users with F from
its inner workings to model selection and then prediction.

The users load tables and inspect their schemas, which are
interpreted as feature sets. F builds regression models over
an SPJA query on the selected tables; by default, this query
is their natural join. Three alternative next steps can be
triggered at this stage: compute the cofactor matrix; show
F; and show F/SQL. In the first case, we skip the illus-
tration of F’s inner workings and move to model selection.
In the second case (Figure 3(a)), F computes the factorized
view and depicts fragments of it along with the computed
cofactor matrix. Users can explore the factorized view by
clicking on any node n. If n is +, then the factorization is
expanded by displaying one additional level below n. If n
is union or product, then it is highlighted along with the
cofactors to which the values under n contributed, and the
users are presented with the features of the relation rep-
resented by the factorization rooted at n along with counts
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(a) F on a factorized view. (b) F/SQL: F in SQL. (c) Model Selection. (d) Prediction.

Figure 3: Users can: load tables and inspect their schemas; inspect the computation of factorized views and
cofactor matrix (a) using an in-memory implementation of F or (b) a SQL encoding; (c) explore the space of
possible models; (d) predict label values for a given set of features; and benchmark F against competitors.

and weighted sums for these features. In the third case (Fig-
ure 3(b)), we show the factorized schema and F/SQL. The
users can inspect the subquery at each node in the schema.

Once the cofactors are computed, we can explore the space
of models (Figure 3(c)). The users specify the label and
the model (least-squares, ridge, lasso, or elastic-net) to be
learned. Automatic model selection considers all available
features and performs either forward, backward or both-
ways stepwise regression to find the best prediction model
for the given label with respect to the Akaike information
criterion (AIC). The choice for the direction is specified in
the drop-down list at the bottom of the panel. Manual selec-
tion enables the users to explore the dataset in more detail.
From the list of features, the users may select sure-features
(X) that are considered highly relevant and maybe-features
(?) that might be relevant. F computes all possible mod-
els consisting of the sure-features, and any subset of the
maybe-features. F displays the model with the best AIC
score. Figure 3(c) shows an example of manual model selec-
tion. Model 1 only kept the distance maybe-feature since
all models with a different subset of the maybe-features have
a higher AIC value. The list of computed models records the
adjusted R2 and AIC values for each model. The users can
compute models with different features sets or labels.

Once a model is selected, the users can predict new label
values (Figure 3(d)). The users can upload sets of values for
the features of the model and may also manually add new
values or change existing ones. Furthermore, the users can
benchmark the performance of F against that of MADlib,
Python StatsModels, or R for a chosen set of models.

4. DEMONSTRATION SCENARIOS
We will demonstrate F using its graphical user interface

on a range of public datasets (LastFM, MovieLens, Finan-
cial, Yelp, Housing, Public Policy) and retailer datasets; we
used some of them for experimental benchmarks [5].

The retail sector relies upon predictions to maintain the
competitive edge by foreseeing trends. A scenario is to pre-
dict how many inventory units a store should keep in order
to satisfy the predicted demand. We will use a dataset of

100M records in six tables (inventory, sales, clearance, pro-
motions, census, location) provided by our industrial collab-
orator LogicBlox. The compression factor of factorized over
standard view sizes ranges from 26x to 160x for different
sets of tables. To build the model with all features, F took
16 seconds while its best competitor MADlib (ols) took 680
seconds [5]. It is common for retail companies to collect a
vast amount of data, but it is unclear what model can best
predict inventory units. The norm is to try many models
from scratch. This is a time and resource-intensive process.
Instead, F provides a fast way to explore potential mod-
els by decoupling data-dependent computation from model
space exploration and resolving the former once for all mod-
els. This significantly decreases the workload of the data
scientist and the computation time and resources.

We will also use the textbook regression scenario that pre-
dicts house prices given several features including square
meters, location, nearby shops, restaurants, and institu-
tions. This scenario uses tables with 10Ks records and 10s
of features extracted using Wrapidity from the property and
restaurant aggregators Rightmove and TripAdvisor.

Further scenarios include: (1) Prediction of user ratings
for businesses based on their features and previous ratings
in the Yelp Dataset Challenge. (2) How demographical, geo-
graphical, micro- and macroeconomic features relate to fam-
ily and individual income in US census data.
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