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ABSTRACT 

Oracle Database In-Memory (DBIM) accelerates analytic 

workload performance by orders of magnitude through an in-

memory columnar format utilizing techniques such as SIMD 

vector processing, in-memory storage indexes, and optimized 

predicate evaluation and aggregation. With Oracle Database 12.2, 

Database In-Memory is further enhanced to accelerate analytic 

processing through a novel lightweight mechanism known as 

Dynamic In-Memory Expressions (DIMEs). The DIME 

mechanism automatically detects frequently occurring expressions 

in a query workload, and then creates highly optimized, 

transactionally consistent, in-memory columnar representations of 

these expression results. At runtime, queries can directly access 

these DIMEs, thus avoiding costly expression evaluations. 

Furthermore, all the optimizations introduced in DBIM can apply 

directly to DIMEs. Since DIMEs are purely in-memory structures, 

no changes are required to the underlying tables. We show that 

DIMEs can reduce query elapsed times by several orders of 

magnitude without the need for costly pre-computed structures 

such as computed columns or materialized views or cubes. 

1. INTRODUCTION 
Oracle Database In-Memory (DBIM) provides extensive 

optimizations for accelerating most aspects of analytic workloads, 

including scans, joins, predicate evaluation and aggregation [3]. 

Each of these query components involves expressions, the 

evaluation of which is often the dominant cost of query execution 

[5]. For instance, consider the following query: 

SELECT item_name,  

       price * (1 – discount)  

FROM   sales  

WHERE  category = ‘household’; 

 

 

If the SALES table is in the in-memory columnar format, it can be 

scanned and filtered for ‘household’ items at the rate of billions of 

rows per second. The evaluation of the SELECT expression 

price * (1 – discount), on the other hand, involves 

costly numerical computations which can slow down overall 

query execution. 

Common approaches for reducing expression evaluation costs 

include adding pre-computed columns to base tables, or creating 

materialized views or pre-defined cubes. All of these are typically 

difficult to define for ad-hoc workloads, and are expensive to 

maintain when the underlying tables change frequently. If a query 

repeats the same expression multiple times, common sub-

expression elimination (CSE) [8] can be used to evaluate each 

expression only once. The results, however, are not cached from 

one query to another, so subsequent queries cannot take advantage 

of the evaluation. 

This paper introduces Dynamic In-Memory Expressions (DIMEs), 

a novel lightweight mechanism that identifies expensive 

expressions and caches them “on the fly” in-memory, allowing 

queries to access them at runtime, thus avoiding redundant 

expression evaluations. Our proposed mechanism begins by 

automatically tracking all expressions evaluated across a query 

workload in a repository known as the Expression Statistics Store 

(ESS). Frequently executed, costly expressions are selected from 

the ESS, and then computed and cached in the In-Memory (IM) 

Column Store. Subsequent query execution involving the same 

captured expressions are optimized in the scan engine by directly 

accessing the cached results from memory, side-stepping the 

expression evaluation engine entirely for those expressions. 

It should be noted that DBIM features a dual-format in-memory 

architecture, where the persistent data format remains row-

oriented for efficient OLTP performance, and a pure in-memory 

columnar format is used to accelerate analytic workloads. Thus, it 

is possible to add additional expression evaluation result columns 

to the in-memory columnar format without having to make any 

changes to the underlying physical tables – the expressions 

materialized by the DIME infrastructure only exist in the IM 

column store. 

The rest of this paper is organized as follows. Section 2 provides a 

brief overview of DBIM and the organization of the IM column 

store in terms of In-Memory Compression Units (IMCUs). 

Section 3 introduces the DIME concept and how candidate 
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expressions can be identified using the ESS. Section 4 describes 

how DIMEs are populated in terms of units known as In-Memory 

Expression Units (IMEUs) and how they are maintained as the 

underlying table data changes. Section 5 describes how DIMEs 

are used to accelerate scans, predicate evaluation and aggregations 

involving expressions. Section 6 provides some experimental 

results and Section 7 concludes. 

2. OVERVIEW OF ORACLE DATABASE 

IN-MEMORY 
Row stores are ideal for OLTP workloads, where each transaction 

typically accesses a small number of rows and many columns in 

each row (e.g insertion of a new order). On the other hand, 

column stores [1,2] are better suited for analytics workloads in 

which queries access many values in a small number of columns 

(e.g. find the number of sales in each state).  

Since neither format is optimal for all workloads, Oracle Database 

In-Memory supports a dual-format in-memory representation [3] 

in which the row format continues to be supported via the buffer 

cache, while a new pure in-memory columnar format is added for 

the subset of tables on which fast analytics is required (see Figure 

1). The in-memory columnar format is a pure in-memory format, 

therefore no logging or check-pointing is required for its 

maintenance as the underlying row data changes. DML changes 

run directly against the row format, and the column format is 

transactionally maintained.  Highly selective OLTP-style queries 

(e.g. lookup by primary key) are directed by the Optimizer [7] to 

use the row format, while analytic queries are directed by the 

Optimizer to use the column format – regardless of which format 

is used, the same results are returned by the query. 

 

 

Figure 1. Dual-Format In-Memory Database 

 

The IM column store can be used for all or a subset of the tables 

in a database. When a table is brought into the column store, it is 

done by a process known as Populate, which creates the column 

formatted version of the table from its underlying row format. The 

Populate process creates the in-memory column formatted table in 

terms of units known as In-Memory Compression Units (IMCUs). 

An IMCU spans a large range of rows, between 0.5-1 million, and 

within each IMCU, columns are organized into column 

Compression Units (CUs) – which are large compressed vectors 

of column values. A variety of compression schemes are 

available, depending on the user-chosen level of compression (e.g. 

it is possible to choose a compression scheme optimized for 

maximum query performance, or one that is optimized for 

maximum space savings). 

Scans against the IM column store are optimized using SIMD 

vector processing instructions, which can process multiple 

operands in a single CPU instruction (see Figure 2) [3,4]. Further, 

each IMCU maintains per column summary information such as 

minimum and maximum values. This collective summary 

information serves as an in-memory storage index for the table. It 

allows IMCUs to be skipped completely while processing a table 

scan, when it is known from the storage index that none of the 

rows in the IMCU will qualify based on the scan filter predicates. 

Thus, by reducing the amount of data accessed per scan, faster 

query response times are achieved. 

 

 

Figure 2. SIMD vector-processing in the IM column store 

 

Each IMCU is associated with a Snapshot Metadata Unit (SMU) 

that tracks changes made by DMLs since the time of creation of 

the IMCU. Oracle Database employs a snapshot-based isolation 

model known as Consistent Read (CR) [6]: Each operation is 

associated with a snapshot System Change Number (SCN) 

representing when the operation began, and is only allowed to see 

either its own changes or changes that were committed at earlier 

SCNs.  The SMU provides CR semantics: scans consult both the 

IMCU and the SMU in order to generate consistent results. When 

the number of changes to an IMCU exceeds a certain threshold 

(the threshold is determined by a combination of heuristics) a 

Repopulate task is issued on the IMCU to create a pristine version 

once again. 

3. IDENTIFYING CANDIDATE 

EXPRESSIONS 
Expressions are essential components of analytic SQL queries. 

They can involve simple mathematical or logical operators such 

as “+” and “*” as well as built-in SQL functions such as substr(), 

regexp(), trunc() and user-defined PL/SQL functions. Expressions 

can occur in various parts of a SQL statement. For example, 

expressions may exist within the SELECT list, WHERE clause 

predicates, an aggregation function, and within the GROUP BY 

and HAVING clause. 

 

Table 1. SQL queries with expressions 

ID QUERY 

Q1 SELECT (sal + bonus) FROM   emp  

Q2 
SELECT SUM((sal + bonus)*(1-taxrate))  

FROM emp WHERE UPPER(job) = ‘MANAGER’ 

Q3 
SELECT MAX(sal) FROM emp  

GROUP BY EXTRACT(year FROM hiredate)  

 

In the examples shown in Table 1, Q1 contains the expression 

(sal + bonus) in the SELECT list, Q2 contains the 

expression (sal + bonus)*(1-taxrate) inside an 

aggregation, and another expression UPPER(job) in the 

WHERE clause predicate, and finally, Q3 contains the expression 

EXTRACT(year FROM hiredate) in the GROUP BY 

clause. 
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An expression can be completely subsumed by another 

expression. Such an expression is referred to as a sub-expression. 

An expression that is a composite of multiple sub-expressions is 

termed a top-level expression. For example, Q2 has the top-level 

expression (sal + bonus)*(1-taxrate), which contains 

two sub-expressions: (sal + bonus) and (1-taxrate). 

The examples above focus on expressions that are explicitly 

invoked in SQL queries. However, the SQL engine often 

generates implicit expressions and internal computations during 

query compilation. As an example, consider the where clause: 

“c1=c2”. The query optimizer may choose to rewrite this 

predicate as “c1–c2=0”, thereby generating the implicit 

expression “c1–c2”. Data conversions, hash computations, 

column concatenations, etc. are all examples of implicit 

computations that can be generated internally by the SQL engine 

to help speed up complex analytic queries and join operations. 

The evaluation of implicit and explicit expressions can consume a 

significant amount of CPU time within an analytic workload. 

Furthermore, the same expressions may recur across several 

different queries in a given workload. By automatically 

identifying such expressions and materializing their results in-

memory, the database can greatly improve query performance 

while reducing the amount of CPU resources consumed. The 

benefits of in-memory materialization are two-fold – a) avoid 

repeated expression evaluations and b) apply in-memory query 

optimizations such as SIMD vector processing, in-memory 

storage index pruning, etc. on the materialized expression results. 

A DIME can be broadly classified as any expression that is 

automatically captured from the workload, and for which the 

results have been pre-computed and materialized within the IM 

column store. Strictly speaking, a typical DIME involves one or 

more columns of a table, possibly with some constants and has a 

1-to-1 mapping with the rows in the table. In order to identify 

DIMEs, we build and maintain a repository capturing useful 

statistics about expressions that are evaluated in various queries of 

an analytic workload, called the Expressions Statistics Store 

(ESS). 

3.1 Expression Statistics Store 
The Expression Statistics Store is a database-level repository 

maintained by the optimizer that tracks statistics of various 

expressions received and generated by the SQL engine on a per-

table basis. The ESS identifies expressions to track for a query at 

compilation time. There are many different stages during query 

compilation that can transform, eliminate or add new expressions. 

The expression tracking mechanism is deferred till after the 

compile time representation of the expression is finalized. This 

ensures that expressions are in their final form and will not 

undergo any further transformations. 

To uniquely identify expressions across different queries, the ESS 

generates an expression ID for each distinct expression of a table. 

The expression ID is a unique encoding obtained from the 

canonical representation of the expression and the table object 

number. For any expression, the canonical form is generated after 

normalizing the expression by transforming it in different ways, 

including commutative, associative and distributive 

transformations. This ensures that two expressions on the same 

table, such as (a+b) and (b+a), that differ in their textual 

representation but have the same canonical form, are tracked as 

the same expression in the ESS. 

Factoring the table object number into the encoding function 

ensures that expressions are tracked on a per table basis in the 

ESS. For instance, if two tables T1 and T2 have an expression 

upper(c) on a varchar2 column c, they will be treated as different 

expressions in the ESS. For PL/SQL procedures, the expression 

ID is generated by encoding the PL/SQL package ID and the 

package entry number for the procedure. 

Each expression tracked by the ESS is associated with two distinct 

types of attributes: Static attributes and Dynamic attributes. Static 

attributes include information that is fixed for a particular 

expression and does not change across different query executions. 

These include the SQL text representation of the expression, list 

of columns referenced in the expression, optimizer fixed cost that 

estimates the per-evaluation processing cost of the expression, etc. 

Dynamic attributes track information that changes from one query 

to another. They include expression evaluation counts, timestamps 

of expression evaluation, optimizer dynamic costs based on 

runtime feedback, etc. 

During query execution, the most accurate method to track 

evaluation count of an expression is to keep counters in the 

evaluation procedures. However, this is fairly involved and may 

cause performance regressions in critical query paths. Hence, 

different heuristic-based approaches are employed to estimate the 

evaluation count for expressions.  

One simple heuristic utilizes row source statistics. A row source 

in Oracle corresponds to a node in a query execution plan. It is an 

iterative control structure that accepts a set of rows from child 

nodes, processes them in an iterated manner, and produces an 

output row-set for its parent node. The SQL engine has several 

row sources such as the table scan row source, various join 

method row sources, partition iterator row sources, etc. For each 

such row source, the row source statistics contain information 

about the number of rows flowing in and out of that row source. 

These numbers are used to estimate the most likely evaluation 

count of an expression within that row source. 

Each row source can provide run-time feedback to the ESS to 

more accurately estimate dynamic attributes such as the 

expression evaluation count and execution cost. This can be done 

by annotating the row source statistics with information about the 

actual number of rows processed per expression, or number of 

expression evaluations pruned by a certain expression occurring in 

a predicate. For example, the table scan row source may receive 

two expressions (e.g. round(price) and upper(item_name)) as part 

of two different predicates (e.g. round(price)=10 and 

upper(item_name) = 'COFFEE' ) in the WHERE clause. As part 

of the first predicate evaluation, a large fraction of the rows may 

be filtered out, causing the expression in the second predicate to 

be evaluated for only a small number of rows. This fine-grained 

information is only available inside the row source, but is 

essential for the accuracy of tracked expression statistics. 

Both static and dynamic attributes for expressions are stored in the 

shared memory within the System Global Area (SGA), which is a 

per-instance read/write memory area that is shared by all 

processes belonging to that Oracle instance [14]. This information 

is also persisted periodically to separate dictionary tables on disk 

to ensure that expression statistics tracked by the ESS are durable 

across database restarts. 

The ESS maintains run-time statistics for different time-horizons, 

in separate snapshots, in order to provide greater flexibility in 

statistics monitoring. For example, two intuitive snapshots 

1439



supported by the ESS are: cumulative and current. The cumulative 

snapshot contains expression statistics since the first time an 

expression was captured by the ESS (e.g. cumulative evaluation 

count), while the current snapshot captures execution statistics 

within the last N hours (e.g. last 24 hours). The current snapshot 

statistics are merged into the cumulative snapshot statistics once 

the expression creation timestamp crosses the N hour mark. 

3.2 DIMEs and ESS 

3.2.1 Candidate Expression Ranking 
The ESS tracks various statistics and metadata for all candidate 

expressions in a database workload. However, the goal of the 

DIME infrastructure is to capture hot expressions that account for 

a significant fraction of the total evaluation cost. The hotness of 

an expression essentially represents the cumulative cost incurred 

by the SQL engine in evaluating that expression repeatedly across 

different queries. Each expression is given a weighted hotness 

score that depends on a number of factors such as evaluation 

count, dynamic execution cost, row source in which the 

expression occurs, distribution of expression evaluation across 

different snapshots, etc. In addition, statistics captured across 

different snapshots may be weighed differently. For example, 

statistics captured in the current snapshot can be given a higher 

weight than statistics in the cumulative snapshot to ensure that 

recently seen expressions are considered more favorably. Using 

this hotness score, expressions are ranked for a particular table or 

across the entire database. A simple formula to compute the 

hotness score of an expression is shown in Figure 3. 
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where: 

 He , hotness score of expression e 

 Wsnap , weight given to a snapshot 

 Csnap , cost of evaluating e in that snapshot 

 f, evaluation cost function for e that depends on: 

­ ce, average execution cost per evaluation 

­ cnte, evaluation count  in a snapshot 

­ sid, id of snapshot to consider 

Figure 3. Hotness score for expressions 

 

The snapshots and benefit function can be fine-tuned as required 

to provide better ranking of expressions. 

The DBIM infrastructure has an in-memory coordinator process 

(IMCO), which periodically queries the ESS, ranks expressions 

based on their hotness score, and obtains the set of “top n” 

expressions at the database level. These expressions are populated 

into the IM column store as DIMEs. 

The number of expressions chosen depends on several factors. 

Obviously, materializing all expressions would provide the 

greatest performance benefits across the widest range of queries. 

However, we have to weigh the query performance benefits of 

DIMEs against their increased memory footprint in the IM 

column store. Factors such as compression format chosen, data-

types of base columns in the expression, and the amount of in-

memory space available for expressions, are all taken into account 

while deciding on the number of DIMEs to capture from the ESS.  

3.2.2 Virtual Columns 
For any hot expression captured from the ESS, and eventually 

stored in the in-memory area, we need a unique way to identify it 

across various layers of the SQL engine. A simple way to achieve 

this is to leverage the virtual columns infrastructure of Oracle 

Database.  

Virtual columns (VCs), introduced in Oracle 11g, are columns 

that represent expressions on one or more table columns. Unlike a 

base column (physical column), a VC is represented only as table 

metadata – it does not have any physical allocation on disk. When 

queried, its value is computed by evaluating the expression at 

runtime. Any reference to a VC is automatically replaced with its 

expression in the logical expression tree and tagged with a special 

flag by the SQL engine. Similarly, any occurrence of an 

expression, which is represented by a VC, is also tagged with the 

same flag, enabling the SQL engine to identify VCs during query 

execution. 

The DIME infrastructure adds hot expressions captured from the 

ESS as hidden VCs to the respective tables. Hidden VCs differ 

from user-defined VCs in that they are not visible to the user, and 

are not returned as part of a ‘SELECT *’ or a DESCRIBE query 

on the table. DIME hidden VCs are also assigned a separate 

system-generated namespace to distinguish them from user-

defined VCs. This enables the DIME infrastructure to add and 

remove hidden VCs from a table automatically without user 

intervention. The addition and removal of a hidden VC are 

lightweight operations that do not affect running applications. 

The list of hot expressions returned by the ESS can change as the 

workload generates newer expressions. Hence, cold expressions 

must be removed to prevent unnecessary consumption of in-

memory space. In each lookup of the ESS, we mark the DIME 

hidden VCs that have become cold to be ‘no inmemory’ using the 

selective columns feature (see Section 3.3). Alternatively, we can 

mark the cold hidden VCs as ‘unused’, since unused columns are 

never chosen for in-memory materialization. 

3.3 User-Defined Virtual Columns 
The DIME infrastructure relies on the ESS to automatically 

capture hot expressions from an analytic workload. Once 

identified, these expressions are added to the table as hidden VCs. 

Naturally, another source of candidate expressions includes user-

defined VCs. The techniques used to accelerate queries using 

DIMEs can be directly applied to user-defined VCs as well. Thus, 

for completeness, we provide a manual counterpart of the DIME 

feature referred to as In-Memory Virtual Columns. 

This manual component of the DIME feature provides users with 

a greater degree of control over which virtual columns to populate 

into the IM column store. For example, users can specify a 

column compression clause on each VC denoting whether or not 

they want the VC to be stored in-memory, and at what in-memory 

compression level. Similar to base columns, users can choose 

from multiple compression levels for VCs: FOR DML, FOR 

QUERY, and FOR CAPACITY. [3,4] 

For the remaining sections, we focus on DIMEs only, noting that 

the same framework can be used for populating, maintaining and 

querying user-defined VCs as well. 
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4. CREATION AND MAINTENANCE OF 

DIMEs 
DIMEs are materialized in special in-memory units called In-

Memory Expression Units (IMEUs). The memory for storing 

IMEUs comes from the same In-Memory Area in the SGA 

reserved for the IM column store.  IMEUs utilize the same in-

memory columnar format as the base table. Recall that each table 

selected for in-memory storage is populated into the IM column 

store in contiguously allocated units called IMCUs [3,4]. An 

IMEU is implemented as a logical extension of an IMCU. The 

IMCU, which an IMEU logically extends, is referred to as the 

parent IMCU. Physically, an IMEU is stored as a top-level 

continuation piece of the parent IMCU, with a pointer from the 

IMCU to the IMEU. Storing DIMEs in separate IMEUs, rather 

than storing them within the IMCU has several advantages, as 

described over the next few sections. 

Each IMCU stores column data for a target number of table rows, 

typically half a million. The IMEU stores DIME results for each 

of those rows stored in the parent IMCU (see Figure 4). Within 

the IMEU, each DIME is stored contiguously as an Expression 

Unit (EU). EUs utilize in-memory formats, similar to those used 

for column CUs in the parent IMCU.  

 

 
Figure 4. Columns A and B in an IMCU with n-rows and 

expressions A+B and A*B in the corresponding IMEU 

 

An IMEU inherits all in-memory attributes from the parent IMCU 

and the on-disk table/segment that was used to populate the 

IMCU. For example, the IMEU is duplicated or distributed in a 

RAC configuration [3] in exactly the same manner as the parent 

IMCU. Thus, the distribution manager can provide the same high-

availability, fault-tolerance and scalability guarantees for IMEUs, 

as for IMCUs. Similarly, IMEU population is performed in the 

same priority order as the parent IMCU, as specified by the 

PRIORITY sub-clause on the base table. The data in the IMEU is 

typically also compressed using the same compression schemes 

used to populate the parent IMCU. In certain cases, EUs may be 

compressed at higher compression levels (such as FOR 

CAPACITY) to ensure maximum space utilization. 

4.1 Population of IMEUs 
IMEUs utilize the same background population mechanism that is 

used to build the IMCUs. The IMCO coordinates population tasks 

using a configurable pool of background server processes. Each 

population task contains metadata about which set of on-disk rows 

to populate in a particular IMCU. Since an IMEU spans the same 

set of on-disk rows as the IMCU, the population task context is 

simply augmented with the list of DIMEs to populate. Thus, an 

IMCU and its IMEU are both populated by the same background 

process as part of the same population task (see Figure 5). This 

guarantees that all the concurrency control primitives that 

synchronize IMCU population with DDL operations such as 

ALTER/DROP TABLE, DROP TABELSPACE, etc. will now 

synchronize IMEU population as well.  

 

 

Figure 5. Top-level IMEU population (with IMCU and SMU) 

 

Each background slave first completes the IMCU population by 

column formatting rows obtained from a subset of on-disk blocks 

for the table, and applying appropriate compression schemes. The 

SMU is also built in this process to track transactional changes for 

the rows in this IMCU. Once the IMCU is populated, it is deemed 

online, and queries can access column data from the IMCU. 

Similarly, transactions can also proceed and DMLs will be 

recorded in the SMU to track validity of the IMCU rows. Only 

after the IMCU is online, does IMEU population begin. This 

ensures that applications have no downtime in accessing IMCUs 

and SMUs, even when there are IMEUs to be populated.  

Unlike IMCU source data that is readily available in the row-

format, the IMEU data, i.e. DIME results, is not available in the 

row-store. Hence, the row data is used to evaluate the expressions 

to generate DIME results. Subsequently, intelligent data 

transformations and compression algorithms are applied on this 

data to create DIME EUs for the IMEU.  

As mentioned in Section 2, each IMCU is marked with the SCN 

of the time of its creation. The IMCU contains all committed 

changes up-to that SCN for the rows it spans. Any changes 

beyond that SCN are tracked in the SMU. To ensure transactional 

consistency with the IMCU, the IMEU is built as of the IMCU 

creation SCN using Oracle point-in-time queries, known as 

flashback queries.  

Introduced in Oracle 9i, flashback queries employ CR techniques 

to view past states of database objects without using point-in-time 

media recovery [9]. To fetch DIME results, an internal AS OF 

SCN flashback query is issued, with the query SCN being same as 

the IMCU creation SCN. Since the query SCN and the IMCU 

creation SCN match, and the IMEU spans the same set of rows as 

the IMCU, the flashback query performs expression evaluation 
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directly on the column CUs in the recently built parent IMCU. 

Thus, using flashback queries guarantees that contents of an 

IMEU are consistent with source data within the parent IMCU.  

Any row of a table has base column data in the IMCU and 

corresponding DIME data in the IMEU. Hence, the same SMU 

that tracks validity of rows in the IMCU can be leveraged for 

tracking transactional changes in the IMEU. Thus, any query 

accessing data from the IMEU is guaranteed to always obtain 

consistent expression results. 

4.2 Re-population of IMEUs 
Once IMEUs are populated, queries containing expressions that 

have been materialized as DIMEs, can directly access the 

expression results from the EUs. However, for rows invalidated 

by DMLs, the expression results cannot be directly read from the 

IMEU, and must be computed during runtime. Naturally, as 

DMLs accumulate, performance of DIME scans deteriorates just 

as it does for scans on the IMCU. Hence, we employ a 

background repopulate mechanism to periodically ‘refresh’ the 

IMCU-IMEU pair and rebuild it at a new SCN. 

As described in [3], IMCUs are repopulated using two techniques: 

threshold-driven repopulation and trickle repopulation. A variety 

of policies are employed to control threshold-driven repopulation. 

Repopulation thresholds take into account the number of invalid 

rows/blocks in an IMCU, number of scans on an IMCU, etc. Once 

any IMCU exceeds a certain threshold, it is queued for 

repopulation. Trickle repopulation, unlike threshold-driven 

repopulation, runs constantly and unobtrusively in the 

background, consuming a small fraction of the available 

repopulate processes. The goal of trickle repopulation is to ensure 

that eventually any given IMCU is clean even if it has not 

exceeded the repopulation thresholds. 

 

 

Figure 6. Repopulation of IMCU-IMEU 

From their creation, IMEUs are tightly coupled with their parent 

IMCUs. Thus, IMEUs are repopulated whenever the parent IMCU 

is repopulated as a result of DMLs on the base table (see Figure 

6). IMEUs must also be repopulated whenever we want to add a 

new hot DIME, or evict a cold DIME. This mechanism is an 

IMEU-only repopulation; the parent IMCUs need not be 

repopulated when the set of hot expressions being tracked by the 

ESS changes. This is one of the advantages of storing expressions 

in separate IMEUs, and not mixing them inside IMCUs. 

For any repopulation operation, the old IMCU and IMEU are kept 

online until the new IMCU and IMEU have been created. This 

ensures that applications do not suffer a significant drop in 

performance due to IMCU-IMEU unavailability. 

During each lookup of the ESS, if the set of hot expressions has 

changed significantly, proactive repopulation tasks are submitted 

to remove cold DIMEs and populate new hot DIMEs in-memory. 

This guarantees that only the analytic working set of expressions 

are materialized as DIMEs in-memory at any point in time, 

thereby achieving maximum performance benefits with optimum 

memory utilization. 

5. LEVERAGING DIMEs FOR QUERY 

ACCELERATION 
Once candidate expressions are identified and hidden VCs are 

created to represent them, DIMEs are populated into IMEUs and 

become fully accessible for query optimization.  The next step 

involves rewriting the query plan generated by the SQL compiler 

into a runtime execution plan that can leverage DIMEs during 

expression evaluation.  When this plan is processed by the scan 

engine, VCs look practically identical to base columns, and 

therefore very few changes are needed during SQL runtime to 

accelerate query execution.  The next few subsections provide 

more details into how DIMEs are eventually leveraged for query 

acceleration. 

5.1 SQL Compilation and Optimization 
The SQL compiler generates a logical expression tree of operands 

(where an operand can be base columns, constants, or operators) 

during query parsing.  By then, the compiler would have 

decomposed VCs  into operators with base column operands.  As 

such, the only hint that VCs were directly used in the query would 

be meta-data associated with operator nodes indicating a VC. No 

additional changes are needed during query compilation to utilize 

DIMEs. As an example, consider the following query: 

SELECT UPPER(item_name)  

FROM   sales  

WHERE  category = ‘household’ and 

 price * (1-discount) > 1000; 

 

Possible DIMEs are the SELECT expression 

UPPER(item_name), the WHERE clause predicate sub-

expression (1-discount), and top-level expression price * 

(1-discount). Figure 7 presents a logical expression tree for 

the predicate clause, with possible DIMEs highlighted. 

The logical expression tree is then processed by the optimizer to 

generate an execution plan.  The optimizer will generate an in-

memory execution plan (via the table scan row source) if the cost 

is less than a non-in-memory plan [7].  The optimizer takes filter 

and decompression costs into consideration, as well as the 

percentage of the table being processed in-memory – recall that 
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with Oracle DBIM, the entire table/segment need not be in-

memory [4].  Similar costing needs to be applied when dealing 

with DIMEs.  If the table/segment is in-memory and has DIMEs 

stored in IMEUs, then filters that could make use of these DIMEs 

would cost considerably less. However, if the percentage of 

DIMEs in-memory is below a certain threshold, late 

materialization of the VC values might be cheaper, particularly if 

more rows will be filtered by higher-level SQL row sources (such 

as join), or there is a high computation cost associated with the 

expression. 

 

 
Figure 7. Logical expression tree showing top-level expression 

price*(1-discount) as DIME#1 and sub-expression          

(1-discount) as DIME#2 

 

5.2 Code Generation for Table Scan Row 

Source 
The table scan row source is tasked with fetching all referenced 

columns in a query from storage layers and applying filters before 

projecting passing rows to higher-level SQL row sources for 

further processing.  The required columns are specified in a row 

vector.  The row vector is just an array of operands describing 

base columns.  For the DIME feature, the row vector was 

modified to support both base columns and VCs.  For example, 

for the query in Section 5.1, the row vector would normally 

contain item_name, category, price and discount. 

With DIMEs, the row vector also contains the VCs 

UPPER(item_name), (1-discount) and price*(1-

discount). Including VCs in the row vector allows the scan 

layer to project DIMEs up the query execution plan to higher-

level SQL row sources which require these expressions, including 

aggregation operators, such as SUM( ) or MIN( ), on VCs. 

The scan engine constructs a runtime execution plan from the 

logical expression tree. First, the logical expression tree is 

traversed to look for expression operators that have been marked 

as VCs. The tree is then modified to insert branch nodes where 

VCs are referenced (see Figure 8). These branch nodes are needed 

because only at runtime is it known whether a DIME exists within 

the IMEU for the IMCU being processed. If there is no DIME, 

then processing should follow the “normal” path, which forces the 

expression to be computed from the base columns, essentially 

reverting to the original logical expression tree.  If the DIME does 

exist, processing will follow the optimized path in which the 

evaluation of the expression is folded into a reference to the 

DIME (which basically resembles a “base” column). Furthermore, 

sub-expressions may be replaced with DIME references within 

nested expressions. For example, it is possible for the sub-

expression (1-discount) to be a DIME, but not the top-level 

expression price * (1-discount). Figure 9 depicts the 

alternate paths chosen for evaluation when either expression is 

available as a DIME in an IMEU. 

 

 

Figure 8. Modified logical-expression tree with DIME branch 

nodes 

 

 

Figure 9. Run-time trees with DIME#1 or DIME#2 available 

in-memory in IMEUs 

 

5.3 Execution of Table Scan Row Source 
The runtime execution plan is evaluated on a per IMCU basis.  

Evaluation structures are first updated to point to the physical 

locations of the required base and virtual columns found in the 

corresponding IMCU/IMEU. Because IMCUs and IMEUs are 

stored in virtually identical formats (and their corresponding 

CUs/EUs share formats), gathering the required VCs from the 

IMEU is almost identical to gathering the required base columns 

from the IMCU. 
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Columns may or may not be present in an IMCU because with 

DBIM, users are allowed to specify what columns should be 

stored in-memory. This allows memory to be used efficiently 

based on the workload.  Similarly, certain DIMEs may not be 

present in an IMEU because of space considerations.  If a base 

column is not present in the IMCU, the scan falls back to buffer 

cache until the next IMCU is found. If a requested DIME is not in 

the IMEU, the scan executes the fallback path within the compiled 

expression tree, which evaluates the expression using base 

columns. 

Because DIMEs are represented as VCs, and VCs are logically 

equivalent to base columns in the runtime execution plan, 

evaluation of DIMEs requires practically no changes in the scan 

engine.  As such, existing DBIM scan optimizations and efficient 

projection techniques, such as late materialization [10], extend 

naturally to DIMEs. 

5.3.1 Scan Engine Optimizations 
The scan layer has been extensively optimized to achieve high 

performance for DBIM. One such optimization involves 

maintaining storage indexes per IMCU, where storage indexes are 

basically metadata describing the column values, such as 

minimum and maximum values.  By evaluating predicates directly 

on storage indexes, entire IMCUs can be pruned efficiently 

without performing full columnar scans.  Furthermore, because 

storage indexes are maintained separately from the columns 

themselves, decompression costs are saved when storage indexes 

are successfully applied.  Since IMEUs are essentially identical to 

IMCUs, storage indexes are available for DIMEs as well.  For 

example, if the predicate in a query is price*(1-discount) < 0, then 

before the DIME is fully accessed, the minimum value from the 

storage index in the IMEU is checked to see if any rows will pass 

the predicate. 

Other scan optimizations performed include utilizing SIMD 

instructions for fast vector processing on columnar data [3,4].  By 

transforming a complex multi-column expression into a VC stored 

as a DIME in the IMEU, all the hardware optimized techniques 

for columnar evaluation can be applied to DIMEs.  The alternate 

method would involve a costly row-by-row evaluation of the 

expression requiring loading and processing each column operand 

in the expression. 

Scan optimizations are also tailored to specific columnar data 

formats.  For example, many columns in DBIM are formatted 

using dictionary-encoding [3].  Expression evaluation on 

dictionary-encoded column vectors can reduce computation and 

bandwidth costs considerably.  For instance, consider the 

predicate upper(substr(a, 1, 3)) = ‘DOG’.  If a DIME exists for 

the sub-expression substr(a,1,3), then the predicate is effectively 

transformed to upper(DIME) = ‘DOG’.  With the DIME being 

dictionary-encoded in the IMEU, the predicate can be efficiently 

evaluated on the dictionary itself [3,4]. 

5.3.2 Projection and Late Materialization 
Projection is the process of sending passing rows up from the 

table scan row source to higher-level SQL row sources for further 

evaluation.  Project expressions are described similarly to 

predicate expressions – i.e. via logical expression tree – so branch 

nodes exist as decision points in the tree which check whether the 

DIME result exists in-memory or not.  For example, if the query 

contains a SELECT clause involving a DIME expression, the 

DIME result values are directly projected, while the underlying 

base columns in the expression can be safely ignored (assuming 

they aren’t needed by other expressions).  If the DIME does not 

exist, then the underlying base columns are projected instead. 

Virtually all project optimizations that are performed on base 

columns can also be performed on DIMEs.  One optimization 

worth noting is that, for dictionary-encoded DIMEs, it is possible 

to return the dictionary indices of the passing rows themselves, 

and not the actual values.  This late materialization can provide 

significant performance gains because a) the calling layers can 

sometimes operate more efficiently on these indices directly, and 

b) the calling layers do not always need the full symbol 

information if, for instance, further post-filter predicates or a join 

are applied [10]. 

6. PERFORMANCE EVALUATION 
In this section, we present some experimental results to 

demonstrate the benefits of the DIME feature: 1) Improved 

response times for analytic queries, 2) Reduced CPU utilization 

and 3) Higher throughput for mixed workloads that combine 

analytics and transaction processing. 

6.1 Accelerating Analytic Queries 
In this section, we demonstrate the performance speed-ups 

achieved by analytic queries in three different experimental 

setups. The first experiment demonstrates the possible benefits of 

this feature through the use of explicitly declared in-memory VCs. 

The next experiment demonstrates the ability of the ESS to 

automatically capture frequently evaluated expressions across an 

analytic workload, and showcase the benefits of materializing the 

hottest expressions as DIMEs. The final experiment focuses on 

how DIMEs can improve JSON query processing by an order of 

magnitude. All of these experiments are conducted on an Oracle 

Exadata Database machine [12], which is a state-of-the-art 

database SMP server and storage cluster system. 

6.1.1 In-Memory Virtual Columns 
A 14-column, 100 million row, non-partitioned ‘Atomics’ table 

with storage size of 8GB is chosen for this experiment. The table 

is configured with default in-memory compression levels. Four 

virtual columns representing mathematical expressions and string 

manipulations are manually added to the table (see Table 2). The 

column rand1m contains uniformly distributed random values 

from 1 to 1,048,575. Similarly, columns rand15 and rand64k 

contain uniformly distributed random values from 1 to 15, and 1 

to 65,535 respectively. The column uniq100m contains 100 

million unique values in the range 1 to 104,857,600. The column 

randstringsize26 consists of uniform random strings derived from 

letters ‘a,b,c,…z’. The entire table, including VCs, is populated 

into the IM column store. 

 

Table 2. List of user-defined VCs 

VC Name Expression 

VC1 (rand64k/1000)+(rand1m/1000)  

VC2 ((1-(rand15/100))+(rand1m/10)+rand64k) 

VC3 (0.3*rand15) 

VC4  SUBSTR(randstringsize26,10,5) 

 

Table 3 depicts a set of five analytic point queries that were run 

against this table. The queries have a mixture of expressions in the 

WHERE clause as well as inside aggregations in the SELECT list. 

More specifically, Q1, Q2 and Q3 have top-level expressions 

materialized as DIMEs in IMEUs. Q4 and Q5, however, have 
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only sub-expressions materialized as DIMEs. Figure 10a and 10b 

depict the gain in response times seen by using DIMEs versus a 

regular DBIM scan. All queries were run serially. 

 

Table 3. Point queries on Atomics table 

ID QUERY 

Q1 
SELECT MAX(rand15)  

FROM   atomics  

WHERE((rand64k/1000)+(rand1m/1000))=10; 

Q2 
SELECT MAX((1-(rand15/100))+(rand1m/10)+rand64k)  

FROM   atomics; 

Q3 
SELECT MAX(uniq100m) FROM   atomics  

WHERE   

((1-(rand15/100))+(rand1m/10)+rand64k)=10000;  

Q4 

SELECT MAX(uniq100m)  

FROM   atomics  

WHERE 

(0.3*rand15)+((rand64k/1000)+(rand1m/1000))<100;  

Q5 

SELECT MAX(rand15)  

FROM   atomics  

WHERE 

UPPER(SUBSTR(randstringsize26,10,5))='limja';  

 

Figure 10a demonstrates that by materializing top-level 

expressions as DIMEs, we can achieve upwards of 1000X 

improvement in query response times. Figure 10b, on the other 

hand, shows that by materializing only sub-expressions in-

memory, query response times improve by a modest factor of 2. 

This can be explained by the fact that when only sub-expressions 

are materialized in-memory, the scan still needs to perform run-

time expression evaluation to obtain the top-level expression 

result before the predicate can be applied. Since these queries are 

quite short in duration, this top-level expression evaluation 

dominates the data processing cost, and hence, stifles the speed-up 

achieved by DIMEs. 

 

 

Figure 10a. Speed-up in Atomics queries with top-level 

expressions materialized as DIMEs 

 

 

Figure 10b. Speed-up in Atomics queries with only sub-

expressions materialized as DIMEs 

6.1.2 Analytic Workload: Auto-capture of DIMEs 

and Query Acceleration 
While it is true that materializing user-defined VCs is a simple 

technique to obtain faster query response times, choosing which 

expressions to create VCs on is a challenging task in its own right. 

An expression may be occurring frequently in the SQL queries, 

but may not get evaluated enough due to high filter rate of certain 

predicates. In addition, the query optimizer may choose to rewrite 

the query in such a way that expression evaluation in no longer 

the dominant processing cost. Moreover, a DBA has no 

knowledge of implicit expressions that the optimizer generates. 

Hence, the task of capturing expressions is best left to the ESS.  

In this experiment, we use a TPC-H based analytic schema [13] 

with eight tables (30 GB scale factor) to test the expression 

tracking efficiency of the ESS. TPC-H is a decision support 

benchmark which consists of a suite of business oriented ad-hoc 

queries and concurrent data modifications. The analytic queries in 

this benchmark are fairly complex, examining large amounts of 

data to arrive at answers to critical business questions. Table 4 

lists the top 7 hottest expressions captured by the ESS from a 

workload comprising of several analytic queries. 

 

Table 4. Top expressions captured by ESS 

Table 

Name 
Expression 

LINEITEM l_extendedprice * (1-l_discount) 

LINEITEM l_extendedprice * (1-l_discount) * (1+l_tax) 

ORDERS 
CASE when (o_orderpriority<>(1-urgent) and 

o_orderpriority<>(2-high)) then 1 else 0 END 

ORDERS 
CASE when (o_orderpriority<>(1-urgent) and 

o_orderpriority<>(2-high)) then 1 else 0 END 

LINEITEM 
CASE when l_receiptdate > l_commitdate 

then 1 else 0 END 

ORDERS SYS_OP_BLOOM_FILTER(:BF0000, o_custkey) 

LINEITEM SYS_OP_BLOOM_FILTER(:BF0000, l_partkey) 

 

Most of the top expressions tracked by ESS are on the LINEITEM 

fact table. Some of these expressions are used in SELECT lists as 

part of aggregations while others are used in WHERE clause 

predicates. The ESS also tracks bloom filters, which are internal 

filters that are used to speed up complex joins [4,7]. While bloom 

filters are not directly materialized as DIMEs, the knowledge of 

their existence provides the SQL engine with the ability to 

materialize certain internal computations in IMCUs that can lead 

to improved join performance. A detailed discussion of these 

optimizations, however, is beyond the scope of this paper. 

We demonstrate the power of DIMEs by considering the case 

when only one of these expressions: l_extendedprice * (1-

l_discount) on the LINEITEM table, is materialized as a DIME 

in IMEUs. Table 5 depicts a subset of the analytic queries 

involving the LINEITEM table. Q1 performs filtering based on 

expressions in the predicate; Q2 performs an aggregation on the 

expression; and Q3 is a more complicated query that performs 

aggregations as well as grouping operations. All queries are run 

with a Degree of Parallelism (DOP) of 4. 
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Table 5. Analytic queries on LINEITEM 

ID QUERY 

Q1 

SELECT SUM(l_quantity)  

FROM   lineitem  

WHERE (l_extendedprice*(1-l_discount))> 

      (SELECT AVG(l_extendedprice*(1-l_discount)) 

       FROM   lineitem);  

Q2 
SELECT MAX(l_extendedprice*(1-l_discount))  

FROM   lineitem; 

Q3 

SELECT l_returnflag, l_linestatus,  

SUM(l_quantity),SUM(l_extendedprice), 

SUM(l_extendedprice*(1-l_discount)),  

SUM(l_extendedprice*(1-l_discount)*(1+l_tax)),  

COUNT(*)  

FROM   lineitem  

GROUP  BY l_returnflag, l_linestatus; 

 

Figure 11 shows the speed-up in response times obtained by using 

DIMEs compared to performing vanilla in-memory scans on base 

columns. Q1 and Q2 benefit the most because they have the entire 

expression l_extendedprice * (1-l_discount) stored in-

memory as a DIME. Q3, however, has the DIME both as a top-

level expression (in SUM(l_extendedprice*(1-l_discount))) and 

as a sub-expression (in SUM(l_extendedprice*(1-

l_discount)*(1+l_tax))). Thus, Q2 incurs the additional run-

time cost of computing the second top-level expression from the 

DIME sub-expression, which limits the benefits seen by the 

DIME feature. 

 

 

Figure 11. Speed-up in analytic queries on LINEITEM with 

l_extendedprice * (1-l_discount) materialized as a DIME  

 

6.1.3 JSON Query Acceleration 
Oracle Database 12c introduced native JSON support in 2014. 

Now, users can not only store JSON data in its native structure 

within the database, but also retrieve it in a simple JSON friendly 

way and access it fully transparently via SQL [15]. This gives 

users greater flexibility in terms of managing their JSON data 

within a relational database. With the DIME feature, users can 

improve JSON query processing by an order of magnitude. The 

simplest JSON expression that the ESS can capture is a 

JSON_VALUE expression that enables the user to select one top-

level scalar value from within the JSON document. 

JSON_VALUE essentially acts a bridge from a JSON value to a 

SQL value. 

For the purposes of this experiment, we focus on the NoBench 

benchmark suite [11]. It consists of a series of JSON objects with 

hierarchical data, dynamic typing and sparse attributes. The 

chosen JSON schema consists of 64M rows and is approximately 

40GB on disk. The table is enabled for in-memory storage at 

default compression level. The ESS captures several 

JSON_VALUE expressions from the analytic query workload. 

However, we only choose 2 expressions to materialize as DIMEs, 

namely: 

1. JSON_VALUE(jobj, '$.num'  RETURNING NUMBER) 

2. JSON_VALUE(jobj, '$.dyn1' RETURNING NUMBER) 

Table 6 shows the set of 3 queries we choose to demonstrate 

improvements in JSON query processing response times. All 

queries run with a DOP of 32. 

 

Table 6. JSON queries 

ID QUERY 

Q1 

SELECT    COUNT(*)  

FROM      nobench_main  

WHERE     json_value(jobj,'$.num' returning  

NUMBER) BETWEEN 1 AND 1000; 

Q2 

SELECT    COUNT(*)  

FROM      nobench_main  

WHERE     json_value(jobj,'$.num' returning  

NUMBER) BETWEEN 1 AND 100000  

GROUP BY  json_value(jobj, '$.thousandth'); 

Q3 

SELECT    COUNT(*)  

FROM      nobench_main  

WHERE     json_value(jobj, '$.dyn1' returning  

NUMBER) BETWEEN 1 AND 1000; 

 

Queries Q1 and Q3 benefit directly from the materialized 

JSON_VALUE DIME, and achieve a 20X improvement in 

response times. Query Q2 needs to perform a group by on a 

JSON_VALUE expression that is not available as a DIME and 

hence, has a gain of only 5X (see Figure 12). 

 

 

Figure 12. Performance boost in JSON query processing with 

JSON_VALUE DIMEs 

 

6.2 Accelerate OLTAP Mixed Workloads 
In modern business organizations, the ability to combine 

transactional processing with super-fast on-demand analytics on 

real time operational data is paramount to making key business 

decisions. Oracle DBIM is an industry-first dual format database 

that provides blazingly fast in-memory analytic performance 

while improving transactional processing. The DIME feature 

further strengthens DBIM performance under OLTAP mixed 

workloads. 

This experiment comprised of a synthetic OLTAP workload that 

simulates an insert/update/delete workload interspersed with 

analytic queries. The test consists of a wide table with 6M rows, 

and 101 columns (1 identity column, 50 number columns and 50 
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varchar2 columns) with an index on the identity column. The 

hardware setup was a 2x Intel Xeon E5-2690 @ 2.90GHz, 8-core 

processor with 256GB of DRAM, of which only 60GB was used 

for the in-memory area. The test was run for 1 hour with all 

operations done with a target throughput of 2000 ops/sec. The 

percentage of DMLs and analytic queries in the workload was 

tunable – we demonstrate performance improvements for a 

workload with 99% DMLs and only 1% analytic scans.  

We use various metrics such as query response times, CPU usage, 

and operation throughput (transactions or scans) to show the 

capabilities of the DIME feature. The analytic queries involved 

several expressions – the ones materialized as DIMEs are listed in 

Table 7. Table 8 lists a subset of the queries that were run in this 

workload. 

Table 7. List of DIMEs materialized in-memory 

ID Expression 

E1 ROUND(n2 /1000000+n3/1000000) 

E2 1+(n2/1000000)+(n3/1000000)+(n4/1000000) 

 

Table 8. Analytic queries in synthetic OLTAP workload 

ID Expression 

Q1 
SELECT  

MAX(( 1+(n2/1000000)+(n3/1000000)+(n4/1000000)))  

FROM   c101_6p1m_hash; 

Q2 
SELECT MAX(n2)  

FROM   c101_6p1m_hash  

WHERE  ROUND(n2 /1000000+n3/1000000)= 10;  

Q3 

SELECT MAX(n3)  

FROM   c101_6p1m_hash  

WHERE  

(1+(n2/1000000)+(n3/1000000)+(n4/1000000))= 8;   

 

Figure 13 shows the improvement in response times of analytic 

queries (Q1, Q2 and Q3) in the OLTAP workload, obtained by 

using DIMEs over vanilla DBIM scans. It can be seen that the 

median query response time improves by a factor of almost 200X. 

In addition, the workload can successfully sustain the target 

throughput rate of 2000 ops/sec, while limiting average CPU 

utilization to only 28.6%. In contrast, without DIMEs, not only 

does query performance suffer, but average CPU utilization is also 

at 100%, thereby not achieving the expected throughput rate. 

 

 

Figure 13. Speed-up in minimum, median and maximum 

response times of queries in OLTAP workload with DIMEs 

Thus, the DIME feature guarantees excellent analytic performance 

while efficiently utilizing CPU and other system resources even in 

a mixed OLTAP workload. 

7. CONCLUSIONS AND FUTURE WORK 
Expression evaluation in queries is the proverbial “dark matter” of 

analytic workloads – invisible to most performance monitoring 

tools yet consuming considerable CPU cycles. This paper presents 

how Oracle Database 12.2 tackles this problem using a novel 

technique called Dynamic In-Memory Expressions (DIMEs) that 

greatly reduces expression evaluation cost, thereby significantly 

accelerating analytic queries. 

DIMEs are automatically captured from the database and 

materialized in the IM column store without any user intervention. 

The DIME feature is seamlessly integrated with the Oracle 

Database In-Memory (DBIM) infrastructure, which allows us to 

apply all the in-memory query optimizations introduced for DBIM 

on DIMEs. We show that DIMEs can yield integral multiples of 

speedup (up-to 1000x) in analytic queries on relational as well as 

JSON schemas. 

Future work includes integrating the DIME infrastructure with the 

Automatic Data Optimization (ADO) framework [16] to improve 

memory management of DIMEs by automatically migrating 

IMEUs between different storage tiers based on access frequency; 

supporting DIMEs on Active Dataguard (physical standby); 

augmenting the ESS to capture expressions involving columns 

from different tables; and extending the DIME storage to Flash 

and other emerging persistent memory technologies such as 

NVRAM. 
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