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ABSTRACT
Studying the topology of a network is critical to inferring
underlying dynamics such as tolerance to failure, group be-
havior and spreading patterns. k-core decomposition is a
well-established metric which partitions a graph into layers
from external to more central vertices. In this paper we aim
to explore whether k-core decomposition of large networks
can be computed using a consumer-grade PC. We feature
implementations of the “vertex-centric” distributed proto-
col introduced by Montresor, De Pellegrini and Miorandi
on GraphChi and Webgraph. Also, we present an accurate
implementation of the Batagelj and Zaversnik algorithm for
k-core decomposition in Webgraph. With our implementa-
tions, we show that we can efficiently handle networks of bil-
lions of edges using a single consumer-level machine within
reasonable time and can produce excellent approximations
in only a fraction of the execution time. To the best of our
knowledge, our biggest graphs are considerably larger than
the graphs considered in the literature. Next, we present an
optimized implementation of an external-memory algorithm
(EMcore) by Cheng, Ke, Chu, and Özsu. We show that this
algorithm also performs well for large datasets, however, it
cannot predict whether a given memory budget is sufficient
for a new dataset. We present a thorough analysis of all
algorithms concluding that it is viable to compute k-core
decomposition for large networks in a consumer-grade PC.

1. INTRODUCTION
Connections between people or entities are modeled as

graphs, where vertices represent the people or entities, and
edges represent the connections. Many big graphs have been
constructed this way coming from a multitude of systems
and applications, such as social and web networks, product
co-purchases, and protein interaction networks, to name a
few. Analyzing the graph structure has been shown to be
highly beneficial in targeted advertising [36], fraud-detection
[27], missing link prediction [23, 18], locating functional
modules of interacting proteins [33, 16], identifying new
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emerging trends in scientific disciplines [5], and so on. One
of the most important tasks in analyzing graphs for these
applications is detecting communities of graph nodes that
have close ties with each other [13, 14, 28, 34].

The nodes in the aforementioned networks often exhibit
a crucial property: their utility increases or decreases de-
pending on the number of connections they have with other
nodes in their community [8]. This is especially pronounced
in social networks, where the engagement of users is more
likely if many of their friends are engaged. From the opposite
point of view, the disengagement of users is a serious con-
cern for social network providers. If sparsely connected users
drop out, then their friends in turn might become sparsely
connected and drop out too, thus causing a possibly danger-
ous cascade of disengagement. Therefore, a social network
provider needs to know what part of the network will remain
active after such an iterated disengagement for different lev-
els of a parameter k, which represents the least number of
friends a user needs to remain in the network. This cor-
responds to a well-known concept in graph theory, that of
k-core of a graph G, which is the largest induced subgraph of
G in which every vertex has degree at least k. The coreness
of a vertex v in G is the largest value of k such that there
is a k-core of G containing v. In the k-core decomposition
problem, the goal is to compute the coreness of each vertex
in G.

k-Core decomposition has many other applications. It is
extensively used in aiding the visualization of the network
structure [3, 30], understanding and interpreting cooperative
processes in social networks [15, 12], capturing structural di-
versity in social contagion [32], analyzing complex networks
in terms of node hierarchies, self-similarity, and connectiv-
ity [2], describing protein functions based on protein-protein
networks [1, 21], exploring collaboration in software teams
[35], facilitating network approaches for large text summa-
rization [4], and approximating hard to compute network
centrality measures [17].

In the theory community, the concept of k-core has en-
joyed much popularity because it can be used as subroutine
for harder problems, such as computing cliques of size k, or
provide an approximation for the densest subgraph problem,
and the densest at-least-k-subgraph problem [20].

In contrast to computing other kinds of cohesive groups in
networks, e.g. s-plexes, n-cliques, s-defective cliques [29], k-
cores can be computed in polynomial time. As such, k-core
decomposition is more amenable to use in network analysis
of large graphs. Our goal in this paper is to engineer exist-
ing k-core algorithms to scale to large graphs of billions of
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edges. The largest graph we are able to handle in this paper,
Twitter 2010, consists of 41.7 million nodes and 2.4 billion
edges. To the best of our knowledge, this is considerably
bigger than the graphs considered in literature. Further-
more, we are able to compute the core decomposition using
only a consumer grade PC. The algorithms we engineer, our
objectives and contributions are described in detail below.

1.1 Algorithms, Objectives, and Contributions
Montresor, De Pellegrini and Miorandi in [25] present

a distributed k-core decomposition algorithm following the
“vertex-centric” model of computation. It operates on the
premise that the input graph is spread across multiple clus-
ter nodes or hosts. In the case where the large graph re-
sides on a single machine’s disk, resorting to the distributed
approach for k-core decomposition can be challenging. Al-
though distributed resources are readily available (e.g. Ama-
zon EC2), the task of partitioning the graph across com-
putational nodes in a way that optimizes communication
amongst them is a hard problem.

We ask the following question: Is there a viable approach
for efficiently computing the k-core decomposition of large
networks without resorting to distributed computation, and
preferably using a consumer-grade PC? We turn to GraphChi
[19] and Webgraph [9]. GraphChi is a modern, general-
purpose, graph engine which employs a novel technique for
processing large data from disk and uses the “vertex-centric”
model of computation. Webgraph is a graph compression
framework that provides an API for accessing a compressed
graph using lazy techniques that delay the decompression
until it is actually necessary. In this paper, we present imple-
mentations of the protocol introduced in [25] on GraphChi
and Webgraph. We perform our experimental analysis on
a variety of real-world graph datasets ranging from a few
thousands to billions of edges in size including those used
in [25]. We show that our implementations scale to signifi-
cantly larger datasets than those in [25] using only a single
PC. This is in contrast to a cluster of 16 machines employed
by [25].

We also present an accurate implementation of the Batagelj
and Zaversnik (BZ) algorithm for k-core decomposition in
Webgraph. When the graph can fit in memory, the BZ al-
gorithm outperforms all the others. Due to the truly im-
pressive compression ratio that Webgraph can achieve, it is
possible to fit many large graphs in memory. The BZ algo-
rithm is a very good choice in such a case. The real power of
BZ comes not from its high-level idea (for which it is often
cited), but from a careful engineering of its data structures.

When the graph does not fit in memory, in terms of al-
gorithms for a single machine, the main competition is with
external-memory (EM) algorithms. A well-known EM algo-
rithm for k-core decomposition of massive networks is EM-
core proposed by Cheng, Ke, Chu, and Özsu in [11]. An-
other question that we ask is: How do our implementations
on GraphChi and Webgraph compare with a special-purpose
algorithm, such as EMcore? To answer this question we pro-
vide an optimized implementation of the EMcore algorithm.
We observe that the Webgraph implementation is faster,
whereas the GraphChi implementation is slower than EM-
core. However, the Webgraph implementation and EMcore
have certain requirements on the available memory budget,
whereas GraphChi does not.

Figure 1: [Top] A graph. [Bottom] The 3-core of the graph.

An advantage of using our GraphChi or Webgraph im-
plementations is their simplicity, facilitating extension and
maintenance. This is because GraphChi and Webgraph are
general-purpose graph systems providing a simple API for
processing the graph. On the other hand, EMcore is a
special-purpose algorithm, where the programmer needs to
implement many details related to the graph storage.

The rest of the paper is organized as follows. In Section 2
we give the necessary notation and definitions. In Section 3
we describe the setup of our experiments. In Section 4 we
explain our GraphChi implementation. In Section 5 we give
details about our implementations of the BZ algorithm and
Montresor et. al. using Webgraph. In Section 6 we describe
our optimized EMcore implementation. Finally, Section 7
concludes the paper.

2. PRELIMINARIES
We represent networks, for the purpose of computing the

k-core decomposition, using undirected graphs.
We denote an undirected graph by G = (V,E), where V

is the set of vertices, and E is the set of edges. We set n
and m to be |V | and |E|, respectively.

Given a vertex v, we denote the set of its neighbors, {u :
(u, v) ∈ E}, by NG(v). The degree of v, |NG(v)|, is denoted
by dG(v). We set dmax(G) = max{dG(v) : v ∈ V }.

Let K ⊆ V be a subset of vertices of a graph G = (V,E).
We have the following definitions.

Definition 1. Graph G(K) = (K,EK), where EK =
{(u, v) ∈ E : u, v ∈ K} is called the subgraph of G induced
by K.

Definition 2. G(K) is a k-core if and only if the follow-
ing conditions are true.

k-Degree For each v ∈ K, dG(K)(v) ≥ k.

Maximality For each K′, such that K ⊂ K′ ⊆ G, there
exists u ∈ K′ \K, such that dG(K′)(u) < k.
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Name Abbrev. |V | |E| dmax kmax kavg i
Astro Physics (ca-astroph) AP 18.7 K 198.1 K 504 56 12.62 53
Condensed Matter (ca-condmat) CM 23.1 K 93.5 K 280 25 4.90 15
Gnutella P2P network (p2p-gnutella31 ) GN 62.6 K 147.9 K 95 6 2.52 32
Slashdot 1 (soc-sign-Slashdot-090221 ) S1 82.1 K 500.5 K 2,548 54 6.23 17
Slashdot 2 (soc-Slashdot0902 ) S2 82.2 K 543.4 K 2,553 56 7.22 20
Amazon product co-purchasing network (amazon0601 ) AM 0.4 M 2.4 M 2,752 10 7.22 27
Berkeley-Stanford web graph (web-BerkStan) BS 0.7 M 6.6 M 84,230 201 11.11 243
Texas road network (roadNet-TX ) TX 1.4 M 1.9 M 12 3 1.79 122
California road network (roadNet-CA) CA 2.0 M 2.8 M 12 3 1.81 72
Wikipedia Talk network (wiki-Talk) WT 2.4 M 4.7 M 100,029 131 1.96 25
LiveJournal network (LiveJournal) LJ 4.8 M 43.1 M 20,334 373 9.48 53
UK 2005 web crawl (uk-2005 ) UK 39.5 M 790 M 1,776,858 589 24.20 250
Twitter 2010 followers network (twitter-2010 ) TW 41.7 M 2,405 M 2,997,487 2,488 29.04 63

Table 1: Dataset name, abbreviation, number of vertices, number of edges, maximum degree, maximum coreness, average
coreness, number of GraphChi iterations until completion. Dashed lines divide the datasets into small, medium, and big.

From the maximality condition in the above definition the
following proposition follows.

Proposition 1. For each k = 1, 2, . . . , dmax(G), there
exists exactly one k-core in G (which could possibly be empty).

Given k ∈ [1, dmax(G)], we denote the k-core of G by
Ck(G). Finally, we have

Definition 3. A vertex v ∈ G has coreness k if and only
if it is a vertex in graph Ck(G).

For an example, see Fig. 1. On the top is a graph and at
the bottom is its 3-core.

Vertices e, f , g, h, and j have a degree of two, so they
cannot be in the 3-core.

Observe that vertex i, even though it has a degree of three,
does not belong in the 3-core of the graph. This is because
node j, one of the neighbors of i, has a degree of two.

There are two connected components in the 3-core, a, b,
c, d, and p, q, r, s, u. Each of these vertices has at least
three neighbors in same connected component.

The 2-core, in this example, happens to be the whole
graph.

Finally, the 4-core is empty. Even though we have several
vertices with a degree of four, b, c, d, p, q, s, and u, once
their neighbors with degree three or less are removed from
consideration, their degree becomes less than four. Hence
they do not belong in the 4-core.

The cores of the graph form an inclusion relationship. For
a graph G, we have

Cdmax(G) ⊂ Cdmax−1(G) ⊆ . . . ⊆ C1(G).

3. EXPERIMENTAL METHODOLOGY
Setup. Our implementations are in Java and the exper-
iments are conducted on a machine with Intel i7, 2.2Ghz
CPU, and 8Gb RAM, running Ubuntu 14.03 (Linux). The
hard disk is Seagate Barracuda ST31000524AS 1TB 7200
RPM.

Datasets. We perform our analysis on the following thir-
teen graph datasets: Astro Physics (ca-astroph) and Con-
densed Matter (ca-condmat) collaboration networks; Gnutella
P2P network (p2p-gnutella31 ); two datasets captured from
the Slashdot social network : soc-sign-Slashdot-090221, and

soc-Slashdot0902 ; Amazon product co-purchasing network
(amazon0601 ); Berkeley-Stanford web graph (web-BerkStan);
Texas road network (roadNet-TX ); California road network
(roadNet-CA); Wikipedia Talk network (wiki-Talk); Live-
Journal social network (LiveJournal); 2005 crawl on the .uk
domain (uk-2005 ); 2010 snapshot of the Twitter network
(twitter-2010 ).

The dataset characteristics are given in Table 1. We show
the name and abbreviation, number of vertices, number of
edges, maximum degree, maximum coreness, average core-
ness, and number of GraphChi iterations until completion.

We have divided the datasets into three groups, small,
medium, and big. The first five datasets (small) have less
than 1 million edges. The next six datasets (medium) have
from 2.4 to 43.1 million edges. Finally, the last two datasets
(big) have 790 million and 2.4 billion edges, respectively.

All graphs, with the exception of the last two, are obtained
from http://snap.stanford.edu/data/index.html.

The last two are obtained from http://law.di.unimi.

it/webdata.
Undirected graphs have been converted to directed graphs

by replacing each edge with two directed edges.

4. GRAPHCHI IMPLEMENTATION
Our implementation of the algorithm of [25] is written for

GraphChi [19]. It is motivated by the fact that GraphChi
adheres to the “think-like-a-vertex” paradigm, introduced
in Pregel [24], the framework also used in [25].

In this model, a computation on a graph runs an update(v)
function operating on a vertex v by accessing and modifying
its value along with its attached edges. Function update(v)
is carried out for each scheduled vertex iteratively.

Similar to Pregel, GraphChi is based on communication
between vertices. However, instead of using explicit messag-
ing, a GraphChi program implements the sending of a mes-
sage to adjacent vertices by writing to out-edges, and the
receiving of an incoming message by reading in-edge values.

GraphChi implements a novel method, Parallel Sliding
Windows (PSW), for processing very large graphs from ex-
ternal memory. PSW reduces random access to a negligible
amount, and thus performs well on data stored in disk.

A nice feature of GraphChi is selective scheduling. Using
this feature we only schedule for update those vertices that
have a chance to change their state.

15



Figure 2: Running times in seconds for the small, medium, UK, and TW datasets (from left to right). Algorithm labels are:
WG BZ for Batagelj and Zaversnik [6] on Webgraph, WG M and GC M for Montresor et.al. [25] on Webgraph and GraphChi
respectively, and EMC for EMcore [11]. Memory allocated is in parenthesis.

The main idea of the algorithm of [25] is to maintain
an estimate, called vertex value, for each vertex that is an
upper-bound on its coreness. This estimate is initialized
to be the vertex degree. As the execution progresses, this
upper-bound is tightened further in each iteration using an
update() step that we describe below, gradually improving
the estimate for each vertex until it reaches the true core
value before termination.

The update() step computes a tighter upper-bound on the
vertex’s coreness based on values read from in-edges. In
each iteration, vertices broadcast their current upper-bound
to their neighbors by writing to out-edges. Vertices read the
in-edge values coming from its neighbors and create a count
array c indexed by the upper-bound values they read.

For example, if a vertex v has three neighbors with upper-
bound value of 7, then c[7] = 3. Let nv be the length of c
for v. Then, v determines the largest index i such that

i ≤
nv∑
k=i

c[k]. (1)

The new upper-bound for v will be i; vertex v cannot have
core greater than i because there are fewer than i neighbors
with core greater than i. See algorithms 1 and 2 for more
details.

In lines 2–5, the vertex value is initialized to its degree and
is broadcast to the neighbors. Also the vertex is scheduled
for the next iteration. This only happens in iteration 0.

Lines 6–17 execute in the other iterations. In line 7, we set
a local estimate (localEstimate) to be the computed upper

bound on the coreness of the vertex. If the local estimate is
less than the current vertex value, the latter is updated to
the former, and the new vertex value is broadcast to all the
neighbors of the vertex.

Here we also contribute a simple optimization using se-
lective scheduling in GraphChi. Lines 12–16 of Algorithm 1
schedule (for the next iteration) only those neighbors with
an estimate of coreness that is greater or equal to the esti-
mate of the current vertex.

A vertex will be scheduled only if it has a neighbor with
a lower estimate. This neighbor will perform a

scheduler .addTask(inEdge.vertexid)

action (see line 14).
A vertex can be scheduled by several neighbors, but this is

not a problem as addTask is idempotent and does not cause
any performance penalty.

If a vertex is not scheduled, it does not have a neighbor
with lower estimate, so it does not have a chance to lower
its core estimate.

Algorithm 2 implements the idea of inequality 1. We ini-
tialize to zero all the elements of array c. The array only
needs to have up to the current vertex value (coreness esti-
mate) elements. Observe in line 6 that any neighbor with
a value greater than the vertex value contributes to incre-
menting the last element of the array. In lines 10–15, we
find the largest index in the array that satisfies inequality 1.
Variable cumul corresponds to i in inequality 1.

For an example see the graph in Fig. 1. Initially, in it-
eration 0, each node sets it local estimate of coreness to its
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degree. Then, the message exchange starts in iteration 1.
Bound tightening is quite effective. If we assume that

the vertices are processed in alphabetic order, then, in this
example, all the vertices get a local estimate for their core
value, which happens to be exactly their true core value. In
the following table, we show the array of counts for each
vertex and the bound obtained by Algorithm 2.

Vertex Array c Bound
a [2 : 0, 3 : 3] 3
b [2 : 1, 3 : 1, 4 : 2] 3
c [2 : 3, 3 : 2, 4 : 2, 5 : 0, 6 : 0, 7 : 0] 3
d [2 : 1, 3 : 3, 4 : 0] 3
e [2 : 2] 2
f [2 : 2] 2
g [2 : 2] 2
h [2 : 2] 2
i [2 : 1, 3 : 2] 2
p [2 : 2, 3 : 2, 4 : 0, 5 : 2] 3
q [2 : 2, 3 : 2, 4 : 1, 5 : 1, 6 : 0] 3
r [2 : 0, 3 : 3] 3
s [2 : 1, 3 : 3, 4 : 0] 3
t [2 : 2] 2
u [2 : 1, 3 : 3, 4 : 0, 5 : 0] 3

For instance, consider vertex c. It has a degree of seven,
hence the number of elements in its array of counts is seven.
Now, what is the greatest index, such that, the sum of array
elements starting from this index to the end of the array is
greater or equal to the value of the index? It is three in this
instance, hence the upper bound for vertex c is three.

GraphChi implements the asynchronous model of compu-
tation [19]. In this model, the update function can use the
most recent values of the edges and the vertices. The asyn-
chronous model of computation has been shown to be more
efficient than synchronous computation for many purposes
[7, 22, 19]. We observe the benefit of the asynchronous com-
putation even in this small example. Vertex q, for instance,
being processed after p, sees that the latter has currently a
core estimate of 3, not 5 (that it had in the previous iter-
ation). Therefore, p contributes to incrementing the third
element of the array of q, not the fifth as it would have been
under a synchronized computation discipline.

Algorithm 1 Update function running at a vertex

1: function update(Vertex vertex)
2: if iteration = 0 then
3: vertex .value ← vertex .numOutEdges
4: broadcastValueToNeighbors(vertex )
5: scheduler .addTask(vertex .id) . schedules itself
6: else
7: localEstimate ← computeUpperBound(vertex )
8: if localEstimate < vertex .value then
9: vertex .value ← localEstimate

10: broadcastValueToNeighbors(vertex )
11: end if
12: for all inEdge in vertex .inEdgeList do
13: if vertex .value ≤ inEdge.value then
14: scheduler .addTask(inEdge.vertexid)
15: end if
16: end for
17: end if
18: end function

Algorithm 2 computeUpperBound function for a vertex

1: function computeUpperBound(Vertex vertex)
2: for all i← 1 to vertex.value do
3: c[i]← 0
4: end for
5: for all inEdge in vertex .inEdgeList do
6: j ← min{inEdge.value, vertex .value}
7: c[j]++
8: end for
9: cumul ← 0

10: for all i← vertex .value down to 2 do
11: cumul ← cumul + c[i]
12: if cumul ≥ i then
13: return i
14: end if
15: end for
16: end function

4.1 Results and Analysis
Our results are summarized in Table 1. Columns kmax

and kavg denote the maximum and average coreness for each
graph. The algorithm runs for i iterations.

We observe that the algorithm outputs the k-core decom-
position in a few tens of iterations for most of the datasets
we consider which is comparable with the convergence re-
sults reported in [25].

We encounter a relatively lengthy execution for web-berkStan
and uk-2005. This can be attributed to the problematic
computation of certain cores within the graph due to high
diameter, as suggested in [25]. Figure 2 shows the running
time for each dataset (see the most dark-blue bars).

The experiments show that our implementation on GrapChi
terminates in the order of minutes for most graph datasets.
For large-scale graphs, namely uk-2005 and Twitter-2010, it
took several hours on our consumer-grade machine.

In contrast, [25] needed a cluster of 16 machines employed
for just the medium and small datasets. They do not provide
results for big graphs.

To further investigate the execution of the algorithm as
it unfolds with time, we look at the percentage of updated
vertices and maximum difference from the true core value
over the sequence of iterations (see Figure 3). We recall that,
starting in iteration 1, a vertex’s value is updated whenever
its current core estimate is recomputed and improved. The
plot on the left shows that, for all the graphs we consider,
the percentage of updated vertices drops below 1% before
iteration 20 is reached. The plot on the right shows that the
maximum difference from the true core value (max error)
drops quickly and becomes 1 for all the graphs we consider
in only a fraction of the total number of iterations.

In summary, our analysis shows that we can compute the
k-core decomposition for large social and web networks in
reasonable time using a consumer-level computer. Moreover,
in applications where exact coreness values are not required,
the algorithm converges quickly producing excellent approx-
imations, and thus can be halted after the first few tens of
iterations.

Parallel sliding windows and number of shards.
GraphChi implements the idea of Parallel Sliding Windows
(PSW) [19]. It can process a graph quite efficiently from disk
using only a negligible number of random accesses. In PSW,
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the vertices of a graph are split into P disjoint intervals. For
each interval, a shard is associated with it, which stores all
the edges that have destination in the interval. Intervals
are created so as to balance the number of edges in each
shard. Also, the number of intervals, P , is such that that
any one shard can be loaded completely in main memory.
To process an interval, PSW reads one shard, and slides a
window over each of the other shards. In total, PSW needs
only P sequential disk reads to process each interval. Each
of these sequential reads is, of course, preceded by a random
access to determine the start of the read. So, there are P
random accesses as well to process an interval. This amount
of random reads is, however, negligible when P is in the
order of a few tens.

For our datasets, we used P = 1 (number of shards and
intervals) for the small datasets, P = 2 for the medium
datasets, and P = 20 for the big datasets. As long as any
one shard can fit in memory, changing their number, while
being under 100, does not show any appreciable difference
in the running time.

5. WEBGRAPH IMPLEMENTATION
Webgraph [9] is a framework for graph compression. The

compression ratios are truly impressive and all our graphs
with the exception of TW fit in less than 4GB of memory.
TW runs fine with 6GB, which is still possible for a middle
tier consumer-grade PC. Webgraph provides a fast API for
random access of graphs that fit in memory.

5.1 Batagelj and Zaversnik Algorithm
We implemented the Batagelj and Zaversnik (BZ) algo-

rithm [6] using the Webgraph API for random access. We
denote our implementation by WG BZ.

At a high level, the BZ algorithm computes the core de-
composition by recursively deleting the vertex with the low-
est degree. The deletions are not physically done on the
graph; a bin array is used to capture (logical) deletions.

BZ is somewhat inaccurately identified with the pseudo-
code in Algorithm 3 (see for example [10, 11]).

Algorithm 3 k-core computation using a set array D

1: function k-cores(Graph G)
2: L← 0, d← 0, D← [∅, . . . , ∅]
3: for all i← 0 to n do
4: d[i]← dG(i)
5: D[d[i]].insert(i)
6: end for
7: for all k ← 0 to dmax(G) do
8: while not D[k].empty() do
9: i← D[k].remove()

10: L[i]← k
11: for all j ∈ NG(i) do
12: if d[j] > k then
13: D[d[j]].remove(j)
14: D[d[j]− 1].insert(j)
15: d[j]−−
16: end if
17: end for
18: end while
19: end for
20: return L
21: end function

There are three arrays in Algorithm 3, L which will even-
tually hold the core value of each vertex, d which holds the
degree of each vertex, and D which holds, for each possi-
ble degree value, the set of vertices with that degree. Lines
2–6 initialize these arrays. Lines 7-20 implement the main
idea. The smallest degree vertex, i, is located in the first
non-empty set D[k]. The core value of i is k and this is
recorded in L. Next, the algorithm logically deletes i from
the graph and deals with the neighbors of i, whose degree is
decremented by one. A neighbor j is moved from D[d[j]] to
D[d[j]−1]. Finally, the algorithm returns L, which contains
the core value for each vertex.

The practical challenge with Algorithm 3 is how to imple-
ment sets D[k]. One way is to use a hash-table (hash-set)
for each D[k].

There are several options for implementing a hash-table.
The most common hash-maps are those which incur col-
lisions (e.g. most chaining and open addressing methods).
Such hash-maps have expected constant time (ECT) for lookup
and deletions. In practice, ECT for lookup and deletions was
not good enough when processing our big graphs, uk2005
and twitter2010; the computation could not be performed
in our machine in a reasonable time. We stopped the pro-
gram after days of computation. This was even though both
graphs fitted in memory after storing them in Webgraph.

Specifically, we experimented with the hash-map imple-
mentations in (1) Java standard library1, (2) Google’s Guava
collections library2, and (3) Trove high-performance collec-
tions for Java3. None of them was able to handle our two
big graphs.

Cuckoo-hashing is another hashing method. It has worst-
case constant time for lookups and deletions. However,
it has ECT for insertions. We experimented with Keith
Schwarz’s implementation of Cuckoo-hashing4. The origi-
nal algorithm for this implementation is from [26] and the
family of universal hash functions it needs is based on the
functions of [31]. This is a modern hashing method and im-
plementation, however, insertions turned out to be a serious
bottleneck; we were unable to populate D[k]’s in reasonable
time.

In contrast to the above hashing methods, our WG BZ im-
plementation of the real BZ algorithm took only 130 seconds
and 333 seconds for uk2005 and twitter2010, respectively.

The real power of the BZ algorithm comes from a simple,
but quite effective idea of flattening array D. Array d has
the same form as before. There are two additional arrays
now, b and p. Array b has dimension dmax(G) and stores
the index boundaries of the vertex blocks having the same
degree in D. For an example, see Fig. 4 and Table 2. In
Fig. 4, we show the graph of Fig. 1, where the vertex labels
have been replaced by numbers 1 to 16. (Vertices in BZ
are assumed to be labeled by numbers 1 to n.) We see in
Table 2 arrays d, b, D and p. For instance, vertex 1 has
a degree of 3, so d[1] = 3. We have colored D in shades of
blue. The first block in D contains the vetices with degree
2; the second block contains vertices with degree 3, and so
on.

1http://docs.oracle.com/javase/8/docs/api
2https://github.com/google/guava
3http://trove.starlight-systems.com
4http://www.keithschwarz.com/interesting/code/
cuckoo-hashmap
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Figure 3: Percentage of updated vertices (left) and max difference from the true coreness (right).

Figure 4: The graph of Fig. 1 where letters have been re-
placed by numbers.

Now see array b. We have, for instance, b[2] = 1 and
b[3] = 7. This is because the block of vertices with degree 2
starts at index 1 in D, and the block of vertices with degree
3 starts at index 7 in D.

Finally, array p stores for each vertex i its position in D.
For instance, vertex 1 is in position 7 in D, thus, p[1] = 7.

Now, the BZ algorithm is given in Algorithm 4.
In line 2, arrays d, b, D, and p are initialized. The main

algorithm is in lines 3–17.
The top for-loop runs for each vertex, 1 to n, scanning

array D. The coreness of current vertex v is the current
degree of v, i.e. d[v]. Now v is logically deleted. For this,
we process each neighbor u of v with a higher degree.

Vertex u needs to have its degree decremented (see line
13). However before that, u needs to be moved to the block
on the left in D since its degree will be one less. This is
achieved in constant time (see lines 7-12). Specifically, u is
swapped with the first vertex, w, in the same block in D.
Also, the positions of u and w are swapped in p. Then, the
block index in b is updated incrementing it by one (line 13),
thus losing the first element of the block, u, which becomes
the last element of the previous block.

The complexity of the main algorithm is O(m).
The initialization of d, b, D, and p in [6] is done using

a somewhat complicated procedure in order to keep the ini-
tialization in O(n). A much simpler way is the procedure

index d b D p
1 3 0 5 7
2 4 1 6 10
3 7 7 7 16
4 4 10 8 11
5 2 13 10 1
6 2 15 15 2
7 2 16 1 3
8 2 9 4
9 3 13 8

10 2 2 5
11 5 4 13
12 6 14 15
13 3 11 9
14 4 16 12
15 2 12 6
16 5 3 14

Table 2: Arrays d, b, D, and p in the BZ algorithm for the
graph in Fig. 4 .

Algorithm 4 k-core computation using a flat array D

1: function k-cores(Graph G)
2: initialize(d,b,D,p, G)
3: for all i← 1 to n do
4: v ← D[i]
5: for all u ∈ NG(v) do
6: if d[u] > d[v] then
7: du← d[u], pu← p[u]
8: pw ← b[du], w ← D[pw]
9: if u 6= w then

10: D[pu]← w, D[pw]← u
11: p[u]← pw, p[w]← pu
12: end if
13: b[du]++, d[u]−−
14: end if
15: end for
16: end for
17: return d
18: end function
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given in the next paragraph with a complexity of O(n logn).
This is not a problem in practice; n is much smaller than m,
and O(n logn) is easily absorbed by the O(m) complexity
of the main algorithm.

Specifically, the initialization can be done by first popu-
lating array d by the degrees of each vertex, and array D
by numbers 1 to n. Then, d is sorted with D tagging along,
i.e. whenever two elements d[i], d[j] are swapped during
the sort, D[i], D[j] are swapped as well. Finally, p is popu-
lated by scanning D and setting p[D[i]] equal to i, for each
i ∈ [1, n].

5.2 A Vertex-Centric Algorithm
For the case when the graph does not fit in main mem-

ory, but a vertex array does, we provide a second, “vertex-
centric”, implementation based on the Montresor et. al. pro-
tocol. We denote this implementation by WG M.

We denote the vertex array by C. It is initialized by the
degrees of vertices and will contain their core values at the
end of the computation. The pseudo-code is given in algo-
rithms 5, 6, and 7.

The implementation in Algorithm 5 iterates over the ver-
tices and calls the update function for those vertices that
are scheduled. The vertex update function is given in Al-
gorithm 6 and the upper bound function is given in Algo-
rithm 7.

Algorithms 6 and 7 adapt Algorithms 1 and 2, respec-
tively. Instead of broadcasting the value of a vertex v, we
only store the value in C[v] (see line 9, Algorithm 6). Also,
instead of accessing inEdge values, we access array C (line
12, Algorithm 6).

Algorithm 7 also accesses array C. For instance now, j ←
min{inEdge.value, vertex .value} (line 6, Algorithm 2) be-
comes j ← min{C[v], C[u]} (line 6, Algorithm 7).

In both Algorithm 6 and 7, instead of vertex.value we
use C[v].

Selective scheduling of vertices is achieved by keeping a
Boolean array scheduled with a flag for each vertex. If the
flag is set (line 13, Algorithm 6), the vertex is scheduled for
the next iteration (lines 10–11, Algorithm 5).

We make a clone, scheduledNow , of scheduled ; then we
reinitialize scheduled to the all-false vector (lines 7–8, Algo-
rithm 5). The clone is needed to be used in the for loop
(lines 10, Algorithm 5). We cannot use scheduled to decide
whether to invoke the update function on a vertex because
scheduled is modified continuously during the calls to the
update function.

Variable change is global and is used to register whether
there is some vertex with its value changed or not. The
computation terminates when change = false.
Webgraph Memory-Mapped Access. WG M only needs
sequential access to the graph file. However when employ-
ing selective scheduling we need to efficiently skip many ver-
tices and continue forward in the file. Webgraph provides
memory-mapped (MM) access to the file, which we use in
our implementation. MM access is ideal in our case of access
with skips in the forward direction.5

5Webgraph also uses back-references that can make the on-
the-fly decompression do a few reads in the backward di-
rection as well. We observed though that the benefit of
efficiently skipping large portions of the file far outweighs
the penalty for going backwards a few hops occasionally.

Algorithm 5 VC main function

1: function k-CoreCompute(Graph G)
2: scheduled ← True . all-true vector
3: C ← 0 . array of core values
4: change ← true
5: iter ← 0
6: while true do
7: scheduledNow ← scheduled .clone()
8: scheduled ← False . all-false vector
9: for all v ← 1 to n do

10: if scheduledNow [v] = true then
11: update(G, v, scheduled ,C , iter)
12: end if
13: end for
14: iter++
15: if change = false then
16: break
17: else
18: change ← false
19: end if
20: end while
21: return cores
22: end function

Algorithm 6 VC vertex update function

1: function update(G, v, scheduled , C, iter)
2: if iter = 0 then
3: C[v]← dG(v)
4: scheduled [v]← true
5: change ← true
6: else
7: localEstimate ← computeUpperBound(G, v)
8: if localEstimate < C[v] then
9: C[v]← localEstimate

10: change ← true
11: for all u ∈ NG(v) do
12: if C[v] ≤ C[u] then
13: scheduled [u]← true
14: end if
15: end for
16: end if
17: end if
18: end function

Algorithm 7 VC upper bound function

1: function computeUpperBound(G, v, C)
2: for all i← 1 to C[v] do
3: c[i]← 0
4: end for
5: for all u ∈ NG(v) do
6: j ← min{C[v], C[u]}
7: c[j]++
8: end for
9: cumul ← 0

10: for all i← C[v] down to 1 do
11: cumul ← cumul + c[i]
12: if cumul ≥ i then
13: return i
14: end if
15: end for
16: end function
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5.3 Results and Analysis
The running times of WG BZ were impressive, with UK

and TW completing in only 130 sec and 333 sec, respectively
(see Fig. 2). The running times of WG M were also quite
good, being better than those of GraphChi and EMcore by
an order of magnitude.

For the small and medium datasets, both WG BZ and
WG M produced results in less than 3 sec for the small and
less then 100 sec for the medium datasets.

WG BZ requires that the graph vertices and edges fit in
memory, whereas WG M requires that a vertex array fits in
memory.

The first condition may well be satisfied for moderate
graphs given the compression ratios achieved by Webgraph.

The second condition is easier to satisfy even for big graphs,
such as TW. Remarkably, WG M completes for all graphs
using only 4GB. Nevertheless, there can be graphs with more
vertices than what a memory budget can accommodate. In
that case, we should opt for the GraphChi implementation,
which will be able to run, albeit for a long time.

6. EMCORE IMPLEMENTATION
The original EMcore algorithm consists of two main parts.

In the first step, partitioning, all vertices are distributed
among buckets. The buckets are initially created in memory.
Each new vertex v is placed in a bucket which contains the
maximum number of vertices adjacent to v (if such a bucket
exists). The idea is to collect in the same bucket as many
connected vertices as possible, with the goal of tightening
an upper bound on the core class of vertices. Once a bucket
is full, it is sent to disk. A bucket, along with the edges
connected to its vertices, comprises a partition.

The EMcore algorithm works on the partitioned graph by
performing several iterations. It tries to find vertices of the
largest core class kmax and proceeds down to the vertices of
core class 2. In each iteration, it loads into memory a sub-
graph containing all vertices with an estimated core class in
an interval [ki, kj ] (i ≤ j). These vertices are obtained by a
scan of all disk-resident buckets. Then, the k-core decom-
position of this sub-graph follows the traditional bottom-up
in-memory core decomposition approach (see [6]). After the
vertices belonging to the [ki, kj ] cores are extracted from this
sub-graph, they are removed from the input graph and the
adjacency lists of other vertices. If we remove a processed
vertex from the adjacency list of a remaining vertex vr, we
deposit a token to vr, to account for an adjacent vertex with
larger core. This process of updating the input graph is per-
formed by another scan of the disk-based buckets. Then, the
next group of k-core candidates is loaded, and the process is
repeated. However, if we created an in-memory sub-graph
for all candidate vertices in the core interval [ki, kj ], and
none of these vertices actually belongs to any of these cores,
then the iteration is wasted. This is a substantial drawback
of the EM Core algorithm; it starts from the largest possi-
ble core value and can perform multiple fruitless iterations
without finding the vertices of the sought class. Thus, the
performance was poor, and we improved it with a simple
optimization, described below.

We observe that if the total number of vertices in a sub-
graph is less than kj , there is no vertex in this sub-graph
that is connected to at least kj other vertices of the same
core. Towards this goal, we maintain the counts of candi-

dates for each k-core class. We collect these counts during
the partitioning phase. If the count of candidates for the
currently highest core class kj is less than kj , we do not
consider this value of k, but transfer its count to the lower
level, class kj − 1.

6.1 Results and Analysis
In general, the time for partitioning in our implementa-

tion is negligible compared to the running time of the entire
algorithm. In most graphs used in the experiments, more
than 20% of vertices have their bound tightened (see Ta-
ble 3). For datasets with very large max degree (dmax),
there is no improvement in umax because the vertices with
degree dmax did not fit in a bucket with their neighbors.

In the core computation phase, by applying our optimiza-
tion, we avoid multiple unnecessary scans of the input, and
the performance of the algorithm improves considerably.
For example, for Twitter-2010, if we follow the original al-
gorithm, we would test unnecessarily all core classes from
2,997,487 (highest tightened upper bound) to 8,925, when
in fact only core class 8,925 had sufficiently many candidates
to deserve testing (see Table 3).

The main problem of EMcore, however, is that it relies on
the assumption that a sub-graph for each core class fits in
main memory. For big datasets, such as Twitter-2010, this is
not always possible for a given memory budget. Let us take
a closer look at the behavior of EMcore on Twitter-2010 for
a memory budget of 4GB. First, EMcore processed for core
classes from 8,925 down to 2,488, and despite the tightening
and the afore-mentioned optimization, none of these core
classes were discovered because the actual highest core class
is 2,488. When the program reached the moment of creating
a sub-graph for k-core class 340, the allocated memory could
not accommodate the sub-graph and the program crashed.
We were able to run EMcore on Twitter-2010 when allocat-
ing 6GB. However, it is not possible to predict beforehand
the amount of memory needed for a new dataset.

The running times are reported in Fig. 2 (see medium
dark-blue bars). For the big datasets, UK and TW, we
ran EMcore using 4GB, 6GB, and 8GB of memory. We
did not observe significant differences in running times. For
example the running times (in sec) for UK were 4GB: 9,446;
6GB: 9,264; 8GB: 8,968 and for TW were 6GB: 25,447; 8GB:
22,593GB. The [ki, kj ] intervals become wider with more
memory, which means fewer passes, however, the processing
time for each interval increases. We show the times using
4GB for UK, and 6GB for TW.

7. CONCLUSIONS
We presented and evaluated several implementations for

computing the k-core decomposition of massive networks us-
ing a single consumer-grade PC. The Batagelj and Zaversnik
algorithm on Webgraph (WG BZ) is the fastest, running in
the order of minutes for our largest datasets UK and TW.
WG BZ needs the whole graph, both vertices and edges, to
fit in memory. As such, it could not be run for TW for all
memory budgets considered. The second fastest is the Mon-
tresor et. al. algorithm on Webgraph (WG M), still running
in the order of minutes for UK and a few tens of minutes for
TW. WG M needs the vertices of the graph to fit in mem-
ory. This is a much easier constraint to satisfy even for big
datasets, such as TW. WG M was able to run for all mem-
ory budgets considered. Third came EMcore. However, it
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BT% kmax umaxopt umax dmax

TX 45% 3 6 9 12
CA 37% 3 6 6 12
GN 25% 6 29 59 95
CM 25% 25 61 249 280
AP 25% 56 116 315 504
S1 63% 54 257 2,469 2,548
S2 36% 56 258 2,315 2,553
AM 2% 10 178 2,742 2,752
LJ 21% 373 969 20,314 20,334
BS 47% 201 564 83,430 84,230
WT 49% 131 1,032 100,029 100,029
UK 34% 589 3,798 1,776,858 1,776,858
TW 28% 2,488 8,925 2,997,487 2,997,487

Table 3: EMcore bound tightening. Columns are as follows.
BT%: percentage of nodes with tightened bound, kmax:
max core, umaxopt: max upper bound after our optimiza-
tion, umax: max original upper bound, dmax: max degree.

can fail when the subgraph of vertices for some core number
does not fit in main memory. As such, it could not be run
for TW for all memory budgets considered. The Montresor
et. al. algorithm on GraphChi (GC M) does not need the
vertices or edges to fit in main memory. It is the slowest
implementation compared to the other ones. Nevertheless,
it can yield satisfactory approximate results using only a
fraction of the iterations.

Source Code. Our implementations can be accessed at:
https://github.com/athomo/kcore

https://github.com/mgbarsky/emcore
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