
Aerospike: Architecture of a Real-Time Operational DBMS

V. Srinivasan
Sunil Sayyaparaju

Ashish Shinde

 Brian Bulkowski
Andrew Gooding
Thomas Lopatic

Aerospike, Inc.
vldb2016@aerospike.com

Wei-Ling Chu
Rajkumar Iyer

ABSTRACT
In this paper, we describe the solutions developed to address key
technical challenges encountered while building a distributed
database system that can smoothly handle demanding real-time
workloads and provide a high level of fault tolerance.
Specifically, we describe schemes for the efficient clustering and
data partitioning for the automatic scale out of processing across
multiple nodes and for optimizing the usage of CPUs, DRAM,
SSDs and networks to efficiently scale up performance on one
node.
The techniques described here were used to develop Aerospike
(formerly Citrusleaf), a high performance distributed database
system built to handle the needs of today’s interactive online
services. Most real-time decision systems that use Aerospike
require very high scale and need to make decisions within a strict
SLA by reading from, and writing to, a database containing
billions of data items at a rate of millions of operations per second
with sub-millisecond latency. For over five years, Aerospike has
been continuously used in over a hundred successful production
deployments, as many enterprises have discovered that it can
substantially enhance their user experience.

1. INTRODUCTION
Real-time Internet applications typically require very high scale;
they also need to make decisions within a strict SLA. This
typically requires these applications to read from, and write to, a
database containing billions of data items at a rate of millions of
operations per second with sub-millisecond latency. Therefore,
such applications require extremely high throughput, low latency
and high uptime. Furthermore, such real-time decision systems
have a tendency to increase their data usage over time to improve
the quality of their decisions, i.e., the more data can be accessed in
a fixed amount of time, the better the decision becomes.

The original need for such systems originated in Internet
advertising technology that uses real-time bidding [27]. The
Internet advertising ecosystem has evolved with many different
players interacting with each other in real time to provide the

correct advertisement to a user, based on that user’s behavior. You
can see the basic architecture of the ecosystem illustrated in
Figure 1.

Figure 1: RTB technology stack
In order to participate in the real-time bidding [22] process, every
participant in this ecosystem needs to have a high-performance
read-write database with the following characteristics:

• Sub-millisecond database access times to support an
SLA of 50ms for real-time bidding and 100ms for
rendering the ad itself

• Extremely high throughput of 50/50 read-write load,
e.g., 3 to 5 million operations/second for North America
alone

• Database with billions of objects each with sizes
between 1KB and 100KB, for a total DB size of 10-
100TB

• Fault-tolerant service that can handle these mission-
critical interactions for revenue generation with close to
100% uptime

• Global data replication across distributed data centers
for providing business continuity during catastrophic
failures

As has been the case in the Internet industry for a while now,
recently, traditional enterprises have also experienced a huge
increase in their need for real-time decision systems. Here are a
few examples:

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

1389

In Financial Services, the recent explosion in mobile access to
applications has increased the load on customer facing
applications by an order of magnitude. This requires enterprises to
shield traditional DBMSs by offloading the new workload to a
high-performance read-write database while still maintaining the
original data (and a few core applications) in the traditional
DBMS.

Figure 2: Financial services technology stack

As shown in Figure 2, a database like Aerospike is used as the
system of record during the trading period while compliance
related applications still run on the master DBMS.

In the electronic payments world, fraud detection requires a
sophisticated rules-based decision engine that decides whether or
not to approve a transaction based on the customer’s past
purchases (i.e., transaction history), and the kind of purchase they
are making right now, from which device, and to which payee. All
required data sets reside in a high performance DBMS that can
support real-time read-write access from fraud detection
algorithms, as shown in Figure 3.

Figure 3: Fraud detection technology stack

Previously, Telecommunication Providers (Telcos) had been
using home grown real-time billing systems for tracking voice
calls. However, tracking the mobile data traffic that is dominating
their network today creates additional load that is several orders of
magnitude higher than the previous load for tracking voice traffic.
The typical use case here involves using a very fast in-memory
database at the edge of the network to monitor traffic patterns and
generate billing events. Changes to a user’s data plans are
immediately reflected in the switches that direct traffic to and
from devices, as shown in Figure 4.

Based on the above, it is clear that real-time applications
originally pioneered in the Internet industry are crossing over into
traditional Enterprises in a big way.

Figure 4: Telco technology stack

In these systems, a small number of business transactions (e.g.,
500 to 1000 per second) typically result in a hundred-fold (or even
thousand-fold) increase in database operations, as shown in Figure
5. The decision engine typically uses sophisticated algorithms to
combine the real-time state (of user, device, etc.) with applicable
insights to decide on a suitable action within a short amount of
time (typically 50-250 milliseconds).

Figure 5: Real-time decision engine

An important commonality observed in these use cases is that
each is mission-critical and requires much higher performance at
scale than that provided by previous generations of operational
database systems. We will describe in the subsequent sections the
key technical aspects of next-generation operational DBMSs
needed to deliver such high scale, real-time processing to all
enterprises.

The rest of the paper is organized as follows. Section 2 describes
the distributed system architecture and addresses issues related to
scale-out under the sub-topics of cluster management, data
distribution and client/server interaction. Section 3 gives a brief
overview of geographical replication. Section 4 talks about system
level optimization and tuning techniques to achieve the highest
levels of scale-up possible. Section 5 talks about storage
architecture and how it leverages SSD technology. Section 6
presents some cloud benchmark results. Finally, Section 7
presents our conclusion.

2. AEROSPIKE ARCHITECTURE
The Aerospike database platform (Figure 6) is modeled on the
classic shared-nothing database architecture [25]. The database
cluster consists of a set of commodity server nodes, each of which
has CPUs, DRAMs, rotational disks (HDDs) and optional flash
storage units (SSDs). These nodes are connected to each other
using a standard TCP/IP network.

1390

Client applications issue primary index based read/write/batch
operations and secondary-index based queries against the cluster
via client libraries that provide a native language interface
idiomatic to each language. Client libraries are available for
popular programming languages, viz. Java, C/C++, Python, PHP,
Ruby, Go, JavaScript and C#.

Figure 6: Aerospike architecture

2.1 Cluster Management
The cluster management subsystem handles node membership and
ensures that all the nodes in the system come to a consensus on
the current membership of the cluster. Events such as network
faults and node arrival or departure trigger cluster membership
changes. Such events can be both planned and unplanned.
Examples of such events include randomly occurring network
disruptions, scheduled capacity increments, and
hardware/software upgrades.
The specific objectives of the cluster management subsystem are:

• Arrive at a single consistent view of current cluster
members across all nodes in the cluster.

• Automatically detect new node arrival/departure and
seamless cluster reconfiguration.

• Detect network faults and be resilient to such network
flakiness.

• Minimize time to detect and adapt to cluster
membership changes.

2.1.1 Cluster View
Each Aerospike node is automatically assigned a unique node
identifier, which is a function of its MAC address and of the
listening port. Cluster view is defined by the tuple: <cluster_key,
succession_list> where,

• cluster_key is a randomly generated 8-byte value that
identifies an instance of the cluster view.

• succession_list is the set of unique node identifiers that
are part of the cluster.

The cluster key uniquely identifies the current cluster membership
state, and changes every time the cluster view changes. It enables
Aerospike nodes to differentiate between two cluster views with
an identical set of member nodes.
Every change to the cluster view has a significant effect on
operation latency and, in general, on the performance of the entire

system. This means there is a need to quickly detect node
arrival/departure events, and subsequently, for an efficient
consensus mechanism to handle any changes to the cluster view.

2.1.2 Cluster Discovery
Node arrival or departure is detected via heartbeat messages
exchanged periodically between nodes. Every node in the cluster
maintains an adjacency list, which is the list of other nodes that
have recently sent heartbeat messages to this node. Nodes
departing the cluster are detected by the absence of heartbeat
messages for a configurable timeout interval; after this, they are
removed from the adjacency list.
The main objectives of the detection mechanism are:

• To avoid declaring nodes as departed because of
sporadic and momentary network glitches.

• To prevent an erratic node from frequently joining and
departing from the cluster. A node could behave
erratically due to system level resource bottlenecks in
the use of CPU, network, disk, etc.

The following sections describe how the aforementioned
objectives are achieved:

2.1.2.1 Surrogate heartbeats
In the flaky or choked network, it is possible to arbitrarily lose
certain packets. Therefore, in addition to regular heartbeat
messages, nodes use other messages that are regularly exchanged
between nodes as an alternative secondary heartbeat mechanism.
For instance, replica writes are used as a surrogate for heartbeat
messages. This ensures that, as long as either the primary or
secondary heartbeat communication between nodes is intact,
network flakiness on the primary heartbeat channel alone will not
affect the cluster view.

2.1.2.2 Node Health Score
Every node in the cluster evaluates the health score of each of its
neighboring nodes by computing the average message loss, which
is an estimate of how many incoming messages from that node are
lost. This is computed periodically as a weighted moving
average of the expected number of messages received per node
versus the actual number of messages received per node, as
follows.
Let t be the heartbeat messages transmit interval, w be the length
of the sliding window over which average is computed, r be the
number of heartbeat messages received in this window, lw be the
fraction of messages lost in this window, α be a smoothing factor
and la(prev) be the average message loss computed until now. la(new),
the updated average loss, is then computed as follows:

lw = messages lost in window / messages expected in
window
 = (w * t - r) / (w * t)
la(new) = (α * la(prev)) + (1 - α) * lw

A node whose average message loss exceeds twice the standard
deviation across all nodes is an outlier and deemed unhealthy. An
erratically behaving node typically has a high average message
loss and also deviates significantly from the average node
behavior. If an unhealthy node is a member of the cluster, it is
removed from the cluster. If it is not a member, it is not

1391

considered for membership until its average message loss falls
within tolerable limits. In practice, α is set to 0.95, giving more
weightage to average value over recent ones. The window length
is 1000ms.

2.1.3 Cluster View Change
Changes to the adjacency list, as described in Section 2.1.2,
trigger a run of the Paxos consensus algorithm [20] that arrives at
the new cluster view. A node that sees its node identifier as the
highest in its adjacency list acts as a Paxos proposer and assumes
the role of the Principal. The Paxos Principal then proposes a new
cluster view. If the proposal is accepted, nodes begin
redistribution of the data to maintain uniform data distribution
across the new set of cluster nodes. A successful Paxos round
takes 3 network round trips to converge, assuming there are no
opposing proposals.

The Aerospike implementation works to minimize the number of
transitions the cluster would undergo as an effect of a single fault
event. For example, a faulty network switch could make a subset
of the cluster members unreachable. Once the network is restored,
there would be a need to add these nodes back to the cluster.
If each lost or arriving node triggers the creation of a new cluster
view, the number of cluster transitions would equal the number of
nodes lost or added. To minimize such transitions, which are
fairly expensive in terms of time and resources, nodes make
cluster change decisions only at the start of fixed cluster change
intervals (the time of the interval itself is configurable). The idea
here is to avoid reacting too quickly to node arrival and departure
events, as detected by the heartbeat subsystem, and instead,
process a batch of adjacent node events with a single cluster view
change. This avoids a lot of potential overhead caused by
duplicate cluster view changes and data distributions. A cluster
change interval equal to twice the timeout value of a node ensures
that all nodes failing due to a single network fault are definitely
detected in a single interval. It will also handle multiple fault
events that occur within a single interval.

Aerospike’s cluster management scheme allows for multiple node
additions or removals at a time. This provides an advantage over
schemes that require node additions to occur one node at a time.
With Aerospike, the cluster can immediately be scaled out to
handle spikes in load, without downtime.

2.2 Data Distribution
Aerospike distributes data across nodes as shown in Figure 7. A
record’s primary key is hashed into a 160-byte digest using the
RipeMD160 algorithm, which is extremely robust against
collisions [12]. The digest space is partitioned into 4096 non-
overlapping ‘partitions’. It is the smallest unit of data ownership
in Aerospike. Records are assigned partitions based on the
primary key digest. Even if the distribution of keys in the key
space is skewed, the distribution of keys in the digest space and
therefore in the partition space is uniform. This data-partitioning
scheme is unique to Aerospike and it significantly contributes to
avoiding the creation of hotspots during data access, which helps
achieve high levels of scale and fault tolerance.

Aerospike colocates indexes and data to avoid any cross-node
traffic when running read operations or queries. Writes may
require communication between multiple nodes based on the
replication factor. Colocation of index and data, when combined
with a robust data distribution hash function, results in uniformity
of data distribution across nodes. This, in turn, ensures that:

1. Application workload is uniformly distributed across the
cluster,

2. Performance of database operations is predictable,
3. Scaling the cluster up and down is easy, and
4. Live cluster reconfiguration and subsequent data

rebalancing is simple, non-disruptive and efficient.

Figure 7: Data distribution

A partition assignment algorithm generates a replication list for
every partition. The replication list is a permutation of the cluster
succession list. The first node in the partition's replication list is
the master for that partition, the second node is the first replica,
the third node is the second replica, and so on. The result of
partition assignment is called a partition map. Also note that, in a
well-formed cluster, there is only one master for a partition at any
given time. By default, all the read/write traffic is directed toward
master nodes. Reads can also be uniformly spread across all the
replicas via a runtime configuration setting. Aerospike supports
any number of copies, from a single copy to as many copies as
there are nodes in the cluster.
The partition assignment algorithm has the following objectives:

1. Be deterministic so that each node in the distributed
system can independently compute the same partition
map,

2. Achieve uniform distribution of master partitions and
replica partitions across all nodes in the cluster, and

3. Minimize movement of partitions during cluster view
changes.

The algorithm is described as pseudo code in

Table 1 and is deterministic, achieving objective 1. The heart of
the assignment is the NODE_HAS_COMPUTE function, which
maps a node id and a partition id to a hash value. Note that a
specific node’s position in the partition replication list is its sort
order based on the node hash. We have found that running a
Jenkins one-at-a-time [19] hash on the FNV-1a [13] hashes of the
node and partition ids gives a fairly good distribution and achieves
objective 2 as well.

1392

Figure 8(a) shows the partition assignment for a 5-node cluster
with a replication factor of 3. Only the first three columns (equal
to the replication factor) in the partition map are used; the last two
columns are unused.

Table 1: Partition assignment algorithm

function REPLICATION_LIST_ASSIGN(partitionid)
 node_hash = empty map
 for nodeid in succession_list:
 node_hash[nodeid] = NODE_HASH_COMPUTE(nodeid,
partitionid)
 replication_list = sort_ascending(node_hash using hash)
 return replication_list

function NODE_HASH_COMPUTE(nodeid, partitionid):
 nodeid_hash = fnv_1a_hash(nodeid)
 partition_hash = fnv_1a_hash(partitionid)

 return jenkins_one_at_a_time_hash(<nodeid_hash,
partition_hash>)

Consider the case where a node goes down. It is easy to see from
the partition replication list that this node would simply be
removed from the replication list, causing a left shift for all
subsequent nodes as shown in Figure 8(b). If this node did not
host a copy of the partition, this partition would not require data
migration. If this node hosted a copy of the data, a new node
would take its place. This would, therefore, require copying the
records in this partition to the new node. Once the original node
returns and becomes part of the cluster again, it would simply
regain its position in the partition replication list, as shown in
Figure 8(c). Adding a brand-new node to the cluster would have
the effect of inserting this node at some position in the various
partition replication lists, and, therefore, result in the right shift of
the subsequent nodes for each partition. Assignments to the left of
the new node are unaffected.

Figure 8: Master/replica assignment

The discussion above gives an idea of the way in which the
algorithm minimizes the movement of partitions (a.k.a.

migrations) during cluster reconfiguration. Thus the assignment
scheme achieves objective 3.

When a node is removed and rejoins the cluster, it would have
missed out on all transactions applied while it was away and
would need to catch up. Alternatively, when a brand new node
joins a running cluster with lots of existing data, and happens to
own a replica or master copy of a partition, the new node needs to
obtain the latest copy of all the records in that partition and to also
be able to handle new read and write operations. The mechanisms
by which these issues are handled are described below in section
2.2.1.

2.2.1 Data Migrations
The process of moving records from one node to another node is
termed a migration. After every cluster view change, the objective
of data migration is to have the latest version of each record
available at the current master and replica nodes for each of the
data partitions. Once consensus is reached on a new cluster view,
all the nodes in a cluster run the distributed partition assignment
algorithm and assign the master and one or more replica nodes to
each of the partitions.
The master node of each partition assigns a unique partition
version to that partition. This version number is copied over to the
replicas. After a cluster view change, the partition versions for
every partition with data are exchanged between the nodes. Each
node thus knows the version numbers for every copy of the
partition.

2.2.1.1 Delta-Migrations
Aerospike uses a few strategies to optimize migrations by
reducing the effort and time they take, as follows.

Define a notion of partition ordering using versions that helps
determine whether a partition retrieved from disk needs to be
migrated or not. The process of data migration would be a lot
more efficient and easy if a total order could be established over
partition versions. For example, if the value of a partition’s
version on node 1 is less than the value of the same partition’s
version on node 2, the partition version on node 1 could be
discarded as obsolete. However, enforcing total ordering of
partition version numbers is problematic. When version numbers
diverge on cluster splits caused by network partitions, this would
require the partial order to be extended to a total order (order
extension principle). Yet, this would still not guarantee the
retention of the latest versions of each record since the system will
end up either choosing the entire version of the partition, or
completely rejecting it. Moreover, the amount of information
needed to create a partial order on version numbers would only
grow with time. Aerospike maintains this partition lineage up to
certain degree.

When two versions come together, nodes negotiate the difference
in actual records and send over the data corresponding only to the
differences between the two partition versions.

In certain cases, migration can be avoided completely based on
partition version order. In other cases, like rolling upgrades, the
delta of changes may be small and could be shipped over and
reconciled instead of shipping the entire partition content.

2.2.1.2 Operations During Migrations
If a read operation lands on a master node while migrations are in
progress, Aerospike guarantees that the copy of the record that
eventually wins will be returned. For partial writes to a record,

1393

Aerospike guarantees that the partial write will happen on the
copy that eventually wins.

To ensure these semantics, operations enter a duplicate resolution
phase during migrations. During duplicate resolution, the node
containing the master copy of the partition for a specific record
reads the record across all its partition versions and resolves to
one copy of the record (the latest). This is the winning copy and it
is henceforth used for the read or write transaction.

2.2.1.3 Master Partition Without Data
An empty node newly added to a running cluster will be master
for a proportional fraction of the partitions and have no data for
those partitions. A copy of the partition without any data is
marked to be in a DESYNC state. All read and write requests on a
partition in DESYNC state will necessarily involve duplicate
resolution since it has no records. One of Aerospike’s
optimizations involves electing the partition version with the
highest number of records as the acting master for this partition.
All reads are directed to the acting master. If the client
applications are satisfied with reading older versions of records,
duplicate resolution on reads can be turned off. Thus, read
requests for records present on the acting master will not require
duplicate resolution and have nominal latencies. This acting
master assignment only lasts until migration is complete for this
partition.

2.2.1.4 Migration Ordering
Clearly, duplicate resolution adds to the latency when migrations
are ongoing in the cluster. Therefore, it is important to complete
migrations as quickly as possible. However, a migration cannot be
prioritized over normal read/write operations and other cluster
management operations. Given this constraint, Aerospike applies
a couple of heuristics to reduce the impact of data migrations on
normal application read/write workloads.

2.2.1.4.1 Smallest Partition First
Migration is coordinated in such a manner as to let nodes with the
fewest records in their partition versions start migration first. This
strategy quickly reduces the number of different copies of a
specific partition, and does this faster than any other strategy. This
implies that duplicate resolution would need to talk to a fewer
number of nodes over time as smaller sized versions finish
migration first and latency improves as migrations complete.

2.2.1.4.2 Hottest Partition First
At times, client accesses are skewed to a very small number of
keys from the key space. Therefore the latency on these accesses
could be improved quickly by migrating these hot partitions
before other partitions, thus reducing the time spent in duplicate
resolution.

2.2.2 Scheduled Maintenance
Node restarts for maintenance, though not very frequent, are
unavoidable. The cluster runs at reduced capacity when a node is
down; it is therefore important to reduce node downtime. The
contributors to downtime are:

1. Maintenance time, and
2. Time to load the Aerospike primary index.

Aerospike’s primary index is in-memory and not stored on a
persistent device. On a node restart, if the data is stored on disk,
the index is rebuilt by scanning records on the persistent device.

The time taken to complete index loading is then a function of the
number of records on that node, and of the device speed.

To avoid rebuilding the primary index on every process restart,
Aerospike’s primary index is stored in a shared memory space
disjoint from the service process’s memory space. In case
maintenance only requires a restart of the Aerospike service, the
index need not be reloaded. The service attaches to the current
copy of the index and is ready to handle transactions. This form of
service start re-using an existing index is termed ‘fast start’; it
eliminates scanning the device to rebuild the index.

2.2.3 Summary
Uniform distribution of data, associated metadata like indexes,
and transaction workload make capacity planning and scaling up
and down decisions precise and simple for Aerospike clusters.
Aerospike needs redistribution of data only on changes to cluster
membership. This contrasts with alternate key range based
partitioning schemes, which require redistribution of data
whenever a range becomes “larger” than the capacity on its node.

2.3 Client-Server
Databases don’t exist in isolation. They must therefore be
architected as part of the full stack so that the end-to-end system
scales. The client layer needs to absorb the complexity of
managing the cluster. There are various challenges to overcome
here and a few of them are addressed below.

2.3.1 Discovery
The client needs to know about all the nodes of the cluster and
their roles. In Aerospike, each node maintains a list of its
neighboring nodes. This list is used for the discovery of the cluster
nodes. The client starts with one or more seed nodes and discovers
the entire set of cluster nodes. Once all nodes are discovered, the
client needs to know the role of each node. As described in
section 2.2, each node owns a master or replica for a subset of
partitions out of the total set of partitions. This mapping from
partition to node (partition map) is exchanged and cached with the
clients. Sharing of the partition map with the client is critical in
making client-server interactions extremely efficient. This is why,
in Aerospike, there is single-hop access to data from the client. In
steady state, the scale-out ability of the Aerospike cluster is purely
a function of the number of clients or server nodes. This
guarantees the linear scalability of the system as long as other
parts of the system – like network interconnect – can absorb the
load.

2.3.2 Information Sharing
Each client process stores the partition map in its memory. To
keep the information up to date, the client process periodically
consults the server nodes to check if there are any updates. It does
this by checking the version that it has stored locally against the
latest version of the server. If there is an update, it requests for the
full partition map.
Frameworks like php-cgi, node.js cluster can run multiple
instances of the client process on each machine to get more
parallelism. As all the instances of the client are on the same
machine, they should be able to share this information between
themselves. Aerospike uses a combination of shared memory and
robust mutex code from the pthread library to solve the
problem. Pthread mutexes support the following properties that
can be used across processes:

1394

PTHREAD_MUTEX_ROBUST_NP
PTHREAD_PROCESS_SHARED

A lock is created in a shared memory region with these properties
set. All the processes compete periodically (once every second) to
take the lock. Yet, only one process will get the lock. The process
that gets the lock fetches the partition map from the server nodes
and shares it with other processes via shared memory. If the
process holding the lock dies, and when a different process tries to
get the lock, it gets the lock with the return code EOWNERDEAD. It
should call pthread_mutex_consistent_np()to make
the lock consistent for further use. After this, it is business as
usual.

2.3.3 Cluster Node Handling
For each of the cluster node, at the time of initialization, the client
creates an in-memory structure on behalf of that node and stores
its partition map. It also maintains a connection pool for that node.
All of this is torn down when the node is declared down. The
setup and tear-down is a costly operation. Also, in case of failure,
the client needs to have a fallback plan to handle the failure by
retrying the database operation on the same node or on a different
node in the cluster. If the underlying network is flaky and this
repeatedly happens, this can end up degrading the performance of
the overall system. This leads to the need of having a balanced
approach to identifying cluster node health. The following
strategies are used by Aerospike to achieve this balance.

2.3.3.1 Health Score
The client’s use of transaction response status code alone as a
measure of the state of the DBMS cluster is a sub-optimal scheme.
The contacted server node may temporarily fail to accept the
transaction request. Or it could be that there is a transient network
issue, while the server node itself is up and healthy. To discount
such scenarios, clients track the number of failures encountered by
the client on database operations at a specific cluster node. The
client drops a cluster node only when the failure count (a.k.a
“happiness factor”) crosses a particular threshold. Any successful
operation to that node will reset the failure count to 0.

2.3.3.2 Cluster Consultation
Flaky networks are often tough to handle. One-way network
failures (A sees B, but B does not see A) are even tougher. There
can be situations where the cluster nodes can see each other but
the client is unable to see some cluster nodes directly (say, X). In
these cases, the client consults all the nodes of the cluster visible
to itself and sees if any of these nodes has X in their neighbor list.
If a client-visible node in the cluster reports that X is in its
neighbor list, the client does nothing. If no client-visible cluster
nodes report that X is in their neighbor list, the client will wait for
a threshold time and then permanently remove the node by tearing
down the data structures referencing the removed node. Over
several years of deployments, we found that this scheme greatly
improved the stability of the overall system.

3. CROSS DATACENTER REPLICATION
This section describes how to stitch together multiple DBMS
clusters in different geographically distributed data centers to
build a globally replicated system. Cross Datacenter Replication
(XDR) supports different replication topologies, including active-
active, active-passive, chain, star, and multi-hop configurations.

3.1.1 Load Sharing
In a normal deployment state (i.e., when there are no failures),
each node logs the operations that happen on that node for both
the master and replica partitions. But each node only ships to
remote clusters the data for master partitions on that node. The
changes logged on behalf of replica partitions are used only when
there are node failures. If a node fails, all the other nodes detect
this failure and takeover the pending work on behalf of the failed
node. This scheme scales horizontally as one can just add more
nodes to handle increasing replication load.

3.1.2 Data Shipping
When a write happens, the system first logs the change, reads the
whole record and ships it. There are a few optimizations to save
the amount of data read locally and shipped across.

The data is read in batches from the log file. We first see if the
same record is updated multiple times in the same batch. The
record is read exactly once on behalf of all the changes in that
batch. Once the record is read, we compare its generation with the
generation recorded in the log file. If the generation on the log file
is less than the generation of the record, we skip shipping the
record. There is an upper bound on the number of times we skip
the record, as the record may never be shipped if the record is
getting updated continuously. These optimizations provide a huge
benefit when there are hot keys in the system whose records are
updated frequently.

3.1.3 Remote Cluster Management
The XDR component on each node acts as a client to the remote
cluster. It performs all the roles just like a regular client, i.e., it
keeps track of remote cluster state changes, connects to all the
nodes of the remote cluster, maintains connection pools, etc.
Indeed, this is a very robust distributed shipping system as there is
no single point of failure. All nodes in the source cluster ship data
proportionate to their partition ownership and all nodes in the
destination cluster receive data in proportion to their partition
ownership. This shipping algorithm allows both source and
destination clusters to have different cluster sizes.
Our model ensures that clusters continue to ship new changes as
long as there is at least one surviving node in the source or
destination clusters. It also adjusts very easily to new node
additions in source or destination clusters and is able to equally
utilize all the resources in both clusters.

3.1.4 Pipelining
For cross data-center shipping, Aerospike uses an asynchronous
pipelined scheme. As mentioned in section 3.1.3, each node in the
source cluster communicates with all the nodes in the destination
cluster. Each shipping node keeps a pool of 64 open connections
that are used in a round robin manner to ship records. The record
is shipped asynchronously, i.e., multiple records are shipped on
the open connection; afterwards, the source waits for the
responses. So, at any given point in time, there can be multiple
records on the connection waiting to be written at the destination.
This pipelined model is the main way we are able to deliver high
throughput on high-latency connections over WAN. When the
remote node writes the shipped record, it sends an
acknowledgement back to the shipping node with the return code.
We set an upper limit on the number of records that can be
inflight for the sake of throttling network utilization.

1395

4. OPTIMIZATIONS FOR SCALE UP
For a system to operate at extremely high throughput with low
latency, we have found that it is necessary not just to scale out
across nodes, but also to scale up on one node. This section talks
about system-level details, which help Aerospike scale up to
millions of transactions per second at sub-millisecond latencies
per node. The techniques covered here apply to any data storage
system in general. The ability to scale up on nodes effectively
means the following:

1. Scaling up to higher throughput levels on fewer nodes.

2. Better failure characteristics, since probability of a node
failure typically increases as the number of nodes in a
cluster increase.

3. Easier operational footprint. Managing a 10-node
cluster versus a 200-node cluster is a huge win for
operators.

4. Lower total cost of ownership. This is especially true
once you factor in SSD-based scaling described in
section 5.

The basic philosophy here is to enable the system to take full
advantage of the hardware by leveraging it in the best way
possible.

4.1.1 Multi-Core System
Contemporary commodity processors have a multi-core, multi-
socket architecture [15] with up to 64 cores. Caches in these
systems have Non-Uniform Memory Access (NUMA) [24], which
allow system memory bandwidth to scale with an increasing
amount of physical processors. System memory in this kind of
setup has asymmetric latency and throughput behavior based on
access to data in the local cache in the same socket (vs. remotely
from another socket). Applications sensitive to latency would
require memory traffic to stay local and need to use a threading
model that has locality of access per-socket, in order to be able to
scale with the number of physical processors.

Figure 9: Multi-core architecture

Aerospike, as shown in Figure 9, groups multiple threads per CPU
socket instead of per core, thus aligning with a NUMA node.
These transaction threads are also associated with specific I/O

devices. The interrupt processing for the client side network
communication and disk side I/O is also bound to the core where
these threads are running. This helps reduce the amount of shared
data accessed across multiple NUMA regions, and reduces latency
cost.

4.1.2 Context Switch
Another major factor working against the performance of a low
latency system is thread context switch [10]. To avoid costs
associated with context switches, operations in Aerospike are run
in the network listener thread itself. To fully exploit parallelism,
the system creates as many network listeners as there are cores.
The client request is received, processed and responded back to,
without yielding the CPU. In this model, it is necessary that the
implementation be non-blocking, short, and predictable, so that
the response at the network happens in real time.

4.1.3 Memory Fragmentation
Aerospike handles all its memory allocation natively rather than
depend on the programming language or on a runtime system. To
this effect, Aerospike implements various special-purpose slab
allocators to handle different object types within the server
process. Aerospike's in-memory computing solution effectively
leverages system resources by keeping the index packed into
RAM. With ever increasing data size, hardware (RAM sizes >
100s GB), and high transaction rates, memory fragmentation is a
major challenge.

Figure 10: Memory arena assignment

To deal with such fragmentation, Aerospike chose to integrate
with the jemalloc memory allocator library [18]. Beyond
simply relying on the allocator to be internally efficient, we have
used a few key extensions of jemalloc over the standard C
library memory allocation interface in order to direct the library to
store classes of data objects according to their characteristics.
Specifically, as shown in Figure 10, by grouping data objects by
namespace into the same arena, the long-term object creation,
access, modification, and deletion pattern is optimized, and
fragmentation minimized.

4.1.4 Data Structure Design
For data structures like indexes and global structures, which need
concurrent access, there are three candidate models of design:

• Multi-threaded data structure with complex nested
locking model for synchronization, e.g., step lock in a
B+tree

• Lockless data structures

1396

• Partitioned, single-threaded data structures

Aerospike adopts the third approach, in which, all critical data
structures are partitioned, each with a separate lock. This reduces
contention across partitions. Access to nested data structures like
index trees does not involve acquiring multiple locks at each
level; instead, each tree element has both a reference count and its
own lock. This allows for safe and concurrent read, write, and
delete access to the tree, without holding multiple locks.

These structures are carefully designed to make sure that
frequently and commonly accessed data has locality and falls
within a single cache line in order to reduce cache misses and data
stalls. For example, the index entry in Aerospike is exactly 64
bytes, the same size as a cache line.
In production systems like Aerospike, it is not just the functional
aspects, but also system monitoring and troubleshooting features
that need to be built in and optimized. This information is
maintained in a thread-local data structure and can be pulled and
aggregated together at query time.

4.1.5 Scheduling and Prioritization
In addition to basic KVS operations, Aerospike supports batch
queries, scans, and secondary index queries. Scans are generally
slow background jobs that walk through the entire data set. Batch
and secondary index queries return a matched subset of the data
and, therefore, have different levels of selectivity based on the
particular use case. Balancing throughput and fairness with such a
varied workload is a challenge. This is achieved by following
three major principles.

1. Partition jobs based on their type: Each job type is
allocated its own thread pool and is prioritized across
pools. Jobs of a specific type are further prioritized
within their own pool.

2. Effort-based unit of work: The basic unit of work is the
effort needed to process a single record including
lookup, I/O and validation. Each job is composed of
multiple units of work, which defines its effort.

3. Controlled load generation: The thread pool has a load
generator, which controls rate of generation of work. It
is the threads in the pool that perform the work.

Aerospike uses cooperative scheduling whereby worker threads
yield CPU for other workers to finish their job after X units of
work. These workers have CPU core and partition affinity to
avoid data contention when parallel workers are accessing certain
data.

Figure 11: Job management

Concurrent workloads of a certain basic job type in Aerospike are
generally run on a first-come, first-served basis to allow for low
latency for each request. The system also needs the ability to
make progress in workloads like scans and queries, which are
long-running, and sometimes guided by user settings and/or by the
application’s ability to consume the result set. For such cases, the
system dynamically adapts and shifts to round-robin scheduling of
tasks, in which many tasks that are run in parallel are paused and
re-scheduled dynamically, based on the progress they can make.

5. STORAGE
It is not just the throughput and latency characteristic, but also the
ability to store and process large swaths of data that defines the
ability of a DBMS to scale up. Aerospike has been designed from
the ground up to leverage SSD technology. This allows Aerospike
to manage dozens of terabytes of data on a single machine. In this
section, we describe the storage subsystem.

5.1.1 Storage Management
Aerospike implements a hybrid model wherein the index is purely
in memory (not persisted), and data is only on a persistent storage
(SSD) and is read directly from the disk. Disk I/O is not required
to access the index, which makes performance predictable. Such a
design is possible because the read latency characteristic of I/O in
SSDs is the same, regardless of whether it is random or
sequential. For such a model, optimizations described in section
2.2.2 are used to avoid the cost of a device scan to rebuild
indexes.

This ability to do random read I/O comes at the cost of a limited
number of write cycles on SSDs. In order to avoid creating
uneven wear on a single part of the SSD, Aerospike does not
perform in-place updates. Instead, it employs a copy-on-write
mechanism [23] using large block writes. This wears the SSD
down evenly, which in turn, improves device durability.
Aerospike bypasses the Operating System’s file system and
instead uses attached flash devices directly as a block device using
a custom data layout.

When a record is updated, the old copy of the record is read from
the device and the updated copy is written into a write buffer. This
buffer is flushed to the storage when completely full.

Figure 12: Storage layout

The unit of read, RBLOCKS, is 128 bytes in size. This increases
the addressable space and can accommodate a single storage
device of up to 2TB in size. Writes in units of WBLOCK
(configurable, usually 1MB) optimize disk life.

Aerospike operates on multiple storage units of this type by
striping the data across multiple devices based on a robust hash
function; this allows parallel access to the data while avoiding any
hot spots.

1397

5.1.2 Defragmentation
Aerospike uses a log-structured file system with a copy-on-write
mechanism [23]. Hence, it needs to reclaim space by continuously
running a background defragmentation process. Each device
stores a MAP of block and information relating to the fill-factor of
each block. The fill-factor of the block is the block fraction
utilized by valid records. At boot time, this information is loaded
and kept up-to-date on every write. When the fill-factor of a block
falls below a certain threshold, the block becomes a candidate for
defragmentation and is then queued up for the defragmentation
process.

While defragmenting a block, the valid records are read and
moved to the new write buffer which, when full, is flushed to the
disk. To avoid intermixing new writes and old writes, Aerospike
maintains two different write buffer queues, one for normal client
writes, and another for records that move while defragmenting.

In the running system, the blocks continually get fed into this
queue to be defragmented, which adds to the write rate onto the
disk. Setting a very high fill-factor threshold (normally 50%)
increases device burnout rate, while a low setting decreases space
utilization. Based on available disk buffer space that can be
immediately consumed by writes (fully empty WBLOCKs), the
defragmentation rate is adjusted to make sure that there is efficient
space utilization.

5.1.3 Performance and Tuning
5.1.3.1 Post Write Queue
Instead of maintaining a LRU page cache, Aerospike maintains a
so-called post write queue. This is a Least Recently Written
(LRW) cache of data. There are a lot of application patterns where
data that is written is immediately read back with temporal
locality. A replication service, which ships recently changed
records (as explained in Section 3), has this behavioral
characteristic. Also, this cache requires no extra memory space
over and above the write block caching that is used to perform
writes to the disk. The post write queue improves the cache-hit
rate and reduces I/O load on the storage device.

5.1.3.2 Shadow Device
In the cloud environment, there are devices available with
different I/O and latency characteristics. For example, in Amazon
EC2 instances, persistence can be achieved to different degrees by
using an ephemeral disk (which survives process restarts, but not
instance restarts) and EBS (which survives both process and
instance restarts) [8]. Ephemeral devices are fast and attached to
the instance directly. In contrast, EBS devices are slow and
attached to the instance over the network. To scale up in systems
like these, Aerospike employs a shadow device technique where
writes are concurrently applied locally to the ephemeral storage,
and remotely to EBS. Reads, however, are always done from
ephemeral stores that can support much higher random access rate
than EBS.

5.1.4 Summary
Note that SSDs can store an order of magnitude more data per
node than DRAM. The IOPS supported by devices keep
increasing; for instance, NVMe drives can now perform 100K
IOPS per drive [16]. For the past several years, there have been
several Aerospike clusters with 20-30 nodes that have used this
setup and run millions of operations/second 24x7 with sub-
millisecond latency [17].

6. BENCHMARK RESULTS
The Aerospike DBMS with the above architecture has been in
deployment continuously since 2010. In the following sections,
we present some of the benchmarks we ran to measure the
scalability of the Aerospike database, and the benchmarking
results. Note that, unless otherwise stated, all the measurements
are expressed in single record read/write transactions per second
(TPS).

6.1 Scale Up
Here, we present a set of experiments that demonstrate
Aerospike’s ability to scale up. We measure performance in terms
of single-record read/write transaction throughput. The numbers
were achieved by applying the techniques discussed in section 4.
Two experiments were performed: one on a non-virtualized
machine, and another on a virtualized cloud environment.

6.1.1 Non-Virtualized
This experiment [3] was performed on a 4 node cluster each with
8 core dual Socket Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz
with 32GB DRAM and 1 NIC with 16 queues. Tests were run
using YCSB [9], which is a popular NoSQL benchmark.
Aerospike ran with a hybrid configuration under which reads are
performed from memory and writes are done to both memory and
to the disk for persistence.
This experiment was done with the following workload

• Record containing 10 columns/bins of 10-byte string.

• 50 million records.

• YCSB workload A (Balanced 50/50) and workload B
(Read Heavy 95/5) with Zipfian key distribution.

Figure 13: YCSB benchmark

As shown in Figure 13, the performance of Aerospike in terms of
throughput nearly doubled after applying the techniques discussed
in section 4.

6.1.2 Virtualized Environment
With the intention of mimicking real world scenarios, the
experiments [1] were done on AWS EC2 instances [7]. In order to
achieve a good spread, runs were performed on a single node
cluster with instances ranging from low-end m3.xlarge to high-
end r3.8xlarge. Workload was generated using the Aerospike Java
Benchmark Tools [5]. In this setup, data was not persisted on disk.
The benchmark was done with the following workload:

1398

• Records containing 10 columns/bins of 10-byte string
each

• 10 million records

• 100% read load with normal key distribution

Figure 14 shows that we were able to achieve up to 1 million TPS
on a single 8xlarge instance, and that Aerospike’s performance
scales up linearly as we move to larger and more powerful
instance types.

Figure 14: Performance on AWS EC2 instance types

6.2 Scale Out
This experiment was intended to evaluate Aerospike’s scale out
capability. Typical cloud deployments start with a low initial size
and grow as the needs grow. Keep in mind that this set of
experiments was performed using low-end instances. We
performed experiments both in Amazon AWS EC2 and in Google
Compute Engine [14] environments.

6.2.1 Amazon AWS
This experiment [26] was done on EC2 instances r3.xlarge
instance types with the setup described in Section 6.1.2.

Figure 15: AWS – linear scalability

As shown in the Figure 15, the throughput scales linearly in both
workloads (read-only and read-write) with the increase in the
number of nodes from 2 to 8.

6.2.2 Google Compute Engine
This experiment [4] was done on n1-standard-8 instances running
Debian 7 backports OS image. The run was done with data-in-
memory with persistence on 500GB non-SSD disks. The
experiment was performed with the following setup:

• Records containing 3 columns/bins of 50 byte string
each

• 100 million records

• a 100% read and 100% write workload

Figure 16: GCE – linear scalability

The results in Figure 16 show the linear scalability of Aerospike
with the increase in the number of nodes in the cluster – from 2 to
10 nodes.

6.3 Storage
Aerospike is optimized to handle both in-memory and on-disk
configurations equally well, as demonstrated by this experiment
[2]. The setup is similar to the one described in section 6.2.2 with
10 nodes. The only change is that data is on the local SSD instead
of on RAM, and both reads and writes hit the disk.

As shown in Figure 17, Aersopike’s performance on SSDs is
close to RAM with different workloads. Latencies of SSDs are
higher than those of RAM and get amplified in the 100% reads
case as seen in the graph. All the other cases also show a similar
behavior.

We have partnered with Intel to check Aerospike’s performance
on upcoming SSDs. In experiment [6], we traded out DRAM for
NVM (non-volatile memory) and ran it on Intel(R) Xeon(R) CPU
E5-2699 v3 @ 2.30GHz with 128GB RAM with P3700 PCIe
Devices. Aerospike was able to achieve 1 million TPS with sub-
millisecond latencies.

Figure 17: GCE – RAM vs. SSD

6.4 Summary
The results demonstrate the scale-out and scale-up characteristics
of Aerospike, both in non-virtualized and in virtualized
environments with data in memory and on disk. It highlights the
high-throughput, low latency, and linear scalability of Aerospike.

The performance numbers in virtualized cloud environments is
typically lower than in non-virtualized environments. In contrast

1399

to the common belief of slowness due to the overheads of
virtualization, we found that the limiting factor is generally the
artificial throttling done by cloud environments. And most of the
time, it is the network that gets throttled. As things improve in
networking, this will unleash the potential of Aerospike in cloud
environments too.

7. CONCLUSION
It is now clear that real-time decision systems are spreading fast
from the Internet to the Enterprise; this trend is accelerating and
quickly becoming mainstream. The techniques described in this
paper have helped us harness the high performance of
contemporary commodity hardware to build a very high-
throughput and low-latency read-write DBMS. We have found
that this sort of DBMS is much sought after for building a variety
of real-time decision systems in different industry application
categories such as Financial Services, Telecommunication,
Travel, E-Commerce, etc. An important lesson learned here is that
scaling up on individual nodes of a distributed database is as
important as scaling out across multiple nodes. In fact, DBMS
clusters that use powerful nodes with SSDs allow applications to
scale to Internet levels on much smaller cluster sizes. This, in turn,
helps Enterprises affordably deploy world-class real-time decision
systems as sophisticated as the ones that until recently were only
available at large Internet companies.

8. ACKNOWLEDGEMENTS
We acknowledge the contribution of all the members of the
Aerospike Engineering and Operations Team, who helped develop
the Aerospike DBMS. Special thanks to Young Paik, Psi
Mankoski, Ken Sedgwick, Tibor Szaboky, Meher Tendjoukian,
Maud Calegari and Sri Varun Poluri for helping with this effort.

9. REFERENCES
[1] Aerospike 1 Million TPS,

http://highscalability.com/blog/2014/8/18/1-aerospike-
server-x-1-amazon-ec2-instance-1-million-tps-for.html

[2] Aerospike Demonstrates RAM-like Performance with Local
SSDs,
http://googlecloudplatform.blogspot.in/2015/01/Aerospike-
demonstrates-RAM-like-performance-with-Local-SSDs.html

[3] Aerospike Doubles Performance, Shows 1 M TPS in YCSB
Tests, http://www.aerospike.com/blog/aerospike-doubles-in-
memory-nosql-database-performance

[4] Aerospike Hits One Million Writes Per Second with just 50
Nodes on Google Compute Engine,
http://googlecloudplatform.blogspot.in/2014/12/aerospike-
hits-one-million-writes-Per-Second-with-just-50-Nodes-on-
Google-Compute-Engine.html

[5] Aerospike Java Benchmark Tools,
http://www.aerospike.com/docs/client/java/benchmarks.html

[6] Aerospike on Intel SSD,
https://communities.intel.com/community/itpeernetwork/blog
/2015/02/17/reaching-one-million-database-transactions-per-
second-aerospike-intel-ssd Amazon EC2,
https://aws.amazon.com/ec2/

[7] Amazon EC2 Instances Types,
http://aws.amazon.com/ec2/instance-types/

[8] Amazon Elastic Block Store, https://aws.amazon.com/ebs/

[9] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. SoCC. (2010).

[10] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the
cost of context switch. ExpCS, (2007).

[11] Dewitt, D., Gerber, B., Graefe, G., Heytens, M., Kumar,
K.,Muralikrishna. GAMMA – A High Performance Dataflow
Database Machine. PVLDB, (1986).

[12] Florian Mendel, Norbert Pramstaller, Christian Rechberger,
and Vincent Rijmen. On the collision resistance of RIPEMD-
160. Proceedings of the 9th international conference on
Information Security, (2006).

[13] FNV-1a hash, https://en.wikipedia.org/wiki/Fowler–Noll–
Vo_hash_function#FNV-1a_hash

[14] GCE Google Compute Engine,
https://cloud.google.com/compute/docs/

[15] Intel multi-core architecture optimization,
http://www.intel.com/content/dam/doc/manual/64-ia-32-
architectures-optimization-manual.pdf

[16] Intel® Solid-State Drive Data Center Family for PCIe*,
http://www.intel.com/content/www/us/en/solid-state-
drives/intel-ssd-dc-family-for-pcie.html

[17] Intel Aerospike-Appnexus case study,
http://www.intel.in/content/dam/www/public/us/en/document
s/case-studies/ssd-aerospike-appnexus-study.pdf

[18] Jemalloc, http://www.canonware.com/jemalloc/

[19] Jenkins's one-at-a-time hash,
https://en.wikipedia.org/wiki/Jenkins_hash_function#one-at-
a-time

[20] Lamport, L. Paxos Made Simple, Fast, and Byzantine.
OPODIS, 7-9, (2002).

[21] Mathias, Adrian Richard David. The order extension
principle. Axiomatic set theory. Vol. 13. No. Part II.,
Proceedings of Symposia in Pure Mathematics, (1974).

[22] Real-time bidding, https://en.wikipedia.org/wiki/Real-
time_bidding

[23] Rosenblum, Mendel, and John K. Ousterhout. The design
and implementation of a log-structured file system. TOCS,
(1992).

[24] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti,
and Alexandra Fedorova. A case for NUMA-aware
contention management on multicore systems.
USENIXATC, (2011).

[25] Srinivasan, V. & Bulkowski, B., Citrusleaf: A Real-Time
NoSQL DB which Preserves ACID., PVLDB 4, (2012).

[26] The Cloud Does Equal High Performance,
http://highscalability.com/blog/2014/8/20/part-2-the-cloud-
does-equal-high-performance.html

[27] Yuan, Y., Wang, F., Li, J. and Qin, R., 2014, October. A
survey on real time bidding advertising. In Service
Operations and Logistics, and Informatics (SOLI), IEEE, (20

1400

