
Cubrick: Indexing Millions of Records per
Second for Interactive Analytics

Pedro Pedreira
Facebook Inc.
1 Hacker Way

Menlo Park, CA
pedroerp@fb.com

Chris Croswhite
Facebook Inc.
1 Hacker Way

Menlo Park, CA
chrisc@fb.com

Luis Bona
Federal University of Parana

Centro Politecnico
Curitiba, PR, Brazil
bona@inf.ufpr.br

ABSTRACT
This paper describes the architecture and design of Cubrick,
a distributed multidimensional in-memory DBMS suited for
interactive analytics over highly dynamic datasets. Cubrick
has a strictly multidimensional data model composed of
cubes, dimensions and metrics, supporting sub-second OLAP
operations such as slice and dice, roll-up and drill-down over
terabytes of data. All data stored in Cubrick is range par-
titioned by every dimension and stored within containers
called bricks in an unordered and sparse fashion, providing
high data ingestion rates and indexed access through any
combination of dimensions. In this paper, we describe de-
tails about Cubrick’s internal data structures, distributed
model, query execution engine and a few details about the
current implementation. Finally, we present results from
a thorough experimental evaluation that leveraged datasets
and queries collected from a few internal Cubrick deploy-
ments at Facebook.

1. INTRODUCTION
Realtime analytics over large datasets has become a wide-

spread need across most internet companies. Minimizing the
time gap between data production and data analysis enables
data driven companies to generate insights and make deci-
sions in a more timely manner, ultimately allowing them to
move faster. In order to provide realtime analytics abilities,
a database system needs to be able to continuously ingest
streams of data — commonly generated by web logs — and
answer queries only a few seconds after the data has been
generated. The ingestion of these highly dynamic datasets
becomes even more challenging at scale, given that some re-
altime streams can emit several million records per second.

In order to quickly identify trends and generate valuable
insights, data analysts also need to be able to interactively
manipulate these realtime datasets. Data exploration can
become a demanding asynchronous activity if each inter-
action with the database layer takes minutes to complete.

This work is licensed under the Creative Commons Attribution
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at The 42nd International Conference
on Very Large Data Bases, September 2016, New Delhi, India.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

Ideally, all database queries should finish in hundreds of mil-
liseconds in order to provide a truly interactive experience
to users [19]; unfortunately, scanning large datasets in such
a short time frame requires massive parallelization and thus
a vast amount of resources. For instance, 20,000 CPUs are
required in order to scan 10 TB of uncompressed in-memory
data to answer a single query in 100 milliseconds1. Likewise,
reading all data from disk at query time becomes infeasible
considering the tight latency and scale requirements.

However, over the last few years of providing database so-
lutions at Facebook we have empirically observed that even
though the raw dataset is large, most queries are heavily
filtered and interested in a very particular subset of it. For
example, a query might only be interested in one metric
for a particular demographic, such as only people living in
the US or from a particular gender, measure the volume of
conversation around a particular topic, in a specific group
or mentioning a particular hashtag. Considering that the
filters applied depend on which aspects of the dataset the
analyst is interested, they are mostly ad-hoc, making tra-
ditional one-dimensional pre-defined indexes or sort orders
less effective for these use cases.

Nevertheless, the requirements of low latency indexed que-
ries and highly dynamic datasets conflict with the tradi-
tional view that OLAP databases are batch oriented systems
that operate over mostly static datasets [14]. It is also well
known that traditional row-store databases are not suited
for analytics workloads since all columns need to be mate-
rialized when looking up a particular record [2]. We argue
that even column oriented databases do not perform well in
highly dynamic workloads due to the overhead of maintain-
ing a sorted view of the dataset (for C-STORE based archi-
tectures [26]) or of keeping indexing structures up-to-date in
order to efficiently answer ad-hoc queries. Moreover, current
OLAP databases are either based on a relational database
(ROLAP) [17] [22] and therefore suffer from the same prob-
lems, or are heavily based on pre-aggregations [24] and thus
are hard to update. We advocate that a new in-memory
database engine is needed in order to conform to these re-
quirements.

In this paper we present Cubrick, a distributed in-memory
multidimensional DBMS we have developed from scratch
at Facebook, capable of executing indexed OLAP opera-
tions such as slice-n-dice, roll-ups and drill-down over very

1This is a rough extrapolation based on the amount of in-
memory data a single CPU is able to scan, on average, in
our environment (see Section 6).

1305

dynamic multidimensional datasets composed of cubes, di-
mensions and metrics. Typical use cases for Cubrick include
loads of large batches or continuous streams of data for fur-
ther execution of low latency analytic operations, that in
general produces small result sets to be consumed by in-
teractive data visualization tools. In addition to low level
data manipulation functions, the system also exposes a more
generic SQL interface.

Data in a Cubrick cube is range partitioned by every di-
mension, composing a set of data containers called bricks
where data is stored sparsely, column-wise and in an un-
ordered and append-only fashion. Each brick is also row-
major numbered, considering that the cardinality of each
dimension and range size are estimated beforehand, provid-
ing fast access to the target brick given an input record and
the ability to easily prune bricks out of a query scope given
a brick id and a set of ad-hoc filters. This new data or-
ganization technique, which we call Granular Partitioning,
extends the notion of data partitioning as implemented by
most traditional database systems.

In this paper we make the following contributions:

• We describe a novel technique used to index and orga-
nize highly dynamic multidimensional datasets called
Granular Partitioning, that extends traditional data-
base partitioning and supports indexed access through
every dimension.

• We detail the basic data structures used by Cubrick
to store data in memory and describe details about its
query execution engine and distributed architecture.

• We outline how Cubrick’s data model and internal de-
sign allows us to incrementally accumulate data from
different data sources and granularities in a transpar-
ent manner for queries.

• We present a thorough experimental evaluation of Cu-
brick, including a cluster running at the scale of sev-
eral terabytes of in-memory data, ingesting millions of
records per second and executing sub-second queries.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the target workload both in terms of data
and queries and how it differentiates from traditional OLAP
workloads. In Section 3 we describe a novel technique that
extends traditional database partitioning and can be used to
organize and index multidimensional data. Further, in Sec-
tion 4 we present Cubrick, its distributed architecture and
details about query processing and rollups. Section 5 shows
a few experiments that measure the effects of data distribu-
tion on Cubrick. Section 6 presents a comprehensive experi-
mental analysis of our current implementation while Section
7 points to related work. Finally, Section 8 concludes this
paper.

2. WORKLOADS
In this work, we focus on a type of OLAP workload we

refer to as Realtime Interactive Stupid Analytics. To the
best of our knowledge, this workload differs from traditional
OLAP workloads commonly found in the literature by hav-
ing all of the four following characteristics:

• OLAP. Like in any other OLAP ecosystem, this work-
load is characterized by the low volume of transactions

and high amount of data scanned per query which are
used as the input to some aggregation function. The
dataset is always multidimensional and completely de-
normalized.

• Stupidity. The term Stupid Analytics was introduced
by Abadi and Stonebraker [1] to refer to traditional
Business Intelligence workloads, as opposed to Ad-
vanced Analytics that encompasses more elaborate anal-
ysis such as data mining, machine learning and statis-
tical analysis and targets Data Scientists as end users.
Stupid Analytics focus on the execution of simple an-
alytic operations such as sums, counts, averages and
percentiles over large amounts of data, targeting busi-
ness users, reporting and dashboard generation. For
these use cases, the biggest challenges are in the scale
and latency, rather than in the complexity of the anal-
ysis itself.

• Interactivity. A common use case we have seen in
the last few years is providing a UI where users can in-
teract and execute traditional OLAP operations over
a particular dataset, mostly for reporting and data ex-
ploration purposes. For these user-facing tools, in or-
der to provide a truly interactive experience, queries
must execute in hundreds of milliseconds [19] up to a
few seconds in the worst case, in order not to lose the
end users’ attention and not to turn the interactions
with the dataset painfully asynchronous.

• Realtime. In order to generate timely insights, Data
Analysts want the ability to analyze datasets as soon
as possible, ideally only a few seconds after they have
been generated. Since the raw data is usually gener-
ated by web logs and transmitted using a log message
system [8], the database system needs to be able to
continuously ingest these streams of data with rela-
tively low overhead, in order the maintain the normal
query SLA. Moreover, after ingestion the data needs
to be immediately available for queries, without being
delayed by batching techniques or any other database
re-organization procedure.

Apart from these four workload aspects, another charac-
teristic that heavily influences the DBMS architecture to be
leveraged is the scale at which Facebook operates. It is com-
mon at Facebook to find use cases where people wish to an-
alyze hundreds of billions of rows interactively, in datasets
that generate a few million new records per second. For-
tunately, there are a few assumptions we can make about
the data and query behavior of these workloads that make
them easier to handle at scale. The following two subsec-
tions describe the assumptions we made regarding the data
and queries from the target workload.

2.1 Data Assumptions
We start by assuming that all datasets are strictly multi-

dimensional and fully de-normalized. If the base tables are
not de-normalized we assume that some external system will
be responsible for joining all required tables in either real-
time streams or offline pipelines and generate a single input
table. Due to the heavy de-normalization these tables end
up being wide and containing hundreds of columns.

1306

In addition, we also further simplify the multidimensional
model as defined by Kimball [14] by maintaining the abstrac-
tions of cubes, dimensions and metrics, but dropping the
concepts of dimensional hierarchies, levels and attributes.
Through the investigation of a few of our datasets we have
concluded that hierarchies are not extensively used, with
the exception of time and date dimensions (for which we
can have specialized implementations) and for country/re-
gion and city. For the latter example, we can create sepa-
rate dimensions to handle each hierarchy level and provide
a similar data model, still allowing users to drill-down the
hierarchy. That considerably simplifies the data model, with
the following drawbacks: (a) explosion in the cube cardinal-
ity and (b) potentially storing invalid hierarchies (California
can appear under Brazil, for instance). However, (a) can be
easily overcome by a sparse implementation and (b) we de-
cided to handle externally by using periodic data quality
checks. Moreover, we assume that additional dimension at-
tributes are stored elsewhere and looked up by the client
tool.

Another characteristic that allows us to simplify the query
engine is the fact that the datasets are always composed of
primitive integer types (or floats) and labels, but never open
text fields or binary types. The only string types allowed
are the ones used to better describe dimensions (and thus
have a fixed cardinality, as described in Subsection 4.2) such
as Male and Female labels for gender dimensions or US,
Mexico and Brazil for country dimensions. Therefore, all
labels can be efficiently dictionary encoded and stored as
regular integers, enabling us to build a leaner and much
simpler DBMS architecture only able to operate over fixed
size integers.

2.2 Query Assumptions
Considering that the dataset is always de-normalized, que-

ries are simple and only composed of filters, groupings and
aggregations. The lack of need for joins, subselects and
nested query execution in general that comes from the de-
normalization enables us to remove a lot of complexity from
the query execution engine — in fact, we argue that it re-
moves the need for a query optimizer since there is always
only one possible plan (more on that in Section 4.4).

The types or filters used are predominantly exact match,
but range filters are also required (in order to support date,
time or age ranges, for instance). That means that indexing
techniques solely based on hashing are insufficient. Support
for and, or, in and more elaborate logical expressions for fil-
tering is also required. The aggregation functions required
by our use cases are mostly composed of simple functions
such as sum(), count(), max/min(), and average(), but some
projects also require harder to compute functions such as
topK(), count distinct() and percentile(). At last, the chal-
lenge of our use cases are usually due to the scale and dataset
sizes rather than the complexity of queries themselves.

3. GRANULAR PARTITIONING
Store and index highly dynamic datasets is a challenge for

any database system due to the computational costs associ-
ated with index updates. Indexing OLAP databases, in par-
ticular, is even more demanding considering that the number
of records is substantially higher than in traditional trans-
actional systems. Moreover, in realtime scenarios where a
large number of load requests are constantly queued up, even

small interruptions in order to update indexing structures,
for instance, might stall entire pipelines.

In this section, we describe a new data organization tech-
nique that extends traditional table partitioning [5] and can
be used to efficiently index highly dynamic column-oriented
data. The rationale is that by creating more granular (small-
er) partitions that segment the dataset on every possible di-
mension, one can use these smaller containers to skip data
at query time without requiring updates to any other data
structures when new data arrives.

We start in Subsection 3.1 by characterizing the current
approaches that are usually leveraged to index column-orien-
ted data and speedup queries and outline why they are not
sufficient for our use cases. In Subsection 3.2 we describe the
limitations that commercial DBMS offerings have regarding
table partitioning support. In Subsection 3.3 we present a
new approach for indexing highly dynamic datasets column-
wise called Granular Partitioning. Finally, in Subsection
3.5 we compare the new approach proposed to traditional
indexing database techniques.

3.1 Traditional Approaches
Traditional database techniques used to improve select

operator (filters) performance by skipping unnecessary data
are either based on maintaining indexes (auxiliary data struc-
tures) or pre-sorting the dataset [15]. Maintaining auxil-
iary indexes such as B+Trees to speedup access to particu-
lar records is a well-known technique implemented by most
DBMSs and leveraged by virtually every OLTP DBMS. De-
spite being widely adopted by OLTP DBMSs, the logarith-
mic overhead of maintaining indexes updated is usually pro-
hibitive in OLAP workloads as table size and ingestion rates
scale. Most types of indexes (notably secondary indexes)
also incur in storage footprint increase to store intermediate
nodes and pointers to the data, in such a way that creating
one index per column may double the storage usage. More-
over, correctly deciding which columns to index is challeng-
ing in the presence of ad-hoc queries.

A second approach to efficiently skip data at query time
is pre-sorting the dataset. Column-oriented databases based
on the C-STORE architecture [26] maintain multiple copies
of the dataset ordered by different keys — also called pro-
jections — that can be leveraged to efficiently execute select
operators over the columns in the sort key. Even though a
structure similar to a LSM-Tree (Log Structured Merge-Tree)
[20] is used to amortize the computational cost of insertions,
a large amount of data re-organization is required to keep
all projections updated as the ingestion rate scales. Besides,
one has to decide beforehand which projections to create and
their corresponding sort keys, what can be difficult to define
on datasets composed of ad-hoc queries. Ultimately, since
every new projection is a copy of the entire dataset, this ap-
proach is not appropriate for memory based DBMSs where
the system tries to fit as much of the dataset in memory as
possible to avoid burdensome disk accesses.

Lastly, database cracking [12] is an adaptive indexing tech-
nique that re-organizes the physical design as part of queries,
instead of part of updates. On a DBMS leveraging this tech-
nique, each query is interpreted as a hint to crack the current
physical organization into smaller pieces, whereas data not
touched by any query remains unexplored and unindexed.
This technique has the advantage of adapting the physical
design according to changes in the workload and without hu-

1307

man intervention, but has a similar problem to indexing and
sorting in highly dynamic workloads — if the ingestion rate
is high it might never re-organize itself enough to efficiently
skip data at query time.

All three techniques described above have a inherent over-
head for insertions, which prevents their ability to scale un-
der highly dynamic workloads

3.2 Database Partitioning
Partitioning is an umbrella term used in database systems

to describe a set of techniques used to segment the database
— or a particular table — into smaller and more manageable
parts, also called partitions. Each partition can therefore be
stored, accessed and updated individually without interfer-
ing with the others. Partitioning can also be leveraged to
prune data at query time by entirely skipping partitions that
do not match query filters.

Traditional partitioning is usually defined on a per-table
basis at creation time by specifying one or a few columns
on which to segment a table as well as the criteria to use:
ranges, hash, lists of values, intervals or even combinations
of these methods are usually supported. Unfortunately, par-
titioning on most traditional DBMSs is one-dimensional (even
though multiple columns can be part of the key) and have a
low limit on the total number of partitions allowed per table
– usually about a few thousands [21] [18] — which prevents
its sole use for more fine grained data pruning. Moreover,
database systems usually store partitions in different storage
containers, in several cases implemented over files, which is
not an efficient method to store a large number of contain-
ers due to metadata overhead, fragmentation, and directory
indirections.

3.3 A New Approach
In this paper, we propose a new technique that extends

traditional database partitioning and can be leveraged to
index highly dynamic multidimensional datasets. We ex-
tend the notion of partitioning by assuming that all tables
in the system are range partitioned by every dimension col-
umn, and that the cardinality and range size of each dimen-
sion are known beforehand. We also assume that all string
values are dictionary encoded and internally represented as
monotonically increasing integers.

Considering that tables can have hundreds of dimensions,
and depending on the cardinality and range size defined for
each of these columns, the database system needs to be able
to efficiently handle tens to hundreds of millions of small
partitions. As the number of active partitions scale (parti-
tions containing at least one record), a few problems arise:
(a) how to quickly find the correct partition for record inser-
tions, (b) how to find the partitions to scan given the filters
of a particular query and (c) how to efficiently store millions
of small partitions.

Finding the correct partition to insert a new record.
Every time a new record enters the database system for in-
gestion, the partition to which it should be appended must
be found based on the values of the dimension columns.
Since the cardinality and range size of each dimension are
known beforehand, a row-major numbering function can
be used to uniquely assign ids to every possible partition.
Therefore, based on a input record the target id can be calcu-
lated in linear time on the number of dimensional columns,

as well as the opposite direction, i.e., calculating the dimen-
sion values (offsets) based on the id.

In theory, several functions can be leveraged to map the
multidimensional partition map into a one dimensional space
(the partition id), such as Z-ordering, space filling curves
and Hilbert curves. We decided to use a row-major func-
tion because of its simplicity and low overhead calculation.
Thus, the partition id (pid) associated to a particular record
d containing n dimension columns, where 〈d1, d2, ..., dn〉 is
the set of dictionary encoded values for each dimension (co-
ordinates) and the cardinality and range size of each column
are represented by 〈D1, D2, ..., Dn〉 and 〈R1, R2, ..., Rn〉 re-
spectively, can be calculated through the following equation:

pid =

n∑
k=1

(k−1∏
l=1

Dl

Rl

)
dk
Rk

(1)

Notice that even though there are two nested linear func-
tions, the internal product can be accumulated and calcu-
lated in conjunction to the external loop in a single pass.

In order to provide constant (amortized) lookup time to
the in-memory representation of a particular partition given
a pid, a hash table that associates pid to the in-memory
object is also maintained. Hence, at insertion time the sys-
tem first calculates the target pid through Equation 1 and
then executes a lookup on this hash table to find the target
object. Once the object is found or created (in case this
is the first record assigned to this partition), the record is
appended to the end of the vectors that store data for the
partition, without requiring any type of re-organization.

Region Gender Likes Comments
CA Male 1425 905
CA Female 1065 871
MA Male 948 802
CO Unknown 1183 1053
NY Female 1466 1210

Table 1: Two-dimensional example dataset.

Figure 1: Granular Partitioning data layout. Illus-
tration of how records are associated with partitions
on the two-dimensional example shown in Table 1
and per dimension dictionary encodings.

Figure 1 illustrates how data is distributed between par-
titions given the example two dimensional input dataset
shown in Table 1. In this example, Region and Gender are
dimensions and Likes and Comments are metrics. Region

1308

and Gender values are dictionary encoded and represented
by axis x and y, respectively. Expected cardinality for Gen-
der is 4 and range size 2, while for Region the expected
cardinality is 8 and range size is 4. Based on this schema,
input records 1, 3 and 4 are assigned to partition 0, record 2
is assigned to partition 2 and records 5 is assigned to parti-
tion 3. Partition 1 does not contain any records so it is not
represented in memory.

Scanning the correct partitions at query time. Since
the dataset is partitioned by every dimension column, a mul-
tidimensional tree-like data structure would be required in
order to provide sublinear searches by the partitions that
match a particular set of filters. However, according to ex-
perimental results in some of our datasets (not shown in
this paper), given the number of partitions and dimensions
we are required to store, the computational requirements of
maintaining and iterating over multidimensional data struc-
tures such as R-Trees [10] and K-D-B Trees [6] exceeds the
computational costs of testing every active partition against
the filters of a query.

Besides, testing every active partition can be efficiently
implemented considering that (a) the list of active pids can
be stored sequentially in memory and take advantage of
memory locality and cache friendly iterations and (b) testing
partitions against filters is easily parallelizable and chunks
containing subsets of the active partitions can be tested by
different threads.

Since each server can now be required to store millions of
partitions, in order to reduce the amount of indexing meta-
data maintained per partition the following equation can be
leveraged to infer the offset on dimension d solely based on
a pid:

offsetd = pid×
(d∏

k=1

Dk

Rk

)−1

mod
Dd

Rd
(2)

Hence, by only storing a single 64 bit integer per parti-
tion of indexing metadata it is possible to decide whether a
partition matches a set of filters and therefore needs to be
scanned, or can be safely skipped.

Efficiently store millions of partition. As more co-
lumns are included in the partitioning key and consequently
the partition sizes decrease, the number of partitions to store
grows large. Since the dataset is too fragmented into small
partitions, a disk based DBMS is not appropriate for this
type of data organization and an in-memory database en-
gine is required. Regarding the in-memory data organiza-
tion, each column within a partition is stored in a dynamic
vector, which provides fast iteration by storing data contigu-
ously and re-allocates itself every time the buffer exhausts
its capacity. Data for each of these vectors is written peri-
odically and asynchronously to a disk-based key value store
capable of efficiently storing and indexing millions of key
value pairs (such as RocksDB [7]) to provide disaster recov-
ery capabilities, and persistency can be achieved through
replication.

3.4 Extending Dimensions
In order to minimize the amount of re-organization re-

quired when a dimension needs to be extended (for instance,
in cases where the estimated cardinality is exceeded), one
possible strategy is to re-calculate the ids of every active par-

Query Insertion Space
Naive CT ∗NT CT CT ∗NT

Row-store
(Indexes)

CT ∗NQ CT ∗ log(NT) 2 ∗ CT ∗NT

Column-store
(C-STORE)

CQ ∗NQ CT ∗ log(NT) CT
2 ∗NT

Granular Par-
titioning

CQ ∗NQ ∗ δ CT CT ∗NT

Table 2: Comparison between different indexing
methods.

tition. Even though this approach only requires re-numbering
active partitions in memory, it can impact the distributed
model (as described in Section 4.3) and cause data to be
re-flushed to disk if data placement is determined by the
partition id. A second strategy is to row-major number the
space extension on its own, starting from the total number
of partitions the table had before the extension.

3.5 Comparison
Table 2 presents a model that can be used to compare

the worst-case complexity and trade-offs between different
indexing techniques. This model assumes that the dataset
is composed of a single table containing CT columns and
NT records and that each query can apply filters on any of
these columns, whereas CQ is the number of columns and
NQ the minimum number of records required to be scanned
in order to answer it.

Following this model, the complexity of the query prob-
lem should range from O(CT ∗ NT) or a full table scan
of all columns in the worst case, to Ω(CQ ∗ NQ) by only
reading the exact columns and records required to compute
the query and without touching anything outside the query
scope. Other aspects that need to be evaluated are inser-
tion time, or the time required to update the indexing data
structures every time a new record is ingested, and space
complexity, or the space required to maintain the indexing
structures.

We present and compare four hypothetical DBMSs imple-
menting different indexing techniques using our model: (a)
a naive row-store DBMS that does not have any indexing ca-
pabilities, but rather only appends new records to the end
of its storage container, (b) a row-store DBMS maintain-
ing one B+Tree based index per column, (c) a column-store
DBMS based on the C-STORE architecture that keeps one
projection ordered by each column, and (d) a DBMS imple-
menting the Granular Partitioning technique presented in
Section 3.3.

Since the naive DBMS (a) does not have any indexing
capabilities, every query needs to execute a full table scan
independently of the filters applied, and considering that
records are stored row-wise, the entire table needs to be read
and materialized, i.e., CT ∗NT . Nevertheless, insertions are
done in CT since each column only needs to be appended
to the end of the list of stored records. Considering that no
other data structures need to be maintained, the space used
is proportional to CT ∗NT .

As for a row-store DBMS maintaining one index per col-
umn (b), queries can be executed by leveraging one of the
indexes and only touching the records that match the filter
(NQ), but still all columns of these records need to be read.
Hence, overall query complexity is CT ∗ NQ. Insertions of

1309

new records need to update one index per column, so con-
sidering that index updates are logarithmic operations the
overall insertion complexity is CT ∗ log(NT). Furthermore,
assuming that the space overhead of indexes is commonly
proportional to the size of the column they are indexing,
the space complexity is proportional to 2 ∗ CT ∗NT .

A column-store DBMS implementing the C-STORE ar-
chitecture and maintaining one projection ordered by each
column (c) can pick the correct projection to use given a
specific filter and read only records that match it (NQ). In
addition, the DBMS can only materialize the columns the
query requires, resulting in overall query complexity propor-
tional to CQ∗NQ. However, insertions require all projection
to be updated. Considering that projections can be updated
in logarithmic time, the insertion time is proportional to
CT ∗ log(NT). Moreover, since each projection is a copy of
the entire table, the space complexity is CT

2 ∗NT

Lastly, a DBMS implementing the granular partitioning
technique (d) can materialize only the columns required,
since data is stored column-wise. Regarding number of re-
cords, there are two possible cases: (a) if the query filter
matches exactly a partition boundary, then only records
matching the filter will be scanned and δ = 1, where δ repre-
sents the amount of data outside the query scope but inside
partitions that intersect with the query filter, or (b) if the
filter intersects a partition boundary, then records outside
the query scope will be scanned and δ is proportional to
the number of records that match that specific dimension
range. Insertions are done in CT time by calculating the
correct pid and appending each column to the back of the
record list and space complexity is proportional to CT ∗NT

since no other auxiliary data structures are maintained.

4. CUBRICK ARCHITECTURE
Cubrick is a novel distributed in-memory OLAP DBMS

specially suited for low-latency analytic queries over highly
dynamic datasets. In order to operate at our scale, rather
than relaxing guarantees and removing pieces from tradi-
tional database systems, we took a different approach; in-
stead, we wrote a brand new architecture from scratch fo-
cused on simplicity and only added the features required
to support our use cases. That means that several well-
known database features such as support for updates and
intra-partition deletes, local persistency, triggers, keys and
any other database constraints are missing, but only the
essential features needed for loading de-normalized multidi-
mensional datasets and execute simple OLAP queries are
provided.

As described in Section 2, the input for Cubrick are de-
normalized multidimensional tables composed of dimensions
and metrics, either coming from realtime data streams or
batch pipelines. All dimensional columns are part of the par-
titioning key and stored using a encoding technique called
BESS encoding (Bit-Encoded Sparse Structure [9]). Metrics
are stored column-wise per partition and can optionally be
compressed.

Once loaded, Cubrick enables the execution of a subset
of SQL statements mostly limited to filters, aggregations
and groupings. Since Cubrick’s main focus is query latency,
all data is stored in memory in a cluster of shared-nothing
servers and all queries are naturally indexed by organiz-
ing the data using the Granular Partitioning technique de-
scribed in Section 3. Finally, since Cubrick’s primary use

case are real time data streams, we make heavy use of mul-
tiversioned data structures and copy-on-write techniques in
order to guarantee that insertions never block queries.

4.1 Terminology
In this subsection, we define the terminology we use to de-

scribe Cubrick throughout the paper. Cubrick cubes imple-
ment the same abstraction as regular database relations, or
an unordered set of tuples sharing the same attribute types.
In practice, a cube is equivalent to a database table. Since
Cubrick exposes a multidimensional view of the dataset, we
refer to each tuple inside a cube as a cell, rather than as rows
or records. Each attribute inside a particular cell is either a
dimension or a metric, where dimensions are attributes used
for filtering and usually have a lower cardinality, and metrics
are attributes used in aggregation functions, generally with
higher cardinality. Lastly, we denote the set of dimensions
of a particular cell as being its coordinates.

Considering that Cubrick leverages the Granular Parti-
tioning technique that partitions the cube by ranges in ev-
ery single dimension, the resulting partitions are, in fact,
smaller cubes – or precisely, hypercubes. We refer to each
of these smaller cubes as bricks. Additionally, a partition id
is associated to each brick, which we refer to as brick id or
bid. Since the list of bricks for a particular cube is stored
in a sparse manner, we call an active brick a partition that
contains at least one cell and is allocated in memory.

4.2 Data Organization
Cubrick organizes and stores all data in-memory inside

partitions referred to as bricks. Each brick contains one or
more cells — bricks containing zero records are not repre-
sented in memory — and is responsible for storing a combi-
nation of one range for each dimension. Thus, the number
of possible bricks can be calculated by the product of the
number of ranges defined for each dimension. In practice,
the number of active bricks at any given time is consider-
ably lower since our datasets are not evenly distributed and
do not exercise the full cardinality. Another consequence of
this fact is that the number of cells stored by each brick can
have a high variance (more about effects of data distribution
in Section 5).

Within a brick, cells are stored column-wise and in an un-
ordered and sparse fashion. Each brick is composed of one
array per metric plus one array to store a bitwise encoded
value to describe the in-brick coordinates using a technique
called Bit Encoded Sparse Structures, or BESS [9]. BESS is
a concatenated bit encoded buffer that represents a cell co-
ordinate’s offset inside a particular brick on each dimension.
At query time, based on the in-brick BESS coordinates and
on the bid, it is possible to reconstruct the complete cell co-
ordinate while keeping a low memory footprint. The number
of bits needed to store a cell’s coordinate (BESS) for a par-
ticular cube containing n dimensions where Rk is the range
size of the k-th dimension is:

n∑
d=1

dlg (Rd)e

For all dimensions composed of string values, an auxiliary
hash table is maintained to associate labels to monotonically
increasing ids — a technique also called dictionary encoding
[23]. Internally, all data is stored based on these ids and only
converted back to strings before returning data to users.

1310

Figure 2: Cubrick internal data organization for the
dataset presented in Table 1.

Figure 2 illustrates how Cubrick organizes the dataset
shown in Table 1. Once that dataset is loaded, three bricks
are created and inserted into brick map: 0, 2 and 3, con-
taining 3, 1 and 1 cell, respectively. Each brick is composed
by three vectors, one for each metric (Likes and Comments)
and one to store the BESS encoding. The BESS encoding
for each cell represents the in-brick coordinates and on this
example can be stored using three bits per cell — two for
region, since range size is 4, and 1 for gender since range
size is 2.

Adding a new cell to a brick is done by appending each
metric to the corresponding metric vector and the BESS
(calculated based on the new cell’s coordinates) to the BESS
buffer. Therefore, cells are stored in the same order as they
were ingested, and at any given time cells can be material-
ized by accessing a particular index in all metric vectors and
BESS buffer.

Deletes are supported but restricted to predicates that
only match entire bricks in order to keep the internal brick
structures simple. Cell updates are not supported since it
is not a common operation in any of our use cases. In our
current usage scenarios, updates are only required when part
of the dataset needs to be re-generated. In these cases, the
new dataset is loaded into a staging cube so that all bricks
can be atomically replaced.

4.3 Distributed Architecture
In addition to the cube metadata that defines its schema,

i.e., set of dimensions and metrics, at creation time a client
can also specify the set of nodes that should store data for
a particular cube. Alternatively, the client can also only
specify the number of nodes. If the number of nodes that
will store data for a cube is bigger than one, each node is
hashed and placed into a consistent hash ring [13] and data
is distributed among the nodes by hashing each brick id into
this ring and thereby assigning bricks to nodes. Queries are
always forwarded to all nodes that store data for a cube and
their results are aggregated before returning the result set to
the client. Lastly, replication is done by ingesting the same
dataset to multiple Cubrick clusters.

In a previous version of Cubrick we used to support a user
supplied segmentation clause per cube that would specify
how data is distributed throughout the cluster (based on
the value of one or a few dimensions). The rationale is that
by grouping bricks in the same segment of a cube together,
a few queries could only be forwarded to a subset of the
nodes, given that its filters match the segmentation clause.
We ended up dropping support for this since: (a) user de-
fined segmentation clause usually introduces more data skew
between nodes than hashing all active bricks, (b) very few
queries actually had filters that matched exactly the seg-
mentation clause so most queries were forwarded to all nodes

anyway, and (c) worsening of hot spots since distribution of
queries per segment is usually not even.

4.4 Query Engine
Cubrick supports only a subset of SQL queries, or pre-

cisely the ones composed of filters (or select operators, in
order to define the search space), aggregations and group
bys (pivot). Other minor features such as order by, having
clauses and a few arithmetic and logical expression are also
supported, but they interfere less in the query engine since
they are applied pre or post query execution.

Nested queries are not supported in any form, and con-
sidering that the loaded dataset is already de-normalized,
there is also no support for joins. These assumptions make
the query engine much simpler since there is only one pos-
sible query plan for any supported query. In fact, these
assumptions remove the need for a query optimizer whatso-
ever, considerably simplifying the query engine architecture.

All queries in a Cubrick cluster are highly parallelizable
and composed of the following steps:

Propagate query to all nodes. The query is parsed
from a SQL string to a intermediary representation based
on Thrift [4], which is an RPC and serialization framework
heavily used at Facebook, and propagated to all nodes in
the cluster that store data for the target cube.

Parallelize local execution. The list of local active
bricks is broken down into segments and assigned to multiple
tasks (threads of execution), in a way that each task has a
subset of the total number of active bricks to scan.

Allocate buffers. An advantage of knowing beforehand
the cardinality of each dimension is that the result set car-
dinality is also known. For instance, a query that groups
by the dimension Region from the example shown in Fig-
ure 1, is expected to have an output of, at most, 8 rows
— the maximum cardinality defined for that dimension. In
cases where the result set cardinality is known to be small,
a dense vector can be used to hold and merge partial results
more efficiently than the widely used hash maps (STL’s un-
ordered maps) due to better memory access patterns. In
practice it is usually more efficient to leverage a dense vector
for most one dimensional group by’s, whereas hash maps are
used mostly in multidimensional group by’s, where the out-
put cartesian cardinality can be large. Based on empirical
queries from our use cases, we have observed that the vast
majority of queries group by one column or none; therefore,
this optimization is crucial to save CPU cycles and reduce
query latency. Figure 3 shows a comparison of the query
execution times using dense and sparse buffers.

Finally, based on the expected result set cardinality and
the operation to be executed, each task decides the more
suitable buffer type to allocate. Operations such as sum,
count, min and max are executed using a single value per
possible result set element (whether using dense vectors or
hash maps), whilst operations like pct, count distinct, and
topK require one hash map per result set value.

Scan/prune and generate partial results. Once all
buffers are allocated, each task matches every brick assigned
to it against the query filters and decides whether it needs
to be scanned or can be safely skipped. In case the brick
needs to be scanned, the operation is executed and merged
to the task’s buffer; otherwise, the next brick is evaluated.

Aggregate partial results. Partial results from com-
pleted tasks and remote nodes are aggregated in parallel as

1311

Figure 3: Query latency for different result set car-
dinalities using sparse and dense buffers.

they are available, until all tasks are finished and the full
result set is generated. Lastly, the ids used internally are
translated to labels, formatted according to the output re-
quested and sent back to the client.

4.5 Rollups
One interesting feature of storing data sparsely and in an

unordered fashion inside bricks is that nothing prevents one
from inserting multiple distinct cells in the exact same coor-
dinates. Even though conceptually belonging to same point
in space, these cells are stored separately and are naturally
aggregated at query time in the same manner as cells with
different coordinates. In fact, since there is no possible filter
that could match only one of the cells and not the other(s),
they can be safely combined into a single cells containing
the aggregated metrics.

This operation, which we refer to as rollup, can be set
on a per-cube basis on a Cubrick cluster and consists of a
background procedure that periodically checks every brick
that recently ingested data and merges cells containing the
same coordinates. Considering that the in-brick coordinate
for each cell is encoded and stored in the BESS buffer, rolling
up a brick is a matter of combining cells with the same BESS
value. Table 3 illustrates an example of a two-dimensional
dataset containing multiple cells per coordinate, before and
after a rollup operation.

Region Gender Likes Comments
Before Rollup

CA Male 1 0
CA Male 0 1
CA Male 1 1
CA Female 1 0
CA Female 1 3

After Rollup
CA Male 2 2
CA Female 2 3

Table 3: Sample data set before and after a rollup
operation.

A compelling use case for rollup operations is changing the
granularity in which data is aggregated at ingestion time
without requiring external aggregation. In this way, data
for a particular cube can be ingested from a more granular

Figure 4: Distribution of cells per brick in a real
15-dimensional dataset.

data source — or one containing more dimensions —, and
any extra dimensions not defined in the cube can be dis-
carded. Once ingested, the cube will contain as many cells
as the base data set but will eventually get compacted by
the rollup procedure. Important to notice is that due to
the very associative and commutative nature of these aggre-
gations, queries executed prior, during or after the rollup
operation will generate identical results.

Finally, this operation is particularly useful for real time
stream data sources, where data is generated at the lowest
granularity level (e.g. user level) and the aggregations are
generated partially as the data flows in, transparent to user
queries.

5. DATA DISTRIBUTION
One of the first questions that arise when dealing with

statically partitioned datasets is what is the impact of data
distribution in query performance and overall memory us-
age? The intuition is that the best performance is achieved
by perfect evenly distributed datasets, where the number of
cells stored within each partition is the same, and slowly de-
grades as the skew between partitions increase. This comes
from the fact that scanning too many small partitions can
be a burdensome operation due the lack of memory locality.

Unfortunately, most Facebook’s datasets are skewed. For
instance, a dataset containing the number of posts per de-
mographic is likely to be denser close to countries with high
user population and more sparse towards other countries.
The same effect is observed for other demographic dimen-
sions, such as region, age, gender, marital and educational
status.

To illustrate the distribution of a real dataset, Figure 4
shows the number of cells stored per brick on a 15 dimen-
sional dataset from one of the projects that leverage Cubrick
for analytics. For this specific dataset, the distribution of
cells between the 1 million active bricks follows a long tail
distribution, where a few bricks can contain around 20,000
cells but the vast majority consists of a rather small number
of cells.

In order to evaluate the impact of data distribution, we
generated two artificial datasets containing one billion re-
cords each and loaded into a one node Cubrick cluster. The
first dataset is perfectly even, where all bricks contain the

1312

of bricks Even Skewed
10k 456ms / 0.039% 605ms / 0.73%
100k 478ms / 0.003% 482ms / 0.06%
1M 536ms / 0.001% 572ms / 0.01%

Table 4: Full table scan times for a 1 billion cells
dataset following a perfectly even and skewed distri-
bution (as shown in Figure 4) using different range
sizes to obtain different numbers of bricks. Also
showing the coefficient of variation (stddev / me-
dian) of the number of cells scanned per thread.

exact same number of cells, whilst the second dataset is
skewed and follows the same long tail distribution as found
in the real dataset illustrated by Figure 4. We then loaded
each dataset using three different range size configurations
in order to generate 10k, 100k and 1M bricks to evaluate
how the total number of bricks impacts query performance.

The results of a full scan on these datasets is shown on
Table 4. For the evenly distributed dataset, as one would ex-
pect, query latency increases the more bricks Cubrick needs
to scan, even though the number of cells scanned are the
same. We attribute this fact to the lack of locality when
switching bricks and other initialization operations needed
in order to start scanning a brick. However, the query la-
tency increase is relatively small (around 17% from 10k to
1M) if compared to the increased number of bricks — 100
times larger.

We observed an interesting pattern when analyzing the
skewed distribution results. A similar effect can be seen for
the 100k and 1M bricks test where query latency increases
the more bricks are required to scan, but curiously, query
latency for the 10k bricks test is significantly larger than for
100k. When digging further into this issue, our hypothesis
was that some threads were required to do more work (or
scan more cells), and queries are only as fast as the slowest
thread. In order to evaluate the hypothesis, we have also
included the coefficient of variation of the number of cells
scanned per threads in Table 4. We observe that the vari-
ation is significantly higher (0.75%) for the 10k brick test
than all other tests, since the small number of bricks and
coarse granularity make it difficult to evenly assign bricks
to different threads.

Lastly, regarding the impact of data distribution in mem-
ory usage, we have seen that the memory footprint differ-
ence from 10k to 1M bricks is below 1%, under both even
and skewed distributions.

6. EXPERIMENTAL RESULTS
In this Section, we present an experimental evaluation

of our current implementation of Cubrick. For all experi-
ments, the servers used have 32 logical CPUs and 256 GB
of memory, although we have used different cluster sizes
for different experiments. The experiments are organized
as follows. We first compare how efficiently Cubrick and
two other DBMS architectures — namely, a row-oriented
and a column-oriented DBMS — can prune data out of a
query scope when filters with different restrictivity are ap-
plied. Further, we show absolute latency times for queries
containing different filters over a dataset spread over differ-
ent cluster sizes. Finally, we present the results of a series
of experiments regarding data ingestion, showing absolute

ingestion rates against CPU utilization, the impact of inges-
tion in query latency and lastly the resources required by
the rollup operation.

6.1 Pruning Comparison
The purpose of this experiment is to measure how effi-

ciently Cubrick can prune data from queries without rely-
ing on any other auxiliary data structures, in comparison
to other DBMS architectures. In order to run this test,
we loaded a dataset containing 1 billion rows into a single
node Cubrick cluster, resulting in about 100 GB of mem-
ory utilization. Further, we collected several OLAP queries
from real use cases, containing exact match and range fil-
ters over several dimension columns. We intentionally col-
lected queries whose filters match different percentages of
the dataset in order to test the impact of data pruning in
query latency. We have also executed the same queries
against two well known commercial DBMSs; a row-store
(MySQL) and a column-store (HP Vertica).

Since Cubrick is a in-memory DBMS optimized for in-
teractive latency, measuring absolute query latency against
other disk based systems is not a fair comparison. Rather,
in order to only evaluate how efficiently different architec-
tures prune data at query time we compared the latency
of each query with the latency of a full table scan (query
touching the entire table without any filters) and show the
ratio between them.

Figure 5: Relative latency of filtered OLAP queries
compared to a full table scan.

Figure 5 shows the results. The x-axis shows the per-
centage of the dataset the queries touch (log scale) and the
y-axis show the query latency compared with a full table
scan. We have also included a baseline that illustrates a
hypothetical DBMS able to perfectly prune data, i.e., where
the query latency is exactly proportional to the amount of
data required to scan to answer a query. The left side of the
chart represents queries that only touch a few records, whilst
the extreme right side contains latency for queries that scan
almost the entire dataset, and thus are closer to 100%. For
all test queries executed, Cubrick showed better prune per-
formance than the other architectures and performed closer
to the ideal baseline hypothetical DBMS.

6.2 Queries
In this Subsection, we evaluate the performance of queries

over different dataset sizes and cluster configurations. We
focus on showing how efficiently filters are applied and their
impact on latency, as well as how Cubrick scales horizontally
as more nodes are added to the cluster.

1313

Figure 6: Queries over different dataset sizes on
a 72 node cluster. The first query is non-filtered
(full scan) and the following ones contain filters that
match only 50%, 20% and 1% of the dataset.

For the first experiment, we present the results of queries
on a dataset containing around 30 columns under four dif-
ferent configurations controlled by how much historical data
we have loaded for each test. We show results for 10GB,
100GB, 1TB and 10TB of overall size on a 72 node clus-
ter. In order to achieve low latency for queries data was not
compressed; however, due to Cubrick’s native BESS and
dictionary encoding for strings, each record required only
about 50 bytes such that the 10TB test comprised about
200 billion records. For each configuration, we show the la-
tency for a full table scan (non-filtered query), followed by
three queries containing filters that match 50%, 20% and
1% of the dataset. These percentages are calculated based
on a count(*) using the same filters, compared to the total
number of loaded records.

Figure 6 presents the results. For the first two datasets,
10GB and 100GB, the amount of data stored per node is
small so query latency is dominated by network synchro-
nization and merging buffers. Hence, full scans are executed
in 18ms and 25ms, respectively, even though the second
dataset is 10 times larger. For the following two datasets,
the amount of data stored per node is significantly larger,
so the latency difference for the filtered queries is more no-
ticeable. Ultimately, in a 72 node cluster, Cubrick was able
to execute a full scan over 10TB of data in 763ms, and a
query containing filters that match only 1% of the dataset
in 38ms.

In the second experiment, we have focused on evaluating
how efficiently filters over different dimension are applied.
We have leveraged the same dataset as the previous exper-
iment — 10TB over 72 nodes — and executed queries con-
taining filters over different dimensions. We randomly took
10 dimensions from this dataset and selected valid values to
filter on, in such a way that each different filter required to
scan a different percentage of the dataset.

Figure 7 shows the results. We have named each column
from dim1 to dim10 (x-axis), and show the latency of each
query as a dot in the column the query had a filter on. We
have also measured the percentage of the dataset each filter
required the query to scan and show in it a color scale, being
a dark dot close to a full table scan and a yellow a query

Figure 7: Latency of queries being filtered by dif-
ferent dimensions over a 10TB dataset on a 72 node
cluster.

that only scans a small part of the dataset. The top black
line at 763ms is the hypothetical upper bound, since it is
the time required to execute a full table scan over the 10TB
dataset.

From these experimental results, we observe a pattern
that goes from yellow to black as the query latency increases,
independent of the dimension being filtered — the value for
x. This fact supports our hypothesis that filters can be ef-
ficiently applied on every dimension of the dataset, in such
a way that query latency is driven by the amount of data
that needs to be scanned, rather than the column on which
to filter.

6.3 Ingestion
In this Subsection, we evaluate how fast Cubrick can in-

gest data as well as what is the impact of data ingestion on
overall cluster resource utilization and ultimately in query
latency. The rationale behind the organization of these ex-
periments relies on the fact that Cubrick is built on top
of lock-free data structures and copy on write containers,
in such a way that insertions never block queries. There-
fore, queries are reduced to a CPU problem since there is no
lock contention for queries and all data is already stored in-
memory. Also, network synchronization required is minimal
and only used to collect partial results from other nodes.

We start by measuring the resource consumption for in-
gestion and the rollup procedure (which is used in most real
time use cases), in order to evaluate how much CPU is left
for query processing, and conclude by presenting the impact
of ingestion on actual query execution and query latency.

6.3.1 CPU Overhead
In order to evaluate the CPU overhead of ingestion in

Cubrick, we created a single node cluster ingesting a stream
containing real data, and slowly increased the volume of
that stream in order to measure the overall impact on CPU
utilization. The stream volume started at 250k records per
second and increased at 250k steps after a few minutes. Fig-
ure 8 presents the results. From this experiment, we can
see that CPU utilization is minimal up to 500k records per
second (about 15%), but even as the volume increases and
approaches 1M records per second, the CPU usage is still
relatively low at about 20%. In summary, on a Cubrick
cluster ingesting around 1M rows per second per node, there
is still around 80% of CPU left for query execution.

1314

Figure 8: Single node cluster CPU utilization when
ingesting streams with different volumes.

6.3.2 Rollups
As described in Section 4.5, the rollup operation is exten-

sively used in Cubrick deployments in order to summarize
and aggregate datasets being transfered in different aggrega-
tion levels. The most common example is a Cubrick cluster
storing data aggregated at demographic level, but ingesting
data generated at user level. Data is ingested as soon as
it arrives and is immediately available for queries. Later,
a background procedure aggregates all cells containing the
same BESS encoding in order to keep low memory footprint.
Given that Cubrick is a memory-only DBMS and the large
volume of ingested streams, the rollup procedure is crucial
to keep the dataset within a manageable size.

Figure 9: Memory utilization of servers ingesting
data in real time with rollup enabled.

Figure 9 illustrates the memory utilization of a few pro-
duction nodes ingesting a real stream with rollups enabled.
The pattern is similar to a sawtooth function, where memory
is freed every time the rollup procedure runs and summarizes
a few cells, but since new records are continuously being in-
gested it quickly spikes again while the rollup thread sleeps.
Over time, however, the memory utilization tends to slowly
grow even after running a rollup since new cells stored in a
space of the cardinality not exercised before cannot be rolled
up.

6.3.3 Impact on Queries
In this experiment, we measure the impact of ingesting

streams of different volumes against query latency. The vol-
ume of the input stream used started at 500k records per
second and slowly increase to 1M, 2M and close to 3M, which
is about the size of the target streams for some internal use

cases. We decided to first load a 1 terabyte chunk of the
dataset so the dataset size variation due to ingestion dur-
ing the test is minimal. The data was also being rolledup.
We then defined three different queries that were executed
continuously during the ingestion test: (1) a full scan that
aggregates all metric with no filters, (2) a filtered query that
needs to scan about 35% of the dataset and (3) a more re-
strictive filtered query that requires a scan on only 3% of
the dataset.

Figure 10: Latency of queries on a 10 node cluster
ingesting streams of different volumes.

Figure 10 presents the results on a 10 node Cubrick clus-
ter. The filled areas in grey scale on the background rep-
resent the amount of records ingested per second per node,
while the colored lines shows the latency of each defined
query. We observe that as the input stream approaches 3M
records per second, the impact on query latency is barely
noticeable and below 5%. This result aligns with the ex-
periment shown in Subsection 6.3.1, considering that in this
test each node is ingesting around 300k records per second.
In absolute numbers, queries on the 10 node Cubrick cluster
ingesting 2 to 3M rows per second run in about 800ms in the
worst case (full scan) and achieve better latency the more
filters are applied.

7. PREVIOUS WORK
In this section we provide a brief overview of the exist-

ing multidimensional database technologies able to handle
highly dynamic data - or the ones that do not strongly rely
on pre computation.

SciDB [25] is an array database with a similar data model.
Arrays can similarly be chunked into fixed-size strides in ev-
ery dimension and distributed among cluster nodes using
hashing and range partitioning. SciDB, however, focuses on
scientific workloads, which can be quite different from reg-
ular OLAP use cases. While SciDB offers features interest-
ing for operations commonly found in image processing and
linear algebra, such as chunk overlap, complex user defined
operations, nested arrays and multi-versioning, Cubrick tar-
gets fast but simple operations (like sum, count, max and
avg) over very sparse datasets. In addition, SciDB charac-
teristics like non-sparse disk storage of chunks, multiversion-
ing and single node query coordinator make it less suited to
our workloads.

Nanocubes [16] is a in-memory data cube engine that pro-
vides low query response times over spatiotemporal multi-
dimensional datasets. Nanocubes rely on a quadtree-like
index structure over spatial information which, other than
posing a memory overhead for the index structure, limits (a)
the supported datasets, since they need be spatiotemporal,

1315

(b) the type of queries because one should always filter by
spatial location in order not to traverse the entire dataset
and (c) visual encoding output.

Despite being a column-store database and hence not hav-
ing the notion of dimensions, hierarchies and metrics, Goo-
gle’s PowerDrill [11] chunks data in a similar fashion to Cu-
brick. A few columns can be selected to partition a par-
ticular table dynamically, i.e., buckets are split once they
become too large. Even though this strategy potentially
provides a better data distribution between buckets, since
PowerDrill is a column store, data needs to be stored fol-
lowing a certain order, and thus each bucket needs to keep
track of which values are stored inside of it for each col-
umn, which can pose a considerable memory overhead. In
Cubrick, since we leverage fixed range partitioning for each
dimension, the range of values a particular brick stores can
be inferred based on its brick id.

Lastly, Scuba [3] is another in-memory data analysis tool
that relies on partitioning, but only indexes partitions based
on a single dimension - timestamp.

8. CONCLUSIONS
This paper presented the architecture and design of Cu-

brick, a new distributed multidimensional in-memory data-
base for real-time data analysis of large and dynamic datasets.
Cubrick range partitions the dataset by each dimension com-
posing smaller containers called bricks that store data in a
sparse and unordered fashion, thereby providing high data
ingestion ratios and indexed access through every dimension.

For future work, we intend to continue exploring new
strategies to make Cubrick more generic and better support
less curated datasets. Things we plan to tackle are (a) auto-
mated schema generation, or improve our dimension cardi-
nality estimation and (b) more efficient storage for datasets
with very skewed data distribution.

9. REFERENCES
[1] D. Abadi and M. Stonebraker. C-store: Looking back

and looking forward. Talk at VLDB’15 - International
Conference on Very Large Databases, 2015.

[2] D. J. Abadi, S. R. Madden, and N. Hachem.
Column-Stores vs. Row-Stores: How Different Are
They Really? In SIGMOD, Vancouver, Canada, 2008.

[3] L. Abraham et al. Scuba: Diving into data at
facebook. Proc. VLDB Endow., 6(11):1057–1067, Aug.
2013.

[4] A. Agarwal, M. Slee, and M. Kwiatkowski. Thrift:
Scalable cross-language services implementation.
Technical report, Facebook Inc., 2007.

[5] J. M. Babad. A record and file partitioning model.
Communications of the ACM, 20(1):22–31, 1977.

[6] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communication of the
ACM, 18(9):509–517, 1975.

[7] Facebook Inc. Rocksdb: A persistent key-value store
for fast storage environments. http://rocksdb.org/,
2016.

[8] Facebook Inc. Scribe: A Server for Aggregating log
data Streamed in Real Time.
https://github.com/facebookarchive/scribe, 2016.

[9] S. Goil and A. Choudhary. BESS: Sparse data storage
of multi-dimensional data for OLAP and data mining.
Technical report, North-western University, 1997.

[10] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 47–54, 1984.

[11] A. Hall, O. Bachmann, R. Buessow, S.-I. Ganceanu,
and M. Nunkesser. Processing a trillion cells per
mouse click. PVLDB, 5:1436–1446, 2012.

[12] S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. In CIDR 2007, Third Biennial Conference
on Innovative Data Systems Research, pages 68–78,
Asilomar, CA, USA, 2007.

[13] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In
Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, pages 654–663,
New York, NY, USA, 1997. ACM.

[14] R. Kimball. , The Data Warehouse Toolkit: Practical
Techniques for Building Dimensional Data
Warehouses. John Wiley & Sons, 1996.

[15] T. J. Lehman and M. J. Carey. A study of index
structures for main memory database management
systems. In Proceedings of the 12th International
Conference on Very Large Data Bases, VLDB ’86,
pages 294–303, San Francisco, CA, USA, 1986.
Morgan Kaufmann Publishers Inc.

[16] L. Lins, J. T. Klosowski, and C. Scheidegger.
Nanocubes for Real-Time Exploration of
Spatiotemporal Datasets. Visualization and Computer
Graphics, IEEE Transactions on, 19(12):2456–2465,
2013.

[17] MicroStrategy Inc. Microstrategy olap services.
https://www.microstrategy.com/us/software/

products/olap-services, 2016.

[18] MySql. Mysql 5.7 reference manual.
http://dev.mysql.com/doc/refman/5.7/en/, 2016.

[19] J. Nielsen. Usability Engineering. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[20] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
Log-structured Merge-tree (LSM-tree). Acta
Informatica, 33(4):351–385, 1996.

[21] Oracle Inc. Oracle database 12c.
http://www.oracle.com/technetwork/database/

enterprise-edition/documentation/, 2016.

[22] Oracle Inc. Oracle essbase. http://www.oracle.com/
technetwork/middleware/essbase/overview, 2016.

[23] K. Sayood. Introduction to Data Compression (2Nd
Ed.). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2000.

[24] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: Shrinking the petacube.
SIGMOD’02, pages 464–475, New York, NY, USA,
2002. ACM.

[25] M. Stonebraker, P. Brown, A. Poliakov, and
S. Raman. The architecture of SciDB. In SSDBM’11,
pages 1–16. Springer-Verlag, 2011.

[26] M. Stonebraker et al. C-store: A column-oriented
DBMS. In Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB ’05,
pages 553–564. VLDB Endowment, 2005.

1316

