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ABSTRACT
We describe Cümülön, a system aimed at helping users develop and
deploy matrix-based data analysis programs in a public cloud. A
key feature of Cümülön is its end-to-end support for the so-called
spot instances—machines whose market price fluctuates over time
but is usually much lower than the regular fixed price. A user sets
a bid price when acquiring spot instances, and loses them as soon
as the market price exceeds the bid price. While spot instances
can potentially save cost, they are difficult to use effectively, and
run the risk of not finishing work while costing more. Cümülön
provides a highly elastic computation and storage engine on top
of spot instances, and offers automatic cost-based optimization of
execution, deployment, and bidding strategies. Cümülön further
quantifies how the uncertainty in the market price translates into
the cost uncertainty of its recommendations, and allows users to
specify their risk tolerance as an optimization constraint.

1 Introduction
Publicly available clouds, such as Amazon EC2, Microsoft Azure,
and Google Cloud, have made it easier to acquire computing re-
sources on demand. Typically, users rent machines in the cloud at
a fixed rate (e.g., $0.145 per hour for an Amazon c1.medium-type
machine). These machines can be used with no interruption until
users release them. With such fixed-price rentals, however, a cloud
provider may find its clusters underutilized and unable to gener-
ate revenue from vacant machines. On the other hand, when the
demand is high, there is no way to fulfill all user requests even if
some users may be willing to pay higher prices. One pricing policy
that seems to be gaining attraction in recent years is to allow users
to bid for machines, whose prices fluctuate according to supply and
demand; hence, resources will be allocated to those who need them
the most, and the cloud provider can increase its profit.

Amazon EC2 is a leader with this pricing policy. In addition
to fixed-price on-demand instances (machines), Amazon EC2 also
offers spot instances, whose market price changes over time, but
is usually significantly lower than the fixed price of the on-demand
instances. A user acquires spot instances by setting a bid price
higher than the current market price, and pays for them based on
the changing market price. However, as soon as the market price
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exceeds the bid price, the user will lose the spot instances. The user
cannot change the bid price once the bid is placed.

From a user’s perspective, spot instances offer a good cost-saving
opportunity, but there are a number of difficulties in using them:

• Work done on spot instances will be lost when they are re-
claimed. There is no guarantee when this event will happen, and
when it happens, there is little time to react. In this sense, the
loss of spot instances is similar to machine failures, but it is one
of the worst kinds possible—it amounts to a massive correlated
failure where all spot instances acquired at the (now exceeded)
bid prices are lost at the same time. The user still has to pay for
their use before the point of loss.1 What can we do to mitigate
such risks? Should we checkpoint execution progress on the
spot instances? More checkpointing lowers the cost of recovery
in the event of loss, but it also increases execution time and cost,
as well as the possibility of encountering a loss. Furthermore,
what is worth checkpointing and where do we save it?

• There are also numerous options to consider for bidding. How
many spot instances should we bid for? More machines poten-
tially imply faster completion and hence lower chance of loss
during execution, but a large parallelization factor often leads to
lower efficiency and higher overall monetary cost, not to men-
tion the possibility of paying for lots of spot instances without
getting any useful work out of them. Moreover, how do we set
the bid price? Bidding high decreases the chance of loss, but
increases the average price we expect to pay over time. Does it
make sense to bid above the fixed price of on-demand instances?

• When working with spot instances, we face a great deal of un-
certainty, a primary source of which is the variability of market
prices. From a cloud provider’s perspective, a good average-
case behavior may be enough to make a decision, but from a
user’s perspective, cost variability is a major concern. How
do we quantify the amount of uncertainty incurred by the use
of spot instances? Given a user’s risk tolerance and cost con-
straints, does it even make sense to use them? Is there any way
to bound this uncertainty while still saving some cost in the ex-
pected sense?

Our Contributions We present our answers to the challenges
above in the context of a system called Cümülön (i.e., Cumulon
with spots). Cumulon [5, 6] is a system aimed at simplifying the
development and deployment of statistical analysis of big data on
public clouds. With Cumulon, users write high-level programs us-
ing matrices and linear algebra, without worrying about how to

1Amazon EC2’s pricing scheme is actually more nuanced and can lead to
some rather interesting bidding strategies; more details are in Section 4.2.
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map data and computation to underlying cloud computing plat-
forms. Given a program, Cumulon automatically optimizes its im-
plementation alternatives, execution parameters, as well as hard-
ware provisioning and configuration settings. In this paper, we de-
scribe how we introduce end-to-end support for spot instances in
Cümülön. Starting with an optimized “baseline” plan using fixed-
price instances, Cümülön makes intelligent decisions on whether
and how to bid for additional spot instances, and how to use them
effectively to reduce expected cost while staying within users’ risk
tolerance. We also show how to build a highly elastic computation
and storage engine for matrices on top of spot instances.

A key desideratum of Cümülön is letting users specify their ob-
jectives and constraints in straightforward terms. Given an opti-
mized baseline plan using only fixed-price instances, a user can ask
Cümülön to find the plan involving spot instances that minimizes
the expected monetary cost, while satisfying the constraint that the
actual cost is within (1+δ) of the baseline cost with probability no
less than σ. By tuning δ and σ, the user tells Cümülön how much
risk she is willing to take while trying to reduce the expected cost.2

Example 1 (RSVD-1 Plan Space). Consider the singular value de-
composition (SVD) of matrices, which is fundamental to many ap-
plications of statistical data analysis. In [13], the first and most
expensive step of the randomized SVD algorithm, which we shall
refer to as RSVD-1, involves a series of matrix multiplies. Specif-
ically, given an m × n input matrix A, this step uses an l × m
randomly generated matrix G whose entries are i.i.d. Gaussian
random variables of zero mean and unit variance, and computes
G× (A×Aᵀ)k ×A.

The baseline plan (optimal without spot instances) of RSVD-1
(with l = 2,048, m = n = 102,400, and k = 5), picked by
Cumulon, costs $5.09 and runs under 11.7 hours, using 3 machines
of type c1.medium at the fixed price of $0.145 per hour. Under the
user-specified risk tolerance of δ = 0.05 and σ = 0.9, Cümülön is
able to recommend that the user bids for additional 77 c1.medium

spot instances at $0.10 each per hour (versus the current market
price of $0.02. This plan reduces the expected overall cost to $3.78
(26% improvement) while staying within the risk tolerance.

To further help the user understand the (sometimes non-obvious)
trade-off between bidding strategies, Cümülön can produce a visu-
alization such as Figure 1a. From this figure, we see that bidding
for more machines generally decreases expected cost—as this prob-
lem is large in size and amenable to parallelization. Interestingly,
bidding at higher prices also tends to lower expected cost in this
case. In general, the higher we bid, the longer we expect to hold
spot instances for useful work, though we pay higher average price
over time. Here, the advantage outweighs the disadvantage. It is
reasonable to bid even above the fixed price ($0.145), since the av-
erage market price we end up paying over time can still be lower.

The upper-right region of Figure 1a is where no plan with given
bid price and number of spot instances meets the user-specified
risk tolerance. Intuitively, the combination of high bid price and
large number of spot instances increases the risk of overshooting
the baseline cost.

If the user is willing to take a higher risk, she can lower σ from
0.9 to 0.8. Cümülön will then revise the figure to Figure 1b. We see

2By default, besides spot instances, Cümülön still uses all fixed-price in-
stances provisioned by the baseline plan. Therefore, a Cümülön plan al-
most always finishes faster than the baseline, and bounding the total mon-
etary cost also effectively bounds the completion time. This default could
be overridden, allowing Cümülön to consider using fewer fixed-price in-
stances. In that case, an extra completion time constraint needs to be speci-
fied. See the technical report version [7] of this paper for more discussion.
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Figure 1: Estimated expected cost of the optimal plans for RSVD-1, as
we vary the bid price and the number of spot instances we bid for. The
cost is shown using intensity, with darker shades indicating lower costs. In
the upper-right region, plans fail to meet the user-specified risk tolerance;
hence, this region shows the baseline cost without bidding.

that the region of valid bidding strategies expands, and the expected
cost can be further lowered to $3.73.

Cümülön does a considerable amount of work behind the scenes
to help users make high-level decisions without worrying about
low-level details. In terms of system support for spot instances,
Cümülön uses a dual-store design consisting of both primary nodes
(regular, fixed-price instances) and transient nodes (variable-price
spot instances). The primary store leverages the reliability of pri-
mary nodes to offer persistent storage without relying on sepa-
rate cloud-based storage services that are costly and often ineffi-
cient. The transient store provides elastic, fast storage for transient
nodes without overwhelming the primary store. To combat loss of
progress when transient nodes are reclaimed, Cümülön uses a com-
bination of (implicit) caching and (explicit) sync operations to copy
selected states from the transient store to the primary one. Taking
advantage of declarative program specification (with matrices and
linear algebra), Cümülön uses fine-grained lineage information to
minimize the work required to recover lost data.

In terms of optimization support for spot instances, Cümülön
optimizes not only implementation alternatives, execution param-
eters, and configuration settings (as Cumulon does), but also bid-
ding strategies and how to add sync operations during execution.
To make intelligent decisions, Cümülön estimates execution time
as well as the time needed for sync and recovery—which depends
on how much data might be lost, how much of that will still be
needed, and how much work is involved in recomputing the re-
quired portion. Furthermore, Cümülön has to reason with unknown
future market prices, and in particular, predict when we will lose
the spot instances. The market introduces a great deal of uncer-
tainty; Cümülön quantifies how this uncertainty translates into the
cost uncertainty of its recommendations, and considers how various
options impact the resulting uncertainty.

While most part of this paper assumes a modified version of
Amazon’s pricing policy (see Section 4.2 for more details), our sys-
tem and framework allow any pricing policy to be plugged in. This
flexibility allows us to explore interesting policy questions, e.g.,
how would our bidding strategy change if we have to pay the bid-
ding price instead of the changing market price? We refer interested
readers to our technical report [7] for the answer. In the remainder
of this paper, we describe the inner workings of Cümülön and eval-
uate how well Cümülön supports the use of spot instances.

2 Background on Cumulon
This section gives a brief review of Cumulon, which supported only
regular, fixed-price nodes. For more details, please see [5].

Storage Since we target matrix workloads, Cumulon provides
a distributed tile store for matrices. Matrices are accessed in the
unit of tiles, which are submatrices of fixed (but configurable) size.
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Figure 2: (From [5]) Cumulon’s map-only Hadoop jobs for A×B+C.
Shaded blocks represent submatrices. {Tk} is the collection of results from
submatrix multiplies, yet to be grouped and summed.

Within each tile, elements are stored in either row-major or column-
major order, using either sparse or dense format. Our execution
model guarantees that a tile has either multiple concurrent readers,
or one writer (producer); it is never updated in-place. Currently,
Cumulon implements its tile store on top of an HDFS.

Execution Cumulon executes an input program as a sequence of
jobs specified by a physical plan template Q = {q1, q2, . . . , qm},
where qj is the physical plan template for job j and is represented
as a DAG of physical operators. Cumulon executes each job using
multiple parallel and independent tasks that do not communicate
with each other. Each task of job j runs an instance of qj : it pro-
duces an output split (a portion of the job output, disjoint from
the other tasks) using an input split (portions of the job input, pos-
sibly overlapping with the other tasks). Within each task, physi-
cal operators in the corresponding physical plan template execute
in a pipelined fashion, much like the iterator-based execution in
database systems. However, the unit of data passing between phys-
ical operators is much bigger—we pass tiles instead of elements,
to reduce overhead, and to enable the use of highly tuned BLAS
library on submatrices.

Each node in the cluster is configured into several slots, each of
which can execute one task at a time. Cumulon scheduler assigns
tasks to slots. A job with more tasks than slots will take multiple
waves to finish. The next job does not start until all tasks in the
current job is done. Data are passed between jobs only through
the distributed tile store. Currently, Cumulon’s execution engine
is built on top of Hadoop, but in a way that does not follow the
standard MapReduce model. Each Cumulon job runs as a map-
only Hadoop job. However, different tasks can read overlapping
portions of the input data, directly from the distributed tile store
when needed; there is no requirement of disjoint input partitioning
or shuffle-based data passing as in MapReduce. For example, Fig-
ure 2 illustrates how Cumulon computes A×B+C; the summation
step of× is folded into the job that adds C. In [5], we have demon-
strated that this execution model enables far more efficient support
for matrix workloads than approaches based on MapReduce.

Optimization Given a program and input data characteristics (e.g.,
matrix dimensions and sparsity), Cumulon applies rewrite rules
(e.g., linear algebra equivalences) to obtain a physical plan tem-
plate. Then, using a cost-based optimizer, Cumulon chooses hard-
ware provisioning settings (e.g., number and type of nodes to use),
system configuration settings (e.g., number of slots per node), and
execution parameters (e.g., splits for each job, or other physical
operators parameters). The optimizer looks for the plan with the
lowest expected monetary cost among those expected to complete
by a user-specified deadline.

To enable cost-based optimization, Cumulon predicts task com-
pletion time using models for individual physical operators trained
using benchmarks on each machine type; more details about this
model will be reviewed later, when we discuss how to extend it
for Cümülön in Section 4.3. Then, to predict job completion time,

Cumulon simulates the behavior of its scheduler; this approach ac-
counts for variance in task completion times as well as potentially
heterogeneous clusters.
Remark Currently, both Cumulon and Cümülön are built on top
of Hadoop/HDFS, although we note that they have been designed
such that they could be implemented using alternative cloud com-
puting platforms, such as Spark [22] and Dryad [9]. Most tech-
niques presented in this paper are not specific to Hadoop/HDFS
and can be applied readily to other platforms.

3 System Support for Transient Nodes
There are several desiderata in supporting transient nodes. First,
we want to handle a large number of transient nodes (which can
be much more than the number of primary nodes). Second, we
want to allow their instant arrival and departure. In particular, in
the event that the market price for a set of transient nodes exceeds
their bid price—which we call a hit for brevity—we do not assume
that there is enough time to checkpoint execution progress on these
nodes before we lose them.

Cumulon’s execution model is already elastic in nature. Tasks in
a job are independent and can run anywhere in any order.3 What
to do with data—specifically, the results produced by the tasks—
is more challenging, because losing such data to an inopportune hit
can lead to significant loss of work. In the remainder of this section,
we show how to tackle this challenge using a dual-store design with
caching and sync, and how to recover from a hit.

3.1 Dual-Store Design
Before describing our design, we briefly discuss several strawman
solutions and why we ruled them out. 1) Using a distributed stor-
age service offered by the cloud provider (such as Amazon S3) is a
simple way to prevent data loss [11], but storing all intermediate re-
sults in it rather than local disk is prohibitively inefficient. 2) Using
a single HDFS on top of both primary and transient nodes is a nat-
ural extension to Cumulon that fully exploits the local storage on
the available nodes. However, HDFS is not designed to withstand
massive correlated node failures, which happen with a hit. HDFS’s
decommission process simply cannot work fast enough to prevent
data loss. 3) Using a single HDFS on primary nodes only, as was
done in [3], is cheap and reliable. Tasks on transient nodes would
write their results to the primary nodes, which will be preserved in
the event of a hit. However, since there are usually significantly
more transient nodes than primary ones, these writes will easily
overwhelm the primary nodes (as we will demonstrate with exper-
iments in Section 5). Other storage approaches will be discussed
later in related works in Section 6.

As mentioned in Section 1, Cümülön uses a dual-store design,
where the primary nodes together form a primary store, and the
transient nodes together form a separate transient store. We call
the primary (transient, resp.) store the home store of a primary
(transient, resp.) node. Sitting on top of the two stores, a tile man-
ager keeps track of where tiles are stored and mediates accesses to
tiles. To process a read, a node first attempts to find (a copy of) the
requested tile in its home store. If not found, the node will fetch the
tile from the non-home store, and then cache a copy in the home
store. To process a write, a node simply writes to its home store.

3Cümülön further extends Cumulon’s scheduler to the general case
where the cluster contains multiple machine types (e.g., m1.small vs.
c1.medium), which may arise, for example, if we bid for a particular type
of nodes whose market price becomes low enough to make it cost-effective.
The extension supports dynamic division of a job into tasks of various sizes,
each tailored toward a specific machine type. We omit the details because
support for heterogeneous clusters is not the focus of this paper.
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As a further optimization, we cache a tile in the transient store
only if this tile will be read later.4 To enable this optimization,
Cümülön gives its tile manager an extra “cacheable” bit of informa-
tion for each matrix computed by the program, based on the notion
of read factor described below. The transient store will cache a tile
of A only if the “cacheable” bit of A is currently 1.

The read factor of a matrix A in job j, denoted by γA
j , is the

average number of times that each tile of A is read by the tasks
in job j. The read factor can be readily obtained at optimization
time as a function of the split size by analyzing j’s physical plan
template. During a job i, Cümülön sets the “cacheable” bit for A to
1 iff

∑
j≥i γ

A
j > 1. To illustrate, consider the following example.

Example 2 (Read Factors in GNMF). Gaussian non-negative ma-
trix factorization (GNMF) [10] has many applications including
vision, document clustering, and recommendation systems. Each
step of the iterative GNMF algorithm computes the following:

H′ ← H ◦ (Wᵀ ×V) ◦/ (Wᵀ ×W ×H);

W′ ←W ◦ (V ×Hᵀ) ◦/ (W ×H×Hᵀ).

Here, ◦ denotes element-wise multiply and ◦/ denotes element-wise
divide. V is a sparse n ×m matrix; W and H are dense n × k
and k ×m (resp.) matrices, where k is much smaller than n and
m. W′ and H′ become W and H (resp.) in the next iteration.

Figure 3 shows the dependencies among jobs and matrices for
two GNMF iterations. Cümülön compiles one iteration into 6 jobs.
Job 1 computes Wᵀ × V. It partitions V into a grid of n′ ×
n′ submatrices, and W into a column of n′ submatrices. Each
task multiplies a pair of submatrices, and each submatrix of W
multiples with n′ submatrices of V. Therefore, each submatrix of
W is needed by n′ tasks, so the read factor (of W in job 1) γW

1 =
n′, or the square root of the number of tasks in the job.

Note that our storage layer does not aggressively push writes
between the two stores; replication across stores happens through
caching on reads. This policy does not eliminate the risk of losing
data produced by the transient nodes after a hit. However, there are
several advantages. 1) This policy avoids write traffic jams from
the transient store to the primary store, by piggybacking writes on
subsequent reads and thereby spreading them out. 2) This policy
naturally gives priority to data with higher utility; the more often a
tile is read, the more likely it will be cached in the primary store.
3) Compared with aggressively pushing writes to the primary store,
this policy can potentially save many such writes. Utility of inter-
mediate results will decrease once jobs requiring them complete; if
there is no hit by then, tiles produced and “consumed” by transient
nodes themselves will not be written to the primary store.

4Note that we always cache in the primary store, because even if a tile will
not be read again in normal execution, it may be useful for recomputing
other useful tiles during recovery (Section 3.3).

Currently, Cümülön implements the primary and transient stores
as separate HDFS on respective nodes. Conveniently, HDFS pro-
vides efficient shared storage for all nodes with the same home
store; thus, a tile cached upon one node’s read request will ben-
efit all nodes in the same store. Cümülön uses a replication factor
of 3 within each HDFS to guard against data loss due to occasional
node failures (which could still happen even with primary nodes).
However, as discussed earlier, we do not assume that the transient
store can preserve any data when the cluster is hit.

3.2 Sync Jobs
Caching data on read is opportunistic and not enough to bound data
loss in the event of a hit. Losing a tile, especially when late in
execution, could trigger expensive recomputation going back all
the way to the beginning of execution unless sufficient intermediate
results survive in the primary store. Thus, we introduce explicit
sync jobs to ensure that a set of matrices completely “persist” on
the primary store. To persist a matrix A, Cümülön consults its
tile manager to identify the collection of A tiles present only in
the transient store. Then, the sync job reads these tiles (from the
transient store) and writes them to the primary store. As with other
jobs, this job executes as multiple parallel and independent tasks,
each responsible for a subset of the tiles.

Hardwiring a rigid syncing strategy into the system (e.g., sync-
ing all intermediate results periodically or even after every non-
sync job) is suboptimal, as the best strategy depends on many fac-
tors: when and how often an intermediate result matrix A will be
used later, how likely a hit will occur before the uses of A, how
much of A will be cached by the primary store over time, and how
expensive it is to recompute the part of A required when recover-
ing from a hit. Some of these factors can be determined by static
program analysis; some further depend on the bid price and future
market prices. It would be unrealistic to expect users to come up
good syncing strategies manually. Therefore, Cümülön considers
the choice of a syncing strategy as an integral part of its optimiza-
tion (Section 4).

3.3 Recovering from a Hit
In practice, syncing all intermediate results is too expensive, and
even if we do, a hit may still occur during a sync job. Cümülön
supports fine-grained data-driven recovery: it performs only the
computation needed to recover the specific portions of data that
are missing and required for resuming execution. Cümülön does
not rely on having any complete snapshot of the execution state.
Thanks to its knowledge of the physical plan template, Cümülön is
able to redo a job “partially,” using tasks that may differ from those
in the original execution.

To help determine the dependencies between input and output
data, each physical operator in Cümülön supports a lineage func-
tion, which returns the subset of input tiles required for computing a
given subset of output tiles. The lineage function of a job is simply
the composition of the lineage functions for the physical operators
in the job’s physical plan template. Suppose a job reads matrix A
and produces matrix B. We use ΛA

B(B) to denote the subset of
A tiles required for computing the given subset B of B tiles, as
determined by the lineage function of the job.

Once Cümülön detects a hit—say during the execution of job
jhit—the scheduler stops issuing new tasks for jhit, and gives a short
time for ongoing tasks on the primary nodes to either complete or
fail (due to missing data5 or time running out). Next, Cümülön cal-

5In fact, with lineage information, it is possible for Cümülön to infer which
tasks will fail due to missing data, without waiting for them to time out.
Cümülön currently does not implement this feature, however.
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culates, for each job up to jhit and each matrix A produced by these
jobs, the set XA of deficient tiles in A, i.e., those that must be re-
computed in order to resume execution. This calculation starts with
job jhit and works backwards recursively. Consider A produced by
job j. Let PA denote the set of persisted tiles in A, i.e., those
currently available in the primary store. If A will be part of the
final output or will be read by any job following jhit, then all non-
persisted tiles are deficient; otherwise, let B denote the set of ma-
trices produced by any job among j+1, j+2, . . . , jhit that reads A.
To recover the deficient tiles for each B ∈ B, we need the subset
ΛA

B(XB) of A’s tiles. Therefore, XA =
⋃

B∈BΛA
B(XB) \ PA.

Then, Cümülön runs a series of “partial” jobs, one for each job
up to jhit with any deficient output tile. Each partial job j has the
same physical plan template as the original job j, but runs only
on the primary nodes and produces only the deficient tiles as de-
termined above. After these partial jobs complete, execution can
resume from job jhit + 1.

As a toy example, Figure 4 shows a workflow with the tile-level
lineage it generates. Jobs are numbered according to execution or-
der, and every output matrix consists of two tiles. If a hit occurs
during the execution of job 4 and the shaded tiles are lost, then we
need the full output of jobs 3 and 4 (i.e., tiles 4–7) in order to fin-
ish the workflow. After lineage analysis, Cümülön will know that
tiles 2, 4, 5 and 7 are deficient and must be regenerated. Note that
although tile 1 is also missing, it is not deficient because tile 3 is
available. The recovery plan is as follows: run job 2 partially to
generate tile 2 from tile 0, then job 3 in full to generate tiles 4 and
5, and finally job 4 to generate tile 7 from tile 3.

Note that the division of work in a partial job into tasks can be
quite different from the original execution; the recovery plan will
use parameters optimized for execution on primary nodes only, as
opposed to those optimized for the full-strength cluster. In other
words, Cümülön performs recovery in a more flexible, data-driven
manner than just redoing a subset of the original tasks. Further-
more, Cümülön does not track lineage explicitly, but instead infer
it as needed from the physical plan template. Such features are pos-
sible because Cümülön programs are specified declaratively using a
vocabulary of operators with known semantics. These features dis-
tinguish Cümülön from other systems with lineage-based recovery
(such as Spark [21]) that need to support black-box computation.

4 Optimization
There is a huge space of alternatives for running a Cümülön pro-
gram with transient nodes—from execution to bidding to syncing.
Moreover, Cümülön seeks to quantify the uncertainty in the costs
of its recommendations, and allows users to specify their risk toler-
ance as an optimization constraint. We impose several restrictions
on the plan space, either to keep optimization tractable or to sim-
plify presentation. Then, we discuss how to extend our solution
for the simplified optimization problem to consider more complex
plans. Specifically, we start with the following restrictions:
(Starting from a Baseline Plan) Given a program to optimize, we
begin with a baseline plan with nprim primary nodes of a specific
machine type at the fixed price of pprim (per machine per unit time),
and no transient nodes. This baseline plan (involving no transient
nodes) can be the lowest-cost plan found by Cumulon, under a user-
specified deadline.

LetQ denote the program’s physical plan template, and let qj de-
note the physical plan template of job j, where 1 ≤ j ≤ m and m
is the number of jobs. We only consider plans that augment Q with
transient nodes: 1) we will not change the set of primary nodes;
2) we will not changeQ, except for adding sync jobs. However, we
do reoptimize the system configuration and execution parameters

forQ—e.g., number of slots per node and splits for each job (recall
Section 2)—for the new cluster.

The baseline plan makes it easy for users to specify risk toler-
ance. Suppose the estimated cost of the baseline plan is c. Then,
the risk tolerance constraint can be specified as (δ, σ), which means
that we only consider plans whose costs are within (1 + δ)c with
probability no less than σ. Note that by bounding the plan cost, this
constraint also places a soft upper bound on the completion time of
the plan (because cost increases with time). Without the help of the
baseline plan, it would be much more difficult for users to come up
with appropriate constraints.
(Optimizing on Start) We assume that we make our optimization
decision at the start of the program. The decision consists of two
parts, bidding and syncing.
(Bidding for a Homogeneous Cluster) We assume that we only

bid for transient nodes of the same type as the primary ones at
the start of the program. Suppose the market price of the tran-
sient nodes at bid time is p0. The bidding strategy is character-
ized by (p̂, ntran), where p̂ ≥ p0 is the bid price and ntran ≥ 0 is
the number of transient nodes to bid for.
As discussed in Section 3, Cümülön in fact has full system
support for heterogeneous clusters. However, optimization be-
comes considerably more complex; we are still working on re-
fining the cost models for heterogeneous clusters.

(Syncing after Output) We assume that we sync the output of job j
only immediately after job j; in other words, we do not consider
waiting to sync later. Thus, the syncing strategy is characterized
by a mapping S from jobs to subsets of matrices they produce;
S(j) specifies the subset of matrices output by job j to be per-
sisted in the primary store after job j completes. If S(j) = ∅,
we move on to job j + 1 immediately after job j completes.

(Optimizing for One Bid) We make our current optimization deci-
sion based on the assumption that, if the cluster is hit, we will carry
out remaining work using only the primary nodes. Under this as-
sumption, the program execution can be divided into three phases:
• Until it is hit, the cluster executes the program at full strength

with both primary and transient nodes. We call this phase the
pre-hit phase, and denote its duration by Thit.
• Upon being hit, if the execution has not finished, we enter the

recovery phase, where the primary nodes perform recovery and
complete the last non-sync job that started before the hit. We
denote the duration of this phase by Trec.
• Finally, the primary nodes complete any remaining (non-sync)

jobs in the program. We call this phase the wrap-up phase and
denote its duration by Trap.

In sum, we solve the following optimization problem: Given a
baseline plan with estimated cost of c, physical plan template Q,
and nprim primary nodes, find bidding strategy (p̂, ntran) and syncing
strategy S that minimize the expected cost of the three-phase exe-
cution, subject to the constraint that the actual execution cost is no
more than (1 + δ)c with probability no less than σ.

This problem formulation implies that our optimization decision
is myopic in the sense that it does not consider the future possibil-
ities of bidding for additional transient nodes, voluntarily releasing
transient nodes before completion, or dynamically re-optimizing
the execution plan and syncing strategy, etc. In practice, however,
we can re-run the optimization later and bid for a new set of tran-
sient nodes. We shall come back to such extensions in Section 4.7.

In the following, we begin with the market price model in Sec-
tion 4.1 and pricing scheme in Section 4.2, which let us estimate
Thit, and calculate costs given cluster composition and lengths of
the execution phases. We present models for estimating execution
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times in Sections 4.3 and 4.4. We then combine these models to
obtain the total cost distribution (with uncertainty) in Section 4.5,
and show how to solve the optimization problem in Section 4.6.

4.1 Market Price Model
In order to estimate Thit and the cost of transient nodes, we need
a model for predicting the future market price p(t) at time t given
the current market price p(0) = p0. Cümülön allows any stochastic
model to be plugged in, provided that it can efficiently simulate the
stochastic process.

Our current market price model employs two components. First,
we use non-parametric density estimation to approximate the con-
ditional distribution of the future prices given the current and his-
torical prices. To capture diurnal and weekly periodicity, we wrap
the time dimension in one-day and one-week cycles. Second, we
model price spikes and their inter-arrival times as being condi-
tionally independent given current and historical prices. We train
the two components using historical spot price traces published by
Amazon (details later in Section 5.3), and then combine the com-
ponents to create a sample path. We omit further details because
market price modeling is not the focus of this paper.

Although our full model captures periodicity, in this paper we
instead use a simpler, non-periodic price model in our experiments
for better interpretability of results. The reason is that with period-
icity, costs and optimal strategies would depend also on the specific
time when we start to run the program, making it harder for experi-
ments to cover all cases and for readers to understand the impact of
other factors. Our technical report [7] contains additional experi-
ments showing how Cümülön is able to use the full periodic model
to guide its decisions.

Given the market price model, current market price p0, and bid
price p̂, we can repeatedly simulate the process to obtain multi-
ple market price traces, stopping each one as soon as it exceeds p̂.
From these traces, we readily obtain the distribution of Thit. For ex-
ample, the top part of Figure 6 (ignore the bottom for now) shows
the distribution of Thit given p0 = $0.02 and p̂ = $0.2, computed
from our (non-periodic) model. We plot both PDF and CDF. From
the figure, we see that the distribution roughly resembles the Lévy
distribution, which characterizes the hitting time of a random walk.
The PDF peaks shortly after the start, but has a long tail. If we are
“lucky,” we get to finish the program with a full-strength cluster
(i.e., with both primary and transient nodes) without being hit. For
example, say that in this case full-strength execution take 2 hours.
We can then infer from the CDF in the figure that we get “lucky”
with probability 1− P (Thit ≤ 2h) = 0.32.

4.2 Pricing Scheme
A pricing scheme computes the monetary cost of running a cluster
given the fixed price pprim of primary nodes and the time-varying
market price p(t) of transient nodes. Unless otherwise noted, we
assume the following pricing scheme. Given nprim primary nodes
and ntran transient nodes, and the lengths of the three execution
phases (Thit, Trec, and Trap), the total cost is

C(nprim, ntran, Thit, Trec, Trap)

= nprimpprim(Thit + Trec + Trap) + ntran

∫ Thit

0
p(t) dt.

(1)

Basically, the primary nodes are charged at the constant rate of pprim

throughout the entire execution, while the transient nodes, working
only during the pre-hit phase, are charged at the time-varying mar-
ket price. For simplicity, we omit the cost of data ingress/egress
at the beginning/end of the execution (e.g., from/to Amazon S3),
because it is independent of our optimization decisions.

As hinted earlier (Footnote 1), Amazon EC2 actually uses a dif-
ferent pricing scheme. It rounds usage time to full hours, and for
spot instances, it does not charge for the last partial hour of us-
age if they are reclaimed. This policy is Amazon-specific and can
lead to some rather interesting strategies, e.g., bidding low and in-
tentionally holding transient nodes after completing work in hope
that they will be reclaimed, making the last hour free. To make
our results less specific to Amazon and easier to interpret, we con-
sider fractional hours in computing costs by default in this paper
(as Microsoft Azure and Google Cloud do). Cümülön can support
the Amazon scheme (or any other alternative) if needed. In fact, in
Section 5.4, we will investigate how optimal strategies change as
we switch to the Amazon scheme.

4.3 Job Time Estimation
Our goal here is to derive a function for estimating the execution
time for a job. We build on the Cumulon job time estimator (for de-
tails see [5]). Briefly, Cumulon estimates job execution time from
the execution time of its constituent tasks. The task execution time
is broken down into two components: computation and I/O. The
computation time is obtained from models for individual operators
trained using micro-benchmarks. The I/O time model is trained
as a function of the total amount of I/O and the cluster size, with
the assumption that the sources and destinations of I/O requests are
independently and uniformly distributed across the cluster. While
a strong assumption, it worked quite well for linear algebra work-
loads on a cluster where all nodes participate in the distributed store
and are expected to be available throughout the execution.

Cümülön uses the same computation time models as Cumulon,
but it must extend the I/O time model in two situations where the
uniformity assumption is clearly violated. 1) Egress from primary:
Suppose a matrix A initially resides only on the primary store, and
it is the first time that A is read by a job running on both primary
and transient nodes. Here, all read requests target the primary store,
and its read bandwidth may be the limiting factor. 2) Ingress to pri-
mary: Suppose a matrix A was produced by primary and transient
nodes, and a sync job needs to ensure that the primary store has a
complete version of A. Here, all write requests target the primary
store, and its write bandwidth may become the main constraint.

To account for these I/O patterns, Cümülön extends the I/O time
model for the two cases above with two additional terms: both have
the form of total unbalanced I/O amount / primary store band-
width; one is for data egress (reads) while the other is for data
ingress (writes). Cümülön adds a weighted sum of these two terms
to the job time predicted by Cumulon; we train the weights and
measure the per-node bandwidths for each machine type and for
each physical operator using micro-benchmarks. Except for the
two I/O patterns above, Cümülön uses the same I/O time estimate
as Cumulon, because in those cases the program runs either on the
primary nodes alone, or on both primary and transient nodes with
uniformly distributed workload and data.

For a job with physical plan template q running on nprim primary
nodes and ntran transient nodes, let T(nprim, ntran, q) denote the esti-
mated completion time of the optimal job plan in the given cluster
(recall the optimization in Section 2). The extended I/O time model
is invoked 1) if ntran > 0 and the job reads a matrix residing entirely
on the primary store, or 2) if the job is a sync. The context is always
clear when the Cümülön optimizer performs this estimation.

4.4 Sync and Recovery Time Estimation
While Section 4.3 has laid the foundation for estimating job time,
for a sync or recovery job, we still have to know, respectively, the
fraction of data needed to be preserved or the fraction of the work
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needed to be redone. Recall from Sections 3.2 and 3.3 that at run
time, Cümülön uses tile-level persistency and lineage information
to determine precisely what data to preserve and what work to redo,
but we do not have all information at optimization time. To en-
able estimation, Cümülön makes strong independence and unifor-
mity assumptions. While these assumptions certainly do not hold
in general, they work well for Cümülön because its focus on linear
algebra workloads, which are much more predictable than arbitrary,
black-box programs. We now discuss the two estimation problems.
Forward Propagation of Persistency We say that a job is φ-
completed if it has run for a fraction φ of its total expected com-
pletion time. We assume that if a job producing matrix A is φ-
completed, it will have produced the same fraction (φ) of A’s tiles.

Let ρAj,φ, the persistency of A, denote the estimated fraction of
A in the primary store at the time when job j is φ-completed, as-
suming that the cluster has been running at full strength since the
beginning of A’s production. Let γ =

nprim
nprim+ntran

. Suppose A is
produced by job j0; we have ρAj0,φ = φγ, because each tile of A
has a probability γ of being produced on the primary store.

We now estimate how the persistency of A changes as execution
progresses in a full-strength cluster. Recall from Section 3.1 that
γA
j denotes the read factor of A in job j, which can be obtained

at optimization time by analyzing j’s physical plan template. We
calculate ρAj,φ from ρAj−1,1 as follows. Because Cümülön caches
reads in its home store (Section 3.1), a read of A by a primary node
can potentially increase the persistency of A. For a tile to be absent
from the primary store when job j is φ-completed, the tile must be
absent before j (which happens with probability 1 − ρAj−1,1), and
none of the φγA

j reads comes from a primary node (each of which
happens with probability 1 − γ). Therefore, ρAj,φ = 1 − (1 −
ρAj−1,1)(1− γ)φγ

A
j .

We estimate the time to sync a set A of matrices after job j as

T̃A,j
sync = T

(
nprim, ntran, sync

(∑
A∈A

(1− ρAj,1) · size(A)
))
, (2)

where T(nprim, ntran, sync(v)) estimates the time it takes for a sync
job to persist v amount of tiles from the transient store to the pri-
mary store, using the I/O time model of Section 4.3. Of course, if
we sync A after job j, the persistency of A becomes 1 if the sync
job completes, or ρAj,1 + (1−ρAj,1)φ if the sync job is φ-completed.
Backward Propagation of Deficiency Suppose the cluster is hit
when job jhit is φ-completed. Recall from Section 3.3 that the
amount of recovery work depends on the number of deficient tiles
in each matrix. Thus, our goal is to estimate, for each matrix A pro-
duced by jobs up to jhit, the fraction of A’s tiles that are deficient.
We call this quantity the deficiency of A, denoted by χA.

To this end, we introduce the coverage function, derived from the
lineage function in Section 3.3. Suppose the job producing matrix
B uses matrix A as input. Let λA

B(f) return the estimated fraction
of A required to compute the given fraction f of B. Given the
job’s physical plan template, we learn λA

B(·) by simply sampling
the results of the lineage function ΛA

B(B) with different subsets B
of B’s tiles. No execution of the job is needed.

As an example, Figure 5 plots the learned coverage function
λA
C(·) for a matrix multiply job C = A×B. For comparison, we

also plot test data points obtained from actual runs, by introducing
hits at random times during the job, and counting the fraction of
missing output tiles and the fraction of A tiles required for com-
puting them. We see that the coverage function here is nonlinear:
we need 80% of A tiles when 10% of the output tiles are missing,
and almost all of A when 30% of the output tiles are missing.

Calculation of deficiencies follows a procedure similar to that of
determining the set of deficient tiles in Section 3.3. We start with
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Figure 5: Coverage function λAC(f) for a matrix multiply job C = A×
B, where A and B are square matrices with 225 tiles each.

job jhit and work backwards. Consider A produced by job j. If
A is part of the final output or needed by any job following jhit,
χA = 1 − ρAjhit,φ. Otherwise, let B denote the set of matrices
produced by any job among j + 1, j + 2, . . . , jhit that reads A. For
each B ∈ B, the fraction of A tiles that is needed in producing
a χB fraction of B tiles is λA

B(χB). Assuming independence, we
have χA =

(
1−

∏
B∈B(1− λA

B(χB))
)
(1− ρAjhit,φ).

With deficiencies calculated, we can now estimate the execution
time of the recovery phase. We need to run a partial version of job
j (1 ≤ j ≤ jhit) in the recovery phase if this job produces some
matrix with non-zero deficiency. Let Oj denote the set of matrices
produced by job j. Assuming independence and that recovering a
given amount of deficiency requires the same fraction of the total
work, we estimate the fraction of work in job j needed in the recov-
ery phase to be 1−

∏
A∈Oi

(1− χA). Therefore, we can estimate
the total execution time of the recovery phase as

T̃rec =
∑

1≤j≤jhit

T(nprim, 0, qj) ·
(
1−

∏
A∈Oj

(1− χA)
)
, (3)

where T(nprim, 0, qj) estimates the time it takes to run job j on the
primary nodes only.

4.5 Putting It Together: Cost Estimation
All components are now in place for us to describe Cümülön’s cost
estimation procedure. Overall, our strategy is to first generate a
“time table” for execution on a full-strength cluster assuming no
hit. Then, we simulate multiple market price traces. For each trace,
we determine the hit time, place it in the context of the full-strength
execution time table, estimate the lengths of the recovery and wrap-
up phases, and then the total cost. The costs obtained from the col-
lection of simulated traces give us a distribution, allowing Cümülön
to optimize expectation while bounding variance.

More precisely, we are given a baseline plan Q = {q1, . . . , qm}
and nprim primary nodes, a bidding strategy (p̂, ntran) and the current
market price p0 of transient nodes, and a syncing strategy S.
1. We generate a full-strength execution time table t1 ≤ t′1 <
t2 ≤ t′2 < · · · < tm, where tj is the estimated time when job j
completes, and t′j is the time when the optional sync associated
with job j completes (tj = t′j if S(j) = ∅). For convenience,
let t′0 = 0 and t′m = tm. We use the following recurrence:{

tj = t′j−1 + T(nprim, ntran, qj);

t′j = tj + T̃S(j),jsync if S(j) 6= ∅, or tj otherwise.

2. Given p0, we simulate a market price trace p(t) up to t = tm
using the market price model. If ∀t ∈ [0, tm) : p(t) ≤ p̂, we
have “lucky” run without a hit, so Thit = tm and Trec = Trap = 0.
Otherwise, we estimate Thit, Trec, and Trap as follows:
• Thit = min{t ∈ [0, tm) | p(t) > p̂}.
• jhit = max{j ∈ [1, tm] | t′j < Thit}.
• We estimate Trec using Eq. (3). There are two cases: 1) If
Thit < tjhit , the cluster is in the middle of executing job jhit

when hit. We set φ for job jhit to (Thit − t′jhit−1)/(tjhit −
t′jhit−1). 2) Otherwise, job jhit is completed but the cluster is
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in the middle of a sync job when hit. Thus, φ for job jhit is 1,
but φ for the following sync job is (Thit − tjhit)/(t′jhit − tjhit).

• We estimate Trap as
∑
j∈[jhit+1,m] T(nprim, 0, qj).

Finally, we obtain the cost from Eq. (1) for the given price trace,
using the estimated Thit, Trec, Trap, and

∫ Thit
0

p(t) dt calculated
from the price trace.

To account for uncertainty in the market price, we repeat Step 2
above multiple times to obtain a cost distribution. From this distri-
bution, we can calculate the expected cost as well as the probability
that the cost exceeds a certain threshold.

Currently, Cümülön does not account for uncertainty in actual
job execution times or data persistency/deficiency. For the lin-
ear algebra workloads targeted by Cümülön, we found such un-
certainty to be manageable and dwarfed by the uncertainty in the
market price. If available, more sophisticated models providing
uncertainty measures can be incorporated into the procedure above
straightforwardly by sampling (for example, Step 1 can be repeated
to obtain samples of execution time tables). Doing so will increase
the complexity of cost estimation by a multiplicative factor.

4.6 Putting It Together: Optimization
To choose a bidding strategy, Cümülön basically performs a grid
search through all candidate pairs of p̂ (bid price) and ntran (num-
ber of transient nodes) values. The bid price starts at p0 and is
incremented by one cent at a time; the number of transient nodes
starts from 0 and is incremented by one at time. We now discuss
how to upper-bound these two parameters. 1) Under the default
pricing scheme in this paper, once p̂ is high enough, additional
increase in it will have very little impact—the distribution of Thit

will not improve much further, and the average market price paid
for the transient nodes over time will not increase much further.
Therefore, in our setting, after reaching p̂ = 2pprim (twice the fixed
price for the primary nodes), we stop increasing p̂ if the resultant
change in expected cost is less than 0.01%. 2) A larger number of
transient nodes leads to both diminishing returns of parallelization
and a higher chance for the total cost to overrun the user-specified
threshold. In this paper, we set the upper bound of ntran to 150,
enough to cover the optimal plans for the workloads we studied.

An obvious improvement to the search algorithm above would
be to first search a coarser grid, and then search the more promis-
ing regions at the finer granularity. However, we found the simple
algorithm to suffice for our workloads because the ranges of p̂ and
ntran are limited in practice.

Given a physical plan template Q of m jobs and the cluster con-
figuration (nprim, ntran), Cümülön uses the same procedure as Cumu-
lon to choose the optimal number of tasks (and hence the amount
of work per task) for each job. Next, Cümülön chooses the syncing
strategy S. The search space of syncing strategy can be large as it is
exponential in m. Another challenge is that adding a sync job does
not always lower the expected total cost; nonetheless, even if a sync
increases the expected cost, it may be useful as it reduces variance
and decreases the tail probability of cost overrun. Cümülön re-
sorts to a two-phase greedy strategy. In the first phase, we always
pick the sync job (among the remaining options) that decreases the
expected cost the most; we repeat this step until no more sync jobs
can be added to S. If the risk tolerance constraint is met, we simply
return S. Otherwise, we proceed to the second phase: we always
pick the sync job that gives the biggest increase in the probability
of cost staying within the prescribed threshold, and repeat this step
until no more improvement can be made. To recap, the two phases
have goals matching the two criteria of our optimization problem:
the first phase greedily reduces the expected cost, and the second
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Figure 6: Top: Distribution of the hit time Thit, with p0 = $0.02 and
p̂ = $0.2. a) PDF. b) CDF. Bottom: Expected total cost of MM5

γ as a
function of Thit. c) Low read factor (γ = 1). d) High read factor (γ = 5).
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1689.664 36135.04 10 26.12645

24 1475.086 34447.23 15 25.78754

0.95 failure 36 1423.123 50804.59 20 25.29487

0.5 on two points, 0 otherwise 12 1372.466 31413.41 25 25.90043

42 1359.804 36758.51 30 25.26041

Job time (backup) 1234.88, 4686.408, 769.231 total 61790, 100251.13956326907 base cost 7.46624346645911530 1349.167 37705.52 35 26.03572

probility init done, n = 100001, 0.5 cdf = 33334 6 1339.305 30822.32 40 26.76192

30.45213 0.792927 18 1330.084 27840.16 45 27.52539

38 23.98553 31.09329 45 1327.624 28962.79 50 26.99054

14 21.5435 9.319185 39 1325.459 29537.95 55 27.56964

Done 21.5435 33 1324.003 29478.23 60 27.21894

15.18994 30.45213 14,38, 27 1323.254 28890.28 65 27.95549

Opt M = {14,38} Failure distribution 44 1322.9 29011.55 70 28.67321

28.31125 0 0 0 46 1322.806 29037.83 75 29.45804

28.32421 1 0 0 Done 80 29.50613

28.33717 2 0 0 975.0122 1689.664 6,12,18,24,27,30,33,36,39,42,44,45,46, 85 29.89974

28.35012 3 0 0 90 30.48056

28.36325 4 0 0 95 29.3243

28.37621 5 0 0 100 29.73845

28.38917 6 0 0 105 30.10088

28.40212 7 0 0 110 30.38832

28.41508 8 0 0 115 30.90169

28.42804 9 0 0 120 31.23349

28.441 10 0 0 125 31.65705

28.45396 11 0 0 130 32.03864

28.46708 12 0 0 135 32.37639

28.48004 13 0 0 140 32.84522

28.493 14 0 0 145 33.28198

28.50596 15 0 0 150 32.02637

28.51891 16 0 0 155 32.15573

28.53187 17 0 0 160 32.63592

28.54483 18 0 0 165 32.89178

28.55779 19 0 0 170 33.1143

28.57091 20 0 0 175 33.51844

28.58203 21 0 0 180 33.90099

28.58911 22 0 0 185 32.90066

28.5962 23 0 0 190 33.21251

28.60345 24 0 0 195 33.4953

28.61255 25 0 0 No sync 200 33.9997

28.61964 26 0 0 Sync job39 205 34.24351

28.62672 27 0 0 Sync job15 & 39 210 34.46505

28.63599 28 0 0 Hit time probability distribution 215 34.92602

28.64325 29 0 0 Hit time CDF 220 35.37575

28.65033 30 0 0 225 35.54193

28.65943 31 0 0 230 35.68565

28.66652 32 0 0 235 36.09125

28.67562 33 0 0 240 36.48612

28.68472 34 0 0 245 36.57394

28.69197 35 0 0 250 36.94077

28.70124 36 0 0 255 36.98875

28.70832 37 0 0 260 37.32799

28.71742 38 0 0 265 37.33675

28.72652 39 0 0 270 37.9785

28.73562 40 0 0 275 38.28427

28.74271 41 0 0 280 35.87636

28.75181 42 0 0 285 35.76811

28.75889 43 0 0 290 35.98816

28.76615 44 0 0 295 36.19652
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28.76615 44 0 0 295 36.19652

28.7734 45 0 0 300 36.39391

28.78065 46 0 0 305 36.94771

28.78975 47 0 0 310 37.12824

28.79684 48 0 0 315 37.29704

28.80594 49 0 0 320 37.06884

28.81302 50 0 0 325 37.20895

28.82028 51 0 0 330 37.73572

28.82938 52 0 0 335 38.26195

28.83663 53 0 0 340 38.3799

28.84573 54 0 0 345 38.48604

28.85483 55 0 0 350 38.58102

Figure 7: Top: CDF of a contrived Thit distribution, with price peaking at
two known times. Bottom: Expected total cost of MM50

1 versus Thit.

phase then greedily lowers the risk. The complexity of this greedy
algorithm is only quadratic in m.

To illustrate Cümülön’s optimization decisions, consider the fol-
lowing examples based on a synthetic program MMk

γ . This program
is simple by construction, so that we can control its characteristics
and intuitively understand the trade-offs between various optimiza-
tion decisions. Specifically, MMk

γ computes B×Ak using a chain
of k matrix multiplies, each multiplying the previous result by A.
By fixing the choice of split sizes (recall Section 2), we control the
read factor γ of the intermediate result by the next multiply. Both
B and A are 30720× 30720 in the following examples.

Example 3 (MMk
γ Syncing Strategies). In this example, we exam-

ine how Cümülön chooses different syncing strategies based on a
number of factors. First, we consider the distribution of Thit pre-
dicted by our market price model, given p0 = $0.02 and p̂ = $0.2.
As explained earlier in Section 4.1, the top part of Figure 6 shows
this distribution. Figure 6c plots the expected cost of MM5

1 con-
ditioned on Thit, for three plans that differ only in their syncing
strategies; nprim = 3 and ntran = 10. We make the following ob-
servations. 1) For every syncing strategy, its plot always starts with
the baseline cost (Thit = 0); the last drop (before the plot become
horizontal) always corresponds to a lucky run where the program
finishes without being hit. 2) Here, with a strategy of no syncing
at all, we see that until the program finishes, there is a long “win-
dow of vulnerability” during which the cost is expected to raise
steadily higher than the baseline, because a hit would take increas-
ingly longer to recover as the intermediate result becomes more
valuable over the course of execution. 3) Adding a sync job in-
creases the amount of work. Therefore, we see in Figure 6c that the
cost and time of a lucky run are both higher than those of no sync at
all. The benefit, however, is that a sync job can reduce the recovery
cost, thereby lowering the expected total cost should a hit occur af-
terwards. Overall, they also tend to “smooth” the plot. 4) Different
sync jobs bring different benefits, and the choice matters. As Fig-
ure 6c shows, syncing after the first multiply helps little with cost,
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Figure 8: Optimal plans for MM50
1 , as we vary the bidding strategy. No

risk tolerance constraint is set here. a) Intensity shows the estimated ex-
pected cost of the plan (darker is better). b) Intensity shows the probability
that the cost is within 1.05 of the baseline (lighter is better).

because recovery is cheap initially anyway. Syncing before the last
multiply (not shown here) would help the most, but the chance of
realizing this gain is small because a hit would have to happen dur-
ing the last job. Cümülön in this case chooses to place sync after
the third multiply, which balances the two considerations.

The reality is more complicated, as data caching during execu-
tion affects how much sync jobs reduce recovery costs, and how
much they cost themselves. To illustrate, consider instead MM5

5,
where we raise the read factor of the intermediate result.6 Fig-
ure 6d again compares the three syncing strategies. Here, because
of the higher read factor, even without any explicit sync, most of
the intermediate result becomes cached at the primary store dur-
ing the following job, and will not need to be recomputed during
recovery. Thanks to this caching effect, as shown in Figure 6d, the
strategy of no syncing performs well, with expected total cost gen-
erally below the baseline (except when execution just begins). In
comparison, the two strategies with explicit sync have higher ex-
pected total costs in this case, because the sync jobs have a much
denser I/O pattern that can bottleneck the primary nodes. By mod-
eling special I/O patterns (Section 4.3) as well as read factors and
persistency (Section 4.4), Cümülön is able to choose the strategy of
no syncing intelligently.

Next, we turn to the effect of future market price on syncing
strategies. Consider the longer program MM50

1 . Figure 7a shows
the distribution of Thit for a contrived market price model, which
predicts price peaks at two time points during the program execu-
tion, each happening with probability 0.5. Figure 7b compares the
strategy of no syncing with those of syncing after the 38th multiply
and of syncing after both the 15th and the 39th. Cümülön’s greedy
algorithm adds first the 39th, then the 15th, before returning the
result syncing strategy as its decision. From Figure 7b, we see that
the two chosen sync jobs are timed to occur immediately before the
two possible hit time points, which makes intuitive sense.

Example 4 (MM50
1 Plan Space). Recall RSVD-1 in Example 1 and

Figure 1. To see how different programs call for different plans, we
now consider MM50

1 for comparison.7 The baseline costs $28.31
and runs under 65 hours, using 3 machines of type c1.medium at
the fixed price of $0.145 per hour. Again, assuming p0 = $0.02,
we explore the plan space by varying the bidding strategy (p̂, ntran),
but here we do not impose a risk tolerance constraint, so Cümülön
simply looks for plans with the lowest expected cost. Figure 8a
plots the expected plan cost, while Figure 8b plots the probability
that the cost stays within 1.05 of the baseline.
6To get γ = 5, we conceptually partition each input into a 5 × 5 grid of
square submatrices, and let each task multiply a pair of square submatrices.
7To get γ = 1 in MM50

1 , we conceptually partition each input into a grid of
square submatrices, and let each task multiply a square submatrix of the in-
termediate result with the appropriate row of A’s square submatrices. This
choice of splits is in fact suboptimal, and the optimal setting is described
later when γ = 5.

Figure 8 has a very different plan space compared with Figure 1.
Instead of bidding for lots of transient nodes at a relatively low bid
price for RSVD-1, here we want to bid for fewer transient nodes
at a relatively high bid price. For example, bidding for 13 nodes
at $0.37 gives an expected cost of $24.73, with probability 0.91 of
staying within 1.05 of the baseline. Intuitively, the jobs in MM5

1 are
less scalable. Therefore, larger clusters have diminishing effects on
completion time, and this low cost-effectiveness drives up expected
cost, as evidenced in Figure 8a. Also, larger clusters incur higher
risks of cost overrun, as evidenced in Figure 8b.

4.7 Summary and Extensions
In summary, choices of bidding and syncing strategies depend on
many factors and require evaluating multiple trade-offs. The amount
of information and level of knowledge required for intelligent deci-
sions, as well as the complexity of the problem, make the automatic
optimization a necessity. As discussed at the beginning of this sec-
tion, we have made a number of assumptions in Cümülön to make
the optimization manageable. We now discuss several extensions
that overcome the limitations of these assumptions.

Delayed bidding means starting with only primary nodes and
waiting until an opportune time (e.g., off-peak hours) to bid for
transient nodes. This strategy is especially useful given a periodic
market price model (Section 4.1). Flexible primary size allows the
optimizer to explore plans with different number of primary nodes
without restricting it to be the same as the baseline plan. For details
and experimental evaluation of these extensions, see [7].

Sequential bidding allows Cümülön to bid for a new set of tran-
sient nodes after recovering from a hit. This strategy can be achieved
simply by invoking the optimizer again when needed, with the re-
maining workload. However, in making that decision, our opti-
mizer always assumes that it is placing the last bid. Further research
is needed to assess how much this assumption negatively impacts
the optimality of sequential bidding in practice.

Going beyond these extensions, we would like to support a col-
lection of transient nodes of different machine types, acquired at
different times, and with different bid prices. We would also like to
act dynamically in response to the market, and exercise the option
of releasing transient nodes voluntarily. While Cümülön can al-
ready handle a heterogeneous cluster in storage and execution, cost
estimation and optimization techniques for more general settings
are still under development and many open problems remain.

5 Experiments
We conduct our experiments on Amazon EC2. As mentioned in
Section 3.1, we implement the dual-store design using two sepa-
rate HDFS instances, with default replication factor set to 3. For
brevity, let an (nprim, ntran) cluster denotes a cluster with nprim pri-
mary nodes and ntran transient nodes. Most workloads used in our
experiments have been introduced earlier: RSVD-1 (Example 1),
GNMF (Example 2, by default using k = 100 and a 7510k×640k
word-doc matrix V derived from a 2.5GB wiki text corpus), and
MMk

γ
k
γ
k
γ (Section 4.6). In specifying matrix sizes, “k” denotes 1024.

5.1 Storage Design and I/O Policy
We compare our dual-store design and I/O policy (Section 3.1) with
three other alternatives. The baseline of comparison is write pri-
mary + no read cache, which is the third strawman solution de-
scribed in Section 3.1. The two other alternatives can be seen as
Cümülön’s dual-store design with different features removed: write
primary + read cache caches reads from the other store, but always
writes to the primary; write home + no read cache always writes to
the home store, but does not cache reads from the other store.
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Figure 9 shows the execution times under the four I/O policies
for three workloads with varying characteristics: MM1

5, which mul-
tiplies two 30k× 30k input matrices; ADD, which adds two 40k×
40k input matrices; and one iteration of GNMF with (n,m, k) =
(4780k, 250k, 100). We run all workloads on a (3, 20) c1.medium
cluster, with two slots per node (with one exception8). The tran-
sient store is initially empty in all settings. The write primary +
no read cache baseline is always the worst performer, so we use its
execution time to normalize others for each workload.

From Figure 9, we see that Cümülön’s I/O policy performs con-
sistently the best; it makes effective use of caching to minimize
traffic between the primary and transient nodes. Comparing the two
alternatives between Cümülön and the baseline, we see that write
home + no read cache performs much better than write primary +
read cache. From a performance perspective, avoiding writes to the
primary store is more important than avoiding reads, because writes
are more expensive (due to replication) and more likely to cause
bottlenecks. Furthermore, writing to the home store effectively
distributes intermediate result data evenly across the entire cluster,
making reading of such data more balanced and likely serviceable
by a large transient store. This observation justifies Cümülön’s de-
sign decision of not aggressively pushing writes across stores, but
instead relying on caching and judicious use of sync jobs.

5.2 Time Estimation
We now turn to the validation of Cümülön’s time estimation meth-
ods. In this experiment, we run MM5

5 on a (3, 20) c1.medium

cluster; there is a sync following job 3. We artificially generate a
hit at the one of 11 time points during execution.9 Then, we let the
recovery and wrap-up phases take their courses and measure the ac-
tual total execution time including all phases. The chosen hit times
test a wide range of scenarios, e.g., hitting jobs at different points
of progress, hitting in the middle of a sync, hitting when recovery
involves a lot of (or little) work, etc.

In Figure 10, we compare the measured execution times with the
estimates produced by Cümülön, across different hit times. As hit
time is pushed later, the total execution time generally decreases,
because we get to finish more work with a full-strength cluster,
leaving less work to the wrap-up phase (which executes only on
the primary nodes). As we can see, Cümülön’s execution time es-
timates are consistently accurate.

5.3 Optimization
For experiments in this section, the plans use c1.medium clusters,
with two slots per node. The primary nodes have a fixed price
of $0.145 per hour, and we assume that the current market price
of transient nodes is $0.02 per hour, which is the most frequently
price in our historical price data. For cost estimation (Section 4.5),
we simulate 10,000 market price traces using our price model (Sec-
tion 4.1) trained from historical Amazon spot price data in the first
six months of 2014 for c1.medium in zone us-east-1a.

Effect of Number of Iterations in RSVD-1 In this experiment,
we investigate how longer iterative workloads affect Cümülön’s op-
timization decisions. We consider RSVD-1 with l = 2k, m = n =
100k, and vary the number of multiplies from 1 to 15 (k up to 7).

8For MM1
5, with two slots per primary node, write primary + no read cache

failed to run because of congested I/O requests. Therefore, in this case we
had to set zero slot per primary node, essentially dedicating the primary
nodes as storage nodes.
9Note that artificial hit injection gives us control over Thit, allowing us to
target different scenarios easily. If we run against the real market prices,
getting the same level of test coverage would be far more expensive. Since
our goal here is to validate time estimation, price is irrelevant.

# of jobs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p̂ 0.30 0.21 0.06 0.18 0.16 0.13 0.13 0.10 0.11 0.10 0.09 0.09 0.10 0.10 0.09

ntran 39 58 72 81 97 81 81 90 80 84 88 90 75 75 81

sync jobs ∅ ∅ ∅ ∅ ∅ 1 1 2 2 2 3 3 3 3,8 4,9

Table 1: Bidding and syncing strategies chosen by the optimal plans of
RSVD-1 for varying number of jobs in Figure 11.

Figure 11 shows, for each number of jobs, the cost of the baseline
plan Pbase, which uses 3 primary nodes, as well as the expectation
and distribution of the cost of the optimal plan Popt using transient
nodes—subject to the risk tolerance constraint of δ = 0.05 and
σ = 0.9 (i.e., with probability no less than 0.9 the cost is no more
than 1.05 times the baseline). The cost distribution is shown as ver-
tical stripe of PDF in log scale where darker shades indicate higher
densities. Additional details about Popt are shown in Table 1.

An interesting observation is that the cost distribution of each
Popt appears roughly bimodal. The two density concentrations cor-
respond to two possibilities: either we experience a hit or not dur-
ing execution. If we are lucky to finish the workflow without a
hit, we end up with a much lower cost than the baseline, because
most work is done with cheaper transient nodes. However, if we
are unlucky, we may incur extra recovery cost. Depending on how
much we get done in the transient nodes, the overall cost might be
higher or lower than the baseline. Nonetheless, because Cümülön
observes the risk tolerance constraint in finding Popt, it is very un-
likely that we end up paying much higher than the baseline.

As the number of jobs increases, the baseline cost increases pro-
portionally as expected. For the cost distribution of Popt, we see
density gradually shifting from the lucky (lower-cost) to the un-
lucky (higher-cost) region, because we are more likely to encounter
a hit before finish. Furthermore, from Table 1, we see that as the
workflow becomes longer, we tend to bid for more transient nodes
at lower prices, up to a point when the bidding strategy stabilizes;
meanwhile, the syncing strategy gradually injects more sync jobs
and at later times, which helps limit recovery cost.

It is worth noting the expected amount of cost saving (i.e., the
gap between dotted and solid lines in Figure 11) converges to around
$1.50 as the number of jobs reaches 5. However, keep in mind that
Popt is limited by one bid only. There is a possibility of achieving
more savings if Cümülön is allowed to bid again after a hit and
when the market price comes down (Section 4.7 discusses such ex-
tensions). We still need further study of whether the one-bid opti-
mization assumption is appropriate in this setting, but interestingly,
in this particular case, the strategy obtained for 6 jobs (when cost
saving converges) turns out to be not so different from those for
more iterations, so the assumption would work well in this case.
Effect of Bid Price on GNMF Using GNMF, we now examine
how the choice of bid price influences cost. Recall from Example 2
that each GNMF iteration is compiled into 6 Cümülön jobs. In this
experiment, we consider two GNMF iterations in a (3, 10) cluster,
with three different bid prices: $0.05, $0.12, and $0.25. Cümülön
picks the best plan given the bidding strategies.10 Figure 12 plots,
for each of the three bid prices, the estimated cost distribution and
the average cost over different hit times. The density reflects both
the probability of the hit occurring at a given time and the proba-
bility of incurring certain cost conditioned on the hit time.

Note that for all three cases in Figure 12, the average cost curve
starts with the baseline cost and has four bumps. It turns out that the
first and third drops correspond to sync jobs Cümülön places11 after
jobs 3 and 9 (recall Figure 3) to persist H′ for the next iteration and

10If we let Cümülön pick the bid price but still limiting to 10 transient nodes,
the optimal bid price will be $0.19, which achieves an expected cost of
$4.37, compared with the baseline cost of $4.75.

11The reason why Cümülön makes these choices is quite subtle; for more
discussion, see the technical report [7].
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for output, respectively. The second drop corresponds to the earlier
waves of job 7, which effectively persists much of W′ because of
the high read factor. The last drop corresponds to the lucky case
where no hit occurs during execution.

If we bid low at $0.05, the hit will likely occur soon and we end
up with a cost slightly higher than the baseline; with low probabil-
ity, the transient nodes could survive longer and the cost would go
down dramatically. If we bid higher, at $0.15 or $0.25, we are more
likely to hold the transient nodes longer, hence the shift of density
to later hit times. In particular, the probability of getting lucky (no
hit during execution) becomes higher, as evidenced by the high-
density regions around the end of average cost curve. On the other
hand, with higher bid prices, the average market price we expect
to pay over time also increases. As a result, the average cost curve
no longer drops as dramatically as the case of bidding at $0.05. In
other words, since the spot instances are in expectation more ex-
pensive when we bid higher, they might not necessarily reduce cost
even if we can keep them for a longer duration.

Note on Optimization Time Even though Cümülön derives the
cost distribution of each possible plan by repeatedly going through
simulated price traces, the total optimization time is reasonable for
workloads whose sizes warrant the use of clouds for parallel execu-
tion. For example, Figures 1, 8, and 13 all require full optimization
including choices of bidding and syncing strategies; in every case,
our optimizer completes under 5 minutes on a standard desktop
with 4-core 3.4GHz Intel i7-2600 CPU and 8GB of memory.

5.4 Amazon’s Pricing Scheme
As discussed in Section 4.2, Amazon EC2 uses a pricing scheme
different from what we assume by default in this paper. Amazon’s

scheme rounds usage time to full hours; for spot instances, it does
not charge for the last partial hour of usage if they are hit. Un-
der this pricing scheme, we let Cümülön explore the plan space
for the same RSVD-1 workload considered in Figure 1a under the
same settings. The result is shown in Figure 13. The feasible plan
space now has a jagged boundary because of usage time rounding:
the spikes correspond to cases when an increase in cluster size al-
lows the workflow to complete just before the last hour ends. Also,
thanks to the free last partial hour when hit, the optimal plan in this
case—which bids high ($0.15) and big (for 60 transient nodes) and
syncs two jobs—can achieve a lower expected cost ($3.25) than
with the default pricing scheme ($3.78).

Since Cümülön’s optimal plan in this case is far from intuitive,
it is interesting and instructive to compare this plan with what a
“tricky” user might do. Intuitively: 1) Let us bid low—exactly
at the market price—so either we get some work done at a very
low cost, or a hit happens and the last partial hour is free anyway.
2) We will bid again after a hit (Cümülön’s plan only bids once),
as soon as the market price is lower than the fixed price of the pri-
mary nodes. 3) We will play a (not-so-nice) trick: even after the
workflow has completed, we will keep the transient nodes until the
end of the current hour, because if a hit happens we will get that
hour for free (even if a hit does not happen, we will not pay more
because of rounding). 4) Because of the higher hit probability, we
sync after every job. 5) We use the same cluster size as Cümülön,
i.e., we have 3 primary nodes and always bid for 60 transient nodes.

We compare the cost distributions of Cümülön’s plan and this
“tricky” strategy (thereafter called tricky) in Figure 14. Overall,
tricky has an expected cost of $6.86, much higher than Cümülön’s
$3.25, and in fact higher than the baseline of $5.22. Furthermore,
tricky exhibits larger variance. Thanks to the first three of its fea-
tures above, tricky does have a higher probability than Cümülön of
achieving very low costs. On the other hand, tricky incurs consider-
able costs in syncing after every job, and in getting data out of the
primary store after acquiring new transient nodes, both of which
bottleneck the primary nodes. The advantages of bidding low are
offset by repeated I/O overhead, and there is only small chance of
getting the last hour for free holding the cluster after completion.
This comparison highlights the difficulty in manually devising bid-
ding strategies and illustrates the effectiveness of Cümülön opti-
mization despite its various assumptions.

6 Related Work
Previous work dealt with the unreliability of transient nodes in two
ways. The first is to use a storage system capable of handling mas-
sive correlated node failures. For example, Glacier [4] uses high
degrees of redundancy to achieve reliability; Spot Cloud MapRe-
duce [11] depends on reliable external storage services rather than
local storage in the cluster. Both methods have negative perfor-
mance implications. Like Cümülön, a number of systems use more
reliable primary nodes for storage. Chohan et al. [3] deploys a
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HDFS only on the primary nodes, and uses transient nodes for com-
putation only; Amazon’s Elastic MapReduce clusters can also be
configured in this fashion. This method has to limit the number of
transient nodes, because the primary nodes can easily become an
I/O bottleneck when outnumbered. Going a step further, Qubole’s
auto-scaling cluster deploys the storage system on all nodes, but
with a customized data placement policy to ensure that at least one
replica is stored among primary nodes; Rabbit [1] is a multi-layer
storage system that can be configured so that one replica goes to
the primary nodes. However, as we have discussed (Section 3.1)
and verified (Section 5.1), writing all data to the primary nodes still
causes unnecessary performance degradation.

The second way of dealing with unreliable transient nodes is to
checkpoint them. A lot of previous works [16, 17, 19, 2, 15, 8, 20]
studied checkpointing and bidding strategies under various settings
in order to satisfy service level agreements, meet deadlines, or min-
imize cost. Others [12, 14] considered how to maximize the profit
of a service broker who rent transient nodes and run workloads for
users. All work above relied on external storage service for check-
pointing. Their execution time models were rather simplistic—
jobs have given, fixed execution times and are amenable to perfect
scaling (if parallelization is considered). Moreover, they targeted
general workloads and were therefore limited in their options—
essentially, they must checkpoint the entire execution state and re-
cover from the last completed checkpoint. With additional knowl-
edge about the workload and lineage tracking, systems such as
Spark [21] are able to infer which units of computation to rerun
in order to recover from failures. As discussed in Section 3, thanks
to declarative program specification, Cümülön has more intelligent
checkpointing and recovery: its syncing strategy is selective, driven
by a cost/benefit analysis informed by the market price model; its
recovery is more flexible and precise in avoiding unnecessary com-
putation, and does not require tracking lineage explicitly.

While Cümülön aims at helping users of a public cloud, oth-
ers [23, 18] have approached the issue of spot instances from the
cloud provider’s perspective, seeking to maximize its profit by di-
viding its resource into different types (e.g., on-demand vs. spot)
and pricing them optimally. Our work is complementary; cloud
providers can gain insights from what-if analysis of pricing schemes
enabled by our framework.

7 Conclusion
In this paper we have presented Cümülön, a system aimed at help-
ing users develop and deploy matrix-based data analysis programs
in a public cloud, featuring end-to-end support for spot instances
that users bid for and pay for at fluctuating market prices. Cümülön’s
elastic computation and storage engine for matrices makes effec-
tive use of highly unreliable spot instances. With automatic cost-
based, risk-aware optimization of execution, deployment, bidding,
and syncing strategies, Cümülön tackles the challenge of how to
achieve lower expected cost using cheap spot instances, while si-
multaneously bounding the risk due to uncertainty in market prices.

While Cümülön focuses on matrix computation, many of our
techniques carry over to other data-intensive workloads expressed
in high-level, declarative languages. For black-box workloads, tech-
niques such as the dual-storage design and the overall risk-aware
optimization algorithm still apply, but cost estimation becomes con-
siderably more difficult and the errors and uncertainty therein must
be accounted for together with the uncertainty in market prices.
Generalization of the Cümülön approach will be an interesting di-
rection to further explore.
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