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ABSTRACT

Squall is a scalable online query engine that runs complex

analytics in a cluster using skew-resilient, adaptive operators.

Squall builds on state-of-the-art partitioning schemes and
local algorithms, including some of our own. This paper
presents the overview of Squall, including some novel join
operators. The paper also presents lessons learned over the
five years of working on this system, and outlines the plan
for the proposed system demonstration.

1. INTRODUCTION

Online processing implies that results are incrementally
built as the input arrives. Thus, each input tuple produces
output and updates the system state necessary for process-
ing subsequent inputs. Online processing is ubiquitous for
many applications such as algorithmic trading, clickstream
analysis and business intelligence (e.g., in order to reach a
potential customer during the active session).

Existing open-source online systems (e.g., Twitter’s Storm
[4], Spark Streaming [10]) focus on distribution primitives
(e.g., communication patterns, fault tolerance) and low-level
performance optimizations. However, these systems provide
only vanilla database operators, such as hash-based equi-
joins (and general UDFs), which do not perform well in the
case of skew (see §3.1). On the other hand, some join par-
titioning schemes (e.g., [6]) are skew-resilient, but they are
designed for offline processing, and thus, they are unable to
adapt to changing data statistics (see §4).

In contrast, Squall is a system that puts together state-
of-the-art partitioning schemes, local query operators, and
techniques for scalable online query processing. We also
build novel 2-way [3, 8] and multi-way schemes (Hybrid-
Hypercube, see §3.1). Such a system allows us to leverage
the effect of various design choices on the performance, and
to seamlessly build efficient novel operators (see §3). Squall
operators achieve skew-resilience, adaptivity and scalability.

Squall is an open-source project® that has been developed
for the last five years (mainly by the authors at EPFL, but
also with external contributions). It has been available for
several years, and it has attracted a community of users.

Thttps://github.com/epfldata/squall /
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2. SYSTEM ARCHITECTURE

Squall is an online distributed query engine which achieves
low latency and high throughput. It supports incremental
view maintenance and window (stream) semantics. Squall
implements typical stream primitives, such as tumbling and
sliding windows, by adding the window expiration logic on
top of the full-history engine. Squall uses Storm [4] as a
distribution and parallelization platform.

The overall system architecture is shown in Figure 1.
User interface. Squall offers multiple interfaces: declara-
tive (SQL), functional (a modern Scala collections API), in-
teractive (Scala) and imperative (Java). Similarly to Hive
which provides an SQL interface on top of Hadoop, Squall’s
declarative interface offers running SQL over Storm. Squall’s
functional interface provides for compositions of data trans-
formations over streams. Squall also provides interactive
interface built on top of the Scala REPL that allows a user
to interactively construct query plans. For each of these
three interfaces, Squall translates the user input to a logical
query plan (see Figure 1). Finally, the imperative interface
gives the user full control over the physical query plan.
Logical and Physical query plans. A logical Squall qu-
ery plan is a DAG of relational algebra operators. A physical
Squall query plan consists of a DAG of physical operators
and their requested level of parallelism. An operator is spec-
ified by the partitioning scheme and local algorithm. To
minimize the number of network hops, and thus maximize
the performance, we co-locate the connected operators that
use the same partitioning scheme. We denote a pipeline of
co-located operators as a component. Figure 1 shows compo-
nents as rounded rectangles in the example physical plan.
Operators. By combining different partitioning schemes
and local join algorithms, Squall offers many join operators.
We build novel join operators: adaptive 1-Bucket [3] and
Equi-weight-histogram (EWH) join [8]. This paper also
presents some novel multi-way joins (a multi-way join runs
within a component). Beside joins, Squall offers database
operators such as selections, projections and aggregations.
Query optimizer. Squall’s optimizer generates a physi-
cal plan from the logical plan. The optimizer maximizes
throughput and minimizes both latency and the number of
machines used. It starts from the data sources and adds
the operators one after another, pushing selections and pro-
jections as close as possible to the data sources. Where
possible, the optimizer co-locates operators to components
to minimize network transfers. Further, it assigns the right
parallelism to each component, such that a component is nei-
ther overloaded nor mostly idle. We refer to this as universal
producer-consumer balance. The optimizer uses heuristics
to find an optimal join order and component parallelism.
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Figure 1: Squall architecture. An example query plan has selections (o), projections (), joins (X) and aggregations (Agg).

Online processing aspects. An online system must adapt
to changing data statistics. Squall collects statistics and
adjusts the operator’s partitioning scheme at run-time (see
§4). Furthermore, it offers multiple partitioning schemes
that achieve different levels of adaptivity for different skew
types (e.g., data, temporal and join selectivity skew).
Distribution platform. Squall uses Storm [4] as a distri-
bution platform, but our ideas are more widely applicable.
Storm executes a topology, which is a graph of spouts (data
sources) and bolts (a bolt consumes streams and produces
new ones). An edge in the topology graph is called stream
grouping, and it represents partitioning of incoming tuples
from a stream among the machines. Squall maps a physical
plan to a Storm topology, components to spouts and bolts,
and builds partitioning schemes using stream grouping.

3. NOVEL JOIN OPERATORS

We devise new join operators by wiring up state-of-the-
art partitioning schemes and local join algorithms. So far,
we built 2-way joins [3, 8]. This paper introduces multi-way
joins in Squall. These joins can outperform 2-way joins as
they avoid shuffling intermediate data [1, 11]. We also de-
vise a novel multi-way join partitioning scheme that further
enhances performance. In addition, Squall has efficient local
online multi-way joins.

3.1 Partitioning schemes

Next, we describe partitioning schemes for multi-way joins,
their skew resilience and supported join conditions. For de-
tailed analysis, please consult our technical report [9].
Hash-Hypercube scheme [1] models the result space as
a hypercube, where each axis corresponds to a join key do-
main. Each machine covers a unique portion of the hy-
percube space. Figure 2a illustrates this scheme for query
R(z,y) X S(y,z) X T(z,t). The scheme assigns an input tu-
ple to machines by hashing on the tuple’s join keys and repli-
cating on join keys from the other relations. For example,
each R tuple is replicated to a “row” of machines with co-
ordinates (hash(y),*). Correctness is preserved as each po-
tential output tuple tr(z,y) X ts(y, z) X tr(z,t) is assigned
to a single machine with coordinates (hash(y), hash(z)). In
Figure 2a, given 64 machines and that each relation is of
size H and assuming uniform distribution, the dimensions
y X z = 8 X 8 minimize the load. Thus, the load of each
machine L is |R|/8+15|/(8-8)+|T|/8 ~ 0.26H. The Hash-
Hypercube scheme supports skew-free multi-way equi-joins.
Random-Hypercube scheme [11]. This scheme also mo-
dels the result space as a hypercube, but each axis corre-
sponds to a relation, as shown in Figure 2b. This scheme
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randomly distributes the tuples on the axes of the origina-
ting relation, and replicates on the other axes. For example,
each R tuple is replicated on a “slice” of machines (Figure 2b
shows a slice with shading). As the dimensions are 4 x 4 x 4
and a machine receives 1/4 of each relation, the load per
machine is 3- H/4 = 0.75H. The Random-Hypercube sup-
ports multi-way theta-joins and is skew resilient. However, it
replicates tuples more than the Hash-Hypercube (because it
uses a 3-dimensional rather than 2-dimensional hypercube).
2-way join schemes. For 2-way joins, Hash-Hypercube be-
comes hash partitioning, and Random-Hypercube becomes
1-Bucket scheme [6], which uses random partitioning over a
2-dimensional hypercube (matrix). Random partitioning is
skew resilient but replicates tuples over the matrix. For low-
selectivity band and inequality 2-way joins, range partition-
ing allows fast detection of large continuous matrix portions
that produce no output. As these portions are not assigned
to machines, range partitioning schemes outperform the 1-
Bucket scheme. Examples include the M-Bucket scheme [6]
and our Equi-Weight Histogram (EWH) scheme [8]. The M-
Bucket scheme is prone to join output skew. In contrast, the
EWH scheme works well for any data distribution. To do
so, our EWH scheme provides an efficient parallel scheme for
capturing the input and output distribution from the join
to a matrix. To evenly partition the work (matrix) among
the machines, the EWH scheme employs our join-specialized
computational geometry algorithm for rectangle tiling.
Our Hybrid-Hypercube scheme. Consider the same qu-
ery (R(z,y) X S(y,z) XM T(z,t)) on a non-uniform dataset.
For example, assume that y has uniform distribution and
that z has zipfian distribution (the skew parameter of 2)
both in S and 7. The Random-Hypercube scheme performs
the same independently of skew (L = 0.75H, as before).
The Hash-Hypercube scheme with the given data distribu-
tion is shown in Figure 2c. Due to skew, it performs only
slightly better than the Random-Hypercube (the maximum
load per machine is L = |R|/8+|S|/(8-2)+|T|/2 ~ 0.69H).
Hash- and Random-Hypercube are designed only for the
cases when either all or none of the relations is skew-free. We
propose Hybrid-Hypercube, which uses hash partitioning for
skew-free join keys, and more costly random partitioning
elsewhere. That way, our scheme achieves skew resilience
while minimizing tuple replication. Further, in contrast to
the Hash-Hypercube, the Hybrid-Hypercube supports non-
equi joins (using random partitioning therein). Thus, our
scheme subsumes both the Hash- and Random-Hypercube.
The Hybrid-Hypercube scheme is illustrated in Figure 2d.
R and S tuples are hashed on y and replicated in the selected
“row” of machines. We can consider R X S as a (replicated)
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(a) Hash-Hypercube.

(b) Random-Hypercube.
Figure 2: Partitioning schemes for R(z,y) X S(y, z) X T'(z,t). Uniform data (a), data-independent (b), skewed data (c, d).

hash join. Whereas, each T tuple randomly picks a “col-
umn” of machines to be replicated on. Given that there are
no skew on y and no functional dependencies between y and
z (which is a common case), hash(y) from R and S simu-
lates random distribution with respect to 7. Thus, we can
consider RS X T as a 1-Bucket join.

As a result, the maximum machine load in the Hybrid-
Hypercube is L = (|R| + |S])/7 + |T|/9 = 0.36 H, which is
2.08x and 1.92x better than that of Random-Hypercube
and Hash-Hypercube, respectively.

3.2 Local join algorithms

Online local joins typically work as follows: a new incom-
ing tuple for a relation is joined with the stored tuples from
the other relation(s), and stored for use by future tuples [3].
Existing local joins use indexes (hash or balanced binary
tree) to improve performance. However, these joins are or-
ders of magnitude slower than the state-of-the-art online
local join, DBToaster [2].

In brief, the main idea of DBToaster is to recursively
maintain views for an n-way join. Instead of maintaining
only the final result, DBToaster maintains all the interme-
diate (n — 1)-, (n — 2)-, ..., and 2-way joins. When a new
tuple comes, DBToaster updates the intermediate relations,
and produces the result by joining the tuple with the corre-
sponding (n — 1)-way materialized join. The savings come
from the fact that DBToaster does not recompute the (n—1)-
way join for each new tuple, as it would be the case if we use
indexes only on the base relations. The savings grow with
the increase in the number of relations n.

In contrast to Squall, existing parallel DBToaster [5] do
not focus on skew resilience.

3.3 HyLD operator: Hypercube scheme
with Local DBToaster

Squall seamlessly parallelizes the state-of-the art local join
(DBToaster) by using separation of concerns. In particular,
the hypercube schemes ensure that each machine executes
an independent portion of the join, so each output tuple is
produced at exactly one machine. Thus, we can run a sepa-
rate DBToaster instance on each machine. We call such an
operator Hypercube scheme with Local DBToaster (HyLD).
The HyLD operator combines network efficiency due to a hy-
percube scheme and CPU efficiency due to using DBToaster.
Choosing among hypercube schemes. As shown in §3.1,
random partitioning is expensive but skew-resilient, while
hash partitioning is cheaper but prone to skew. To decide
on the hypercube scheme, we need to know if a join key
is skew-free or not. A good initial choice of a hypercube
scheme saves us from future adaptations. Fortunately, in
many cases, even in an online scenario, we know beforehand
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whether a join key is skew-free. For example, an attribute
with the uniqueness property (such as the primary key) can-
not have skew. On the other hand, zipfian distributions are
typical in many real-life datasets, including Internet packet
traces, city sizes and word frequency in natural languages.

4. SKEW TYPES AND ADAPTIVITY

The data distribution in an online system can change, so
Squall offers some adaptivity techniques.
Skew fluctuations. There is an important difference in
adaptivity among hash, range and random partitionings.
Hash partitioning uniformly partitions the data, and thus,
it always yields bad performance in the presence of skew.
For range partitioning, an online operator needs to period-
ically adjust to the data distribution changes. However, an
adversary can change the data distribution right after the
system adjusts the scheme, thus causing the scheme to al-
ways be highly suboptimal. The random partitioning avoids
this problem as it randomly assigns tuples to machines, es-
sentially removing any skew in data distribution.
Temporal skew. Having the exact data distribution, in-
cluding the uniform distribution, might not suffice for skew
resilience. For hash partitioning, in the case of sorted tuple
arrival and moderate join key frequencies, only one machine
will be active at a time, which is equivalent to sequential
execution. We denote imbalance in load caused by tuple
arrival order as temporal skew. Range partitioning is also
prone to temporal skew. In contrast, random partitioning
performs the same independently of tuple arrival order, as
the tuples are randomly distributed among the machines.

Thus, it is insufficient to capture only the data distribu-
tion. Rather, we also need to capture the temporal skew,
which we do indirectly by monitoring the machine load?. To
achieve good performance, Squall uses random partitioning
schemes in the case of data or temporal skew.
Join selectivity fluctuations. Next, we explain how multi-
way joins bring an additional adaptivity level compared to
the pipeline of 2-way joins. The join selectivity for 2-way
joins can vary at run-time, and some intermediate relations
may grow very large. A possible response is adaptive join
reordering. In that case, we discard some intermediate rela-
tions (e.g., R X S) and rebuild new state for other interme-
diate relations (e.g., S X T') from scratch. This may have
very adverse and hard to predict effects in an online system,
including very large latencies for new incoming tuples.

On the other hand, multi-way joins maintain no interme-
diate relations. Thus, hypercube schemes inherently bring
adaptivity to the join selectivity fluctuations.

2This requires that the partitioning scheme reflects the ac-
tual data distribution.
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Figure 3: Demonstration: Running a query.

Hypercube sizes. The optimal hypercube dimension sizes
minimize replication, and thus, maximize performance. We
determine the optimal sizes from the relative base relation
sizes. Hence, a hypercube scheme needs to adapt to chang-
ing relation sizes. Squall implements an adaptive 1-Bucket
join operator [3], which periodically adjusts the offline 1-
Bucket partitioning scheme according to the current rela-
tion sizes. This operator minimizes state migration, offers a
non-blocking migration algorithm, and provides optimality
guarantees on data distribution and communication cost.
SAR principle. We introduce the SAR principle, which
summarizes this section. To achieve Skew-resilience and
Adaptivity for more skew types in an online system, parti-
tioning schemes need to increase the input tuple Replication.
Namely, for 2-way joins, hash partitioning is prone to skew
but requires no replication. Whereas, random partitioning is
resilient to data and temporal skew and skew fluctuations,
but it requires replication. A multi-way join brings adap-
tivity to join selectivity variations, but it requires higher
replication than the corresponding pipeline of 2-way joins.

S. DEMONSTRATION SETUP

The demonstration exposes scalability and skew-resilience
of Squall in high-data-rate analytics applications.
Google cluster monitoring data® contains information
about jobs (start and end time, status, etc.), tasks (events,
resource usage) and machines (assignments, attributes). We
put ourselves in the shoes of a large cluster administrator,
who gets notified when a potential problem arises. An in-
teresting multi-way join query is List the machines which
often fail tasks belonging to production jobs. Another in-
teresting query is Measure the scheduling algorithm qual-
ity. Schedulers assign jobs to machines to maximize “good-
ness” score [7], which includes the machine’s number of pre-
empted or failed tasks, jobs distribution across the cluster
etc. Computing the score involves joining multiple relations.
We observe the scheduling algorithm quality by monitoring
(in real-time) the score aggregated over jobs and machines.
Demo. As illustrated in Figures 3 and 4, we allow atten-
dees to specify a query and to try different partitioning
schemes, local joins and the parallelisms. With a button
click, the attendees will run the specified query plan on an
in-house cluster with 220 hardware threads. At run-time,
they can continually monitor the query results, performance
metrics (throughput, latency, CPU utilization and memory
consumption) and operators’ properties such as hypercube
dimensions, replication factor and skew. The replication fac-
tor is the component’s number of input tuples divided by the

Shttps://github.com/google/cluster-data
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Figure 4: Results and query performance metrics.

total number of tuples produced by the immediate upstream
components. We define skew degree as the division between
the largest partition size and the average partition size.
Evaluating partitioning schemes. We allow attendees to
compare hypercube schemes by monitoring the performance
as a function of the operator’s replication factor and skew
degree. For each hypercube scheme, we identify scenarios
(the number of relations, their sizes and skew degrees) where
it performs the best. We also evaluate the effect of temporal
skew to the performance of hash join and 1-Bucket join. The
results validate the SAR principle and suggest that replica-
tion is ubiquitous for reliable load balancing.

CPU or network-bound? We aid attendees to find the
bottleneck in online processing. To estimate the CPU share,
we run the same query plan with different local joins. The
attendees can also observe the correlation among the ope-
rator’s memory consumption and throughput. To estimate
the network share, we define intermediate network factor as
(Zcomp‘ ask ¢ inputitoutputt) /(query input+query output).
Then, we compare the performance among different query
plans (of the same query) as a function of this factor.
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