
GARUDA: A System for Large-Scale Mining of Statistically
Significant Connected Subgraphs

Satyajit Bhadange1 Akhil Arora2∗ Arnab Bhattacharya1

1Dept. of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India
2Text and Graph Analytics, Xerox Research Centre India, Bangalore, India

1{satyab, arnabb}@cse.iitk.ac.in 2akhil.arora@xerox.com

ABSTRACT
Unraveling “interesting” subgraphs corresponding to disease/crime
hotspots or characterizing habitation shift patterns is an important
graph mining task. With the availability and growth of large-scale
real-world graphs, mining for such subgraphs has become the need
of the hour for graph miners as well as non-technical end-users.
In this demo, we present GARUDA, a system capable of mining
large-scale graphs for statistically significant subgraphs in a scal-
able manner, and provide: (1) a detailed description of the various
features and user-friendly GUI of GARUDA; (2) a brief description
of the system architecture; and (3) a demonstration scenario for the
audience. The demonstration showcases one real graph mining task
as well as its ability to scale to large real graphs, portraying speed-
ups of upto 8–10 times over the state-of-the-art MSCS algorithm.

1. INTRODUCTION
The rapid proliferation of graph data starting from social and

web networks to road networks, knowledge graphs, biological in-
teraction networks, and chemical compounds has increased the de-
mand for graph mining and querying techniques. Given a graph
database of small/moderately sized graphs or a single large graph,
the aim of graph querying systems is to find (sub)graphs similar to
the query graph [6, 8]. In contrast, graph mining, with the aim to
automatically find subgraphs, without any input query graph, that
are “interesting” according to some criteria defined by the appli-
cation [2, 3], is a relatively complex task. While there exists con-
siderable research on mining patterns from graph databases [5, 7],
attempts on mining (sub)patterns from a single large graph are com-
paratively lesser [2, 3]. Moreover, a large fraction of the developed
techniques [5] have focused on simple monotonic objective func-
tions (e.g., frequency), while techniques incorporating more com-
plex functions such as p-value, z-score, etc. are relatively less. This
is mainly due to the fact that the anti-monotonicity property cannot
be employed under the latter to devise effective pruning strategies.
Thus, despite the rich body of literature on graph mining featuring

∗Corresponding Author: Akhil Arora

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

several interesting formulations, a common limitation is their in-
ability to mine statistically significant connected subgraphs from a
single large underlying graph.
Significant Subgraph Mining. In this field, we recently proposed
the first-ever and only technique, MSCS, to mine top-k statistically
significant connected subgraphs from a single large vertex labeled
graph [2]. Since the number of possible subgraphs is generally
exponential in the size of the graph and techniques employed to
mine from a single large graph can be easily extended to that for
graph databases (usually comprising multiple small graphs) but not
vice versa, MSCS handles a more generic and harder setting.

Formally, given an undirected unweighted vertex-labeled graph
with the vertex labels following a background distribution (dis-
crete/continuous), the aim is to unravel subgraph(s) whose vertex
labels deviate significantly from the expected distribution. The de-
viation is measured using the chi-square statistic that computes the
(squared and normalized) difference between the expected num-
ber of labels and their observed values. The chi-square statistic
is independent of the size of the subgraph and captures the statisti-
cal significance (higher chi-square necessarily means lower p-value
and vice versa) when the labels on the vertices are assumed to be
independent. More generally, the MSCS algorithm can mine the
top-t set of significant subgraphs. Most graph mining applications
starting from hotspot detection, frequent subgraph detection, spam
detection, network anomaly detection to characterizing habitation
and disease spread patterns also assume vertex labeled graphs and
can be modeled using statistical significance as highlighted in [2].

Mining Significant Connected Subgraphs (MSCS). The MSCS
technique for mining statistically significant connected subgraphs
from a single large graph, proposed by us in [2], has three main
steps. First, a supergraph is constructed from the original graph by
collapsing vertices along contracting edges. An edge is contracting
if its two end vertices have the same label (for the discrete case)
or the combined chi-square value of its two end vertices is greater
than the individual values (for the continuous case). If the origi-
nal graph is dense enough (m & O(n logn) where m and n are
the number of edges and vertices respectively), the resulting super-
graph is small (proof in [2]). Otherwise, as an optional second step,
the supergraph is reduced further to make it small enough. Once
the supergraph is reduced to a small enough size, a brute-force al-
gorithm is applied to find the connected subgraphs with the largest
chi-square values. The overall flow is shown in the middle block of
Fig. 1. While the first step, i.e., supergraph construction, does not
affect the optimality of the quality of the result (proof in [2]), the
subsequent step of supergraph reduction introduces approximation.

Supergraph construction, which runs in time linear in the size of
the graph (O(m+n)), is an important step of the MSCS algorithm

1449

Figure 1: Architecture of the GARUDA system.

as shown in [2]. Hence, to enhance the scalability, we targeted this
step and made a parallel implementation (PAMSCS) of the same.
We describe the details in Section 2.
Demonstration Features. We have incorporated MSCS in a pro-
totype implementation, GARUDA, using GraphX [4] on Apache
Spark. GARUDA runs as a web-service featuring a GUI to enable
users mine large-scale real-world graphs. The various features are
visually and interactively showcased during the demonstration, as
described in detail in Section 3. These include (a) effective analysis
and visualization of real-world graphs, (b) flexibility to the end-user
to upload personalized graphs, analyze them and download the re-
sults, (c) create random graphs using various models, and employ
various filters for mining subgraphs, and (d) study effects of graph
parameters on the mining results by synthetically generating graphs
of varying parameters.

To the best of our knowledge, we are the first to build and demon-
strate such a system. GARUDA is functional and accessible as a
web-application1. Additionally, a complete video of GARUDA in
operation is available at the project website [1].

2. GARUDA SYSTEM
The complete architecture of the GARUDA system is shown in

Fig. 1.2 GARUDA comprises of three layers: (1) A data processing
layer housing the core storage and computational capabilities re-
sponsible for scalability and performance; (2) A novel MSCS layer
dictating the logic for mining significant subgraphs; and (3) An in-
teraction layer responsible for delivering the results to the end-user
through an interactive and flexible visualization via a web-service
and a back-end database.

The highlight of the GARUDA system is that it is a free service
for graph miners and domain experts with facilities to scalably per-
form analyses on their personal graph data with effective visualiza-
tions. GARUDA intelligently congregates the novel and state-of-
the-art significant subgraph mining algorithm (MSCS) of [2] with
one of the most scalable and popular graph engines, GraphX [4]
on Apache Spark to produce PAMSCS. Through GARUDA, the al-
gorithms leverage the distributed in-memory architecture of Spark
and, thus, facilitate the use of modern machinery to portray superior
performance over the asymptotic efficiency and scalability offered
by the algorithms in [2].

2.1 Parallel Super Graph Construction
As mentioned in [2], the super-graph construction method acts

as one of the most important steps in the entire process of mining
statistically significant connected subgraphs. The reason for this

1www.cse.iitk.ac.in/users/sigdata/GARUDA/garuda demo
2This and other figures look better in color on digital displays.

Algorithm 1 PAMSCS: Parallel Super Graph Construction
Input: Input Graph G = (V,E)
Output: Super-Graph Gs = (Vs, Es)
1: Make a copy of the original graph; Gs(Vs, Es)← G(V,E)
2: for all edges e = (u, v) ∈ Es do in parallel
3: if e is non-contracting then
4: Delete e from Gs

5: for all vertices v ∈ Vs do in parallel
6: Initialise v.cid← v.id
7: if ∃ neighbor w of v such that w.cid < v.cid then
8: v.cid← w.cid
9: for all vertices v ∈ Vs do in parallel

10: if v.id 6= v.cid then
11: Delete v from Gs

12: for all edges e = (u, v) ∈ E do in parallel
13: if u.cid 6= v.cid then
14: su ← w ∈ Vs such that w.id = u.cid
15: sv ← w ∈ Vs such that w.id = v.cid
16: Add super-edge es = (su, sv) to Gs

17: return Gs(Vs, Es)

is three-fold: (1) the super-graph construction step is extremely
fast as it runs in time linear in the size of the graph; (2) the re-
sults mined from the super-graph possess correctness guarantees
on quality; and (3) with dense-enough graphs, the super-graph size
is small thereby allowing the naı̈ve brute-force algorithm to be fea-
sible directly on the super-graph without the need of the complex
reduction step, as indicated in Fig. 1.

The density of the input graph plays a central role in the scalabil-
ity and optimality of the mining task. The threshold of density be-
yond which the supergraph size becomes small is O(n log2 n) [2].
Since many real networks such as knowledge graphs and social net-
works fall in this category, improvement in the super-graph con-
struction step significantly contributes in making the state-of-the-
art MSCS algorithm scalable and feasible. To this end, we have
developed a parallel algorithm for super-graph construction (Algo-
rithm 1). The overall algorithm is called PAMSCS.

The algorithm starts off by deleting edges that are not contracting
(defined as in Section 1) from a copy of the graph (lines 1-4). The
connected component id v.cid for every vertex v is then assigned
to be the lowest id among itself and all its neighbors (lines 5-8).
Next, all the vertices whose cid does not match with its vertex id
id are deleted (lines 9-11). Thus, for each connected component,
only a single vertex (the one with the lowest id) remains. After
that, the algorithm processes each edge e ∈ E of the original graph
G in parallel (lines 12-16). If the end vertices u and v of an edge e
belong to different components, then they become part of the super-
vertices su and sv respectively (lines 13-15). The super-vertices su
and sv are the vertices in Vs such that su.id and sv.id are same as
u.cid and v.cid respectively. The super-edge es between su and sv
is finally added to the super-graph Gs (line 16).

In the original MSCS algorithm, the super-graph construction
was linear in the size of the graph, O(m + n) for a graph with n
vertices and m edges [2]. Algorithm 1 improves the running time
to O(m+ n)/p where p is the degree of parallelization.

Since in practice, many graphs are dense enough (i.e., m &
O(n logn)), the number of output super-vertices are small, and in
some cases, constant. (The proof is in [2] and is beyond the scope
of this paper.) Hence, the time complexities of the other stages of
MSCS can be subsumed, thereby enabling the entire mining pro-
cess to run in expected linear time.

2.2 Extension to Generic Filters
The GARUDA system is not restricted to finding the top-t set of

significant subgraphs, i.e., the subgraphs possessing the top-t high-
est chi-square values, alone. We have added the capabilities for
addressing a few more variants of graph mining such as: (a) find-

1450

(a) Choosing options. (b) Output: Significant subgraphs. (c) One particular subgraph.
Figure 2: Analysis of real-world graphs: The North-East Biodiversity Dataset.

ing all the connected subgraphs whose chi-square values are greater
than or equal to a user-defined threshold τ , and (b) finding top-t sig-
nificant connected subgraphs by considering only those subgraphs
with at least a user-defined size threshold, s, number of nodes.

These problems are important in their own right. For example, in
a disease spread network, the government may want to identify all
the regions that have a high disease occurrence or, in other words,
a large chi-square greater than a threshold. Similarly, while mining
large complex chemical compounds, only those parts that have at
least a threshold number of atoms may be meaningful.

3. DEMONSTRATION
As part of the demonstration, we will engage the audience with a

variety of visual scenarios crafted to highlight (1) the MSCS al-
gorithm, (2) our interactive and visual web-service (using d3.js
library) which significantly enhances the ability to analyze real
datasets, (3) the effect of various graph properties on the mining
process, and (4) the superior performance introduced as a result of
the GARUDA system. The North-East Biodiversity data provided
by the Indian Space Research Organisation (ISRO) [2], and real
graphs taken from the SNAP repository (https://snap.stanford.edu/
snap/) are used as examples to explain these scenarios.

3.1 Real Data
Similar to any mining task, statistically significant subgraph min-

ing is an exploratory analysis with the aim to output interesting
mined patterns to an end-user (possibly a domain expert). There-
fore, the capability for a simple, intuitive and effective visualization
is considered to be one of the key pillars of any such system. With
statistically significant subgraph mining being applicable in a host
of areas ranging from bioinformatics and protein-protein interac-
tion networks to characterizing disease spreads, the requirement of
intuitive visualizations is unquestionable.

One such real dataset is the ISRO North-East Biodiversity data
[2], produced as a result of a survey in North-East India, to un-
derstand the trends of depletion of natural and bio-reserves due
to poaching or other causes. It comprises of 1202 spatial points
having 4 types of quantized information: (i) Bio-diversity richness
index, (ii) Disturbance index, (iii) Medicinal property, and (iv) Eco-
nomical property.

User Interaction: Many hidden characteristics, such as bio-
diversity hotspot detection, relationships between a highly bio-div-
erse region, the type of vegetation found there, etc. can be inferred
directly. We extend these inferences to a deeper level by mining
statistically significant subgraph patterns that cannot be extracted
by other standard means such as frequent subgraph mining, hotspot

detection, etc. Fig. 2 provides a visualization scenario. After ex-
ecuting the PAMSCS algorithm on the dataset, Fig. 2c portrays
a pattern with 62 nodes and 364 edges where most of the nodes
possess the label of High Biodiversity and Very High Disturbance.
This is an unusual phenomenon, as according to ecologists, these
properties are usually anti-correlated. Moreover, our discussions
with ISRO scientists revealed that this activity is indeed a display
of deviation from the expected since the disturbance has been into
effect very recently and has been responsible for destroying much
of the high biodiversity in this region. In fact, automatic mining
of such regions would enable the government to take preventive
actions while also saving on manual survey costs and analyses. In-
terestingly, the frequency of these labels together is just 4% in the
dataset and, therefore, none of the frequent subgraph mining tech-
niques could have mined it since they cannot operate at such low
frequency thresholds. The results are rendered in an easy to under-
stand visualization to a domain expert, thereby showing the utility
of GARUDA.

3.2 Interactivity and Flexibility
As described in Section 3.1, systems built on exploratory tasks

like graph mining should possess the capability of interactivity and
flexibility, as it renders the task of portraying the results to the end-
user (possibly a domain expert) easy and efficient. Therefore, such
features are considered to be the key pillars for any demonstration
system. To this end, GARUDA enables the end-user to perform
analyses on personalized graphs by providing the capability to up-
load graphs in a simple format.

GARUDA also provides the end-user the flexibility to choose
one of the generic filters, as described in Section 2.2, to refine the
mined subgraphs. These filters enhance the ability to analyze real
datasets further. Finally, GARUDA allows control over the number
of returned results t, by taking the same as input from the user. It
also lets the user download the results.

User Interaction: As indicated in Fig. 3, users are given the
facility to upload their own graphs. Moreover, users can also easily
choose one of the generic filters along with a number t for refining
the set of returned results by the algorithm.

3.3 Effect of Varying Graph Parameters
We next portray the effect of varying different graph properties

(Fig. 4). On a graph with fixed number of nodes n and (discrete)
labels l, the following happens with the increase in density: (1) The
size of the super-graph decreases exponentially, and reaches a con-
stant l, when m & l.n logn. (2) Owing to this effect, the amount
of time required for reducing the super-graph also decreases ex-
ponentially. (3) Since the reduction algorithm always reduces the
super-graph to a fixed constant, the time required to run the naı̈ve

1451

Figure 3: Interactivity and flexibility of GARUDA.

algorithm is (almost) constant. (4) The super-graph construction
time grows linearly, with the total running time of the algorithm
closely mirroring it.

This scenario illustrates that with increase in density the total
running time is dictated by the super-graph construction step and,
hence, as mentioned in Section 2, improvement in the super-graph
construction algorithm significantly impacts the performance.

User Interaction: Similar to the previous case, the end-user has
the facility to interact with the system. The user can choose the
label distribution to follow, which can be either discrete or contin-
uous. She can also choose the random graph model (either Erdős-
Rényi or Barabási-Albert) to simulate graphs. Lastly, the user can
choose the graph parameters such as the number of nodes in the
graph and the number of labels. Once the choices are fed, the sys-
tem simulates various graphs from m = 2n to m =

(
n
2

)
, and

dynamically generates various plots as and when the results arrive.

3.4 Scalability
The experiments for PAMSCS were run using GraphX on an

Apache Spark cluster consisting of 3 worker nodes each compris-
ing of 4 cores (2.4 GHz) and 16 GB RAM running code written
in Scala. The required files were stored on Hadoop file system
(HDFS) consisting of 1 namenode and 3 datanodes. The simula-
tions for the sequential algorithm were done using a C++ code on a
(2.4 Ghz) machine with 32 GB RAM running Linux Debian 6.0.7.

In this scenario, we compare the performance of the parallel al-
gorithm, PAMSCS, for super-graph construction with the sequen-
tial MSCS. PAMSCS leverages the in-memory distribution pro-
vided by Apache Spark. The running time of the parallel version is
fairly high on small datasets such as HepPh and DBLP (number of
nodes<350K and edges<2M), owing to the communication over-
head. Consequently, it runs slower than the sequential version due
to the overhead dominating the actual algorithm. However, as we
move to larger datasets, e.g., YouTube (1.1M nodes and 6M edges)
or Orkut (3M nodes and 234M edges), the performance of the par-
allel version begins to improve, with speed-ups of up to 5 times or
more. Thus, the parallel version PAMSCS is more scalable when
compared to the sequential MSCS algorithm.

A very similar analysis performed on a synthetically generated
dataset with n = 5 million nodes, l = 5 labels and edges vary-
ing from m = 2n to m = l.n logn (i.e., from 10 million to 0.55
billion) shows a similar effect. With increase in density, the per-

Figure 4: Effect of varying density on the MSCS algorithm.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300T
im

e
 t

o
 c

o
n

s
tr

u
c
t

s
u

p
e

r-
g

ra
p

h
 (

s
)

Number of edges (10
6
)

MSCS
PAMSCS

Figure 5: Comparison of super-graph construction times.

formance improvement provided by the parallel algorithm is more
significant. Fig. 5 shows that the speed-ups are as high as 8-10
times. This shows the advantages of the parallel implementation.

User Interaction: The user is allowed the flexibility to use her
own graph and analyze the impact of various graph properties, viz.
size etc., on the performance of the parallel version of the super-
graph construction algorithm.

Conclusions: The demonstration of our system, GARUDA, pro-
vides a visual and interactive tour of the state-of-the-art MSCS
technique for mining statistically significant connected subgraphs
[2], thereby showcasing its novel performance guarantees, effec-
tiveness and scalability with varying graph properties.

4. REFERENCES
[1] GARUDA. www.cse.iitk.ac.in/users/sigdata/GARUDA.
[2] A. Arora, M. Sachan, and A. Bhattacharya. Mining Statistically Significant

Connected Subgraphs in Vertex Labeled Graphs. In ACM SIGMOD, pages
1003–1014, 2014.

[3] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. GRAMI: Frequent
Subgraph and Pattern Mining in a Single Large Graph. PVLDB, 7(7), 2014.

[4] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
GraphX: Graph Processing in a Distributed Dataflow Framework. In OSDI,
pages 599–613, 2014.

[5] C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining
algorithms. The Knowledge Engineering Review, 28(01):75–105, 2013.

[6] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. NeMa: Fast Graph Search with
Label Similarity. PVLDB, 6(3):181–192, 2013.

[7] F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and
Memory-Efficient Significant Pattern Mining via Permutation Testing. In ACM
SIGKDD, pages 725–734, 2015.

[8] X. Yan, P. S. Yu, and J. Han. Substructure Similarity Search in Graph Databases.
In ACM SIGMOD, pages 766–777, 2005.

1452

