
Rogas: A Declarative Framework
for Network Analytics

Minjian Liu
minjian.liu@anu.edu.au

Qing Wang
qing.wang@anu.edu.au

Research School of Computer Science, The Australian National University
Canberra, ACT 0200, Australia

ABSTRACT
Network analytics has become increasingly popular in re-
cent years. Various graph systems have been developed for
analysing networks, while network data is still largely stored
and managed in relational database systems in the first
place. As two separate systems are often used to manage
and analyse network data, it not only increases the diffi-
culty for users to learn and maintain these different systems
simultaneously, but also impedes performing more sophis-
ticated analysis on relational and topological properties of
network data. Aiming to tackle these issues, we present
Rogas in this paper, which is a declarative framework that
allows the user to formulate analysis queries naturally with-
out thinking about the tedious implementation details of
graph algorithms and query processing.

1. INTRODUCTION
Nowadays, more and more large networks become avail-

able, such as social networks, biological networks, and bib-
liographical networks. Analysing these networks to discover
and predict patterns is increasingly critical for many en-
terprises and organisations. In practice, network data is
often stored and managed in relational database systems.
Nonetheless, relational database systems have limitations
to perform network analytics. For example, it is difficult to
use SQL to express simple operations such as finding friends
of friends in a social network, and SQL programming would
require multiple joins and recursion which goes beyond the
expressive power of standard SQL queries. Thus, a deluge of
graph systems with different concerns have been developed,
such as Graph-tool [1], NetworkX [2], SNAP [3], Pregel [11],
GraphLab [10], G-SPARQL [13], Gbase [9], and GraphX
[15]. Accordingly, the most common scenario for network
analytics is: (1) exporting data from relational database sys-
tems to text files (e.g. CSV, XML, and TXT), (2) importing
those text files into graph systems, (3) running analysis and
getting results from graph systems.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

However, this common scenario severely restricts the ca-
pability and flexibility of analysis. As two separate systems
are used to manage and analyse network data, it not only
increases the difficulty for users to learn and maintain these
different systems simultaneously, but also impedes perform-
ing more sophisticated analysis on relational and topological
properties of network data. To circumvent this issue, several
SQL-based graph systems have been recently proposed [6,
8]. Although these SQL-based graph systems have incorpo-
rated additional operations into the traditional SQL query
processing, they failed to provide a declarative framework
that allows the user to easily specify network analytics at a
high-level abstraction. Other state-of-the-art graph systems
are either procedural in nature for which the user needs
to take care of query optimization, data distribution, lock-
ing and synchronization by themselves, e.g. Pregel [11] and
GraphLab [10], or only focus on certain graph algorithms,
for instance, in terms of community detection, SNAP only
provides modularity-based algorithms [5, 7] whilst Graph-
tool provides stochastic blockmodel algorithms [12].

To tackle the issues above, we present a declarative frame-
work for network analytics, called Rogas. Unlike existing
works, our intention is to develop a high-level declarative
query language that enables the user to formulate analysis
queries naturally without thinking about the tedious imple-
mentation details of graph algorithms and query processing.
To achieve this, we extend SQL in a way that elegantly gen-
eralises the standard SQL operations such as GROUP BY and
ORDER BY into the graph primitives such as CLUSTER and
RANK. In doing so, the user only needs to conceptually spec-
ify queries with desired graph operations and sends these
queries to the query engine behind. Then the query engine
is able to automatically select most efficient algorithms for
execution. Nonetheless, how the query engine will execute
such queries can be flexible, which is a decision of the sys-
tem developer. For example, a hybrid memory and disk en-
gine as described in [13] may be used for executing queries,
which maintains topological structures in memory while the
data is stored in a relational database. In addition to per-
forming sophisticated analysis collectively based on both re-
lational and topological properties of network data, Rogas
also provides several other advantages, such as: to support
dynamic analysis of network data which may discover new
and evolving knowledge about networks, and to efficiently
execute analysis queries through query plans optimized by
the query engine. Most importantly, this framework enables
us to semantically align and mine the relationships of various
analysis queries and govern their semantic integrity [14].

1561

2. FRAMEWORK OVERVIEW
This framework has three main components: a hybrid

data model, a SQL-like query language and a query engine.
In the data model, network data is stored as relations in
one or more relational databases. When performing network
analysis, we use mapper queries (refer to Section 2.1) to map
relations to materialised or temporary graphs. Upon these
graphs, the query engine performs network analysis tasks
by choosing appropriate algorithms provided by graph sys-
tems (refer to Section 2.2). The results of analysing graphs
are transformed into relational databases. Now we discuss
about the query language and the query engine in details.

2.1 Query Language
We propose a SQL-like query language, called RG-SQL,

which extends the standard SQL with graph construction,
ranking, clustering and path finding operations, while still
preserving the nice closure property of SQL. Unlike the ex-
isting query languages of SQL-based graph systems [6, 8],
RG-SQL is a high-level declarative query language which is
easy-to-use in terms of writing up queries.

As a running example, we use the ACM bibliographical
network NACM , which has a number of relations stored in
a relational database. For example, it has AUTHOR that is a
relation storing the information of authors (e.g. Aid, Name,
Affiliation, Email), PAPER storing the information of publica-
tions (e.g. Pid, Title, PublicationDate), WRITES storing the
authors of publications (e.g. Aid, Pid) and CITES storing
the papers of citation (e.g. Pid, CitedPid). To exemplify
the main features of RG-SQL, let us consider the following
queries over NACM :

Q1 (Top-k influential authors) Find the top k influential
authors in terms of their influence of co-authorship.

Q2 (Collaborative communities) Find communities that con-
sist of authors who collaborate with each other to write
papers together.

Q3 (Shortest path) Find a shortest path between authors
Minjian and Qing so that Minjian is able to know who
to contact if he wants to work with Qing.

Graph Construction We use a mapper query to map one
or more relations to a graph for network anlytics. Essen-
tially, mapper queries are a special kind of relational alge-
bra queries that only return edge lists. For example, a co-
authorship graph coauthorship can be created from NACM

using the following mapper query.

CREATE UNGRAPH coauthorship AS
(

SELECT w1.Aid AS Aid, w2.Aid AS CoAid
FROM WRITES AS w1, WRITES AS w2
WHERE w1.Pid = w2.Pid AND w1.Aid != w2.Aid

);

Two different types of graphs can be constructed: CREATE
UNGRAPH creates an undirected graph, while CREATE DIGRAPH

creates a directed graph. A mapper query has the form of
SELECT-FROM-WHERE, which extracts an edge list from rela-
tions in the underlying databases for graph construction.
All mapper queries follow two rules: (1) The number of
attributes in the SELECT clause shall be two; (2) These at-
tributes shall also be the primary keys of certain relations.

Ranking Operation In network analytics, we are often
interested in vertex centrality that indicates the importance

of vertices within a graph, such as Q1. In RQ-SQL, we pro-
vide a RANK operator to specify the ranking operation for
vertices. The syntax is defined as follows:

RANK(<graph name>, <measure>)
<measure> := degree | indegree | outdegree |

betweenness | closeness | pagerank

A number of measures are available for determining the
importance of vertices [4]. One may choose the most suit-
able measure for a specific query based on the type of the
graph and desired properties. For example, in terms of Q1,
we can apply the following query to find the top 3 influen-
tial authors in terms of their influence of co-authorship using
the closeness measure. The result of RANK(coauthorship,
closeness) is stored in a result table that has two pre-
defined attributes: VertexID and Value. The user may flex-
ibly select attributes from these pre-defined ones, together
with attributes from other relational and graph operations.

SELECT VertexID, Value
FROM RANK(coauthorship, closeness)
LIMIT 3;

Clustering Operation Finding a cluster of vertices over a
graph is one of the most common tasks in network analytics,
such as Q2. We define a CLUSTER operator in RG-SQL using
the following syntax:

CLUSTER(<graph name>, <algorithm>)
<algorithm> := CC | SCC | GN | CNM | MC

In the above, CC refers to an algorithm of finding con-
nected components, SCC an algorithm of finding strongly
connected components, and GN, CNM and MC three algorithms
for community detection, which respectively correspond to
Girvan-Newman algorithm [7], Clauset-Newman-Moore Al-
gorithm [5] and Peixoto’s modified Monte Carlo Algorithm
[12]. For Q2, we may use the following query to find the
collaborative communities of the co-authorship graph and
list the result in a descending order based on the com-
munity size. The result of CLUSTER(coauthorship, MC) is
stored in a result table that has three pre-defined attributes:
ClusterID, Size and Members.

SELECT ClusterID, Size, Members
FROM CLUSTER(coauthorship, MC)
ORDER BY Size DESC;

Path Finding Operation Path finding aims to discover
paths that connect two or more vertices, such as Q3. For
this, we define a PATH operator in RG-SQL to specify how
to find paths in a graph with the following syntax:

PATH(<graph name>, <path expression>)
<path expression> := . | V |

<path expression>/ <path expression>|
<path expression>// <path expression>

In a path expression, V is a vertex expression that im-
poses certain condition on the vertices of a path, . is a
do-not-care symbol indicating that any vertex is allowed in
its position, / represents one edge, and // represents any
number of edges. A path expression is valid if it contains a
vertex expression in the first and last positions. For Q3, we
may use the path expression V1//V2, where V1 represents
Minjian and V2 represents Qing, to find a shortest path be-
tween Minjian and Qing in the following query. The result
of PATH(coauthorship, V1//V2) is stored in a result table
with three pre-defined attributes: PathID, Length and Path.

1562

SELECT PathID, Length, Path
FROM PATH(coauthorship, V1//V2)
WHERE V1 AS

(SELECT Aid FROM AUTHOR WHERE Name = 'Minjian Liu')
AND V2 AS

(SELECT Aid FROM AUTHOR WHERE Name = 'Qing Wang')
ORDER BY Length ASC LIMIT 1;

2.2 Query Engine
We develop a query engine to process queries written in

RG-SQL. In a nutshell, the query engine extends the rela-
tional query engine of PostgreSQL by incorporating a com-
ponent called operation executor for handling graph opera-
tions that relate to various graph systems used for algorithm
support. Figure 1 presents the architecture of the engine.

Similar to traditional query processing, a query written
in RG-SQL is processed by following a parser-optimiser-
executor pattern. An RG-SQL query created in the query
console is first validated by the query parser and then con-
verted into a plan tree. A plan tree may contain two dif-
ferent types of operation nodes: graph operation nodes, i.e.
corresponding to RANK, CLUSTER and PATH operations, and
relational operation nodes, i.e. corresponding to selection,
join, aggregate and other operations in SQL. For each plan
tree, the query optimiser firstly passes its graph operation
nodes to the operation executor, then enumerates alterna-
tive plan trees, estimates their costs, and determines the
best execution plan. For each query, the query optimiser
chooses the best possible graph system to support the op-
eration executor processing graph operations. Based on the
chosen execution plan, the plan executor controls the exe-
cution order and processes relational operations (e.g. table
scans, nested-loop joins, sorting, and aggregation) while the
operation executor processes graph operations (e.g. ranking,
clustering, and path finding). When executing graph opera-
tions, the operation executor retrieves graph data from the
underlying data storage layer, runs graph algorithms pro-
vided by different graph systems over the graph data, trans-
forms the results into result tables, and sends back to the
data storage layer.

Figure 1: Architecture of the Query Engine

Figure 2: Query Decomposition

3. QUERY OPTIMISATION
The main features of RG-SQL allow users to write sophis-

ticated queries that combine relational analysis and graph
analysis. In order to process these sophisticated queries
more efficiently, the query parser separates relational sub-
queries from graph sub-queries. For example, the following
query over NACM can be decomposed into a set of sub-
queries including relational sub-queries and graph sub-queries,
as shown in Figure 2.

SELECT Name, Affiliation FROM AUTHOR
WHERE Aid IN
(

SELECT Aid FROM WRITES as w,
(

SELECT Members
FROM CLUSTER(coauthorship, GN)
ORDER BY Size DESC
LIMIT 1

) as c,
(

SELECT VertexID
FROM RANK(citation, pagerank)
WHERE citation IS DIGRAPH AS
(

SELECT * FROM CITES
)

) as r
WHERE w.Aid = ANY(c.Members) AND w.Pid = r.VertexID
LIMIT 3

);

Thus, after a query has been parsed, a decomposed RG-
SQL query Q consists of a set of relational and graph sub-
queries {q1, q2, . . . , qn}. One main job of the query optimiser
is to rewrite these sub-queries into semantically equivalent
sub-queries that can be performed more efficiently. For rela-
tional sub-queries, we leverage existing query optimisation
techniques of PostgreSQL such as the transformation rules
based on relational algebraic equivalence, the genetic opti-
misation algorithms for searching alternative plan trees and
so forth. For graph sub-queries, we aim to build a caching
pool through hashing query results so as to avoid repeated
computation.

1563

Figure 3: Demonstration Graphical Interface

4. DEMONSTRATION
In this section, we will demonstrate a prototype system of

this framework. The system is implemented in Python 2.7
and is deployed on an Intel Core i7 3.6GHz, 16GB server
with a bibliographical network dataset provided by the ACM
Digital Library. The source code of the system can be found
in https://github.com/CornucopiaRG/Rogas.git.

As shown in Figure 3, the attendees can enter queries in
the query panel, get the query results from the result panel,
and visualise the query results as graphs in the graph panel.
We take Q1 and Q2 mentioned in Section 2 as examples.
Figure 3.(a) contains a graph with three highlighted vertices
(i.e. the yellow pentagon, the green square and the purple
triangle) representing the top three influential authors for
Q1. Figure 3.(b) presents a graph with four types of vertices
in different colors and shapes representing four collaborative
communities for Q2.

In the demonstration, we will provide more queries about
the ACM bibliographical network to the attendees, in ad-
dition to the queries show in Figure 3. Through our pro-
totype system, the attendees can run relational queries for
relational analysis, create mapper queries to construct ma-
terialised or temporary graphs, perform various graph op-
erations for network analysis, and conduct a sophisticated
analysis based on both relations and graphs.

5. CONCLUSIONS
We have presented a declarative framework for network

analytics that includes a relation-graph hybrid data model, a
SQL-like query language extending SQL with network anal-
ysis operations and a query engine being able to incorporate
various network analysis algorithms provided by different
graph systems. We have also demonstrated our prototype
implementation of this framework.

6. ACKNOWLEDGMENTS
We thank the ACM Digital Library for providing the data

set of the ACM bibliographical network.

7. REFERENCES
[1] Graph-tool. http://graph-tool.skewed.de.

[2] NetworkX. http://networkx.github.io.

[3] SNAP. http://snap.stanford.edu.

[4] U. Brandes and T. Erlebach. Network analysis:
methodological foundations, volume 3418. Springer
Science & Business Media, 2005.

[5] A. Clauset, M. E. Newman, and C. Moore. Finding
community structure in very large networks. Physical
review E, 70(6):066111, 2004.

[6] J. Fan, A. Gerald, S. Raj, and J. M. Patel. The case
against specialized graph analytics engines. In CIDR,
pages 1–10, 2015.

[7] M. Girvan and M. E. Newman. Community structure
in social and biological networks. Proceedings of the
national academy of sciences, 99(12):7821–7826, 2002.

[8] A. Jindal and S. Madden. GRAPHiQL: A graph
intuitive query language for relational databases. In
IEEE International Conference on Big Data, pages
441–450, 2014.

[9] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and
C. Faloutsos. Gbase: an efficient analysis platform for
large graphs. The VLDB Journal, 21(5):637–650, 2012.

[10] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E.
Guestrin, and J. Hellerstein. Graphlab: A new
framework for parallel machine learning. arXiv
preprint arXiv:1408.2041, 2014.

[11] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In ACM
SIGMOD, pages 135–146, 2010.

[12] T. P. Peixoto. Efficient Monte Carlo and greedy
heuristic for the inference of stochastic block models.
Physical Review E, 89(1):012804, 2014.

[13] S. Sakr, S. Elnikety, and Y. He. G-SPARQL: a hybrid
engine for querying large attributed graphs. In CIKM,
pages 335–344. ACM, 2012.

[14] Q. Wang. Network Analytics ER Model – Towards a
Conceptual View of Network Analytics. In Conceptual
Modeling, pages 158–171. Springer, 2014.

[15] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and
I. Stoica. GraphX: A resilient distributed graph
system on Spark. In First International Workshop on
Graph Data Management Experiences and Systems,
page 2. ACM, 2013.

1564

