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ABSTRACT
We propose to present NLProv: an end-to-end Natural Lan-
guage (NL) interface for database queries. Previous work
has focused on interfaces for specifying NL questions, which
are then compiled into queries in a formal language (e.g.
SQL). We build upon this work, but focus on presenting
a detailed form of the answers in Natural Language. The
answers that we present are importantly based on the prove-
nance of tuples in the query result, detailing not only which
are the results but also their explanations. We develop a
novel method for transforming provenance information to
NL, by leveraging the original NL question structure. Fur-
thermore, since provenance information is typically large,
we present two solutions for its effective presentation as NL
text: one that is based on provenance factorization with
novel desiderata relevant to the NL case, and one that is
based on summarization.

1. INTRODUCTION
Developing Natural Language (NL) interfaces to database

systems has been the focus of multiple lines of research (see
e.g. [10, 1, 9]), with the motivation typically being the dif-
ficulty of writing database queries in a formal language. In
this work we complement these efforts by supporting NL
answers to NL queries. The answers that we provide are
detailed and justified, accounting not only for the requested
information but also for crucial details regarding the reasons
for it to qualify as an answer.

For instance, consider the Microsoft Academic Search
database (http://academic.research.microsoft.com) and
consider the NL query in Figure 1. A state-of-the-art NL
query engine, NaLIR [10], is able to transform this question
into the SQL query which is also shown (as a Conjunctive
Query, for convenience of later development) in Figure 1.
When evaluated, the query returns the expected organiza-
tions. But the user who asked this question is likely to
further be interested in why was each organization name re-
turned as an answer, i.e. the authors associated with the
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organization, their papers, and the venues and years of the
publications. Such additional information, typically referred
to as provenance, both enriches the answers and allows for
their validation.

We propose here a novel approach of presenting prove-
nance information for NL questions, again as sentences in
Natural Language. A first key idea in our solution is to
leverage the structure of the question in constructing the
NL answer. In particular, we use and modify the code of
NaLIR1 so that we store exactly which parts of the NL ques-
tion translates to which parts of the formal query. Then,
we evaluate the formal query using a provenance-aware en-
gine (we use SelP [4]), further modified so that it stores
which parts of the query “contribute” to which parts of the
provenance. By composing these two “mappings” (text-to-
query-parts and query-parts-to-provenance) we infer which
parts of the question text are related to which parts of the
provenance. Finally, we use the latter information in an
“inverse” manner, to translate the provenance to NL text.

A second key idea is related to the provenance size. In
typical scenarios, a single answer may have multiple expla-
nations (multiple authors, papers, venues and years in our
example). A naive solution is to formulate and present a
separate sentence corresponding to each explanation. The
result will however be, in many cases, very long and repet-
itive. As observed already in previous work [2, 12], differ-
ent assignments (explanations) may have significant parts in
common, and this can be leveraged in a factorization that
groups together multiple occurrences. In our example, we
can e.g. factorize explanations based on author, on paper
name (relevant for multi-authored papers), on conference
name or on year. In the context of e.g. [2, 12], one prefers
factorizations the lead to representations of smaller size. In
our context, some factorizations are better than others be-
cause they lead to answers whose NL semantics better meet
the user expectations. For instance, in the question of Fig.
1, the author name is semantically close to the organiza-
tion name and so we prefer answers in which this seman-
tic proximity is maintained. We formalize that, and devise
a greedy algorithm to find small-sized factorizations that
furthermore satisfy this desideratum. We further translate
factorized representations to concise NL sentences.

Last, we propose summarized explanations, based on e.g.
the number of papers published by each author or the over-
all number of papers published by authors of each organi-

1We are extremely grateful to Fei Li and H.V. Jagadish for
generously sharing with us the source code of NaLir, and
providing invaluable support.
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return the organization of authors who published papers
in database conferences after 2005

query(oname) :- org(oid, oname), author(aid, aname, oid),
pub(wid, cid, ptitle, pyear), conf(cid, cname),
domainConf(cid, did), domain(did, dname), writes(aid, wid),
dname = ’Databases’, pyear > 2005

Figure 1: NL Query and CQ Q

zation. Such summarizations incur by nature a loss of in-
formation but are typically much more concise and easier
for users to follow. We show a tight correspondence be-
tween factorization and summarization: every factorization
gives rise to multiple possible summarizations, each obtained
by counting the number of sub-explanations that are “fac-
torized together”. Consequently, factorizations that com-
pare favorably to others with respect to semantic optimal-
ity and conciseness also give rise to better summarizations.
NLProv computes and presents such NL summarizations to
the provenance, of varying levels of granularity.

2. TECHNICAL DETAILS
We briefly explain, via an example, the technical develop-

ment underlying NLProv.

Natural Language Database Queries. We start by ex-
emplifying an NL query and its dependency tree [11] that
describes both the syntactic and semantic roles of terms.

Example 2.1. Re-consider the NL query in Figure 1; its
dependency tree is depicted in Figure 2a (ignore for now
the arrows). Every node is associated with a part-of-speech
(POS) tag reflecting its syntactic role in the sentence (e.g.
“organization” is a noun, denoted “NN”, and “published”
is a verb in past tense, denoted “VBD”). Each node is also
associated with a relation (REL) tag, reflecting the semantic
relation of its sub-tree with its parent. For instance, the REL
of “published” is rcmod (“relative clause modifier”) meaning
that it describes a property of “authors”.

(oname, TAU)

(aname, Tova M.)

(ptitle, OASSIS...)

(cname, SIGMOD)

(pyear, 2014)

return

organization
POS=NN, REL=dobj

of
POS=IN, REL=prep

authors
POS=NNS, REL=pobj

published
POS=VBD, REL=rcmod

in

conferences
POS=NNS, REL=pobj

database
POS=NN, REL=nn

after
POS=IN, REL=prep

2005
POS=CD, REL=pobj

paperswho

the

(a) Query Tree

organization

of

Tova M.

published

in

SIGMOD

in

2014

’OASSIS...’who

TAU (is the)

(b) Answer Tree

Figure 2: Question and Answer Trees

The dependency tree is transformed by NaLIR, based also
on schema knowledge, to SQL. We focus in this work on
SPJU queries and present our example as a Conjunctive
Query (CQ), see Q in Figure 1. NLProv augments NaLIR by

(oname,TAU)∧(aname,Tova M.)∧(ptitle,OASSIS...)∧
(cname,SIGMOD)∧(pyear,14’)∨

(oname,TAU)∧(aname,Tova M.)∧(ptitle,Querying...)∧
(cname,VLDB)∧(pyear,06’)∨

(oname,TAU)∧(aname,Tova M.)∧ (ptitle,Monitoring..)∧
(cname,VLDB)∧(pyear,07’)∨

(oname,TAU)∧(aname,Slava N.)∧(ptitle,OASSIS...)∧
(cname, SIGMOD)∧(pyear,14’)∨

(oname,TAU)∧(aname,Tova M.)∧(ptitle,A sample...)∧
(cname,SIGMOD)∧(pyear,14’)∨

(oname,UPENN)∧(aname,Susan D.)∧(ptitle,OASSIS...)∧
(cname,SIGMOD)∧(pyear,14’)

Figure 3: Value-level Provenance

keeping track of the mapping it produces from dependency
tree nodes to query variables.

Example 2.2. Reconsider the tree t in Figure 2a and the
CQ Q in Figure 1. Some of the nodes in t are mapped to
variables of Q. For example, the word “organization” cor-
responds to the head variable (oname) of Q. Similarly the
word “authors” corresponds to aname in Q, etc.

Provenance Model and Mapping. After compiling a for-
mal query corresponding to the user’s question, we evalu-
ate it and keep track of provenance, to be used in expla-
nations. Multiple notions of provenance appear in the lit-
erature, mostly focusing on recording the input tuples used
in assignments. For explaining query results in NL, this is
insufficient: we need value-level provenance.

oid oname
1 UPENN
2 TAU

Rel. org

aid aname oid
3 Susan D. 1
4 Tova M. 2
5 Slava N. 2

Rel. author

wid cid ptitle pyear
6 10 “OASSIS...” 2014
7 10 “A sample...” 2014
8 11 “Monitoring...” 2007
9 11 “Querying...” 2006

Rel. pub

aid wid
4 6
3 6
5 6
4 7
4 8
4 9

Rel. writes
cid cname
10 SIGMOD
11 VLDB

Rel. conf

cid did
10 18
11 18

Rel. domainConf

did name
18 Databases

Rel. domain

Table 1: DB Instance

Example 2.3. Re-consider our running example query and
consider the database in Table 1. The assignments to the
query are represented in Figure 3 as a DNF expression. Each
of the 6 clauses stands for a different assignment, and the
atoms are pairs of the form (var, val) so that var is assigned
val in the particular assignment. We only record variables
to which a query word was mapped (these are the relevant
variables for formulating the answer).

By composing the mappings from the question’s depen-
dency tree to query variables, and the assignments of query
variables to values from the database, we associate different
parts of the question with values.

Example 2.4. Continuing our running example, consider
the assignment represented by the first clause of Figure 3.
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Further reconsider Fig. 2a, and now note that each node
is associated with a pair (var, val) of the variable to which
the node was mapped, and the value that this variable was
assigned in this particular assignment.

Generating a sentence for a single assignment. The
structure of the question’s dependency tree and the mapping
to database values are then used to construct a detailed
NL answer. As a first step, we demonstrate how a single
assignment is transformed into an NL sentence.

Example 2.5. Reconsider Figure 2a. To generate an an-
swer, we follow the question structure, “plugging-in” mapped
database values. For each node n that is mapped to a value,
we either replace n with its value or “connect” n to a new
node including the value. The choice of transformation is
based on whether n has a modifier as a child and if so,
which kind of modifier it is. Intuitively, modifiers describe
the object in n, and so depending on their existence/kind, re-
placing/adding n will have different effects on the sentence.
For instance, “authors” has a verb modifier (“published”)
describing it, and so it is safe to replace “authors” with the
value it is mapped to (“Tova M.”). In contrast, the modifier
of “organization” is prepositional (“of”) and so replacing it
with the value (“TAU”) will result in an improper sentence;
instead we add a node “TAU” along with connecting words
(in this case “is the”). The “conference” node has a noun
modifier (“database”), in which case both the node and its
modifier are replaced by “SIGMOD”. Leaves (e.g. “papers”)
are simply replaced by values. After further transformations
(e.g. replacing “after” by “’in”), we finally obtain a tree
representation of the answer (Fig. 2b). Converting it to a
sentence (details omitted), we obtain:

TAU is the organization of Tova M. who published
’OASSIS...’ in SIGMOD in 2014

We next generalize the construction to account for mul-
tiple query results as well as multiple explanations for each
result. A naive solution in this respect is to generate a sen-
tence for each explanation of each result. Already for the
small-scale example presented here, this would result in a
long and unreadable answer. Instead, we have implemented
two solutions: the first based on the idea of provenance fac-
torization [12], and the second providing a summarized form.

Factorization. Different explanations in the provenance ex-
pression typically share significant parts, which may be ex-
ploited for representing it in a more succinct way.

Example 2.6. Re-consider the DNF in Figure 3. Rewrit-
ing it in a factorized (non-DNF) form would be much more
succinct, as e.g. the same organization and the same author
name appear in multiple conjuncts. Two possible factoriza-
tions are shown in Figure 4 (keeping only the values and
omitting the variable names for brevity).

How do we measure the quality of a factorization? Natural
desiderata are that it should be short or that the maximal
number of appearances of an atom is minimal [12, 5]. On the
other hand, in our case we factorize as a step towards gener-
ating an NL answer; so if the factorized expression structure
is similar to that of the question, the answer is likely to bet-
ter fit the user intention. We found that commonly used

[TAU] ∧

A



([Tova M.] ∧

B


([VLDB] ∧

([2006] ∧ [Querying...]
∨ [2007] ∧ [Monitoring...]))

∨ [SIGMOD] ∧ [2014] ∧
([OASSIS...] ∨ [A sample...]))

 B

∨ [Slava N.] ∧ [OASSIS...] ∧ [SIGMOD] ∧ [2014])


A

∨ [UPENN] ∧ [Susan D.] ∧ [OASSIS...] ∧ [SIGMOD] ∧ [2014]

(a) f1
[TAU] ∧

([SIGMOD] ∧ [2014] ∧
([OASSIS...] ∧

([Tova M.] ∨ [Slava N.]))
∨ [Tova M.] ∧ [A sample...])

∨ [VLDB] ∧ [Tova M.] ∧
([2006] ∧ [Querying...]

∨ [2007] ∧ [Monitoring...])
∨ [UPENN] ∧ [Susan D.] ∧ [OASSIS...] ∧ [SIGMOD] ∧ [2014]

(b) f2
Figure 4: Provenance Factorizations

measures such as edit distance between questions and an-
swers (see e.g. the survey in [6]) are unsuitable here, and we
thus devise a novel “structural” condition that again lever-
ages the information on mappings, as follows.

Let f be a factorization, let p be the query dependency
tree, and let x, y be nodes of p such that y is a descendant
of x. For every two atoms x′, y′ in f s.t. x, y were mapped
to x′, y′ (for some derivation), the nesting depth (i.e. level
in the circuit corresponding to f) of x′ should be smaller or
equal to that of y′. Intuitively, if x is “higher” than y in the
hierarchy in the question, then its corresponding part of the
answer should not be pushed below that of y.

Example 2.7. f2 is slightly shorter in terms of number
of atoms than f1. However, f1 satisfies the above condition
and its structure is indeed “more similar” to that of the query
dependency tree. In contrast, in f2 ”[SIGMOD]” appears in
a shallower nesting depth than ”[Tova M.]”, but “author” is
an ancestor of “conferences” in the dependency tree of the
query. If we were to generate a sentence based on f2, we
would have to face the problem of losing the intuitive direct
connection reflected in the question between the organization
and authors (as we have “pushed” the conference and paper
names between them). Based on f1, we generate the follow-
ing sentence for the answer “TAU” (a similar sentence is
generated for “UPenn”):

TAU is the organization of
Tova M. who published

in VLDB
’Querying...’ in 2006 and
’Monitoring...’ in 2007

and in SIGMOD in 2014
’OASSIS...’ and ’A sample...’

and Slava N. who published
’OASSIS...’ in SIGMOD in 2014.

Summarization. In some cases, even an “optimal” factor-
ized representation is too long and convoluted for users to
follow. In these cases we need to summarize the provenance
in some way that will preserve the “essence” of all assign-
ments without actually specifying them. We do so by lever-
aging the factorization, and “summarizing” the brackets at
any level. Summarization manifests by replacing a disjunc-
tion by the number of disjuncts, with further constructs to
group e.g. numerical values, forming a range expression.
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(A) TAU is the organization of 2 authors who published
4 papers in 2 conferences in 2006 - 2014.
(B) TAU is the organization of Tova M. who published
4 papers in 2 conferences in 2006 - 2014 and Slava N.
who published ’OASSIS...’ in SIGMOD in 2014.

Figure 5: Summarized Sentences
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Figure 6: System Arch.

Example 2.8. Re-consider the factorization f1 from Fig-
ure 4, and now note the A and B brackets standing for levels
of summarizations. The resulting sentences (for the “TAU”
answer) are shown in Fig. 5. Summarizing at a higher level
results in a shorter but less detailed summarization.

Related Work. As mentioned in the Introduction, multiple
lines of work (e.g. [10, 1, 9]) have proposed NL interfaces
to database queries, and multiple lines of work have studied
provenance tracking (e.g. [7, 2, 3]), but to our knowledge our
work is the first to support NL provenance. We note that
[8] has focused on the complementary problem of translating
SQL queries (rather than their provenance) to NL.

3. SYSTEM OVERVIEW
NLProv is implemented in JAVA with JAVAFX GUI us-

ing SceneBuilder, and runs on Windows 8. It uses MySQL
server as its underlying database management system. Fig-
ure 6 depicts the system architecture. First, the user enters
a query in Natural Language. This NL sentence is fed to the
augmented NaLIR system which interprets it and generates
a formal query. This includes the following steps: a parser
[11] generates the dependency tree for the NL query. Then,
the nodes of the tree are mapped to attributes in the tables
of the database and to functions, to form a formal query. As
explained above (see Example 2.2), to be able to translate
the results and provenance to NL, NLProv stores the map-
ping from the nodes of the dependency tree to the query
variables. Once a query has been produced, NLProv uses
the SelP system [4] to evaluate it while storing the prove-
nance (see Example 2.3), keeping track of the mapping of
dependency tree nodes to parts of the provenance (see Ex-
ample 2.4). The provenance information is then factorized
(see Examples 2.6 and 2.7) and the factorization is compiled
to an NL answer containing explanations (see Example 2.7).

Finally, the factorized answer is shown to the user. If
the answer contains excessive details and is too difficult to
understand, the user may choose to view summarizations of
different nesting levels (see Example 2.8).

4. DEMONSTRATION SCENARIO
We will demonstrate that NLProv provides intuitive, human-

readable explanations to answers of Natural Language database
queries. The operation of NLProv will be demonstrated with
respect to the Microsoft database of publications, through

examples such as those presented in this short paper. The
demonstration will interactively engage the audience, demon-
strating the different facets of the system. Since the ex-
planations are given in Natural Language, understanding
them requires no prior knowledge on provenance (in fact
they require no database knowledge) and so the demonstra-
tion will thus be suitable for the VLDB audience at large.
For the first part of the demonstration we will use a set of
pre-defined questions of varying complexity levels. We will
first show the audience a single explanation for one of the
answers, then consider all explanations and show the dif-
ferent variants of Natural Language explanations supported
by the system: full (non-factorized) explanations, factorized
explanations, and summarized explanations of varying gran-
ularity. We will show different options, in addition to those
chosen by the system (and in particular the result of choos-
ing other possible factorizations), demonstrating the supe-
rior quality of the results w.r.t. these alternatives. We will
then allow participants to pose, in natural language, queries
of their liking with respect to the publications dataset. We
will again show the answers and explanations computed by
NLProv. Last, we will allow participants to look “under-the-
hood”, showing the underlying queries and the generated
provenance as boolean expressions, explaining the connec-
tion between different parts of the question, query and ex-
planations, and highlight the manner in which NLProv com-
putes answers and explanations.
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