
Partial Marking for Automated Grading of SQL Queries ∗

Bikash Chandra Mathew Joseph Bharath Radhakrishnan †

Shreevidhya Acharya S. Sudarshan

IIT Bombay
{bikash,mathewj,bharathrk13,shreevidya,sudarsha}@cse.iitb.ac.in

ABSTRACT
The XData system, currently being developed at IIT Bombay,
provides an automated and interactive platform for grading
student SQL queries, as well as for learning SQL. Prior work
on the XData system focused on generating query specific
test cases to catch common errors in queries. These test cases
are used to check whether the student queries are correct
or not. For grading student assignments, it is usually not
sufficient to just check if a query is correct: if the query is
incorrect, partial marks may need to be given, depending
on how close the query is to being correct. In this paper,
we extend the XData system by adding features that enable
awarding of partial marks to incorrect student queries. Our
system is able to go beyond numerous syntactic features
when comparing a student query with a correct query. These
features of our grading system allow the grading of SQL
queries to be fully automated, and scalable to even large
class sizes such as those of MOOCs.

1. INTRODUCTION
Grading of SQL queries is traditionally done by instructors

and teaching assistants (TAs), by (a) reading and manually
comparing a student query with the correct query, and/or
(b) by comparing the query results of a correct query and
the student query on one or more ad hoc datasets. Manually
reading and grading SQL queries is very tedious when the
number of students is large, while also being error prone,
especially for complex queries with many possible ways of
writing the query. Grading SQL queries by using fixed query-
independent or manually constructed datasets is used by
systems such as Gradience [3]. However, these datasets
might miss errors, and could lead to incorrect queries being
marked as correct. In particular, subtle errors might be
missed.

∗Work partially supported by a research grant from Tata
Consultancy Services
†Currently working at Amazon, India

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

The XData system [6, 2] generates a number of datasets
specific to a query Q (provided by the instructor), such that
common errors in Q can be caught. In [1], we show how
datasets generated to catch errors on an instructor query
can be used to test if a student query is correct or not. For
grading, detection of incorrect queries is necessary, but is
not sufficient, since it is usually important to give partial
marks to queries that are partially correct.

An initial approach that we tried was to assign partial
marks based on the fraction of datasets on which the results
of the student query and an instructor query match. This
approach, unfortunately, gives very poor results. For exam-
ple, if a student writes an incorrect selection condition r.A<5

instead of r.A>5, it would fail almost all datasets and the
student would lose almost all marks. On the other hand,
a student query which intentionally returns the empty set
every time (e.g. by using a selection condition 1=2) may be
able to get some marks, since its output would match on all
datasets on which the instructor query is expected to give an
empty result (and there are usually several such datasets).

In this paper, we summarize our techniques for awarding
partial marks to student queries, based on how close the
student query is to an instructor query. The same SQL query
can be written using different syntactic variations, which
must be taken into account when comparing queries. For
example, if an attribute r.A is an integer, and an instructor
query uses a selection condition r.A>5, the student may
write the same condition as r.A>=6. SQL queries may also
contain extra relations or conditions which may be removed
without affecting the result of the SQL query. Hence, we
first canonicalize the instructor query and the student query
to make the queries comparable.

The canonicalized queries are then broken into components.
The components of the canonicalized student query are then
matched with the components of the canonicalized instructor
query. Matches are rewarded, while mismatches penalized, by
assigning appropriate scores. Finally, a weighted aggregated
score is computed, which gives a measure of how close the
student query is to the given instructor query.

The same SQL query may be written in very different ways
and canonicalization of the queries using our techniques may
not be able to make the queries comparable. For partial
marking to be more effective, the instructor can upload
multiple correct queries, each written in a different way. Our
partial marking system assigns marks to the student query
by comparing it to each of the correct queries to get a partial
mark with respect to each correct query, and then using the
maximum of the marks thus obtained.

1541



We ran our grading tool on SQL queries written by students
and found our techniques to be very effective in assigning
meaningful partial marks. Since our tool gives an explanation
for the marks obtained and is more uniform in grading, we
believe it will be perceived as more fair in awarding partial
marks, as compared to a human grader.

2. BACKGROUND
Most incorrect queries are small syntactic deviations (or

mutations) of the correct queries. A mutation is defined as
a single syntactically correct change to the correct query
and the changed query is said to be a mutant of the original
query. A dataset that is able to produce different results on
the correct query and its mutant (thereby showing that the
mutant is not equivalent to a correct query) is said to kill
the mutation.

The XData [6, 2] system takes a query as input and
generates one or more datasets such that the common er-
rors/mutations are caught. The XData system handles a
large variety of SQL constructs including selections, joins,
aggregates, subqueries and set operators. Currently, the
mutations targeted by XData includes join mutations, com-
parison operator mutations, aggregate operator mutations,
group by attribute mutations, like mutations, subquery mu-
tations, set operator mutations and distinct mutations. For
each correct query, XData generates multiple datasets, each
targeted to kill one or more mutations.

Using the XData grading system, instructors can create
SQL query assignments. Instructors need to provide details
about the schema on which the queries are based, along with
the database connection details on which their queries will be
run. Instructors can set two types of assignments: (a) graded
assignments - where the student queries are evaluated after
the deadline is over, and (b) learning assignments - where
the student queries are graded immediately and feedback
is provided. For each assignment, the instructor can create
multiple questions and for each question, the instructor can
provide one or more correct answers.

For each question that has more than one correct query,
the instructor can mark if test cases from all queries need to
pass for the student query (more erroneous queries can be
caught) to be marked correct or only one of the queries need
to match the correct query (the question was ambiguous).
Datasets are generated based on the queries provided by the
instructor.

Evaluating correctness of student SQL queries is done by
comparing the result of the student query with that of a
correct query on the generated datasets.

3. PARTIAL MARKING
If the student query is marked as correct, using the gener-

ated datasets, the query is awarded full marks. However, in
case the student query is incorrect, we use techniques that
we describe in this section to assign partial marks.

The basic idea is to compare the student query with an
instructor query and award partial marks based on how close
the student query is to an instructor query. To perform
the comparison, we first canonicalize both the student query
and the instructor query to remove any irrelevant syntactic
variations, and then perform a component wise comparison
to award partial marks.

It might appear that if we can canonicalize an instructor
query and student query, and then compare them, we can
detect if the student query is correct without running the
query on any datasets. However, canonicalization cannot
in general guarantee that the instructor query and student
query will be canonicalized to the same form even if they are
actually equivalent. Thus, a correct student query may get
less than full marks. We, therefore, first check for correctness
by using datasets generated by the XData system. A query
judged as correct gets full marks; if a query is marked as
incorrect, then the techniques described in this section are
used to award partial marks.

3.1 Initial Preprocessing
We first perform some preprocessing on the SQL query so

that the query conditions are made comparable.
Attribute disambiguation: An attribute A without a re-
lation is changed to r.A where A in inferred to be from R.
WITH Clause Elimination: Non-recursive WITH clauses
are replaced in the query by expanding the WITH clauses
inline.
BETWEEN Predicate Elimination: BETWEEN predi-
cates are replaced with the equivalent conditions using the
relational operators. For example r.A BETWEEN 5 and 10 is
replaced with r.A>5 AND r.A<10.
Normalization of Relational Predicates: Selection con-
ditions involving NOT are converted to remove the NOT
operator by adjusting the relational operator appropriately.
For example, NOT(A>B) is converted to A<=B. Selection condi-
tions involving > (resp. >=) are converted to < (resp. <=),
by exchanging the operands; for example A > B is converted
to B < A. Selection conditions involving A<B are converted
to A<=B+1, provided both operands are of integer type.
Normalization of Nested Queries: A nested subquery
with an IN/ANY connective can be converted to use an
EXISTS connective, by using the attributes involved in the
IN/ANY connective to create a correlation condition. For
example,
r.A >ANY (SELECT s.A FROM s WHERE s.B>10)

can be converted to
EXISTS (SELECT s.A FROM s WHERE s.B>10 AND r.A>s.A)

Join Processing: Any NATURAL INNER JOIN is replaced
with an INNER JOIN with equivalent join conditions added
using the ON clause. Occurrences of USING clause in JOIN
conditions is replaced with ON clause with the equivalent
join conditions.

3.2 Equivalence Classes of Attributes
Consider the following query

SELECT employee.deptId FROM employee INNER JOIN
department ON employee.deptId=department.id

In this query, SELECT department.id can be used in place of
SELECT employee.deptId, since the two attributes are guaran-
teed to have the same value thanks to the join condition,
employee.deptId = department.id.

In general, when A = B, B = C, C = D .., are conjuncts
in the join conditions of a query, attributes A, B, C, D,
... are said to belong to the same equivalence class; any
occurrence of an attribute in an equivalence class can be
replaced with any other attribute from the equivalence class,
at any place in the query tree above the occurrence of the
join conditions, without changing the result of the query.

1542



A canonicalization step is therefore performed by replac-
ing all occurrences of an attribute above join condition,
by the lexicographically least variable from its equivalence
class. In the above query, since department.id lexicographi-
cally precedes employee.deptid, employee.deptId is replaced
by department.id in the SELECT clause.

Mapping variables to equivalence classes is used by query
optimizers for join reordering and correct selection estimation
whereas we use it for comparing queries.

3.3 Join Minimization
Removal of redundant joins, and conversion of outer joins

to inner joins, are well known steps in query optimization. We
use them as part of our canonicalization, before comparing
queries. Consider the following query:

Q1: SELECT employee.Id, department.Id
FROM employee INNER JOIN department
ON employee.deptId=department.Id

and suppose that employee.deptId is non nullable, and is
a foreign key referring to department.Id. The non-nullable
foreign key dependency ensures that for each employee tuple
t1 there exists a matching department tuple t2 (i.e., one
s.t. t1[deptId] = t2[Id]). Since the projection attribute
department.Id can be replaced by employee.deptId from the
same equivalence class, the query can be rewritten to the
equivalent query:

SELECT employee.Id, employee.deptId FROM employee

Join minimization as described above is used to remove
redundant relations from both the student query and the
instructor query.

Consider the query:

SELECT * FROM department LEFT OUTER JOIN
employee ON department.Id = employee.deptId
WHERE employee.deptId > 5

The selection condition, employee.deptId > 5, fails when
employee.deptId has a null value. Thus the query is equiva-
lent to the one where inner join is used instead of a left outer
join. In general, if at a point in the query above a left-outer
join, there is a null-rejecting condition on an attribute from
the right input of the left outer join, we replace the left
outer join by an inner join. The case of right outer join is
symmetric.

Conversion of outer joins to inner joins is done before
computing variable equivalence classes.

3.4 Functional Dependencies
Functional dependencies can be used to infer that textually

different ORDER BY or GROUP BY clauses are actually
equivalent [4], which is used for query optimization. We now
describe how we use functional dependencies for comparison
of ORDER BY and GROUP BY clauses of student and
instructor queries.

Canonicalizing ORDER BY attributes
Consider an SQL query Q with the clause ORDER BY a, b.

Let us suppose that Q satisfies the functional dependency
a → b, then Q is equivalent to a query Q′ obtained by
replacing the ordering clause with ORDER BY a. Due to
the functional dependency, two tuples with the same value
for a would have the same value for b, making the ordering
by b irrelevant. ORDER BY clauses are canonicalized by

removing all attributes that are functionally determined by
other attributes appearing earlier in the ORDER BY clause.

Comparing GROUP BY attributes
Consider the following query

SELECT COUNT(*) FROM employee GROUP BY id, name

Suppose id functionally determines name (for example, be-
cause id is declared as a primary key). Then, the GROUP
BY clause can be equivalently written as GROUP BY id.

However, unlike with ORDER BY clauses, there may be
completely different sets of attributes that give the same
grouping, and getting a unique canonicalization is not pos-
sible [4]. Instead, we check whether each attribute in the
GROUP BY clause in the instructor query is present in the
cover of the GROUP BY clause of the student query and vice
versa; attributes missing in the student query, or extraneous
in the student query, indicate errors.

Canonicalizing Duplicate Removal
Duplicate removal using SELECT DISTINCT can be re-

dundant if there are no duplicates in the list of attributes;
if we infer absence of duplicates, the DISTINCT clause can
be removed. Similarly, for INTERSECT ALL absence of
duplicates in at least of the inputs, and for EXCEPT ALL, in
the left input, means we can drop the ALL clause. Primary
key constraints on input relations, coupled with equality
predicates in select and join predicates can be used to infer
absence of duplicates in the result of joins, as described in
[5].

DISTINCT clauses can be deleted from EXISTS/IN/ALL/
ANY subqueries, as well as their NOT variants, regardless
of the presence of duplicates.

3.5 Computing Partial Marks
The resulting queries after preprocessing, minimization,

and canonicalization steps are compared with each other by
a syntactical component matching and weighted marking
technique. An SQL query is divided into components, such as
SELECT list, list of relations in the FROM clause, WHERE
clause predicates, set operators, etc., as well as subqueries
which (recursively) have their own components.

Given a student query and instructor query, function
calculateScore matches components of the canonicalized
student query with the components of the canonicalized in-
structor query. Note that each component in general has
subparts; for e.g., the subparts of a join or selection predicate
would the conjuncts, the subparts of a GROUP BY, ORDER
BY, or SELECT clause would be the attributes in the list.

For each component of the instructor query, the subparts
from the instructor query are matched with the corresponding
subparts from the student query. Note that wherever order
is irrelevant (for example among conjuncts of a predicate, or
the attributes of a GROUP BY clause), ordering is ignored
when finding matches.

Missing subparts are penalized by giving marks for that
component in proportion to the number of instructor query
subparts that are actually present. Extraneous subparts in
the student query are penalized, by assigning appropriate
negative scores. Marks are computed in this manner for each
subpart and added to get a mark for each component. The
minimum score for each component is set to 0 so that the
student query is not excessively penalized.

1543



Figure 1: Component-wise partial marking

Note that marks for subqueries are computed by recursive
calls to function calculateScore. In case there are multiple
subqueries, the best matching pair are considered for com-
puting the score. The inputs to outer joins are matched
separately by recursive calls.

Each component of the instructor query is assigned a
weight Wc; weights can be adjusted by the instructor using a
GUI slide bar in our system. The marks assigned to a student
query is computed as Σc∈componentsWc ∗Mc, where Wc and
Mc are the weight and marks assigned to a component.
Student queries may have extraneous components that are
not in the instructor query. Such extraneous components are
penalized by negative marking for each such component.

Since the instructor also has the option to specify multiple
correct queries, the final marks in such cases is the maximum
of the set of all marks computed by applying calculateScore
on the student query against each of the instructor queries.
Once the evaluation is done students can see component wise
comparison and marks obtained as shown in Figure 1.

Performance
The time taken for partial marking per student query is of

the order of fractions of a second. The time taken for data
generation is about 1-2 mins, but it is done only once for
every instructor query, irrespective of the number of student
queries. In a preliminary performance evaluation based on
student queries collected from a course, we found that the
partial marks awarded by our system to erroneous queries
were well correlated with the marks assigned by TAs.

4. DEMONSTRATION
We demonstrate the grading tool using the University

schema from [7] and the PostgreSQL database. The LTI
interface provided by our system allows users logged in to
a learning management system (Moodle, in our demo) to
navigate to our system. The audience will able to interact
with the system in the following modes:

• Instructor mode: Using this mode, users can create
questions or modify existing ones. They may create new
assignments and link the assignments to Moodle. For a
given question, instructors will also be able to adjust partial
marking parameters. Once some student queries are
submitted the queries can be evaluated and the instructor
can view the marks awarded for the student queries. They
will also be able to observe how marks are assigned based
on the comparison of canonicalized versions of the student
query and the instructor query.
• Student mode: Using this mode, users will be able to

browse the existing assignments and attempt questions.
After evaluation, students can check whether their query is
correct or not. In case their query is marked as incorrect,
the system provides details regarding the datasets on which
the query failed along with details of how partial marks
were awarded.

The XData system can be downloaded from http://www.

cse.iitb.ac.in/infolab/xdata/XData.

5. CONCLUSION
The grading interface has been used successfully at IIT

Bombay for two offerings of the under-graduate database
course. The extensions to partial marking are new but have
been tested on existing student queries. We are confident
that instructors and TAs of database courses will benefit
from our system, and especially so for MOOCs.

Canonicalization of subqueries by decorrelation is an im-
portant area of future work. Canonicalization of DISTINCT
placement in FROM clause subqueries versus outer queries
is another area of future work.

6. REFERENCES
[1] A. Bhangdiya, B. Chandra, B. Kar, B. Radhakrishnan,

K. V. M. Reddy, S. Shah, and S. Sudarshan. The
XDa-TA system for automated grading of SQL query
assignments. In ICDE, pages 1468–1471, 2015.

[2] B. Chandra, B. Chawda, B. Kar, K. V. M. Reddy,
S. Shah, and S. Sudarshan. Data generation for testing
and grading SQL queries. VLDB J., 24(6):731–755, 2015.

[3] Gradience: The gradiance service for database systems.
http://www.gradiance.com/db.html.

[4] T. Neumann and G. Moerkotte. A combined framework
for grouping and order optimization. In VLDB, pages
960–971, 2004.

[5] G. N. Paulley and P.-A. Larson. Exploiting uniqueness in
query optimization. In CASCON, pages 804–822, 1993.

[6] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P.
Gupta, and D. Vira. Generating test data for killing SQL
mutants: A constraint-based approach. In ICDE, 2011.

[7] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts. McGraw Hill, 6th edition,
2010.

1544

http://www.cse.iitb.ac.in/infolab/xdata/XData
http://www.cse.iitb.ac.in/infolab/xdata/XData

	Introduction
	Background
	Partial Marking
	Initial Preprocessing
	Equivalence Classes of Attributes
	Join Minimization
	Functional Dependencies
	Computing Partial Marks

	Demonstration
	Conclusion
	References

