
Accelerating Analytics with Dynamic In-Memory
Expressions

Aurosish Mishra, Shasank Chavan, Allison Holloway, Tirthankar Lahiri, Zhen Hua Liu, Sunil
Chakkappen, Dennis Lui, Vinita Subramanian, Ramesh Kumar, Maria Colgan, Jesse Kamp,

Niloy Mukherjee, Vineet Marwah

Oracle America
400 Oracle Parkway

Redwood Shores CA 94065

aurosish.mishra@oracle.com

ABSTRACT

Oracle Database In-Memory (DBIM) accelerates analytic

workload performance by orders of magnitude through an in-

memory columnar format utilizing techniques such as SIMD

vector processing, in-memory storage indexes, and optimized

predicate evaluation and aggregation. With Oracle Database 12.2,

Database In-Memory is further enhanced to accelerate analytic

processing through a novel lightweight mechanism known as

Dynamic In-Memory Expressions (DIMEs). The DIME

mechanism automatically detects frequently occurring expressions

in a query workload, and then creates highly optimized,

transactionally consistent, in-memory columnar representations of

these expression results. At runtime, queries can directly access

these DIMEs, thus avoiding costly expression evaluations.

Furthermore, all the optimizations introduced in DBIM can apply

directly to DIMEs. Since DIMEs are purely in-memory structures,

no changes are required to the underlying tables. We show that

DIMEs can reduce query elapsed times by several orders of

magnitude without the need for costly pre-computed structures

such as computed columns or materialized views or cubes.

1. INTRODUCTION
Oracle Database In-Memory (DBIM) provides extensive

optimizations for accelerating most aspects of analytic workloads,

including scans, joins, predicate evaluation and aggregation [3].

Each of these query components involves expressions, the

evaluation of which is often the dominant cost of query execution

[5]. For instance, consider the following query:

SELECT item_name,

 price * (1 – discount)

FROM sales

WHERE category = ‘household’;

If the SALES table is in the in-memory columnar format, it can be

scanned and filtered for ‘household’ items at the rate of billions of

rows per second. The evaluation of the SELECT expression

price * (1 – discount), on the other hand, involves

costly numerical computations which can slow down overall

query execution.

Common approaches for reducing expression evaluation costs

include adding pre-computed columns to base tables, or creating

materialized views or pre-defined cubes. All of these are typically

difficult to define for ad-hoc workloads, and are expensive to

maintain when the underlying tables change frequently. If a query

repeats the same expression multiple times, common sub-

expression elimination (CSE) [8] can be used to evaluate each

expression only once. The results, however, are not cached from

one query to another, so subsequent queries cannot take advantage

of the evaluation.

This paper introduces Dynamic In-Memory Expressions (DIMEs),

a novel lightweight mechanism that identifies expensive

expressions and caches them “on the fly” in-memory, allowing

queries to access them at runtime, thus avoiding redundant

expression evaluations. Our proposed mechanism begins by

automatically tracking all expressions evaluated across a query

workload in a repository known as the Expression Statistics Store

(ESS). Frequently executed, costly expressions are selected from

the ESS, and then computed and cached in the In-Memory (IM)

Column Store. Subsequent query execution involving the same

captured expressions are optimized in the scan engine by directly

accessing the cached results from memory, side-stepping the

expression evaluation engine entirely for those expressions.

It should be noted that DBIM features a dual-format in-memory

architecture, where the persistent data format remains row-

oriented for efficient OLTP performance, and a pure in-memory

columnar format is used to accelerate analytic workloads. Thus, it

is possible to add additional expression evaluation result columns

to the in-memory columnar format without having to make any

changes to the underlying physical tables – the expressions

materialized by the DIME infrastructure only exist in the IM

column store.

The rest of this paper is organized as follows. Section 2 provides a

brief overview of DBIM and the organization of the IM column

store in terms of In-Memory Compression Units (IMCUs).

Section 3 introduces the DIME concept and how candidate

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13

Copyright 2016 VLDB Endowment 2150-8097/16/09.

1437

expressions can be identified using the ESS. Section 4 describes

how DIMEs are populated in terms of units known as In-Memory

Expression Units (IMEUs) and how they are maintained as the

underlying table data changes. Section 5 describes how DIMEs

are used to accelerate scans, predicate evaluation and aggregations

involving expressions. Section 6 provides some experimental

results and Section 7 concludes.

2. OVERVIEW OF ORACLE DATABASE

IN-MEMORY
Row stores are ideal for OLTP workloads, where each transaction

typically accesses a small number of rows and many columns in

each row (e.g insertion of a new order). On the other hand,

column stores [1,2] are better suited for analytics workloads in

which queries access many values in a small number of columns

(e.g. find the number of sales in each state).

Since neither format is optimal for all workloads, Oracle Database

In-Memory supports a dual-format in-memory representation [3]

in which the row format continues to be supported via the buffer

cache, while a new pure in-memory columnar format is added for

the subset of tables on which fast analytics is required (see Figure

1). The in-memory columnar format is a pure in-memory format,

therefore no logging or check-pointing is required for its

maintenance as the underlying row data changes. DML changes

run directly against the row format, and the column format is

transactionally maintained. Highly selective OLTP-style queries

(e.g. lookup by primary key) are directed by the Optimizer [7] to

use the row format, while analytic queries are directed by the

Optimizer to use the column format – regardless of which format

is used, the same results are returned by the query.

Figure 1. Dual-Format In-Memory Database

The IM column store can be used for all or a subset of the tables

in a database. When a table is brought into the column store, it is

done by a process known as Populate, which creates the column

formatted version of the table from its underlying row format. The

Populate process creates the in-memory column formatted table in

terms of units known as In-Memory Compression Units (IMCUs).

An IMCU spans a large range of rows, between 0.5-1 million, and

within each IMCU, columns are organized into column

Compression Units (CUs) – which are large compressed vectors

of column values. A variety of compression schemes are

available, depending on the user-chosen level of compression (e.g.

it is possible to choose a compression scheme optimized for

maximum query performance, or one that is optimized for

maximum space savings).

Scans against the IM column store are optimized using SIMD

vector processing instructions, which can process multiple

operands in a single CPU instruction (see Figure 2) [3,4]. Further,

each IMCU maintains per column summary information such as

minimum and maximum values. This collective summary

information serves as an in-memory storage index for the table. It

allows IMCUs to be skipped completely while processing a table

scan, when it is known from the storage index that none of the

rows in the IMCU will qualify based on the scan filter predicates.

Thus, by reducing the amount of data accessed per scan, faster

query response times are achieved.

Figure 2. SIMD vector-processing in the IM column store

Each IMCU is associated with a Snapshot Metadata Unit (SMU)

that tracks changes made by DMLs since the time of creation of

the IMCU. Oracle Database employs a snapshot-based isolation

model known as Consistent Read (CR) [6]: Each operation is

associated with a snapshot System Change Number (SCN)

representing when the operation began, and is only allowed to see

either its own changes or changes that were committed at earlier

SCNs. The SMU provides CR semantics: scans consult both the

IMCU and the SMU in order to generate consistent results. When

the number of changes to an IMCU exceeds a certain threshold

(the threshold is determined by a combination of heuristics) a

Repopulate task is issued on the IMCU to create a pristine version

once again.

3. IDENTIFYING CANDIDATE

EXPRESSIONS
Expressions are essential components of analytic SQL queries.

They can involve simple mathematical or logical operators such

as “+” and “*” as well as built-in SQL functions such as substr(),

regexp(), trunc() and user-defined PL/SQL functions. Expressions

can occur in various parts of a SQL statement. For example,

expressions may exist within the SELECT list, WHERE clause

predicates, an aggregation function, and within the GROUP BY

and HAVING clause.

Table 1. SQL queries with expressions

ID QUERY

Q1 SELECT (sal + bonus) FROM emp

Q2
SELECT SUM((sal + bonus)*(1-taxrate))

FROM emp WHERE UPPER(job) = ‘MANAGER’

Q3
SELECT MAX(sal) FROM emp

GROUP BY EXTRACT(year FROM hiredate)

In the examples shown in Table 1, Q1 contains the expression

(sal + bonus) in the SELECT list, Q2 contains the

expression (sal + bonus)*(1-taxrate) inside an

aggregation, and another expression UPPER(job) in the

WHERE clause predicate, and finally, Q3 contains the expression

EXTRACT(year FROM hiredate) in the GROUP BY

clause.

1438

An expression can be completely subsumed by another

expression. Such an expression is referred to as a sub-expression.

An expression that is a composite of multiple sub-expressions is

termed a top-level expression. For example, Q2 has the top-level

expression (sal + bonus)*(1-taxrate), which contains

two sub-expressions: (sal + bonus) and (1-taxrate).

The examples above focus on expressions that are explicitly

invoked in SQL queries. However, the SQL engine often

generates implicit expressions and internal computations during

query compilation. As an example, consider the where clause:

“c1=c2”. The query optimizer may choose to rewrite this

predicate as “c1–c2=0”, thereby generating the implicit

expression “c1–c2”. Data conversions, hash computations,

column concatenations, etc. are all examples of implicit

computations that can be generated internally by the SQL engine

to help speed up complex analytic queries and join operations.

The evaluation of implicit and explicit expressions can consume a

significant amount of CPU time within an analytic workload.

Furthermore, the same expressions may recur across several

different queries in a given workload. By automatically

identifying such expressions and materializing their results in-

memory, the database can greatly improve query performance

while reducing the amount of CPU resources consumed. The

benefits of in-memory materialization are two-fold – a) avoid

repeated expression evaluations and b) apply in-memory query

optimizations such as SIMD vector processing, in-memory

storage index pruning, etc. on the materialized expression results.

A DIME can be broadly classified as any expression that is

automatically captured from the workload, and for which the

results have been pre-computed and materialized within the IM

column store. Strictly speaking, a typical DIME involves one or

more columns of a table, possibly with some constants and has a

1-to-1 mapping with the rows in the table. In order to identify

DIMEs, we build and maintain a repository capturing useful

statistics about expressions that are evaluated in various queries of

an analytic workload, called the Expressions Statistics Store

(ESS).

3.1 Expression Statistics Store
The Expression Statistics Store is a database-level repository

maintained by the optimizer that tracks statistics of various

expressions received and generated by the SQL engine on a per-

table basis. The ESS identifies expressions to track for a query at

compilation time. There are many different stages during query

compilation that can transform, eliminate or add new expressions.

The expression tracking mechanism is deferred till after the

compile time representation of the expression is finalized. This

ensures that expressions are in their final form and will not

undergo any further transformations.

To uniquely identify expressions across different queries, the ESS

generates an expression ID for each distinct expression of a table.

The expression ID is a unique encoding obtained from the

canonical representation of the expression and the table object

number. For any expression, the canonical form is generated after

normalizing the expression by transforming it in different ways,

including commutative, associative and distributive

transformations. This ensures that two expressions on the same

table, such as (a+b) and (b+a), that differ in their textual

representation but have the same canonical form, are tracked as

the same expression in the ESS.

Factoring the table object number into the encoding function

ensures that expressions are tracked on a per table basis in the

ESS. For instance, if two tables T1 and T2 have an expression

upper(c) on a varchar2 column c, they will be treated as different

expressions in the ESS. For PL/SQL procedures, the expression

ID is generated by encoding the PL/SQL package ID and the

package entry number for the procedure.

Each expression tracked by the ESS is associated with two distinct

types of attributes: Static attributes and Dynamic attributes. Static

attributes include information that is fixed for a particular

expression and does not change across different query executions.

These include the SQL text representation of the expression, list

of columns referenced in the expression, optimizer fixed cost that

estimates the per-evaluation processing cost of the expression, etc.

Dynamic attributes track information that changes from one query

to another. They include expression evaluation counts, timestamps

of expression evaluation, optimizer dynamic costs based on

runtime feedback, etc.

During query execution, the most accurate method to track

evaluation count of an expression is to keep counters in the

evaluation procedures. However, this is fairly involved and may

cause performance regressions in critical query paths. Hence,

different heuristic-based approaches are employed to estimate the

evaluation count for expressions.

One simple heuristic utilizes row source statistics. A row source

in Oracle corresponds to a node in a query execution plan. It is an

iterative control structure that accepts a set of rows from child

nodes, processes them in an iterated manner, and produces an

output row-set for its parent node. The SQL engine has several

row sources such as the table scan row source, various join

method row sources, partition iterator row sources, etc. For each

such row source, the row source statistics contain information

about the number of rows flowing in and out of that row source.

These numbers are used to estimate the most likely evaluation

count of an expression within that row source.

Each row source can provide run-time feedback to the ESS to

more accurately estimate dynamic attributes such as the

expression evaluation count and execution cost. This can be done

by annotating the row source statistics with information about the

actual number of rows processed per expression, or number of

expression evaluations pruned by a certain expression occurring in

a predicate. For example, the table scan row source may receive

two expressions (e.g. round(price) and upper(item_name)) as part

of two different predicates (e.g. round(price)=10 and

upper(item_name) = 'COFFEE') in the WHERE clause. As part

of the first predicate evaluation, a large fraction of the rows may

be filtered out, causing the expression in the second predicate to

be evaluated for only a small number of rows. This fine-grained

information is only available inside the row source, but is

essential for the accuracy of tracked expression statistics.

Both static and dynamic attributes for expressions are stored in the

shared memory within the System Global Area (SGA), which is a

per-instance read/write memory area that is shared by all

processes belonging to that Oracle instance [14]. This information

is also persisted periodically to separate dictionary tables on disk

to ensure that expression statistics tracked by the ESS are durable

across database restarts.

The ESS maintains run-time statistics for different time-horizons,

in separate snapshots, in order to provide greater flexibility in

statistics monitoring. For example, two intuitive snapshots

1439

supported by the ESS are: cumulative and current. The cumulative

snapshot contains expression statistics since the first time an

expression was captured by the ESS (e.g. cumulative evaluation

count), while the current snapshot captures execution statistics

within the last N hours (e.g. last 24 hours). The current snapshot

statistics are merged into the cumulative snapshot statistics once

the expression creation timestamp crosses the N hour mark.

3.2 DIMEs and ESS

3.2.1 Candidate Expression Ranking
The ESS tracks various statistics and metadata for all candidate

expressions in a database workload. However, the goal of the

DIME infrastructure is to capture hot expressions that account for

a significant fraction of the total evaluation cost. The hotness of

an expression essentially represents the cumulative cost incurred

by the SQL engine in evaluating that expression repeatedly across

different queries. Each expression is given a weighted hotness

score that depends on a number of factors such as evaluation

count, dynamic execution cost, row source in which the

expression occurs, distribution of expression evaluation across

different snapshots, etc. In addition, statistics captured across

different snapshots may be weighed differently. For example,

statistics captured in the current snapshot can be given a higher

weight than statistics in the cumulative snapshot to ensure that

recently seen expressions are considered more favorably. Using

this hotness score, expressions are ranked for a particular table or

across the entire database. A simple formula to compute the

hotness score of an expression is shown in Figure 3.

snap

n

snap

snape CWHe  
1

,

,...),,(sidcntcfC eesnap 

 1
1




n

snap

snapW

]1,0[snapW

where:

 He , hotness score of expression e

 Wsnap , weight given to a snapshot

 Csnap , cost of evaluating e in that snapshot

 f, evaluation cost function for e that depends on:

­ ce, average execution cost per evaluation

­ cnte, evaluation count in a snapshot

­ sid, id of snapshot to consider

Figure 3. Hotness score for expressions

The snapshots and benefit function can be fine-tuned as required

to provide better ranking of expressions.

The DBIM infrastructure has an in-memory coordinator process

(IMCO), which periodically queries the ESS, ranks expressions

based on their hotness score, and obtains the set of “top n”

expressions at the database level. These expressions are populated

into the IM column store as DIMEs.

The number of expressions chosen depends on several factors.

Obviously, materializing all expressions would provide the

greatest performance benefits across the widest range of queries.

However, we have to weigh the query performance benefits of

DIMEs against their increased memory footprint in the IM

column store. Factors such as compression format chosen, data-

types of base columns in the expression, and the amount of in-

memory space available for expressions, are all taken into account

while deciding on the number of DIMEs to capture from the ESS.

3.2.2 Virtual Columns
For any hot expression captured from the ESS, and eventually

stored in the in-memory area, we need a unique way to identify it

across various layers of the SQL engine. A simple way to achieve

this is to leverage the virtual columns infrastructure of Oracle

Database.

Virtual columns (VCs), introduced in Oracle 11g, are columns

that represent expressions on one or more table columns. Unlike a

base column (physical column), a VC is represented only as table

metadata – it does not have any physical allocation on disk. When

queried, its value is computed by evaluating the expression at

runtime. Any reference to a VC is automatically replaced with its

expression in the logical expression tree and tagged with a special

flag by the SQL engine. Similarly, any occurrence of an

expression, which is represented by a VC, is also tagged with the

same flag, enabling the SQL engine to identify VCs during query

execution.

The DIME infrastructure adds hot expressions captured from the

ESS as hidden VCs to the respective tables. Hidden VCs differ

from user-defined VCs in that they are not visible to the user, and

are not returned as part of a ‘SELECT *’ or a DESCRIBE query

on the table. DIME hidden VCs are also assigned a separate

system-generated namespace to distinguish them from user-

defined VCs. This enables the DIME infrastructure to add and

remove hidden VCs from a table automatically without user

intervention. The addition and removal of a hidden VC are

lightweight operations that do not affect running applications.

The list of hot expressions returned by the ESS can change as the

workload generates newer expressions. Hence, cold expressions

must be removed to prevent unnecessary consumption of in-

memory space. In each lookup of the ESS, we mark the DIME

hidden VCs that have become cold to be ‘no inmemory’ using the

selective columns feature (see Section 3.3). Alternatively, we can

mark the cold hidden VCs as ‘unused’, since unused columns are

never chosen for in-memory materialization.

3.3 User-Defined Virtual Columns
The DIME infrastructure relies on the ESS to automatically

capture hot expressions from an analytic workload. Once

identified, these expressions are added to the table as hidden VCs.

Naturally, another source of candidate expressions includes user-

defined VCs. The techniques used to accelerate queries using

DIMEs can be directly applied to user-defined VCs as well. Thus,

for completeness, we provide a manual counterpart of the DIME

feature referred to as In-Memory Virtual Columns.

This manual component of the DIME feature provides users with

a greater degree of control over which virtual columns to populate

into the IM column store. For example, users can specify a

column compression clause on each VC denoting whether or not

they want the VC to be stored in-memory, and at what in-memory

compression level. Similar to base columns, users can choose

from multiple compression levels for VCs: FOR DML, FOR

QUERY, and FOR CAPACITY. [3,4]

For the remaining sections, we focus on DIMEs only, noting that

the same framework can be used for populating, maintaining and

querying user-defined VCs as well.

1440

4. CREATION AND MAINTENANCE OF

DIMEs
DIMEs are materialized in special in-memory units called In-

Memory Expression Units (IMEUs). The memory for storing

IMEUs comes from the same In-Memory Area in the SGA

reserved for the IM column store. IMEUs utilize the same in-

memory columnar format as the base table. Recall that each table

selected for in-memory storage is populated into the IM column

store in contiguously allocated units called IMCUs [3,4]. An

IMEU is implemented as a logical extension of an IMCU. The

IMCU, which an IMEU logically extends, is referred to as the

parent IMCU. Physically, an IMEU is stored as a top-level

continuation piece of the parent IMCU, with a pointer from the

IMCU to the IMEU. Storing DIMEs in separate IMEUs, rather

than storing them within the IMCU has several advantages, as

described over the next few sections.

Each IMCU stores column data for a target number of table rows,

typically half a million. The IMEU stores DIME results for each

of those rows stored in the parent IMCU (see Figure 4). Within

the IMEU, each DIME is stored contiguously as an Expression

Unit (EU). EUs utilize in-memory formats, similar to those used

for column CUs in the parent IMCU.

Figure 4. Columns A and B in an IMCU with n-rows and

expressions A+B and A*B in the corresponding IMEU

An IMEU inherits all in-memory attributes from the parent IMCU

and the on-disk table/segment that was used to populate the

IMCU. For example, the IMEU is duplicated or distributed in a

RAC configuration [3] in exactly the same manner as the parent

IMCU. Thus, the distribution manager can provide the same high-

availability, fault-tolerance and scalability guarantees for IMEUs,

as for IMCUs. Similarly, IMEU population is performed in the

same priority order as the parent IMCU, as specified by the

PRIORITY sub-clause on the base table. The data in the IMEU is

typically also compressed using the same compression schemes

used to populate the parent IMCU. In certain cases, EUs may be

compressed at higher compression levels (such as FOR

CAPACITY) to ensure maximum space utilization.

4.1 Population of IMEUs
IMEUs utilize the same background population mechanism that is

used to build the IMCUs. The IMCO coordinates population tasks

using a configurable pool of background server processes. Each

population task contains metadata about which set of on-disk rows

to populate in a particular IMCU. Since an IMEU spans the same

set of on-disk rows as the IMCU, the population task context is

simply augmented with the list of DIMEs to populate. Thus, an

IMCU and its IMEU are both populated by the same background

process as part of the same population task (see Figure 5). This

guarantees that all the concurrency control primitives that

synchronize IMCU population with DDL operations such as

ALTER/DROP TABLE, DROP TABELSPACE, etc. will now

synchronize IMEU population as well.

Figure 5. Top-level IMEU population (with IMCU and SMU)

Each background slave first completes the IMCU population by

column formatting rows obtained from a subset of on-disk blocks

for the table, and applying appropriate compression schemes. The

SMU is also built in this process to track transactional changes for

the rows in this IMCU. Once the IMCU is populated, it is deemed

online, and queries can access column data from the IMCU.

Similarly, transactions can also proceed and DMLs will be

recorded in the SMU to track validity of the IMCU rows. Only

after the IMCU is online, does IMEU population begin. This

ensures that applications have no downtime in accessing IMCUs

and SMUs, even when there are IMEUs to be populated.

Unlike IMCU source data that is readily available in the row-

format, the IMEU data, i.e. DIME results, is not available in the

row-store. Hence, the row data is used to evaluate the expressions

to generate DIME results. Subsequently, intelligent data

transformations and compression algorithms are applied on this

data to create DIME EUs for the IMEU.

As mentioned in Section 2, each IMCU is marked with the SCN

of the time of its creation. The IMCU contains all committed

changes up-to that SCN for the rows it spans. Any changes

beyond that SCN are tracked in the SMU. To ensure transactional

consistency with the IMCU, the IMEU is built as of the IMCU

creation SCN using Oracle point-in-time queries, known as

flashback queries.

Introduced in Oracle 9i, flashback queries employ CR techniques

to view past states of database objects without using point-in-time

media recovery [9]. To fetch DIME results, an internal AS OF

SCN flashback query is issued, with the query SCN being same as

the IMCU creation SCN. Since the query SCN and the IMCU

creation SCN match, and the IMEU spans the same set of rows as

the IMCU, the flashback query performs expression evaluation

1441

directly on the column CUs in the recently built parent IMCU.

Thus, using flashback queries guarantees that contents of an

IMEU are consistent with source data within the parent IMCU.

Any row of a table has base column data in the IMCU and

corresponding DIME data in the IMEU. Hence, the same SMU

that tracks validity of rows in the IMCU can be leveraged for

tracking transactional changes in the IMEU. Thus, any query

accessing data from the IMEU is guaranteed to always obtain

consistent expression results.

4.2 Re-population of IMEUs
Once IMEUs are populated, queries containing expressions that

have been materialized as DIMEs, can directly access the

expression results from the EUs. However, for rows invalidated

by DMLs, the expression results cannot be directly read from the

IMEU, and must be computed during runtime. Naturally, as

DMLs accumulate, performance of DIME scans deteriorates just

as it does for scans on the IMCU. Hence, we employ a

background repopulate mechanism to periodically ‘refresh’ the

IMCU-IMEU pair and rebuild it at a new SCN.

As described in [3], IMCUs are repopulated using two techniques:

threshold-driven repopulation and trickle repopulation. A variety

of policies are employed to control threshold-driven repopulation.

Repopulation thresholds take into account the number of invalid

rows/blocks in an IMCU, number of scans on an IMCU, etc. Once

any IMCU exceeds a certain threshold, it is queued for

repopulation. Trickle repopulation, unlike threshold-driven

repopulation, runs constantly and unobtrusively in the

background, consuming a small fraction of the available

repopulate processes. The goal of trickle repopulation is to ensure

that eventually any given IMCU is clean even if it has not

exceeded the repopulation thresholds.

Figure 6. Repopulation of IMCU-IMEU

From their creation, IMEUs are tightly coupled with their parent

IMCUs. Thus, IMEUs are repopulated whenever the parent IMCU

is repopulated as a result of DMLs on the base table (see Figure

6). IMEUs must also be repopulated whenever we want to add a

new hot DIME, or evict a cold DIME. This mechanism is an

IMEU-only repopulation; the parent IMCUs need not be

repopulated when the set of hot expressions being tracked by the

ESS changes. This is one of the advantages of storing expressions

in separate IMEUs, and not mixing them inside IMCUs.

For any repopulation operation, the old IMCU and IMEU are kept

online until the new IMCU and IMEU have been created. This

ensures that applications do not suffer a significant drop in

performance due to IMCU-IMEU unavailability.

During each lookup of the ESS, if the set of hot expressions has

changed significantly, proactive repopulation tasks are submitted

to remove cold DIMEs and populate new hot DIMEs in-memory.

This guarantees that only the analytic working set of expressions

are materialized as DIMEs in-memory at any point in time,

thereby achieving maximum performance benefits with optimum

memory utilization.

5. LEVERAGING DIMEs FOR QUERY

ACCELERATION
Once candidate expressions are identified and hidden VCs are

created to represent them, DIMEs are populated into IMEUs and

become fully accessible for query optimization. The next step

involves rewriting the query plan generated by the SQL compiler

into a runtime execution plan that can leverage DIMEs during

expression evaluation. When this plan is processed by the scan

engine, VCs look practically identical to base columns, and

therefore very few changes are needed during SQL runtime to

accelerate query execution. The next few subsections provide

more details into how DIMEs are eventually leveraged for query

acceleration.

5.1 SQL Compilation and Optimization
The SQL compiler generates a logical expression tree of operands

(where an operand can be base columns, constants, or operators)

during query parsing. By then, the compiler would have

decomposed VCs into operators with base column operands. As

such, the only hint that VCs were directly used in the query would

be meta-data associated with operator nodes indicating a VC. No

additional changes are needed during query compilation to utilize

DIMEs. As an example, consider the following query:

SELECT UPPER(item_name)

FROM sales

WHERE category = ‘household’ and

 price * (1-discount) > 1000;

Possible DIMEs are the SELECT expression

UPPER(item_name), the WHERE clause predicate sub-

expression (1-discount), and top-level expression price *

(1-discount). Figure 7 presents a logical expression tree for

the predicate clause, with possible DIMEs highlighted.

The logical expression tree is then processed by the optimizer to

generate an execution plan. The optimizer will generate an in-

memory execution plan (via the table scan row source) if the cost

is less than a non-in-memory plan [7]. The optimizer takes filter

and decompression costs into consideration, as well as the

percentage of the table being processed in-memory – recall that

1442

with Oracle DBIM, the entire table/segment need not be in-

memory [4]. Similar costing needs to be applied when dealing

with DIMEs. If the table/segment is in-memory and has DIMEs

stored in IMEUs, then filters that could make use of these DIMEs

would cost considerably less. However, if the percentage of

DIMEs in-memory is below a certain threshold, late

materialization of the VC values might be cheaper, particularly if

more rows will be filtered by higher-level SQL row sources (such

as join), or there is a high computation cost associated with the

expression.

Figure 7. Logical expression tree showing top-level expression

price*(1-discount) as DIME#1 and sub-expression

(1-discount) as DIME#2

5.2 Code Generation for Table Scan Row

Source
The table scan row source is tasked with fetching all referenced

columns in a query from storage layers and applying filters before

projecting passing rows to higher-level SQL row sources for

further processing. The required columns are specified in a row

vector. The row vector is just an array of operands describing

base columns. For the DIME feature, the row vector was

modified to support both base columns and VCs. For example,

for the query in Section 5.1, the row vector would normally

contain item_name, category, price and discount.

With DIMEs, the row vector also contains the VCs

UPPER(item_name), (1-discount) and price*(1-

discount). Including VCs in the row vector allows the scan

layer to project DIMEs up the query execution plan to higher-

level SQL row sources which require these expressions, including

aggregation operators, such as SUM() or MIN(), on VCs.

The scan engine constructs a runtime execution plan from the

logical expression tree. First, the logical expression tree is

traversed to look for expression operators that have been marked

as VCs. The tree is then modified to insert branch nodes where

VCs are referenced (see Figure 8). These branch nodes are needed

because only at runtime is it known whether a DIME exists within

the IMEU for the IMCU being processed. If there is no DIME,

then processing should follow the “normal” path, which forces the

expression to be computed from the base columns, essentially

reverting to the original logical expression tree. If the DIME does

exist, processing will follow the optimized path in which the

evaluation of the expression is folded into a reference to the

DIME (which basically resembles a “base” column). Furthermore,

sub-expressions may be replaced with DIME references within

nested expressions. For example, it is possible for the sub-

expression (1-discount) to be a DIME, but not the top-level

expression price * (1-discount). Figure 9 depicts the

alternate paths chosen for evaluation when either expression is

available as a DIME in an IMEU.

Figure 8. Modified logical-expression tree with DIME branch

nodes

Figure 9. Run-time trees with DIME#1 or DIME#2 available

in-memory in IMEUs

5.3 Execution of Table Scan Row Source
The runtime execution plan is evaluated on a per IMCU basis.

Evaluation structures are first updated to point to the physical

locations of the required base and virtual columns found in the

corresponding IMCU/IMEU. Because IMCUs and IMEUs are

stored in virtually identical formats (and their corresponding

CUs/EUs share formats), gathering the required VCs from the

IMEU is almost identical to gathering the required base columns

from the IMCU.

1443

Columns may or may not be present in an IMCU because with

DBIM, users are allowed to specify what columns should be

stored in-memory. This allows memory to be used efficiently

based on the workload. Similarly, certain DIMEs may not be

present in an IMEU because of space considerations. If a base

column is not present in the IMCU, the scan falls back to buffer

cache until the next IMCU is found. If a requested DIME is not in

the IMEU, the scan executes the fallback path within the compiled

expression tree, which evaluates the expression using base

columns.

Because DIMEs are represented as VCs, and VCs are logically

equivalent to base columns in the runtime execution plan,

evaluation of DIMEs requires practically no changes in the scan

engine. As such, existing DBIM scan optimizations and efficient

projection techniques, such as late materialization [10], extend

naturally to DIMEs.

5.3.1 Scan Engine Optimizations
The scan layer has been extensively optimized to achieve high

performance for DBIM. One such optimization involves

maintaining storage indexes per IMCU, where storage indexes are

basically metadata describing the column values, such as

minimum and maximum values. By evaluating predicates directly

on storage indexes, entire IMCUs can be pruned efficiently

without performing full columnar scans. Furthermore, because

storage indexes are maintained separately from the columns

themselves, decompression costs are saved when storage indexes

are successfully applied. Since IMEUs are essentially identical to

IMCUs, storage indexes are available for DIMEs as well. For

example, if the predicate in a query is price*(1-discount) < 0, then

before the DIME is fully accessed, the minimum value from the

storage index in the IMEU is checked to see if any rows will pass

the predicate.

Other scan optimizations performed include utilizing SIMD

instructions for fast vector processing on columnar data [3,4]. By

transforming a complex multi-column expression into a VC stored

as a DIME in the IMEU, all the hardware optimized techniques

for columnar evaluation can be applied to DIMEs. The alternate

method would involve a costly row-by-row evaluation of the

expression requiring loading and processing each column operand

in the expression.

Scan optimizations are also tailored to specific columnar data

formats. For example, many columns in DBIM are formatted

using dictionary-encoding [3]. Expression evaluation on

dictionary-encoded column vectors can reduce computation and

bandwidth costs considerably. For instance, consider the

predicate upper(substr(a, 1, 3)) = ‘DOG’. If a DIME exists for

the sub-expression substr(a,1,3), then the predicate is effectively

transformed to upper(DIME) = ‘DOG’. With the DIME being

dictionary-encoded in the IMEU, the predicate can be efficiently

evaluated on the dictionary itself [3,4].

5.3.2 Projection and Late Materialization
Projection is the process of sending passing rows up from the

table scan row source to higher-level SQL row sources for further

evaluation. Project expressions are described similarly to

predicate expressions – i.e. via logical expression tree – so branch

nodes exist as decision points in the tree which check whether the

DIME result exists in-memory or not. For example, if the query

contains a SELECT clause involving a DIME expression, the

DIME result values are directly projected, while the underlying

base columns in the expression can be safely ignored (assuming

they aren’t needed by other expressions). If the DIME does not

exist, then the underlying base columns are projected instead.

Virtually all project optimizations that are performed on base

columns can also be performed on DIMEs. One optimization

worth noting is that, for dictionary-encoded DIMEs, it is possible

to return the dictionary indices of the passing rows themselves,

and not the actual values. This late materialization can provide

significant performance gains because a) the calling layers can

sometimes operate more efficiently on these indices directly, and

b) the calling layers do not always need the full symbol

information if, for instance, further post-filter predicates or a join

are applied [10].

6. PERFORMANCE EVALUATION
In this section, we present some experimental results to

demonstrate the benefits of the DIME feature: 1) Improved

response times for analytic queries, 2) Reduced CPU utilization

and 3) Higher throughput for mixed workloads that combine

analytics and transaction processing.

6.1 Accelerating Analytic Queries
In this section, we demonstrate the performance speed-ups

achieved by analytic queries in three different experimental

setups. The first experiment demonstrates the possible benefits of

this feature through the use of explicitly declared in-memory VCs.

The next experiment demonstrates the ability of the ESS to

automatically capture frequently evaluated expressions across an

analytic workload, and showcase the benefits of materializing the

hottest expressions as DIMEs. The final experiment focuses on

how DIMEs can improve JSON query processing by an order of

magnitude. All of these experiments are conducted on an Oracle

Exadata Database machine [12], which is a state-of-the-art

database SMP server and storage cluster system.

6.1.1 In-Memory Virtual Columns
A 14-column, 100 million row, non-partitioned ‘Atomics’ table

with storage size of 8GB is chosen for this experiment. The table

is configured with default in-memory compression levels. Four

virtual columns representing mathematical expressions and string

manipulations are manually added to the table (see Table 2). The

column rand1m contains uniformly distributed random values

from 1 to 1,048,575. Similarly, columns rand15 and rand64k

contain uniformly distributed random values from 1 to 15, and 1

to 65,535 respectively. The column uniq100m contains 100

million unique values in the range 1 to 104,857,600. The column

randstringsize26 consists of uniform random strings derived from

letters ‘a,b,c,…z’. The entire table, including VCs, is populated

into the IM column store.

Table 2. List of user-defined VCs

VC Name Expression

VC1 (rand64k/1000)+(rand1m/1000)

VC2 ((1-(rand15/100))+(rand1m/10)+rand64k)

VC3 (0.3*rand15)

VC4 SUBSTR(randstringsize26,10,5)

Table 3 depicts a set of five analytic point queries that were run

against this table. The queries have a mixture of expressions in the

WHERE clause as well as inside aggregations in the SELECT list.

More specifically, Q1, Q2 and Q3 have top-level expressions

materialized as DIMEs in IMEUs. Q4 and Q5, however, have

1444

only sub-expressions materialized as DIMEs. Figure 10a and 10b

depict the gain in response times seen by using DIMEs versus a

regular DBIM scan. All queries were run serially.

Table 3. Point queries on Atomics table

ID QUERY

Q1
SELECT MAX(rand15)

FROM atomics

WHERE((rand64k/1000)+(rand1m/1000))=10;

Q2
SELECT MAX((1-(rand15/100))+(rand1m/10)+rand64k)

FROM atomics;

Q3
SELECT MAX(uniq100m) FROM atomics

WHERE

((1-(rand15/100))+(rand1m/10)+rand64k)=10000;

Q4

SELECT MAX(uniq100m)

FROM atomics

WHERE

(0.3*rand15)+((rand64k/1000)+(rand1m/1000))<100;

Q5

SELECT MAX(rand15)

FROM atomics

WHERE

UPPER(SUBSTR(randstringsize26,10,5))='limja';

Figure 10a demonstrates that by materializing top-level

expressions as DIMEs, we can achieve upwards of 1000X

improvement in query response times. Figure 10b, on the other

hand, shows that by materializing only sub-expressions in-

memory, query response times improve by a modest factor of 2.

This can be explained by the fact that when only sub-expressions

are materialized in-memory, the scan still needs to perform run-

time expression evaluation to obtain the top-level expression

result before the predicate can be applied. Since these queries are

quite short in duration, this top-level expression evaluation

dominates the data processing cost, and hence, stifles the speed-up

achieved by DIMEs.

Figure 10a. Speed-up in Atomics queries with top-level

expressions materialized as DIMEs

Figure 10b. Speed-up in Atomics queries with only sub-

expressions materialized as DIMEs

6.1.2 Analytic Workload: Auto-capture of DIMEs

and Query Acceleration
While it is true that materializing user-defined VCs is a simple

technique to obtain faster query response times, choosing which

expressions to create VCs on is a challenging task in its own right.

An expression may be occurring frequently in the SQL queries,

but may not get evaluated enough due to high filter rate of certain

predicates. In addition, the query optimizer may choose to rewrite

the query in such a way that expression evaluation in no longer

the dominant processing cost. Moreover, a DBA has no

knowledge of implicit expressions that the optimizer generates.

Hence, the task of capturing expressions is best left to the ESS.

In this experiment, we use a TPC-H based analytic schema [13]

with eight tables (30 GB scale factor) to test the expression

tracking efficiency of the ESS. TPC-H is a decision support

benchmark which consists of a suite of business oriented ad-hoc

queries and concurrent data modifications. The analytic queries in

this benchmark are fairly complex, examining large amounts of

data to arrive at answers to critical business questions. Table 4

lists the top 7 hottest expressions captured by the ESS from a

workload comprising of several analytic queries.

Table 4. Top expressions captured by ESS

Table

Name
Expression

LINEITEM l_extendedprice * (1-l_discount)

LINEITEM l_extendedprice * (1-l_discount) * (1+l_tax)

ORDERS
CASE when (o_orderpriority<>(1-urgent) and

o_orderpriority<>(2-high)) then 1 else 0 END

ORDERS
CASE when (o_orderpriority<>(1-urgent) and

o_orderpriority<>(2-high)) then 1 else 0 END

LINEITEM
CASE when l_receiptdate > l_commitdate

then 1 else 0 END

ORDERS SYS_OP_BLOOM_FILTER(:BF0000, o_custkey)

LINEITEM SYS_OP_BLOOM_FILTER(:BF0000, l_partkey)

Most of the top expressions tracked by ESS are on the LINEITEM

fact table. Some of these expressions are used in SELECT lists as

part of aggregations while others are used in WHERE clause

predicates. The ESS also tracks bloom filters, which are internal

filters that are used to speed up complex joins [4,7]. While bloom

filters are not directly materialized as DIMEs, the knowledge of

their existence provides the SQL engine with the ability to

materialize certain internal computations in IMCUs that can lead

to improved join performance. A detailed discussion of these

optimizations, however, is beyond the scope of this paper.

We demonstrate the power of DIMEs by considering the case

when only one of these expressions: l_extendedprice * (1-

l_discount) on the LINEITEM table, is materialized as a DIME

in IMEUs. Table 5 depicts a subset of the analytic queries

involving the LINEITEM table. Q1 performs filtering based on

expressions in the predicate; Q2 performs an aggregation on the

expression; and Q3 is a more complicated query that performs

aggregations as well as grouping operations. All queries are run

with a Degree of Parallelism (DOP) of 4.

0

400

800

1200

1600

Q1 Q2 Q3

S
p

e
e
d

-u
p

 f
a

c
to

r

0

1

2

3

Q4 Q5

S
p

e
e
d

-u
p

 f
a

c
to

r

1445

Table 5. Analytic queries on LINEITEM

ID QUERY

Q1

SELECT SUM(l_quantity)

FROM lineitem

WHERE (l_extendedprice*(1-l_discount))>

 (SELECT AVG(l_extendedprice*(1-l_discount))

 FROM lineitem);

Q2
SELECT MAX(l_extendedprice*(1-l_discount))

FROM lineitem;

Q3

SELECT l_returnflag, l_linestatus,

SUM(l_quantity),SUM(l_extendedprice),

SUM(l_extendedprice*(1-l_discount)),

SUM(l_extendedprice*(1-l_discount)*(1+l_tax)),

COUNT(*)

FROM lineitem

GROUP BY l_returnflag, l_linestatus;

Figure 11 shows the speed-up in response times obtained by using

DIMEs compared to performing vanilla in-memory scans on base

columns. Q1 and Q2 benefit the most because they have the entire

expression l_extendedprice * (1-l_discount) stored in-

memory as a DIME. Q3, however, has the DIME both as a top-

level expression (in SUM(l_extendedprice*(1-l_discount))) and

as a sub-expression (in SUM(l_extendedprice*(1-

l_discount)*(1+l_tax))). Thus, Q2 incurs the additional run-

time cost of computing the second top-level expression from the

DIME sub-expression, which limits the benefits seen by the

DIME feature.

Figure 11. Speed-up in analytic queries on LINEITEM with

l_extendedprice * (1-l_discount) materialized as a DIME

6.1.3 JSON Query Acceleration
Oracle Database 12c introduced native JSON support in 2014.

Now, users can not only store JSON data in its native structure

within the database, but also retrieve it in a simple JSON friendly

way and access it fully transparently via SQL [15]. This gives

users greater flexibility in terms of managing their JSON data

within a relational database. With the DIME feature, users can

improve JSON query processing by an order of magnitude. The

simplest JSON expression that the ESS can capture is a

JSON_VALUE expression that enables the user to select one top-

level scalar value from within the JSON document.

JSON_VALUE essentially acts a bridge from a JSON value to a

SQL value.

For the purposes of this experiment, we focus on the NoBench

benchmark suite [11]. It consists of a series of JSON objects with

hierarchical data, dynamic typing and sparse attributes. The

chosen JSON schema consists of 64M rows and is approximately

40GB on disk. The table is enabled for in-memory storage at

default compression level. The ESS captures several

JSON_VALUE expressions from the analytic query workload.

However, we only choose 2 expressions to materialize as DIMEs,

namely:

1. JSON_VALUE(jobj, '$.num' RETURNING NUMBER)

2. JSON_VALUE(jobj, '$.dyn1' RETURNING NUMBER)

Table 6 shows the set of 3 queries we choose to demonstrate

improvements in JSON query processing response times. All

queries run with a DOP of 32.

Table 6. JSON queries

ID QUERY

Q1

SELECT COUNT(*)

FROM nobench_main

WHERE json_value(jobj,'$.num' returning

NUMBER) BETWEEN 1 AND 1000;

Q2

SELECT COUNT(*)

FROM nobench_main

WHERE json_value(jobj,'$.num' returning

NUMBER) BETWEEN 1 AND 100000

GROUP BY json_value(jobj, '$.thousandth');

Q3

SELECT COUNT(*)

FROM nobench_main

WHERE json_value(jobj, '$.dyn1' returning

NUMBER) BETWEEN 1 AND 1000;

Queries Q1 and Q3 benefit directly from the materialized

JSON_VALUE DIME, and achieve a 20X improvement in

response times. Query Q2 needs to perform a group by on a

JSON_VALUE expression that is not available as a DIME and

hence, has a gain of only 5X (see Figure 12).

Figure 12. Performance boost in JSON query processing with

JSON_VALUE DIMEs

6.2 Accelerate OLTAP Mixed Workloads
In modern business organizations, the ability to combine

transactional processing with super-fast on-demand analytics on

real time operational data is paramount to making key business

decisions. Oracle DBIM is an industry-first dual format database

that provides blazingly fast in-memory analytic performance

while improving transactional processing. The DIME feature

further strengthens DBIM performance under OLTAP mixed

workloads.

This experiment comprised of a synthetic OLTAP workload that

simulates an insert/update/delete workload interspersed with

analytic queries. The test consists of a wide table with 6M rows,

and 101 columns (1 identity column, 50 number columns and 50

0

2

4

6

8

10

Q1 Q2 Q3

S
p

e
e
d

-u
p

 f
a

c
to

r

0

5

10

15

20

25

Q1 Q2 Q3

S
p

e
e
d

-u
p

 f
a

c
to

r

1446

varchar2 columns) with an index on the identity column. The

hardware setup was a 2x Intel Xeon E5-2690 @ 2.90GHz, 8-core

processor with 256GB of DRAM, of which only 60GB was used

for the in-memory area. The test was run for 1 hour with all

operations done with a target throughput of 2000 ops/sec. The

percentage of DMLs and analytic queries in the workload was

tunable – we demonstrate performance improvements for a

workload with 99% DMLs and only 1% analytic scans.

We use various metrics such as query response times, CPU usage,

and operation throughput (transactions or scans) to show the

capabilities of the DIME feature. The analytic queries involved

several expressions – the ones materialized as DIMEs are listed in

Table 7. Table 8 lists a subset of the queries that were run in this

workload.

Table 7. List of DIMEs materialized in-memory

ID Expression

E1 ROUND(n2 /1000000+n3/1000000)

E2 1+(n2/1000000)+(n3/1000000)+(n4/1000000)

Table 8. Analytic queries in synthetic OLTAP workload

ID Expression

Q1
SELECT

MAX((1+(n2/1000000)+(n3/1000000)+(n4/1000000)))

FROM c101_6p1m_hash;

Q2
SELECT MAX(n2)

FROM c101_6p1m_hash

WHERE ROUND(n2 /1000000+n3/1000000)= 10;

Q3

SELECT MAX(n3)

FROM c101_6p1m_hash

WHERE

(1+(n2/1000000)+(n3/1000000)+(n4/1000000))= 8;

Figure 13 shows the improvement in response times of analytic

queries (Q1, Q2 and Q3) in the OLTAP workload, obtained by

using DIMEs over vanilla DBIM scans. It can be seen that the

median query response time improves by a factor of almost 200X.

In addition, the workload can successfully sustain the target

throughput rate of 2000 ops/sec, while limiting average CPU

utilization to only 28.6%. In contrast, without DIMEs, not only

does query performance suffer, but average CPU utilization is also

at 100%, thereby not achieving the expected throughput rate.

Figure 13. Speed-up in minimum, median and maximum

response times of queries in OLTAP workload with DIMEs

Thus, the DIME feature guarantees excellent analytic performance

while efficiently utilizing CPU and other system resources even in

a mixed OLTAP workload.

7. CONCLUSIONS AND FUTURE WORK
Expression evaluation in queries is the proverbial “dark matter” of

analytic workloads – invisible to most performance monitoring

tools yet consuming considerable CPU cycles. This paper presents

how Oracle Database 12.2 tackles this problem using a novel

technique called Dynamic In-Memory Expressions (DIMEs) that

greatly reduces expression evaluation cost, thereby significantly

accelerating analytic queries.

DIMEs are automatically captured from the database and

materialized in the IM column store without any user intervention.

The DIME feature is seamlessly integrated with the Oracle

Database In-Memory (DBIM) infrastructure, which allows us to

apply all the in-memory query optimizations introduced for DBIM

on DIMEs. We show that DIMEs can yield integral multiples of

speedup (up-to 1000x) in analytic queries on relational as well as

JSON schemas.

Future work includes integrating the DIME infrastructure with the

Automatic Data Optimization (ADO) framework [16] to improve

memory management of DIMEs by automatically migrating

IMEUs between different storage tiers based on access frequency;

supporting DIMEs on Active Dataguard (physical standby);

augmenting the ESS to capture expressions involving columns

from different tables; and extending the DIME storage to Flash

and other emerging persistent memory technologies such as

NVRAM.

8. ACKNOWLEDGEMENTS
We acknowledge the contributions of members in Oracle Data,

Space, Transactions, SQL, JSON, Functional Testing and Stress

Testing teams involved throughout the product lifecycle. We also

thank the Performance team for helping us with performance

evaluation of the architecture.

9. REFERENCES
[1] Boncz, P., A., Grust, T. et. al. MonetDB/XQuery: A Fast

XQuery Processor Powered by a Relational Engine.

Proceedings of the ACM SIGMOD International Conference

on Management of Data (2006)

[2] Stonebraker, M., Abadi, D., et. al. C-Store: A Column-

oriented DBMS. Proceedings of the 31st VLDB Conference

(2005)

[3] Lahiri, T. et. al. Oracle Database In-Memory: A Dual Format

In-Memory Database. Proceedings of the ICDE (2015)

[4] Oracle Database In-Memory, an Oracle White Paper, 2015

[5] P. Boncz, T. Neumann, and O. Erling. TPC-H analyzed:

Hidden messages and lessons learned from an influential

benchmark. In TPCTC, 2013

[6] W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N.

MacNaughton, The Oracle Universal Server Buffer Manager.

Proceedings of VLDB ’97, pp. 590-594, 1997.

[7] D. Das et. al. Query optimization in Oracle 12c database in-

memory. Proceedings of VLDB, 2015, pp. 1770-1781.

[8] Query Optimization in Oracle Database 10g Release 2, an

Oracle White Paper, 2005

0

50

100

150

200

250

300

350

400

450

Q1 Q2 Q3

S
p

e
e
d

-u
p

 f
a

c
to

r

Minimum Median Maximum

1447

[9] Oracle Total Recall with Oracle Database 11g Release 2, an

Oracle White Paper, 2009

[10] D.J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden.

Materialization strategies in a column-oriented DBMS.

Proceedings of ICDE, 2007.

[11] C. Chasseur, Y. Li, and J. M. Patel. Enabling JSON

Document Stores in Relational Systems. Proceedings of

WebDB, pages 1-6, 2013.

[12] R. Greenwald, M. Bhuller, R. Stackowiak, and M. Alam,

Achieving Extreme Performance with Oracle Exadata,

McGraw-Hill, 2011

[13] TPC Benchmark H (Decision Support) Standard

Specification Revision 2.17.1

[14] B. Dageville, M. Zait: SQL Memory Management in

Oracle 9i. Proceedings of VLDB, 2002

[15] Z.H. Liu, B. Hammerschmidt, D. McMahon: JSON data

management: supporting schema-less development in

RDBMS. Proceedings of the ACM SIGMOD International

Conference on Management of Data (2014): 1247-1258

[16] Automatic Data Optimization with Oracle Database 12c, an

Oracle White Paper, 2015

1448

