JexLog: A Sonar for the Abyss

Tobias Scheuer

Norman May Alexander B6hm Daniel Scheibli

SAP SE
Walldorf, Germany

{tobias.scheuer|norman.may|alexander.boehm|daniel.scheibliy@sap.com

ABSTRACT

Today’s hardware architectures provide an ever-increasing
number of CPU cores that can be used for running con-
current operations. A big challenge is to ensure that these
operations are properly synchronized and make efficient use
of the available resources. Fellow database researchers have
appropriately described this problem as “staring into the
abyss” of complexity [12], where reasoning about the inter-
play of jobs on a thousand cores becomes extremely chal-
lenging. In this demonstration, we show how a new tool,
JexLog, can help to visually analyze concurrent jobs in sys-
tem software and how it is used to optimize for modern
hardware.

1. INTRODUCTION

Following Moore’s law, hardware systems have evolved to
a point where machines with more than one thousand log-
ical CPUs and several terabytes of main memory become
available and affordable for enterprise customers. The idea
of enterprise operational analytic database systems that run
transactional workload and real-time reporting in the con-
text of a single system mandates that today’s DMBS can
use these hardware resources effectively.

To provide high transactional throughput and real-time
reporting, modern databases such as Oracle 12c, Microsoft
SQLServer 2016, IBM DB2 and our own SAP HANA [3]
keep most data in DRAM and rely on hardware-supported
query processing and parallelization. Usually, paralleliza-
tion is done on multiple levels of query processing, i.e. run-
ning multiple queries in parallel (inter-query parallelism),
running multiple relational operators of a single query in
parallel (inter-operator parallelism), as well as parallelism
inside a single, large operator such as a hash-join or long-
running scan (intra-operator parallelism).

To system architects and developers, this high amount
of different parallelization opportunities and their combina-
tion presents significant challenges: Not only do they have

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13

Copyright 2016 VLDB Endowment 2150-8097/16/09.

1493

to come up with efficient algorithms that allow to paral-
lelize individual operations, but they also have to ensure
that — specifically for complex, concurrent workloads — the
interplay of multiple queries and operations is solid and ef-
ficient [7, 11].

Using state-of-the-art profiling tools like RotateRight
Zoom, valgrind/callgrind, or Linux perf, the identification
of such problematic patterns turned out to be very tedious
or even impossible, because these tools focus mostly on CPU
consumption. This CPU-centric analysis may help to stop
some patterns of excessive parallelization as the thread cre-
ation overhead might show up, but they fail to identify
under-parallelization or synchronization efforts that are not
CPU intensive (e.g. futex calls). As a result, the profiling
tools prominently show those parts of the code that can
be considered OK, while they actually miss the interesting,
problematic parts. One notable exception is Intel VTune [5,
6] which provides options to analyze the CPU utilization
over time, and also includes NUMA-specific statistics, such
as thread migration. However for an advanced analysis, pro-
filers like VTune require annotations at source code level or
the use of special libraries. In addition, we found that VTune
has difficulties handling very large systems with several hun-
dred cores. Tools like HPCToolkit [1] focus on statistical
sampling and thus may fail to identify short-running jobs
as a root cause of bad scalability. Our approach aims at
combining the best of both worlds. We do actual tracing
of events and thereby gain a great level of detail. Doing it
efficiently and being restrictive on the amount of data to col-
lect, we limit the overhead to a level that is otherwise only
available to sampling-based approaches. Additionally, high-
level tools for visualizing query workload are available [4, 9,
10], but these tools focus on providing an abstraction where
a detailed analysis is required.

This lack of suitable tools, which are also integrated with
the database kernel, motivated us to develop our own thread
profiler. Besides our focus on finding and fixing scalability
issues due to synchronization, we also made sure that the
tool can be used to gather traces in production environ-
ments. In our demonstration we present JexLog, a tool to
collect and visualize the parallel execution of jobs in complex
system software running on modern hardware with several
hundreds of logical cores. We show how JexLog helps to
quickly identify bottlenecks and problematic patterns in the
NUMA-aware, parallel execution of mixed workload. Using
several real-world examples, we showcase how this analysis
helped to improve the performance and scalability of the
enterprise-class, commercial DBMS SAP HANA.

Figure 1: Macro level overview of an 8 socket, 512 logical cores system

2. JEXLOG

The Job Ezecution Log (JexLog) tool consists of two com-
ponents: The backend part is integrated into the SAP HANA
database kernel and collects data about job scheduling, syn-
chronization and the lifecycle of threads. The stand-alone
viewer consumes the trace file generated by the backend and
provides the interactive analysis of the data collected.

2.1 Data Collection

For the backend we assume that parallelizable workload
is mapped to jobs or tasks. These are assigned to prior-
ity queues and scheduled to thread pool members by the
job scheduler. In SAP HANA we use the implementation
described in [7, 8], but the concepts should also apply to
other databases as well. Thanks to the job scheduling, it
is possible to generate notifications for relevant events like
job creation, job scheduling, or begin/end of job execution.
When jobs are blocked, e.g. a thread waits on a mutex or
waits for the response of a network request, the correspond-
ing events are also generated. Any system that allows to
collect these events efficiently could generate job-logs that
could be consumed by our viewer component.

A challenging aspect of collecting the job events is the
overhead it may introduce. Especially in highly parallelized
programs like the SAP HANA database, this overhead can
completely change the way jobs are executed, e.g. lock con-
tention may disappear due to (or thanks to) the effort re-
quired to capture events and log them. Therefore an effi-
cient implementation is of paramount importance. We col-
lect events in a pre-allocated per-core data structure in order
to keep all data in local caches and to be able to use lock-free

1494

algorithms to store the events. We also ensure that an event
fits into one cache line, which further reduces overhead. As
a result, the data structures scale up well with the number
of cores.

In our measurements, we found the overhead induced by
the JexLog backend to be below 1%, and hence negligible.
However, additionally collecting call stacks incurs a visible
overhead of 20us per event, even with the very fine-tuned
implementation for call stacks in SAP HANA. We consider
the overhead tolerable especially as it scatters very nicely, so
the observed behavior of the jobs, waits, and threads is not
changed much. Also, collecting the call stacks is optional,
and thus this overhead can be avoided completely.

2.2 Data Analysis

The viewer component of the JexLog is a stand-alone pro-
gram that consumes the event data stored in a JexLog trace
file. It is implemented in C++ using DirectX for fast ren-
dering. An efficient implementation of the viewer is crucial
because even for shorter traces the dataset can be hundreds
of megabytes in size. Also, the interactive graphical display
of thousands of threads demands an efficient implementation
of the JexLog viewer.

Figure 1 shows the main screen of the JexLog viewer with
example data from an 8-socket machine with 512 logical
cores. The x-axis represents the wall-clock time when the
events were captured. The y-axis shows the active threads
sorted by socket and thread ID. On Linux, where thread
IDs increase monotonically for new threads, newly created
threads will be at the bottom of each socket group.

us from 9
I I

- L
O

tid=478034 time=9'240'004 us

24 worker / 0 other thr
L

worker 1870 events (valid=935) associated numa node=5 depth=2|

type 7 Waiting

actual core=370 (phys core=368 numa node=>5 socket=5)

Figure 3: Good parallelization

A screen almost completely filled with green bars is the de-
sired state; so clearly the red color and the step-patterns in-
dicate that there is something wrong: The red bars point to
parts where synchronization blocks the execution of threads.
To keep all available cores busy, the SAP HANA job sched-
uler starts new threads to schedule work on these cores [7],
and this leads to the step pattern shown in Figure 1.

To identify the source of the lock contention we need to
zoom into the dataset. In Figure 2, we have a closer look
at the data. However please notice that it is possible to
zoom in much further for investigating very short running
jobs. Each thread has its own row where jobs and events
are shown as color coded bars. A green bar indicates that
the run method of a job is executed — executing useful code.
Yellow bars represent code executed inside the job scheduler
to schedule jobs, while blue bars refer to CPU time spent
on binding a job to a particular socket. Hence, both indi-
cate overhead of job scheduling, and we aim to minimize the
time spent executing this code. Finally, a red bar highlights
the fact that a job is waiting on a synchronization primitive.
Consequently, this pool thread is not available for processing
other jobs. As Amdahl’s law teaches us [2], this synchroniza-
tion limits the speed-up we can achieve with the many cores
available to us. Because events can overlap, the bar repre-
senting them can too. We decided on partially overlapping
the event bars on the y-axis. That way, the user can see the

1495

Execution:: ContextWaitScope: ~ContextWaftScop
Synchronization::Mutex::lock(Execution:: Cantexté
Executor.X2::runPopTask(Executor. : X2::PopTasklr
Executor.:X2::runPopJob(Executor:X2Job*)+0xa0
Executor X2Job: run(Execution::Job Object)+0x2:
Execution::JobMNode::run{Execution:: Context&, Ex¢
Execution::JobObjectimpl::run(Execution::JobWaork
Execution:-JobWarker ‘runJob(itt:-smartptr_handle«
Execution::JobWarker::run(void*8)+0x208 at JobE»

Figure 4: Micro jobs pattern example

span of each event, but still the currently relevant job phase
dominates visually.

The user interacts via mouse or keyboard with the Jex-
Log viewer, e.g. by zoom in and out of the dataset. Fig-
ure 2 shows both, the details window and call stack window,
which are displayed once the user moves the mouse over a
specific thread event. A particular strength of the tool is its
filtering capability. Threads can be filtered by combinations
of NUMA node, core, job graph, call stack, sync address
or request ID. Using the request ID, users can also corre-
late jobs to their respective SQL statement. Zooming into
a particular area of the dataset, there might be time frames
where not all threads are active and hence black “voids”
might dominate. We resolve these cases by collapsing the
empty threads rows, only showing those threads that have
events in the visible timeline. These basic interactions are
usually sufficient to identify problems related to the multi-
threaded execution in the system. In the example shown
in Figure 2, the stack trace points us to the source code
location where the synchronization happens. With this in-
formation, the responsible programmer can be approached
and options for the synchronization overhead reduction can
be explored based on actual measurements.

The result of successfully reducing synchronization should
look similar to Figure 3. There green area indicates that
there is no synchronization — only the job in the middle

waits for its children to finish. Furthermore, the schedul-
ing overhead is negligible as the yellow bars are very short.
However, it seems that before and after the green area, few
threads are being executed. This might point to code that
is poorly parallelized and thus might not utilize the available
CPU resources.

A third pattern we demonstrate are micro-jobs, i.e. chunks
of parallelized work that are too small to justify the overhead
of context switching and job scheduling. Figure 4 illustrates
this pattern; note that the JexLog viewer shows less than
one millisecond of execution time. It is evident that little
useful code is executed because there are only very short
green bars. This negative effect is exaggerated by the large
fraction of time spent for scheduling — as visualized by the
yellow bars. In most cases, the root cause is that develop-
ers did not expect to have thousands of threads available
to parallelize their code and therefore missed to set lower
bounds for the work to be done by a job.

3. DEMONSTRATION

Our demonstration is built on a considerable pool of Jex-
Log trace files, including workloads from different industry
benchmarks, mixed workloads as well as internal applica-
tions. These traces have been collected on NUMA machines
with several hundred up to 1152 logical cores.

We will start our demonstration with a high-level overview
of complex query workloads running on large NUMA ma-
chines, allowing the audience to “stare into the abyss” and
get an intuitive feeling for the complexity of the analysis
task at hand. We complement this view with a traditional,
tree-based visualization of CPU profiling hotspots to dif-
ferentiate the two and to illustrate the deficiencies of the
state-of-the-art tools like perf and valgrind/callgrind.

In a next step, we zoom into the big picture shown by
the JexLog viewer. This quickly allows us to identify prob-
lematic patterns in the complex workload. We show how to
spot problems such as over-parallelization, sequential paths
in parallel workloads, and lock-contention by identifying the
corresponding pattern in JexLog viewer.

To demonstrate the practical benefits of JexLog viewer
for system software development, we will showcase several
“war stories” like Figure 2, which we encountered during the
development and optimization of the SAP HANA database.
By visualizing the system behavior before and after the op-
timizations, the audience gets an intuitive feeling for the
issues encountered and the benefits of the optimizations de-
livered.

As a last step of our demonstration, we hand over control
of JexLog viewer to our audience. Using several examples
with ”interesting patterns” we encountered during bench-
marking and optimization of SAP HANA, we let the audi-
ence explore the characteristics of a complex, multi-threaded
system and evaluate the practical usability and benefits of
JexLog viewer for system developers.

4. CONCLUSION

The real-world database workloads we present in our dem-
onstration emphasize that getting parallel execution right is
still a hard problem today. Database developers need tools
to drill down to the lowest level of query execution to iden-

tify issues in their code. In our demonstration we share
how we identified several typical patterns that limit the ef-

fective use of the 1000 cores and more available on modern

1496

hardware. JexLog is able to efficiently capture concurrent
workload and to visualize it intuitively. The concepts we
present can be applied to any database that employs multi-
threading to parallelize query processing. Thus, we believe
that our demonstration is relevant for every database re-
searcher or engineer who aims to make effective use of all
available CPU resources on modern hardware.

S. ACKNOWLEDGMENTS

We thank the SAP HANA core development team for their
input and feedback on the JexLog tool.

6. REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,

G. Marin, J. Mellor-Crummey, and N. R. Tallent.
HPCToolkit: Tools for performance analysis of
optimized parallel programs. Concurrency and
Computation: Practice and Ezperience, 22(6):685-701,
2010.

G. M. Amdahl. Validity of the single-processor
approach to achieving large scale computing
capabilities. In Proc. AFIPS, pages 483-485, 1967.

F. Farber, N. May, W. Lehner, P. Grofle, I. Miiller,
H. Rauhe, and J. Dees. The SAP HANA Database —
an architecture overview. IEEE Data FEng. Bull.,
35(1):28-33, 2012.

M. Gawade and M. L. Kersten. Stethoscope: A
platform for interactive visual analysis of query
execution plans. PVLDB, 5(12):1926-1929, 2012.
Intel. Intel VTune Amplifier 2016. https:
//software.intel.com/en-us/intel-vtune-amplifier-xe.
Retrieved February 23, 2016.

A. Marowka. On Performance Analysis of a
Multithreaded Application Parallelized by Different
Programming Models Using Intel VTune. In Proc.
PaCT, pages 317-331, 2011.

I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki.
Task Scheduling for Highly Concurrent Analytical and
Transactional Main-Memory Workloads. In Proc.
ADMS, pages 36-45, 2013.

I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and
A. Ailamaki. Scaling Up Concurrent Main-Memory
Column-Store Scans: Towards Adaptive NUMA-aware
Data and Task Placement. PVLDB, 8(12):1442-1453,
2015.

D. Scheibli, C. Dinse, and A. Bohm. QE3D:
Interactive Visualization and Exploration of Complex,
Distributed Query Plans. In Proc. ACM SIGMOD,
pages 877-881, 2015.

A. Simitsis, K. Wilkinson, J. Blais, and J. Walsh.
VQA: vertica query analyzer. In Proc. ACM
SIGMOD, pages 701-704, 2014.

F. Wolf, 1. Psaroudakis, N. May, A. Ailamaki, and
K. Sattler. Extending database task schedulers for
multi-threaded application code. In Proc. SSDBM,
pages 25:1-25:12, 2015.

X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and

M. Stonebraker. Staring into the Abyss: An
Evaluation of Concurrency Control with One
Thousand Cores. PVLDB, 8(3):209-220, 2014.

(10]

(11]

(12]

