Precision Performance Surgery for PostgreSQL
LLVM-based Expression Compilation, Just in Time

Dennis Butterste

in

Torsten Grust

Universitat Tlbingen,
Tlbingen, Germany

[dennis.butterstein, torsten.grust J@uni-tuebingen.de

ABSTRACT

We demonstrate how the compilation of SQL expres-
sions into machine code leads to significant query run-
time improvements in PostgreSQL 9. Our primary goal is to
connect recent research in query code generation with one of
the most widely deployed database engines. The approach
calls on LLVM to translate arithmetic and filter expressions
into native x86 instructions just before SQL query execu-
tion begins. We deliberately follow a non-invasive design
that does not turn PostgreSQL on its head: interpreted and
compiled expression evaluation coexist and both are used to
execute the same query. We will bring an enhanced version
of PostgreSQL that exhibits notable runtime savings and
provides visual insight into exactly where and how execu-
tion plans can benefit from SQL expression compilation.

1. WHAT TOOK YOU SO LONG,

POSTGRESQL?

In a discussion of query processing strategies, the evalua-
tion of SQL expressions—here we refer to expressions over
scalar values, notably of number types as well as Booleans—
typically assumes a second-tier role. Still, expression evalua-
tion is pervasive in query plan execution: table scans, filters,
aggregates, projections, and even joins (those which do not
enjoy index support) inherently rely on it. Indeed, in the
case of TPC-H [7], the inefficient evaluation of complex ex-
pressions has been identified as a major choke point [2, see
choke point CP 4.1d “interpreter overhead”]. The premise of
the present work is that significant query runtime improve-
ments are obtained if we can speed up expression evaluation.

Expression Evaluation in the Limelight. Figure 1 shows
query @1 of the TPC-H benchmark with a particular focus
on the SQL expressions that are embedded in this query:

e a Boolean filter expression (D) that compares values of
type date (the date difference operator - is evaluated
at query compile time and thus is of no concern in the
context of this work) and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13

Copyright 2016 VLDB Endowment 2150-8097/16/09.

0N oUW N

©

10
11

SELECT 1_returnflag, 1_linestatus,
SUM(_quantity) AS sum_qgty,
SUM(_extendedprice) AS sum base_price,
SUM_extendedprice™(1-1_discount)) AS sum disc_price,]
SUM(_extendedprice* (1-1_discount)*(1+l_tax)) AS sum charge, i
AVG(L_quantity) AS avg_qty, i
AVG(l_extendedprice) AS avg_price,
AVG(_discount) AS avg_disc,
COUNT(*) AS count_order

FROM lineitem
WHERE {_shipdate <= date ’1998-12-01’ - interval ’103 days’@

@

12 GROUP BY 1_returnflag, 1 linestatus
13 ORDER BY 1_returnflag, 1_linestatus;

1517

Figure 1: TPC-H Q1. We focus on the evaluation of SQL
expressions (here: D) and (2)) embedded in such queries.

e a group @ of aggregates whose arguments are arithmetic

expressions over double precision columns and literals.
The execution of query @I involves a substantial expres-
sion evaluation effort. Table 1 displays an excerpt of a
function call profile, recorded while PostgreSQL 9 was ex-
ecuting Q1 over a TPC-H instance of scale factor 5. We
see that the scan of table lineitem leads to 29999 799 in-
vocations of function ExecQual to evaluate filter expres-
sion (D over the incoming rows (about 520 000 of those do not
qualify such that ExecScan returns 29477 776 times to its
caller, each time delivering an individual qualifying row).*
Each such row leads to the evaluation of the 8 aggregates
and their arithmetic expressions (2), yielding a total of 8 x
29477776 ~ 235582212 invocations of ExecProject, the
PostgreSQL function that evaluates expressions in a query’s
SELECT clause. Finally, caller ExecAgg returns 4 times' to
deliver the rows of aggregates computed by Q1.

This expression evaluation workload has a measurable im-
pact on query runtime. Indeed, in the case of Q1, Post-
greSQL spends the lion share of the execution time on ex-
pression evaluation. The pie charts of Figure 2 detail this
impact for an entire set of TPC-H queries (we have selected
these queries because they embed several and/or complex
SQL expressions—Q19, for example, contains a variety of
filters, see Figure 5 below). Here, the darker pie slices ac-
count for the overall execution time spent in all functions in
the call tree below ExecQual and ExecProject. During the
execution of @1, PostgreSQL is busy with expressions about
12.1% + 39.8% = 51.9% of the time—for the further queries

! ExecScan and ExecAgg return one additional time only to
indicate that no more rows will be delivered. PostgreSQL
implements a Volcano-style iterator model [3].

Table 1: PostgreSQL execution profile, focus on the eval-
uation of the expressions (D and @ in QI (see Figure 1).
Functions under ExecProcNode comprise the expression in-
terpreter (invoked 29447 787 times).

Calls Function
29447787 ExecProcNode

5 —ExecAgg
29447776 —advance_aggregates
235582212 L_ExecProject

58 895 550 L_ExecMakeFunctionResultsNoSets
ExecEvalConst
ExecEvalScalarVarFast

@ float8pl

float8mul

slot_getattr

235582208 t—advance_transition_function
88343328 L_float8_accum
235582212 —-slot_getsomeattrs
29447776 L-LookupHashTableEntry
176 686 640 L ... slot.getattr
29447777 —ExecScan
29999 799 L_ExecQual
29999 794 L_ExecMakeFunctionResultNoSets
ExecEvalConst
@ ExecEvalScalarVarFast

date_le_timestamp
slot_getattr

ExecProject

Q10 Q14 Q19

56.3

Figure 2: Percentages of overall execution time spent in in-
terpreted arithmetic (ExecProject) and filter (ExecQual)
expression evaluation for selected TPC-H queries.

in the set we observe that the system needs to devote be-
tween 32% and 70% of the query runtime to the evaluation
of SQL expressions.

The Interpreter is Calling. Again. The PostgreSQL
family of Exec--- functions together form an interpreter
that walks a tree-shaped representation of an expression:
operator nodes hold a pointer to a function that, when in-
voked, will recursively evaluate subexpressions as well as
the operator itself. The leaves of this tree represent literals
(see ExecEvalConst in Table 1), row variables (ExecScalar-
VarFast), or column accesses (slot_getattr). While this
style of expression interpreter is pervasive in today’s database
query processors, it has long been identified as CPU-intensive
and outright wasteful on modern computing and memory
architectures [1,6]. Interpreter-induced function calls need
to prepare/remove stack frames, save/restore registers, and
jump to and from the diverse function bodies, leading to
pipeline flushes and instruction cache pollution.

The resulting interpretation overhead is significant and
may dominate all other tasks of the query processor. Post-

Sort (actual time=32516.050..32516.050 rows=4)

Sort Key: 1_returnflag, 1 linestatus

Sort Method: quicksort Memory: 25kB

-> HashAggregate (actual time=32495.849..32495.852)

-> Seq Scan on lineitem (actual time=0.009..6472.002 rows=29447776)

Filter: i(l_shipdate <= '199&08—20')@
Rows Removed by Filter: 552019
Total runtime: 32516.153 ms

Figure 3: Query plan and breakdown of the 32516 ms
elapsed execution time for Q1 (EXPLAIN ANALYZE output).

greSQL’s EXPLAIN ANALYZE output for Q1 (Figure 3) reveals
that the sequential scan of lineitem requires 6472 ms—
3934ms (12.1% of 32516 ms, see Figure 2) of this time is
spent in the interpreted evaluation of filter . In the 26 s be-
tween timestamps to and t1, PostgreSQL performs grouping
and aggregation—the evaluation of the arithmetic expres-
sions (2 requires one half of this time (39.8% of 32516 ms).

2. COMPILATION OF SQL EXPRESSIONS

For any given expression e, at query run time the Post-
greSQL interpreter will repeatedly walk the tree for e and
invoke the same Exec--- functions in the same order. The
promise of compiling SQL expressions into machine code
is to turn this repeated run time effort into a one-time com-
pile time task. The present work is an exploration of how
PostgreSQL can benefit if we trade expression interpretation
for compilation. Cornerstones of the approach are:

e Each arithmetic and filter expression e is seen as a unit
that is compiled into a separate function—to invoke the
evaluation of e, PostgreSQL will thus call a single function.

e The PostgreSQL query optimizer remains unchanged—
expressions are compiled after planning and just before
query execution starts.

e This just-in-time compilation of expressions is based on
the LLVM compiler infrastructure [5] which comes in shape
of a library that we link with the original PostgreSQL
code—LLVM offers high-quality code generation at low
compilation times.

e We adopt a non-invasive approach that—outside of ex-
pression evaluation—retains PostgreSQL’s Volcano-style
pipelining query processor [3].

e Compiled and interpreted expression evaluation coexist;
both can contribute to the execution of the same query.

e Compiled code calls on built-in PostgreSQL routines to
access columns or convert values—this ensures compati-
bility with vanilla PostgreSQL and aids rapid prototyping.
Such routines can be gradually reimplemented in terms of
LLVM code if desired.

Our overall goal is to connect recent research in query code

generation with the internals of a database system that sees

world-wide deployment.

2.1 Compiling with Holes

To provide an impression of the compilation scheme, let
us focus on the treatment of conjunctions and disjunctions
in filters. This still grants insights into general efficiency
considerations, in particular the economy of column access.

Figure 4(a) (left-hand column) shows the LLVM pseudo
code that is emitted for the conjunctive filter expression e =
p1(A) AND p(B). Here, p1(A) is an arbitrary filter expression
that reads column A. In the code, %r denotes LLVM register r

1518

e = pi(A) AND p2(B) e OR p3(A,B) e = pi(A) AND pa(B) e OR p3(A,B)
plugs into @: with R = {A+—> %a,B+— %b}:
% = (slot_getattr(A)) ® ® t }
ret true ret true

%1 = (p1(%a))
br %p1, label %10, label %12
%10: % = (slot_getattr(B))

%2 = (p2(%b))

plugs into @):

% = (slot_getattr(A))

%l = (p1(%a))
br %1, label %10, label %12

®; with R = {A — %a}:

15%;;2, label %11, label %12 B = (slot,get§1>ttr(B)) %0: % = (slot_getattr(B)) % = (slot_getattr(B))

%L1: %3 = (p3(%a, %b %2 = 3 = %a, %b

AlL: : = (pa(%b)) %03 = (p3(%a, %b))

w2 ® ret %3 br %2, label %11, label %13 ret %p3
KWi: ® |
%12:
o3 %; ®, with R = {A — %a,B s %b}:

(a) Compiling filter subexpressions using continuation
holes (@)/®: code plugged into hole (T) may assume that
e has evaluated to true (likewise for ®/false). Note that
hole ® at label %12 may be reached via two code paths.

%3 = (p3(%a, %b))
ret %3

(b) Code emitted once hole (® has been split into ®; ,-

Figure 4: Expression compilation: LLVM pseudo-code emitted for the evaluation of the filter (p1 () AND pQ(B)) OR ps3(A,B).

(of which there are arbitrarily many—these will be mapped
onto real CPU registers by code generation). (p;(%a)) stands
in for the LLVM code for p1, assuming that the value of col-
umn A is available in register %a. Finally, (slot_getattr(A))
represents the LLVM instructions needed to invoke Post-
greSQL’s built-in routine that extracts the value of column A
from the current row.

We see that the first branch instruction br (marked
in Figure 4(a)) implements Boolean shortcut: if the value
of p1(A), held in register %p1, turns out to be false, we ignore
p2(B) and immediately branch to label ¥12. The false hole (F)
defines a spot where we can plug in continuing code [4].
Execution reaches the true hole (T) at label %11 only if both
p1(A) and p2(B) evaluate to true.

Code that plugs into hole @) (®) may be generated un-
der the assumption that subexpression e evaluated to true
(false). We exploit this when we generate code for a contain-
ing expression like e OR p3(A,B), see Figure 4(a) (right-hand
column). According to the semantics of disjunction, there
is thus nothing left to do in hole (T) and we immediately
return via ret. At ®), however, the overall result depends
on p3(A,B). We know that column A is definitely available in
register %a but we cannot tell for column B: two code paths
lead to hole ® at label %12 and only on one has %b been
assigned the value of (slot_getattr(B)). We thus need to
play safe and perform column extraction for B in any case.
This is unfortunate since calls to slot_getattr are costly:
the routine (1) checks whether the column has already been
extracted and thus cached, (2) retrieves the external column
representation either from the cache or the row at the cor-
rect offset, and then (3) transforms the value to an internal
main-memory representation.

Hole Splitting. The cost of slot_getattr motivates an
improved compilation scheme that uses holes to encode ex-
actly which column values are present in what registers when
execution reaches a hole. In the case of our filter expression e
this leads to a split of the false hole into ®; and ®, (Fig-
ure 4(b), left-hand column). At ®); (label %12) we know that
e evaluates to false and that %a holds column A, at &), we ad-
ditionally know that column B is present in %b. We can make
good use of this and judiciously omit the slot_getattr(B)
call in hole ®,. To issue the minimum number of column
loads that need to happen in a specific hole, the expression

1519

1 SELECT SUM(1_extendedprice* (1-I_discount)) AS revenues
FROM lineitem, part e@

pmode IN ("AIR”,”AIR REG")
1_shipinstruct = ’DELIVER IN PERSON’) :
C p_brand = “Brand#31”
AND p_container IN (’SM CASE’,’SM BOX’,...)
AND 1 _quantity >= 4 AND 1_quantity <= 14
AND p_size <=5
OR p_brand = ’Brand#52’
AND p_container IN (’MED CASE’, ’MED BOX',...)
AND 1_quantity >= 12 AND 1_quantity <= 22
AND p_size <= 10
OR p_brand = ’Brand#31’
AND p_container IN (’LG CASE’,’LG BOX’,...)
AND 1_quantity >= 29 AND 1_quantity <= 39
AND p_size <= 15);

0N o U oA W N

9
10
11
12
13
14
15
16
17
18

@
Figure 5: Once Q19 has been optimized, PostgreSQL’s in-
terpreter effectively evaluates the highlighted expressions.

translation maintains a compile-time mapping R of columns
to LLVM registers (see Figure 4(b), right-hand column).
Since hole splitting effectively unfolds all possible code
paths through a filter expression at compile time, we pay
for this optimization in terms of code size. For TPC-H
query Q19 featuring complex predicates (see Figure 5), we
indeed find that we now generate about 9 times as many
LLVM instructions (expression (7 yields 156 code paths).
Since SQL expressions are super-brief if compared to general-
purpose programs, we are nevertheless ready to accept this
size increase in order to reap the potential runtime savings.

2.2 The Bottom Line: Performance Gains

We set out to shift effort from query run time to compile
time. This pays off only if the added compilation time does
not eat up the performance gains. With LLVM, we measure
translation times of no more than 40ms when we handle
TPC-H queries. Hole splitting adds to this but only mod-
erately so: for @19 we see an increase of about 30%—this
is still negligible for OLAP-class queries. The more rows a
query processes, the more worthwhile expression compila-
tion becomes.

Figure 6 documents the performance gain of expression
compilation when PostgreSQL 9 processes a TPC-H bench-
mark of scale factor 5 (average of 10 runs reported). We see a

interpreted
expressions

32.5s 12.55 7.3s 12.5s 7.1s 10.9s
11.8s 11.5s 9.75
23.9s 5.3s
4.6s
Q1 Q3 Q6 Q10 Q14 Q19

Figure 6: Percentages of overall execution time spent to
evaluate compiled arithmetic and filter expressions (inter-
preted: see Figure 2). After compilation, TPC-H query QI
executes in 23.9s (before: 32.5s).

. 353.9M 62.0M 62.7M 65.6M 55.7M 42.8M

naive - T

evaluation 93.0% 9%
58.9% 59.8%

Q1 Q3 Q6 Q10 Q14 Q19

Figure 7: Reduction of the number of calls to slot_getattr
(column value extraction) after hole splitting.

query runtime reduction of up to to 37% (Q6) for the family
of selected TPC-H queries—in fact, all TPC-H queries ex-
hibit performance improvements. The system now devotes
a smaller slice of its time to expression evaluation: for @1,
SQL expressions now account for 9.4% + 25.3% = 34.7% of
the overall effort (formerly: 51.9%, compare to Figure 2).

Figure 7 contains evidence that queries do benefit from
hole splitting if an embedded expression repeatedly refers
to the same set of columns. Even moderate repetition suf-
fices to cut down the number of slot_getattr calls signi-
ficantly: the filter expressions in Q6 as well as Q1 access
columns 1_shipdate and 1_discount twice. No such col-
umn reuse within one expression occurs in Q1 or Q3. Ex-
pression (D) of Q19 (Figure 5) is a prime candidate for hole
splitting—it is because of the high selectivity of the con-
juncts @ to ® that we only measure a minor runtime im-
pact: the native code for (7) needs to be hardly ever invoked
by PostgreSQL.

3. DEMONSTRATION SETUP

We will bring an installation of PostgreSQL (version 9)
that has been enhanced with an LLVM-based compiler for
arithmetic and Boolean expressions, as described in Sec-
tion 2.1. The on-site demonstration features a setup cho-
sen to provide cursory as well as deeper impressions of SQL
expression compilation:

Cursory. Our PostgreSQL 9 system comes with a visual
EXPLAIN plan renderer (see Figure 8) that helps to under-
stand how the system spends its time. Colored operator
labels, like or BN, let performance choke points
stick out even if plans get complex. Paired execution time
annotations (after|before) give a quick overview of what is
to be gained by SQL expression compilation for a particu-
lar query. Additionally, we have instrumented PostgreSQL’s

24.25132.69

execution time (s)

18.4125.79

slowest node (s)

29,447,776

largest node (rows)

1,176,730.23

costliest node

SORT <1

|returnflag,|_linestatus

)

AGGREGATE

18.4s | 76
25.7¢

SEQ SCAN

inerem R
o=

Total Cost

5845 | 24
6.9s | 21

968263.45
Actual Rows 29447776

Rows Removed

by Filter 552019

Filter (I_shipdate <= '1998-08-20 00:00:00')

x86 Code

Figure 8: Enhanced visual EXPLAIN, revealing the LLVM-
generated x86 instructions that implement the filter expres-
sion (D (cf. Figure 1). Plan rendering based on Pev.?

query processor such that execution time breakdowns in the
form of pie charts (after: (8, before: @, recall Figure 2) can
be output on the fly.

Deeper. On a click, EXPLAIN reveals the LLVM intermedi-
ate representation [5] and/or the native x86 instructions for
any expression that underwent compilation. Among other
gory details, this also shows how hole splitting shapes the
generated code. A larger TPC-H instance will be preloaded
to demonstrate the runtime savings we have reported here.
The demonstration does not run on rails, though: we will
also provide toy data sets that allow for quick turnaround
and experimentation. The audience is encouraged to explore
ad-hoc query compilation scenarios and observe the impact
of this PostgreSQL performance surgery.

4. REFERENCES

[1] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proc. CIDR,
pages 225-237, 2005.

P. A. Boncz, T. Neumann, and O. Erling. TPC-H
Analyzed: Hidden Messages and Lessons Learned from
an Influential Benchmark. In Proc. TPC Technology
Conference on Performance Fvaluation &
Benchmarking (TPCTC), pages 61-76, 2013.

G. Graefe. Volcano—An Extensible and Parallel Query
Evaluation System. IEEE TKDE, 6(1):120-135, 1994.
D. Gries. Compiler Construction for Digital Computers.
John Wiley & Sons, New Jersey, USA, 1971.

The LLVM Compiler Infrastructure Project. 11vm.org.
T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. In Proc. VLDB, pages
539-550, Seattle, Washington, USA, 2011.

[7] The TPC Benchmark H. tpc.org.

2]

1520

2github .com/AlexTatiyants/pev

