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ABSTRACT
Knowledge bases are becoming increasingly important in structur-
ing and representing information from the web. Meanwhile, web-
scale information poses significant scalability and quality challenges
to knowledge base systems. To address these challenges, we de-
velop a probabilistic knowledge base system, ARCHIMEDESONE,
by scaling up the knowledge expansion and statistical inference al-
gorithms. We design a web interface for users to query and update
large knowledge bases.

In this paper, we demonstrate the ARCHIMEDESONE system to
showcase its efficient query and inference engines. The demonstra-
tion serves two purposes: 1) to provide an interface for users to
interact with ARCHIMEDESONE through load, search, and update
queries; and 2) to validate our approaches of knowledge expan-
sion by applying inference rules in batches using relational oper-
ations and query-driven inference by focusing computation on the
query facts. We compare ARCHIMEDESONE with state-of-the-art
approaches using two knowledge bases: NELL-sports with 4.5 mil-
lion facts and Reverb-Sherlock with 15 million facts.

1. INTRODUCTION
Recent development in information extraction and data manage-

ment systems arouses elevating efforts in constructing large knowl-
edge bases (KBs). These knowledge bases store information in
a structured format, facilitating efficient processing and querying.
Examples of these knowledge bases include DBpedia, DeepDive,
Freebase, Google Knowledge Graph, Knowledge Vault, NELL, Ope-
nIE, ProBase, ProbKB, and YAGO. They store structured informa-
tion about real-world people, places, organizations, etc, paving the
way for the semantic web [1] and semantic search [4] movement
that revolutionizes keyword matching for search.

With the prevalence of web information, these extracted knowl-
edge bases are becoming prohibitively large and are continuously
expanding in scale. As of this writing, Freebase has 388 million
facts; Reverb has 15 million facts. Despite their scales, the knowl-
edge bases are often incomplete or uncertain due to limitations of
human knowledge and the probabilistic nature of information ex-
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traction algorithms [3]. In this paper, we present the ARCHIMEDES-
ONE system to manage large-scale automatically harnessed knowl-
edge. ARCHIMEDESONE addresses the incompleteness and un-
certainty challenges in knowledge management: First, knowledge
bases contain only subsets of the global knowledge due to limita-
tions of the construction methods–human collaboration and extrac-
tion algorithms. Second, machine-constructed knowledge bases
contain uncertain or noisy information extracted by probabilistic
information extraction algorithms.

ARCHIMEDESONE addresses these challenges by performing the
knowledge expansion and query-driven inference tasks:

Knowledge expansion. Derive missing and implicit facts using
first-order inference rules.

Query-driven inference. Compute and update marginal proba-
bilities of query results.
To efficiently perform knowledge expansion, ARCHIMEDESONE
utilizes a novel relational model from our work, ProbKB [3], that
stores inference rules in relational tables and applies them in batches
using SQL queries. It improves Tuffy [6] by storing rules with the
same structure in one table. Thus, a single SQL query applies all
rules in one rules table in batches, and the number of SQL queries
is substantially reduced for large rule sets: for the Sherlock-Reverb
dataset, we use 6 queries to apply 30,912 inference rules. Con-
sequently, we improve performance by more than 200 times over
Tuffy [3]. To efficiently support inference, ARCHIMEDESONE fo-
cuses computation on query nodes to avoid re-computation over
the entire knowledge base for each query. Query-driven inference
achieves one order of magnitude of speedup for an average query.

ARCHIMEDESONE models uncertain knowledge using Markov
logic networks (MLNs) [8]. An MLN consists of weighted first-
order clauses to represent uncertain facts and rules. It determines
a ground factor graph defining the probability distribution over the
base and inferred facts. To answer user queries requires probabilis-
tic inference over MLNs in two steps: grounding (constructing the
ground factor graph by applying MLN rules) and inference (com-
puting marginal probabilities). ARCHIMEDESONE efficiently per-
forms these steps by knowledge expansion and query-driven infer-
ence. Comparing with the state-of-the-art inference algorithms [7],
ARCHIMEDESONE scales to large MLNs.

In this paper, we present the ARCHIMEDESONE probabilistic
knowledge base system. We develop a web interface for users
to interact with ARCHIMEDESONE through load, search, and up-
date queries, demonstrating its support for real-time queries by per-
forming efficient knowledge expansion and query-driven inference.
We implement ARCHIMEDESONE on UDA-GIST [5], a relational
database system extended to support common analytics algorithms
including MCMC and MC-SAT [7]. The demonstration highlights
ARCHIMEDESONE’s performance and quality.
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(a) Factor graph at t1
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(b) Factor graph at t2
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(c) Factor graph at t3
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(d) Factor graph at t4

ground predicate table
Predicate ID Ground Predicate

1 Obama isBornInState Hawaii
2 Hawaii isAStateOf USA
3 Obama isBornInCountry USA
4 Obama hasACitizenshipOf USA
5 Obama isEligibleToBePresidentOf USA
6 Obama isBornInCountry Kenya
7 Star-Bulletin isLocatedAt Hawaii
8 Star-Bulletin advertiseTheBirthOf Obama
9 Obama hasBirthCertificateIn Hawaii
- -

factor table
Factor ID Clause p(t1) p(t2) p(t3) p(t4)

f1 1 1.00 0.70
f2 3 1.00 0.70
f3 1 ∧ 2 → 3 1.00
f4 3 ∧ 4 → 5 0.95
f5 6 - 0.30
f6 6 →¬3 - 1.00
f7 8 - 0.95
f8 7 ∧ 8 → 1 - 1.00
f9 9 - 0.95
f10 9 → 1 - 1.00

Figure 1: Probabilistic knowledge base of Barack Obama citizenship conspiracy theories. (a)-(d) Ground factor graphs at t1 to t4.

2. PROBABILISTIC KNOWLEDGE BASES
A probabilistic knowledge base is a knowledge base that sup-

ports uncertain facts and rules. The support for uncertainty is es-
sential for representing automatically constructed knowledge bases
since they contain facts and rules mined by probabilistic informa-
tion extraction algorithms. In Figure 1, we show a probabilistic
knowledge base of Barack Obama citizenship conspiracy theories
constructed from a Wikipedia page of the events [9].

Example 1. Before Obama’s presidential campaign, denoted by
timestamp t1, public information showed that he was born in Hawaii.
At timestamp t2, anonymous emails questioned Obama’s birth place
and indicated that “Obama isBornInCountry Kenya.” Jim Ger-
aghty of the National Review Online sparked further speculation.
This information led to a contradiction about Obama’s birthplace.
As described in Figure 1, “Obama isBornInCountry Kenya” is ex-
tracted with a confidence value of 0.3 and “Obama isBornInCoun-
try USA” is extracted with a confidence value of 0.7. At the next
timestamp t3, the local newspaper Star-Bulletin advertised the birth
place of Obama. Finally, the tempest died away with the release of
Obama’s birth certificate from the Hawaii Department of Health.

To answer the query “Obama isBornInCountry USA,” we need
to re-compute its probability based on all current evidence since
previously computed probabilities are outdated with the emergence
of new evidence. With the data described in Figure 1, the query
“Obama isBornInCountry USA” returns probabilities 1.00, 0.84,
0.90 and 0.97 in the four snapshots. �

We formally define a probabilistic knowledge base as a database
of facts and a set of probabilistic first-order formulae, represented
by a Markov logic network.

2.1 Markov Logic Networks
Markov logic networks represent uncertain facts and rules by

weighted first-order clauses. Essentially, an MLN is a set of weighted
first-order formulae {(Fi,Wi)}, the weightWi indicating how likely
the formula Fi is true. For example, the following weighted formu-

lae form an MLN representing knowledge about Barack Obama’s
birth place and rules to expand the knowledge:
0.70 isBornInCountry(Barack Obama, USA)
1.00 isBornInState(x, z), isAStateOf(z, y)→ isBornInCountry(x, y)
1.00 isBornInCountry(z, x)∧ isBornInCountry(z, y)→ x = y

They state a fact that Barack Obama was born in the USA, a rule
that if a person x was born in state z and the state z is located in
country y, then the person xwas born in country y, and a constraint
that a person was born in only one country. The weights 0.70 and
1.00 specify how strong the rules are; stronger rules are more likely
satisfied by the knowledge base.

2.2 Inference
An MLN can be viewed as a template for constructing ground

factor graphs. A factor graph is a set of factors Φ = {φ1, . . . , φN},
where each factor φi is a function φi(Xi) over a random vec-
tor Xi indicating the causal relationships among the random vari-
ables in Xi. In Figures 1(a)-(d), we show ground factor graphs
for the knowledge base at timestamps t1 to t4. Each factor rep-
resents a ground rule–e.g., factor f3 represents the rule isBornIn-
State(Obama, Hawaii), isAStateOf(Hawaii, USA)→ isBornInCoun-
try(Obama, USA). The process of constructing the ground factor
graph from an MLN is called grounding [8].

In a factor graph Φ = {φ1, . . . , φN}, the factors together de-
termine a joint probability distribution over the random vector X
consisting of all the random variables in the factor graph:

P (X = x) =
1

Z

∏
i

φi(Xi) =
1

Z
exp

(∑
i

Wini(x)

)
, (1)

where ni(x) is the number of true groundings of rule Fi in x, Wi

is its weight, and Z is the partition function, i.e., normalization
constant. ARCHIMEDESONE answers user queries by computing
P (X = x), the marginal distribution of a query node X defined
by (1). This is called marginal inference of probabilistic graphi-
cal models. Exact inference in MLNs is intractable [8], and state-
of-the-art approaches use sampling algorithms including MCMC
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and MC-SAT [8, 7, 6]. ARCHIMEDESONE uses a query-driven ap-
proach to focus MCMC sampling on the query nodes. As illustrated
in Figure 1, when we update the factor graph, the marginal proba-
bilities it defines also get updated. Query-driven sampling handles
these updates by avoiding re-computation over the entire graph.

3. SYSTEM OVERVIEW
ARCHIMEDESONE models facts, rules, and the factor graph in

relational tables. This relational model enables ARCHIMEDESONE
to efficiently perform knowledge expansion and query-driven in-
ference using join queries in the UDA-GIST in-database analyt-
ics framework [5]. Users interact with ARCHIMEDESONE through
load, search, and update queries on a web user interface. The
ARCHIMEDESONE architecture is shown in Figure 2.

UDA-GIST

Expansion

Inference Relational KB model

User interface

Load Search Update
Query interface

KB design

Computing platform

Facts Rules

Factor graph

PostgreSQL

Figure 2: Users interact with ARCHIMEDESONE through a
web user interface to retrieve results from knowledge expan-
sion and query-driven inference, implemented in UDA-GIST.

3.1 Knowledge Expansion
In ARCHIMEDESONE, we represent a knowledge base as rela-

tional tables. This relational model is first introduced by ProbKB [3]
and proves efficient in rule mining [2] by applying inference rules
in batches using join queries. The main challenge with inference
rules is that they have flexible structures. To adapt for their struc-
tures, we utilize structural equivalence to divide rules into equiva-
lent classes so that each equivalent class has a fixed table format.

In particular, we call two first-order clauses structurally equiva-
lent if they differ only in entities, types, and predicates. To illus-
trate, the following rules are structurally equivalent:
isBornInState(x, z), isAStateOf(z, y)→ isBornInCountry(x, y)
isBornInCity(x, z), isACityOf(z, y)→ isBornInState(x, y)

It is verifiable that the structural equivalence relation is an equiva-
lence relation. Thus, first-order clauses can be divided into equiv-
alent classes accordingly. According to the definition, each rule
is identified by the differing entities, types, or predicates. Thus,
each equivalent class can be stored in a fixed-column table, with
the columns being entities, types, and predicates.

Based on the relational model, we express the knowledge expan-
sion algorithm as join queries between the facts and rules tables,
one join for each rules table. Our experiments show that apply-
ing rules in batches results in a 200-300 times of speedup over the
state-of-the-art approaches [3]. The result of knowledge expansion
is a ground factor graph Φ = {φ1, . . . , φN}, where each factor
φi(Xi) represents a ground rule. The factor graph is modeled by
a relational table, the columns storing predicate IDs of variables
X ∈ X and weights of the factors. Performing inference on this
factor graph yields marginal probabilities of the query facts.

3.2 Query-Driven Inference
ARCHIMEDESONE uses query-driven inference to speed up MLN

inference algorithms by focusing computation on the query facts.
The query-driven inference algorithm is designed with the UDA-
GIST analytics framework [5] to achieve efficient inference in a
relational database system. Furthermore, we use K-hop approxi-
mation to focus computation on the query facts.
UDA-GIST. We implement query-driven inference using the UDA-
GIST in-database analytics framework [5]. UDA-GIST utilizes
User Defined Aggregates (UDAs) and extends it with a new op-
erator, General Iterative State Transition (GIST), that performs it-
erative transitions of computation over a large state. UDA-GIST
combined extends relational database systems by allowing users to
define UDAs and GISTs capable of expressing complex analytics
algorithms including MCMC and MC-SAT.
K-hop approximation. To achieve real-time response, we approx-
imate inference by extracting K-hop sub-networks of the ground
factor graph, consisting of nodes within K hops from the query
nodes. The K-hop approximation is based on the observation that
neighbors of the query nodes have more influence than distant nodes.
To achieve real-time response, we use an additional network limit
parameter to control the expansion of K-hop sub-networks as K
increases. In Section 3.3, we achieve an 18 times of speedup com-
pared to inference over the entire factor graph by choosing K = 2,
with an acceptable error of 0.04 in probabilities.

3.3 Experiments
We evaluate ARCHIMEDESONE using the Reverb-Sherlock Wiki-

pedia knowledge base [3] with 407,247 facts and 30,912 first-order
inference rules and a synthetic knowledge base with varying num-
bers of facts and rules ranging from 10K to 10M.
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(c)
K 1 2 5 10 15

Runtime 1.31 25.82 31.23 31.29 31.31
Error 0.09 0.04 0.04 0.04 0.04

Figure 4: Efficiency benchmark results. (a)(b) Knowledge ex-
pansion. Tuffy-T refers to our implementation of Tuffy to sup-
port typed rules. (c) Query-driven inference.

Knowledge expansion. We use Tuffy [6] as the baseline compar-
ison. Figures 4(a)(b) compare performance of ARCHIMEDESONE
with Tuffy on the synthetic knowledge base with varying numbers
of facts and rules. We see that ARCHIMEDESONE achieves more
than 200 times of speedup over Tuffy for 107 facts. The speedup
benefits from the batch application of rules with join operations
supported by the relational knowledge base model.
Query-driven inference. We evaluate query-driven inference on
the Reverb-Sherlock knowledge base by varying K from 1 to 15
and setting network limit to 1000 in theK-hop approximation. The
result is reported in Figure 4(c). By setting K = 2, we achieve an
18 times of speedup with an acceptable error of 0.04 in computed
probabilities. The runtime becomes stable when K ≥ 5 as the
network size reaches the network limit.
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Update

ArchimedesOne 
Load  Example 1  KB.

Update
Subject Predicate Object Probability
Barack Obama isBornInCountry Kenya 0.3

StarBulletin isLocatedAt Hawaii 1

StarBulletin advertiseTheBirthOfBarack Obama 0.95

Barack Obama hasBirthCertificateInHawaii 0.95

Result (Update 8 rows in Example 1)

Query

Subject: 
Barack Obama

Predicate: 
isBornInCountry

Object: 
*

ArchimedesOne 
Load  Example 1  KB.

Query

Result (Query (Barack Obama, isBornInCountry, *) in Example 1; 2 results)
Subject Predicate Object Probability
Barack Obama isBornInCountry USA 0.97
Barack Obama isBornInCountry Kenya 0.03

Figure 3: ARCHIMEDESONE user interface. (a) Updating ARCHIMEDESONE by adding facts. (b) Query results at time t4.
ARCHIMEDESONE determines the probabilities of Obama’s birth places by aggregating current and previous evidence.

4. DEMONSTRATION
We demonstrate the ARCHIMEDESONE system with a web in-

terface to query NELL-Sports and Reverb-Sherlock KBs, featuring
its knowledge expansion and query-driven inference engines.
NELL-Sports. The NELL candidate belief dataset (up to itera-
tion 910) contains 84.6 million facts and 1828 rules in the sports
domain. We remove duplicate rules and rules with predicate “gen-
eralization” as they are beyond the sports domain. We use the 4.5
million facts after pre-processing the candidate belief dataset.
Reverb-Sherlock. Reverb-Sherlock is an automatically constructed
knowledge base by information extraction and inductive logic pro-
gramming. It is extracted from the ClueWeb, containing 15M facts
and 30,912 first-order inference rules. The Reverb-Sherlock knowl-
edge base covers general domains, including people, locations, films,
food, sports, etc.
User interface. We develop a website for users to interact with
ARCHIMEDESONE. Figure 3 shows a sample session where the
user loads a knowledge base, incrementally updates the knowl-
edge base, and queries ARCHIMEDESONE with a partial triple.
ARCHIMEDESONE returns the missing values and probabilities.

4.1 Demo Scenarios
VLDB participants attending the ARCHIMEDESONE demonstra-

tion can query the NELL-Sports and Reverb-Sherlock KBs through
its web user interface shown in Figure 3. ARCHIMEDESONE sup-
ports load, search, and update queries:
Load. Import a knowledge base of facts and rules into ARCHIMEDES-
ONE and initiate the knowledge expansion task. ARCHIMEDES-
ONE efficiently applies inference rules in batches and derives new
facts from the imported knowledge base.
Search. Post a triple with a missing value to query, e.g., (Barack
Obama, isBornInCountry, ·) asking for the birth country of Barack
Obama. ARCHIMEDESONE searches in the expanded knowledge
graph for the answers and performs query-driven inference to com-
pute the probability of each answer.
Update. Add or update new facts or rules to ARCHIMEDESONE.
In Figure 3, the user updates birth information of Barack Obama
according to Example 1. Before the update, ARCHIMEDESONE
would return a probability of 1.0 for “Obama isBornInCountry
USA.” After the update, the probability has changed to 0.97.

Figure 3 shows a sample session where the user queries and up-
dates the knowledge base in Example 1. Initially, ARCHIMEDES-
ONE knows that Barack Obama was born in Hawaii, USA. In Fig-
ure 3(a), the user updates ARCHIMEDESONE by providing addi-
tional information that Obama was born in Kenya from the anony-

mous emails with probability 0.3. The user also provides an addi-
tional certificate that Obama was born in Hawaii with probability
0.95. As a result, ARCHIMEDESONE initiates query-driven infer-
ence and updates the birth place of Obama to USA with probability
0.97. In a query asking for Obama’s birth place in Figure 3(b),
ARCHIMEDESONE returns the new information to the user.

4.2 Performance Comparison
In the ARCHIMEDESONE demo, we compare different algorithms

for knowledge expansion and query-driven inference.
Knowledge expansion. ARCHIMEDESONE improves performance
by storing structurally equivalent rules [3] in one relational table.
Thus, a single SQL query applies one table of rules in batches. By
comparing with Tuffy [6], we show that a single batch query is
more efficient than an equivalent sequence of queries.
Query-driven inference. We compare two inference algorithms:
Gibbs sampling and MC-SAT [7] withK-hop sub-network approx-
imation with different Ks and limits of the network size. We show
that focusing computation on the query nodes achieves a consider-
able performance improvement.
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