
dmapply: A functional primitive to express distributed
machine learning algorithms in R

Edward Ma Vishrut Gupta Meichun Hsu Indrajit Roy+

HPE Vertica, +Hewlett Packard Labs
{ema,vishrut.gupta,meichun.hsu,indrajitr}@hpe.com

ABSTRACT
Due to R’s popularity as a data-mining tool, many dis-
tributed systems expose an R-based API to users who need
to build a distributed application in R. As a result, data
scientists have to learn to use different interfaces such as
RHadoop, SparkR, Revolution R’s ScaleR, and HPE’s Dis-
tributed R. Unfortunately, these interfaces are custom, non-
standard, and difficult to learn. Not surprisingly, R appli-
cations written in one framework do not work in another,
and each backend infrastructure has spent redundant effort
in implementing distributed machine learning algorithms.

Working with the members of R-core, we have created
ddR (Distributed Data structures in R), a unified system
that works across different distributed frameworks. In ddR,
we introduce a novel programming primitive called dmapply

that executes functions on distributed data structures. The
dmapply primitive encapsulates different computation pat-
terns: from function and data broadcast to pair-wise com-
munication. We show that dmapply is powerful enough to
express algorithms that fit the statistical query model, which
includes many popular machine learning algorithms, as well
as applications written in MapReduce. We have integrated
ddR with many backends, such as R’s single-node parallel
framework, multi-node SNOW framework, Spark, and HPE
Distributed R, with few or no modifications to any of these
systems. We have also implemented multiple machine learn-
ing algorithms which are not only portable across different
distributed systems, but also have performance comparable
to the “native” implementations on the backends. We be-
lieve that ddR will standardize distributed computing in R,
just like the SQL interface has standardized how relational
data is manipulated.

1. INTRODUCTION
R is one of the top choices for statisticians and data scien-

tists [26]. While R is commonly used as a desktop tool, data
science teams in most enterprises install RHadoop, SparkR,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

Distributed R, and other R-based interfaces to run analyt-
ics on the corresponding backend distributed system, such
as Hadoop MapReduce and Spark [4, 5, 30, 34]. By using
R, data scientists can continue to program in the familiar R
language, even on massive data. Unfortunately, each back-
end exposes a custom R API, which leads to non-portable
applications. Many interfaces also expose low-level details
specific to a particular backend, making them difficult to
learn. For example, SparkR, which is an R interface for the
Apache Spark engine, exposes dozens of Spark’s functions
that can be non-intuitive to data scientists, and a program
written in SparkR’s API will not run on other frameworks.

The core reason for this disarray is the lack of any stan-
dardized way to perform distributed computing in R. While
SQL semantics have unified how relational data is manipu-
lated, there has been little effort in providing a similar stan-
dard for advanced analytics. Even though the R community
has contributed more than 6000 algorithms packages, there
are hardly any parallel or distributed versions of these algo-
rithms. A simple, standard interface for distributed comput-
ing in R can potentially kickstart contributions on R-based
parallel machine learning applications without the fear of
vendor lock-in.

There are two key challenges in providing a standardized
system for advanced analytics. First, the system should im-
plement an interface that is not only easy to use by data
scientists but also flexible enough to express many advanced
analytics tasks. Second, generic interfaces typically have
high overheads due to their flexible nature. One needs to
ensure that applications expressed in this system, such as
machine learning algorithms, have good performance.

In this paper we describe ddR (Distributed Data struc-
tures in R), a system that unifies distributed computing in
R. We created ddR in collaboration with members of R-
core, those who maintain and release the R language. ddR
defines the following three distributed versions of R data
structures, providing an intuitive way to partition and store
massive datasets: dlist, darray, and dframe, which are
the distributed equivalents of the fundamental R contain-
ers: list, matrix, and data frame, respectively. These data
structures store different types and shapes of data such as
structured, unstructured, sparse and dense data.

To manipulate these distributed data structures, ddR
introduces dmapply, a single programming primitive with
functional semantics. We chose functional semantics be-
cause it ensures there are no side-effects, thus making it easy
to parallelize a computation. The dmapply operator is mul-
tivariate, which means programmers can use it to operate

1293



on multiple data structures at the same time, e.g., by using
dmapply(A,B,C..). Much of the power of dmapply comes
from the fact that it can express different kinds of data com-
putation and communication patterns that are common in
analytics tasks. For example, programmers can easily ex-
press embarrassingly parallel computations, where a func-
tion operates on each partition of data and no data move-
ment is required. Programmers can also express cases where
certain data structures, or parts of them, are broadcast to
all computations. In fact, users can even express patterns in
which computation on a worker node receives data from any
subset of workers, and thus implement different kinds of ag-
gregations. In section 4.2 we confirm the expressive power
of dmapply by showing that it can implement algorithms
that fit the statistical query model [16], which includes most
of the popular machine learning algorithms. We also show
that dmapply can express applications written in the popular
MapReduce paradigm [10].

A key advantage of ddR is that it can be integrated with
backends by writing a simple driver code, typically with-
out making any modification to the underlying system. We
have integrated ddR with several popular data processing
engines, such as R’s parallel package (which leverages mul-
tiple cores on a single server), a socket-based backend called
SNOW, HPE’s open-sourced Distributed R [24, 30], and
Spark [34]. ddR includes a growing list of common R opera-
tors such as distributed sum, colMeans, and others, that have
been implemented using dmapply. These operators ensure
that any backend that integrates with ddR gets these oper-
ators for free. For example, programmers who use SparkR’s
dataframes or HPE Distributed R’s dataframes can call dis-
tributed colMeans (average of each individual column) even
if the respective backend does not have a native implemen-
tation of that function. These helper operators ensure that
R programmers can continue to use the same standard func-
tions that they expect from single-threaded R. These oper-
ators also provide an incentive to different backend vendors
to integrate with ddR and help the standardization effort.

We have implemented a number of reference machine learn-
ing algorithms in ddR that perform clustering, classifica-
tion, and regression. Our empirical evaluation indicates
that these algorithms have very good performance. On a
single server, regression with the parallel backend on 12M
rows and 50 columns converges in 20 seconds, while cluster-
ing 1.2M 500-dimensional points takes only 7 seconds per-
iteration. Notably, these ddR algorithms have performance
similar to, and sometimes even better than, machine learn-
ing products such as H2O [3] and Spark’s MLlib, whose
algorithms are custom written and not portable. In a dis-
tributed setting, such as with HPE Distributed R as the
backend, ddR algorithms such as K-means and regression
show near linear scalability and can easily process hundreds
of gigabytes of data. When used with SparkR or HPE Dis-
tributed R, ddR algorithms have similar performance as
Spark’s native MLlib algorithms or Distributed R’s algo-
rithms. These results show that users will benefit from the
ease of a standardized interface to express applications, and
yet obtain performance at par with custom or non-portable
implementations.

The core components of ddR are available as an R pack-
age from R’s public package repository called CRAN [20]. In
the last four months, the ddR package has been downloaded
more than 2,500 times [25].

Backend drivers

Distributed data structures
(darray, dframe, dlist) dmapply

Parallel
(multi‐core)

HPE 
Distributed R

MPI
(R’s SNOW)

Apache 
Spark

Applications + Machine learning algorithms

New Unmodified

Common distributed operators

SQL

backends

ddR
package

Figure 1: High level architecture. Shaded regions
show new components.

The contributions of this paper are:

• Design of a standard interface, ddR, for distributed
computing in R. We introduce a simple yet powerful
functional primitive, dmapply, and show that it is ex-
pressive enough to implement many machine learning
algorithms.

• Implementation of ddR and its integration with mul-
tiple backends including R’s parallel and SNOW back-
ends, HPE Distributed R, and Spark. The ddR pack-
age makes distributed systems easy to use for data sci-
entists.

• Implementation of multiple machine learning applica-
tions in ddR, which run on different backends, and
have good performance. We demonstrate that these
applications have performance comparable to native
versions of these algorithms written in their respective
backends.

While our focus in this paper is to improve R, we be-
lieve that the concepts in ddR, such as dmapply, are gen-
eral enough that they may help other analytics languages,
such as Python, that are popular wrapper interfaces for
distributed systems. Following the paradigm of dplyr [32]
where SQL-like functions in R are transparently pushed into
a database, a standard primitive for distributed computing
in R could also lead to more intelligent integration between
an R application and a parallel database system.

2. ARCHITECTURAL OVERVIEW
The ddR project started as a collaboration between R-

core, i.e., maintainers of the R language, HPE, and the open-
source Distributed R community, which has benefited from
cross-industry feedback through workshops and the R Con-
sortium. The goal of the project is to extend R, streamline
integration with popular advanced analytics systems, and
create portable distributed application and algorithms in R.
In this section we provide an overview of ddR and how it
interacts with different backends.

Figure 1 provides a high level view of ddR. The ddR pro-
gramming model exposes distributed data structures, the
dmapply function to operate on these data structures, and a
set of commonly used operators. Programmers use these
APIs to create distributed applications, such as machine
learning algorithms, and utility libraries, such as parallel

1294



data loaders. One beneficial outcome of implementing ap-
plications in ddR is that users can choose to switch back-
ends on which their applications execute. For example, a
customer may initially use a ddR clustering algorithm on
their laptop using Rs parallel package, which provides ef-
ficient multi-core processing, and then run the exact same
code on HPE Distributed R or SparkR, in production, and
on massive data.

We have implemented the ddR programming model on
top of multiple backends. To integrate with a backend, the
key effort is to implement the three distributed data struc-
tures, the dmapply function, and a couple of basic operators
that provide functionality such as moving all contents of a
data structure from workers to the master node. This code
lives in the “backend driver” (see Figure 1), a piece of con-
necting logic that binds the frontend interface to the backend
by translating invocations to the dmapply primitive to the
backend’s native API.

The amount of effort required to integrate a backend is
low if the backend already has an implementation of the
core data structures. For example, Distributed R already
implements the three types of distributed data structures
and we only had to implement the dmapply function. Sim-
ilarly, Spark provides data frames and we were able to use
its RDD API to implement dmapply. However, for ddR’s
default multi-core engine, which uses R’s parallel package,
we had to implement everything from scratch since standard
R does not have a notion of distributed data structures.

As shown in Figure 1, programmers who use ddR to ex-
press their R applications can continue to also use APIs,
such as the SQL interface, that the underlying backend ex-
poses. As an example, on the Spark backend users will
still be able to call SQL operators on RDDs, while on the
parallel backend users will be able to invoke the dplyr

package that implements a subset of SQL operators on R
objects [32]. Section 5 provides more details about different
components.
Example. Figure 2 shows how programmers can invoke
ddR’s distributed clustering algorithm. Line 1 imports the
ddR package, while line 2 imports a distributed K-means
library written using the ddR API. Line 4 determines the
backend on which the functions will be dispatched. In this
example the backend used in the default parallel back-
end, which is single-node but can use multiple cores. In
line 6, the input data is generated in parallel by calling a
user-written function genData using dmapply. The input is
returned as a distributed array with as many partitions as
the number of cores in the server. Finally, in line 8, the
ddR version of the K-means algorithm is invoked to cluster
the input data in parallel. The key advantage of this ddR
program is that the same code will run on a different back-
end, such as HPE Distributed R, if line 4 is simply changed
to useBackend(distributedR).

3. DISTRIBUTED DATA STRUCTURES
Data scientists use a variety of data structures and oper-

ators to express their analytics workflows. With ddR, our
goal is to ensure that data scientists can continue to use
similar interfaces for distributed computing in R. The ddR
programming model exposes three types of distributed data
structures: arrays, data frames, and lists. Distributed ar-
rays (darray) store data of a single type. Arrays can repre-
sent vectors and matrices. While it is common to use dense

1 l i b r a r y (ddR)
2 l i b r a r y ( kmeans . ddR)
3 #Spe c i f y which backend to use
4 useBackend ( p a r a l l e l )
5 #Popu la te a d i s t r i b u t e d a r r a y w i th s y n t h e t i c data
6 f e a t u r e s <− dmapply ( genData , i d = 1 : ncores ,

MoreArgs = l i s t ( c e n t e r s = cen , nrow = R, nco l
= C) , output . t ype = ” da r r a y ” , combine = ” r b i n d
” , npa r t s = c ( ncores , 1 ) )

7 #Ca l l d i s t r i b u t e d K−means l i b r a r y
8 model <− dkmeans ( f e a t u r e s ,K)

Figure 2: A distributed K-means application.

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

A = darray(nparts=(2,2)…) Logical 
view

2D 
partitions

Figure 3: Storing distributed arrays as a set of par-
titions.

arrays, where each element in the cell has a value, many ap-
plications need sparse arrays to efficiently store their data.
Therefore, ddR also supports sparse matrices which are
stored in the column compressed format [13]. By default,
distributed arrays are stored in column major order and each
partition of a distributed array can be operated by highly
optimized matrix libraries such as BLAS [17]. Distributed
data frames (dframe) are similar to arrays, with the excep-
tion that each column can store elements of a different type.
Distributed data frames are also stored in columnar format.
Distributed lists (dlist) store a sequence of elements where
each element can be a complex data type such as a matrix.

The combination of these three data structures has been
sufficient to express many real world applications. Consider
the example of graph analysis. The connectivity in a graph
can be represented as a dlist of edges or a sparse darray for
fast matrix manipulation (e.g., PageRank is a series of sparse
matrix-vector multiplication). If each vertex has attributes,
a dframe can be used to store those attributes.
Collection of partitions. Each distributed data structure
is internally stored as a set of partitions of the same type.
For example, a darray is a collection of array partitions,
while a dlist is a collection of local lists. A partition is
always stored in a single server, and the distributed object
contains metadata information, such as locations and sizes
of partitions, to manage data. Unlike dlist, a darray and
dframe may be partitioned not only by rows or columns,
but also in blocks (i.e., 2-D partitioning). Figure 3 shows
how a darray may be stored across multiple servers. In
this example, the darray is partitioned into 4 blocks, and
each server holds only one partition. The darray argument
nparts in the figure specifies how the partitions are located

1295



1 #Create a d i s t r i b u t e d l i s t . By d e f a u l t each
e l ement becomes a p a r t i t i o n

2 A <− d l i s t ( 1 , 2 , 3 , 4 , 5 )
3 #Access p a r t i t i o n s
4 p <− pa r t s (A)
5 #Mu l t i p l y e l ement s i n each p a r t i t i o n by a con s t an t
6 B <− dmapply ( f u n c t i o n ( x ) {2∗x [ [ 1 ] ] } , p )
7 #Fetch the r e s u l t (={2 ,4 ,6 ,8 ,10}) on the master
8 p r i n t ( c o l l e c t (B) )

Figure 4: Declaring and using distributed data
structures.

in a grid. For example, if the array was row partitioned
instead of blocks, one would use nparts(4,1) to state that
the four partitions should be stitched row wise by placing
them one below the other.
Write-once semantics. A key feature of distributed ob-
jects is that they have write-once semantics. Once created,
a data structure is immutable. However, a data structure
can be read-shared, even concurrently, by any number of op-
erators. This choice of immutable data structures is a result
of embracing the functional programming approach in R.
Data structures are operated on by functions dispatched us-
ing dmapply, which is side effect free, and returns a new data
structure as the result. Therefore, the programming model
prevents in-place updates to data structures, thus making it
much easier to parallelize a computation.
Accessing partitions. Code may also operate on only a
subset of the partitions in a distributed object. In ddR,
programmers can use parts(A) to access the partitions of a
data structure. The parts function returns a list that con-
tains references to individual partitions. Note that there is
no data movement between the master and workers when
using the parts function; it just returns a reference, which
is primarily metadata, about the partitions. In the next
section, we will explain in greater detail how partitions pro-
vide flexibility in expressing algorithms. Finally, program-
mers can use the collect keyword to gather the whole data
structure, or a subset of partitions, and materialize them at
the master.
Example. Figure 4 shows a simple example that creates a
distributed list and accesses its partitions. Line 2 declares a
distributed list which holds the numbers 1 to 5. By default it
will be stored as five partitions, each containing one number.
In line 4, p is a local R list (not a distributed list) which has
five elements and each element is a reference to a partition
of A. Line 6 executes a function on each element of p, which
means each partition of A, and multiplies each partition by
2. The result B is a dlist, has five partitions, and is stored
across multiple nodes. Line 8 gathers the result into a single
local R list and prints it.

4. DISTRIBUTED PROCESSING
The ddR programming model introduces only one paral-

lelism primitive, distributed multivariate apply (dmapply),
for distributed processing. When used in combination with
distributed data structures, it provides a flexible way to
express multiple types of computation and communication
patterns. Therefore, programmers can use it to implement
many kinds of analytics applications, as well as utility li-
braries.

1 A <− d l i s t ( 1 , 2 , 3 , 4 )
2 B <− d l i s t (11 ,12 ,13 ,14 )
3 #C w i l l be a d l i s t ={12 ,14 ,16 ,18}
4 C <− dmapply (FUN=sum , A, B)
5 #D w i l l be a d l i s t ={13 ,15 ,17 ,19}
6 D <− dmapply (FUN=sum , A, B, MoreArgs= l i s t ( z=1) )

Figure 5: Using dmapply.

The key arguments of distributed apply, dmapply(FUN,

A,B,..., MoreArgs), are (1) FUN that is a function, (2) mul-
tiple R data structures on whose elements the function is ap-
plied, and (3) a list of R data structures passed as MoreArgs
that are additional input to the function FUN. Note that the
R data structures can be both basic R types, such as vectors
and lists, as well as distributed data structures. There are
three additional arguments that are used to define the type
and shape of the output, but we will not focus on them in
this paper.

The dmapply primitive applies the function FUN to each
element of the input data structure. Let us assume there
are only two distributed lists, A and B, as inputs, and the
function is sum. The runtime will extract the first element
of A and B and apply sum on it, extract the corresponding
second elements, and so on. Line 4 in Figure 5 shows the
corresponding program and its results. The MoreArgs argu-
ment is a way to pass a list of objects that are available as
an input to each invocation of the function. As an example,
in line 6 of Figure 5, the constant z is passed to every invo-
cation of sum, and hence 1 is added to each element of the
previous result C.

4.1 Communication and computation patterns
The dmapply interface is powerful because it can express

many types of computation patterns.
Function broadcast. A common programming paradigm
is to apply a function on each element of a data structure
similar to the map function in prior systems [10]. This can
be achieved in ddR by simply calling dmapply(FUN,A). In
fact, programmers can also express that a function should be
applied to each partition at a time instead of each element
at a time by calling dmapply(FUN, parts(A)). In this case,
the runtime will invoke FUN on a full partition. If there
is only one input data structure, the runtime ensures that
there is no data movement by shipping the function to the
corresponding location of the data. Figure 6(A) illustrates
how a function is broadcast to different partitions of a data.
Data broadcast. In some cases, programmers need to in-
clude the same data in all invocations of a function. As
an example consider the K-means clustering algorithm that
iteratively groups input data into K clusters. In each itera-
tion, the distance of the points to the centers has to be cal-
culated, which means the centers from the previous iteration
have to be available to all invocations of the distance cal-
culation function. In dmapply, programmers use MoreArgs

to specify what data structures need to be present at all
function invocations. The ddR runtime supports both stan-
dard R objects as well as distributed data structures, and
partitions of it, in the MoreArgs field. The runtime may re-
assemble a distributed data structure or parts of it, and then
broadcast it to all worker nodes so that the data is available
during computation. Figure 6(B) shows how data may be
broadcast to all workers.

1296



1 1 2 2 3 3

sum() sum() sum()

A) Function broadcast: dmapply(sum, A)

Worker 1 Worker 2 Worker 3

Master
function

1 1 2 2 3 3

sum() sum() sum()

B) Data broadcast: dmapply(sum, A, MoreArgs=list(z=10))

Worker 1 Worker 2 Worker 3

Master

z=10 z=10 z=10
broadcast 
values

function + data

1 1 2 2 3 3

sum() sum()

C) Partition based: dmapply(sum, parts(A)[1:2], MoreArgs=list(parts(A)[3]))

Worker 1 Worker 2 Worker 3

Master

3 33 3 data

function

Figure 6: Example computation patterns in ddR.

Figure 7 shows one implementation of distributed ran-
domforest using ddR. Randomforest is an ensemble learning
method that is used for classification and regression. The
training phase creates a number of decision trees, such as
500 trees, that are later used for classification. Since train-
ing on large data can take hours, it is common to parallelize
the computationally intensive step of building trees. Line 3
in Figure 7 uses a simple parallelization strategy of broad-
casting the input to all workers by specifying it in MoreArgs.
Each worker then builds 50 trees in parallel (ntree=50) by
calling the existing single threaded randomforest function.
At the end of the computation, all the trees are collected at
the master and combined to form a single model (line 5). In
this example, the full contents of a single data structure are
broadcast to all workers.
Accessing a subset of data partitions. The dmapply

approach allows programmers to operate on any subset of
partitions that contain distributed data. As an example,
dmapply(length, parts(A)[1:2]) will find the lengths of
the two partitions. In this example, the user invokes the
length function only on two partitions of the complete data
structure. Similarly, a subset of the data can be passed to
each invocation of the function by referring to the relevant
partitions in MoreArgs. In general, this kind of usage can
result in data movement, since the runtime has to aggregate
the corresponding data partitions. Figure 6(C) shows how
a function is applied to a subset of data partitions, after a
certain partition from a remote worker is made available.
Multivariate traversal. An important aspect of dmapply
is that it supports simultaneous iteration over multiple data
structures. Irrespective of the number of data structures,
the invariant is that the function FUN will be invoked on the

1 #Inpu t data i s a d i s t r i b u t e d data frame
2 i n pu t<−dframe ( . . )
3 dmodel <− dmapply ( randomfore s t , 1 : 10 , MoreArgs =

l i s t ( data=input , n t r e e =50) )
4 #Combine d i s t r i b u t e d t r e e s
5 model <− do . c a l l ( randomForest : : combine , c o l l e c t (

dmodel ) )

Figure 7: Distributed randomforest.

first element of each data structure, followed by the second
set of elements, and so on. If the number of elements in all
the data structures is not the same, then the user can specify
dmapply to repeat elements of the smaller data structure or
throw an error.

There is a subtle point about what constitutes an element.
For a dlist A, the first element is A[[1]], even if that el-
ement is another data structure such as a vector or matrix
(since a list can hold complex data types). For a darray

B, each cell is an element, and the elements are iterated in
column major order. For example, the first element in a
two dimensional distributed array is B[1,1]. For a dframe

C each column is an element, i.e., the first element is the
first column, the second element is the second column, and
so on. In the above example if a user writes a statement
dmapply(FUN, A,B,C) then the runtime will aggregate the
first element of A, first cell of B, and first column of C, and
apply FUN on them , and so on. Ideally, the number of el-
ements in list A should equal the number of cells in B (no.
of rows × no. of cols), which should equal the number of
columns in C. These iteration rules of the distributed data
structures follow those of their non-distributed counterparts
in R (lists, matrices, and data.frames), so R users can easily
reason about them as though they were standard R data
structures.

In addition to iterating on the the data structure element
by element, the user can also iterate on respective partitions
of different data structures. For example, dmapply(FUN,

parts(A), parts(B), parts(C)) applies FUN to the corre-
sponding partitions of the dlist, darray, and dframe. This
iteration policy conforms to the rules we mentioned earlier
since parts returns a list and iteration occurs on each el-
ement of a list, which is a partition in this case. When
iterating over multiple data structures, the physical layout
of the data, i.e., how data is stored on each machine, deter-
mines whether data movement will occur. If corresponding
elements of the data structures are co-located, then no data
movement is required. Otherwise, the runtime will move
data before dispatching the function FUN.

4.2 Expressiveness
Since ddR advocates the use of a single parallelism prim-

itive, dmapply, a natural question to ask is whether it is
sufficient to express common machine learning algorithms.
We use two approaches to show the expressiveness of ddR.
First, we show how algorithms that fit the statistical query
model [16] can be expressed in ddR. Since a number of
common algorithms, such as K-means, regression, PCA and
others, adhere to the statistical query model, it implies that
these algorithms can be expressed in ddR. Second, we take
the MapReduce programming model as an example and
show how its functionality can be achieved using dmapply.

1297



4.2.1 Machine Learning algorithms
A statistical learning query is a query made over data

that computes PData [F (x, y) = 1], where F is an arbitrary
boolean-valued function, x is an observation, and y is the
corresponding label for that sample. Intuitively, the query
runs the function F over the entire training dataset, and
returns the proportion of samples on which F evaluates to
one. Algorithms that can be expressed via repeated appli-
cation of these learning queries are said to fit the statistical
learning query model. While it may appear that the statis-
tical query model is restrictive, it has been shown that most
learning problems can be reduced to a statistical learning
query formulation [16, 27].
Implementation using dmapply. Chu et. al. have shown
how algorithms that fit the statistical query model can be
written as summations over data, and hence be implemented
in MapReduce [27]. We use a similar reduction strategy to
show that algorithms in the statistical query model can be
expressed in ddR. In ddR, we use a series of dmapply and
collect statements to execute statistical learning queries.
Let us assume that the training samples X and their respec-
tive classes Y are sampled from the distribution D. Assum-
ing the function F returns a boolean value, we can compute
PData [F (x, y) = 1] using the ddR code in Figure 8.

1 FUN <− f u n c t i o n (X,Y, F) sum( s app l y ( 1 : nrow (X) ,
f u n c t i o n ( i , x , y , f ) f ( x [ i , ] , y [ i , ] ) ,X ,Y, F) )

2 P <− c o l l e c t ( dmapply (FUN, pa r t s (X) , pa r t s (Y) ) )
3 Q <− sum(P)/nrow (X)

Figure 8: Computing summations in parallel.

In Figure 8, the function FUN computes the summation∑
x∈Xk

F (x, y) for each partition k of the input data X and
Y. We use dmapply to execute this summation in parallel
and then collect the total sum P =

∑
x∈X F (x, y). Finally,

to calculate the probability we divide the summation by the
number of rows of X using nrow. Note this same formulation
can be used to calculate E [F (x, y)] when F is not a boolean
function.

Let’s consider a concrete example such as linear regres-
sion to show how the summation formulation can be used
to implement algorithms. The goal of linear regression is
to find β such that (Xβ − y)T (Xβ − y) is minimized. One
may use the gradient descent method to iteratively calcu-
late βi, which is the estimate of β at iteration i. Since the
gradient of (Xβ − y)T (Xβ − y) is 2XTXβ − 2XT y, βi+1 =
βi − (2XTXβi − 2XT y). Therefore, the main computation
in linear regression is to calculate XTX =

∑
x∈X xTx and

XT y =
∑

x∈X XT y, both of which are summation problems.
These summations can be calculated in a distributed fash-
ion which significantly reduces the overall execution time
when X is large. As it turns out, common machine learn-
ing algorithms such as K-means, PCA, Gaussian mixture
models and others can also be expressed as series of simple
summations [27].
Tree-based algorithms. Many learning algorithms, such
as randomforest and gradient boosted trees, are an ensemble
of decision trees. We show that such tree-based algorithms
can also be expressed in ddR. The main goal of these al-
gorithms is to segment the sample space Ω into {Ωi} where⋃

Ωi = Ω, and minimize the loss function F
(
Y, Ŷ

)
where

Ŷi := EΩi [Yi|Xi, Xi ∈ Ωi] on each subset Ωi. Common loss
functions are information entropy and variance. We show
that the evaluation of these loss functions can be expressed
using P [F (x, y) = 1] and E [F (x, y)], which are statistical
queries on data and can be calculated in ddR using the
code in Figure 8.

If the response variable Y is numeric, one can use vari-
ance as the loss function. This loss function can be eval-
uated by calculating, in parallel, the first and second mo-
ment of Y , EΩi [Y ] and EΩi

[
Y 2
]
, on a subset Ωi. EΩi [Y ]

and EΩi

[
Y 2
]

can be calculated with the same ddR code
in Figure 8 since EΩi [y] = E [y] /P ((x ∈ Ωi) = 1) and
EΩi

[
y2
]

= E
[
y2
]
/P ((x ∈ Ωi) = 1).

If the response Y is a categorical variable, then one can
use gini or information gain as the loss function. The first
step in such a computation is to obtain the probability dis-
tribution of Y on Ωi which requires computing the density
function PΩi [y = k] for all values of k on the sets Ωi. Again,
PΩi [y = k] /P ((x ∈ Ωi) = 1) can be calculated in parallel
with the same ddR code as calculating P [F (x, y) = 1] (Fig-
ure 8) where the function F returns 1 if y = k,X ∈ Ωi and
0 otherwise.
Performance. We have shown that ddR’s primitives are
powerful enough to express a number of parallel algorithms.
However, expressiveness does not imply efficient implemen-
tation or high performance. Therefore, we use the extensive
evaluation in Section 6 to confirm that these ddR algo-
rithms are indeed scalable and have good performance, even
when compared to custom machine learning libraries.

4.2.2 Relationship with MapReduce
MapReduce is a functional programming interface pop-

ularized by the open source Hadoop ecosystem. We show
that ddR can express algorithms and applications written
in MapReduce. Our goal is not to promote the use of the
MapReduce interface or port applications written in MapRe-
duce to ddR. Instead, we simply focus on the expressive
power of dmapply by demonstrating its relationship with
MapReduce.

Let us assume that a program uses M as the map function
followed by R as the reduce function. The following code in
ddR gives the same result as running MapReduce with M

and R:

1 P = l e ng t h ( pa r t s (X) )
2 mapped = dmapply (M,X)
3 temp = dmapply (H(p , i ) , p = rep ( pa r t s (mapped ) ,P) , i

= s app l y ( 1 :P , f u n c t i o n ( i i ) r ep ( i i , P) ) )
4 r educed = dmapply (R , l a p p l y ( 0 : ( P−1) , f u n c t i o n ( i )

pa r t s ( temp ,P∗ i + 1 :P) ) )

In the above code, the first dmapply statement applies
the map function M on the input data and stores the results
in the distributed object mapped. The second dmapply call
uses the splitting function H (typically a hash function on
keys) to divide the contents of each partition of mapped into
sub-partitions that are stored in the distributed object temp.
Finally, the third dmapply call gathers all the partitions of
temp which have the same key and applies the reduction
function R.

5. IMPLEMENTATION
As shown earlier in Figure 1, ddR is implemented in three

layers. The top layer is the application code, such as a dis-
tributed algorithm, which makes calls to the ddR API (e.g.,

1298



dmapply) and associated utility functions (e.g., colSums).
The second layer is the core ddR package, which contains
the implementations of the ddR API. This layer is responsi-
ble for error checking and other tasks common across back-
ends, and invokes the underlying backend driver to delegate
tasks. It consists of about 2,500 lines of code that provide
generic definitions of distributed data structures and classes
that the backend driver can extend. Finally, the third layer
consists of the backend driver (usually implemented as a sep-
arate R packaged such as distributedR.ddR) and is respon-
sible for implementing the generic distributed classes and
functions for that particular backend. Typically, a backend
driver implementation may involve 500–1,000 lines of code.
Distributed algorithms. We have implemented four ddR
algorithms and made them available on CRAN: K-means
clustering, generalized linear models, PageRank, and ran-
domforest. Each algorithm was implemented using the ab-
stractions provided by ddR (e.g., dmapply, parts, collect),
and store their data in dlists, darrays, or dframes. Some
of the algorithms were implemented in only 250 lines of R
code while others required more than 2,000 lines. The core
of these distributed algorithms require only a hundred or
so lines of code. Most of the remaining code is related to
providing functionality similar to existing single-threaded R
algorithms, such as robust error handling.
Distributed operators. A major limitation of existing
distributed frameworks is that they do not provide com-
mon utility functions that R users expect. As an example,
a data scientist will routinely use the summary function on
an array to obtain the min, max, and quantile like statis-
tical measures of the data. Similarly, a data scientist may
require functions to combine two arrays (rbind), find sum
of each row (rowSums), or list the last few elements in the
data structure (tail). ddR removes this limitation of dis-
tributed frameworks by expressing common utility functions
using distributed data structures and dmapply. As long as
the existing frameworks implement dmapply, the users will
be able to benefit from these utility functions. We have im-
plemented a number of utility functions in ddR. As an ex-
ample, the distributed implementation of rowSums in ddR
first collects the local summation for each partition using
collect(dmapply(rowSums, parts(x))) and then merges
the results at the master node.
Extensibility. ddR follows an object-oriented program-
ming pattern, implemented as S4 classes in R [7]. The main
ddR package defines the abstract classes for distributed ob-
jects, while backend drivers are required to extend these
classes via inheritance. This permits drivers to override de-
fault generic operators in ddR (e.g., sum, rowMeans) if the
backend has a more optimized implementation of the same
functionality. For example, one can implement a generic
groupBy operation in ddR by using a dlist with k× p par-
titions (where k is the number of grouping classes and p
is the number of partitions of the distributed object to be
grouped), and then shuffle the partitions using parts and
dmapply. However, Spark already provides a groupBy oper-
ation that is more efficient, and the ddR driver for Spark
reuses the version provided by Spark instead of the generic
implementation.

6. EVALUATION
The strength of ddR is its unified interface for distribut-

ing computing, and the flexibility to choose the best backend

for the task in hand. In this section, we empirically show
three aspects of ddR:

• We show that the same ddR algorithm can indeed be
executed on a variety of backends such as R’s parallel,
SNOW, HPE Distributed R, and Spark, both in single-
server and multi-server setups.

• We show that these ddR algorithms have good per-
formance and scalability, and are competitive with al-
gorithms available in other products.

• We show there is very little overhead of using ddR’s
abstractions. Our algorithms implemented in ddR
have similar performance to algorithms written directly
in the respective backend.

Setup. All experiments use a cluster of 8 HP SL390 servers
running Ubuntu 14.04. Each server has 24 hyperthreaded
2.67 GHz cores (Intel Xeon X5650), 196 GB of RAM, 120
GB SSD, and are connected with full bisection bandwidth on
a 10Gbps network. We use R 3.2.2 with parallel and SNOW,
Distributed R 1.2.0, and Spark 1.5. We also compare against
established open source machine learning products such as
H2O 3.6 [3] and Spark MLlib. H2O is a high-performance
machine learning library written in Java. It provides an R
interface to invoke the H2O algorithms. Spark MLlib is the
machine learning project of Spark and uses optimized linear
algebra libraries for performance. We use three machine
learning algorithms in our evaluation: (a) randomforest, a
decision tree based ensemble learning method, (b) K-means
clustering algorithm, and (c) linear regression.

6.1 Single server setup
We first evaluate the case when a user requires only a sin-

gle server to run computations, either because the input data
is small enough or the CPU cores in a single server provide
sufficient performance benefits. When using ddR, the user
can choose R’s parallel or SNOW as the backend which run
only on a single server. One can also use HPE Distributed
R or Spark in a single node mode, though these systems
are primarily targeted at multi-server computations. The
main difference between parallel and SNOW is in the mech-
anisms they use for managing multi-process execution. The
parallel backend uses Unix fork command to start multi-
ple processes that communicate through inter-process com-
munication. Because of its reliance on Unix system calls,
the fork based parallel package does not run on Windows
servers. The SNOW package starts multiple processes that
communicate using sockets, and can be used even in a Win-
dows environment.

6.1.1 Scalability
Figure 9 shows the performance of parallel randomfor-

est as we increase the number of cores. We use a dataset
with 1M observations, 10 features, and run the randomfor-
est algorithm to create 500 decision trees. Randomforest is
a compute-intensive algorithm, and the single-threaded de-
fault algorithm in R takes about 28 minutes to converge.
Using ddR, we can parallelize the tree building phase by
assigning each core to build a subset of the 500 trees. By
using multiple cores, each of the backends parallel, SNOW,
and HPE Distributed R can reduce the execution time to
about 5 minutes with 12 cores. For this algorithm all the

1299



1 2 4 8 12

0
5

10
15
20
25
30

No. of cores

Pe
r-i

te
ra

tio
n 

tim
e 

(m
in

.)

R
snow.ddR
spark.ddR
distributedR.ddR
parallel.ddR

Figure 9: Single server randomforest. Lower is bet-
ter.

backends have similar performance, and achieve substantial
speedups, about 6× by going from a single core to 12 cores.

Figure 10 shows how long it takes to cluster 1.2M points
with 100 attributes into 500 groups. R’s default single-
threaded algorithm takes 482s for each iteration of K-means.
When using SNOW, the ddR version of K-means takes 96s
with 12 cores. HPE Distributed R and parallel provide the
best performance in this setup, completing each K-means it-
eration in just 10s with 12 cores. In addition these systems
show near linear speedup on K-means, where the perfor-
mance improves by 10× when going from a single core to
12 cores. The performance of SNOW is worse than others
because of its inefficient communication layer. SNOW incurs
high overheads when moving the input data from the mas-
ter to the worker processes using sockets. In comparison,
the parallel workers receive a copy-on-write version of the
input data when the parent process creates child processes
using the fork system call.

Finally, Figure 11 shows the scalability of parallel linear
regression algorithm. Since regression is less compute inten-
sive than K-means or randomforest, we use a larger dataset
with 12M records each with 50 features. R’s single-threaded
regression algorithm converges in 141s. The ddR regression
algorithm on HPE Distributed R takes 155s with a single
core but converges in 33s with 12 cores. The parallel ver-
sion is faster and converges in around 20s with 12 cores,
which corresponds to about 5× speedup over its single core
performance. Since this dataset is multi-gigabyte, SNOW takes
tens of minutes to converge, of which most of the time is
spent in moving data between processes. Therefore, we ex-
clude SNOW from the figure.

6.1.2 Comparison with H2O and Spark MLlib
In addition to scalability of ddR algorithms, we also mea-

sure how these algorithms compare to state-of-the-art ma-
chine learning products such as H2O and Spark MLlib.

H2O is a multi-threaded machine learning product and
has been embraced by the R community for its performance.
Unlike other parallel R packages, H2O provides parallel im-
plementations of algorithms itself instead of a generic inter-
face to write parallel programs. Figure 10 and Figure 11 in-
clude the performance of the corresponding H2O algorithms.
Our evaluation shows that the ddR version of K-means on
parallel is about 1.5× faster than H2O’s K-means (Fig-
ure 10). For example, ddR can complete each iteration in

1 2 4 8 12

0

100

200

300

400

500

No. of cores

Pe
r-i

te
ra

tio
n 

tim
e 

(s
ec

.)

R
snow.ddR
spark.ddR
distributedR.ddR
H2O
Spark MLlib
parallel.ddR

Figure 10: Single server K-means. Lower is better.

1 2 4 8 12

0
50

100
150
200
250
300

No. of cores

C
on

ve
rg

en
ce

 ti
m

e 
(s

ec
.)

R
Spark MLlib
distributedR.ddR
H2O
parallel.ddR

Figure 11: Single server regression. Lower is better.

less than 7s with parallel with 12 cores compared to more
than 10s by H2O. Figure 11 shows that ddR’s regression
implementation with parallel is comparable to H2O, with
the H2O implementation slightly faster at 8 and 12 cores.
The reason for the slight performance advantage is becasue
H2O uses multi-threading instead of multi-processing, as by
parallel, which lowers the cost of sharing data across work-
ers. However, the ddR algorithms on parallel and HPE
Distributed R outperform H2O in their ability to handle
very large data. As an example, ddR algorithms on these
backends have similar scalability even on 5× the input data
size, while the H2O algorithms crash on large datasets.

Spark MLlib provides native implementation of machine
learning algorithms using Spark’s Scala API. Figure 10 shows
that Spark MLlib’s K-means algorithm has similar perfor-
mance as H2O, and is slightly slower than the ddR algo-
rithm running on parallel. Figure 11 shows that the re-
gression implementation in Spark MLlib, when using 4 or
less cores, is about 2× slower than both H2O and ddR’s
implementation on parallel or HPE Distributed R. At 8
or more cores the performance of Spark MLlib is compara-
ble, but still less, than the other systems.

6.2 Multi-server setup
The same ddR algorithms that work on a single server

also run in multi-server mode with the appropriate backend.
In this section we show that ddR algorithms can process
hundreds of gigabytes of data and provide similar scalability
as custom implementations.

1300



1 2 4 8

0
50

100
150
200
250

No. of servers

Pe
r-i

te
ra

tio
n 

tim
e 

(s
ec

.)
distributedR.ddR
Distributed R

Figure 12: Regression: Strong scaling. Lower is bet-
ter.

6.2.1 Strong scaling results
Regression is a popular algorithm in the financial sector

and is commonly applied on millions of records. We use Dis-
tributed R to show how linear regression with ddR can be
scaled horizontally to utilize multiple servers. For the ex-
periments, we synthetically generated a dataset with 120M
rows by creating vectors around coefficients that we expect
to fit the data. This methodology ensures that we can check
for accuracy of the answers. The dataset size is approxi-
mately 95GB and has 100 features per record. Both Dis-
tributed R and ddR’s implementation of regression use the
Newton-Raphson method. Figure 12 shows how distributed
linear regression scales on upto 8 nodes, each using 12 cores.
The custom regression algorithm in Distributed R takes 227s
per-iteration with a single server which reduces to 74s with
8 servers. Therefore, on this dataset the Distributed R algo-
rithm shows about 3× speedup as the number of servers is
increased to 8. The ddR version of regression, running on
Distributed R as the backend, shows similar performance
and scalability. On a single server it takes about 251s to
complete an iteration which reduces to 97 seconds with 8
servers. Therefore, the custom regression algorithm in Dis-
tributed R is only 23% faster than the ddR version. The
ddR algorithm has the added advantage that it runs on
other backends as well, thus giving a single interface to the
R users.

6.2.2 Weak scaling results
Next, we show the scalability of ddR’s K-means cluster-

ing algorithm as the dataset size increases. We use synthetic
datasets, with 30M, 60M, 120M, and 240M rows. Each
dataset has 100 features, and we set the number of centers
(K) to 1,000. The 240M row datasets corresponds to ap-
proximately 180GB of data. Figure 13 compares the perfor-
mance of ddR’s K-means clustering algorithm on Spark and
Distributed R. Additionally, we plot the execution time of
the custom K-means algorithms that ship with Distributed
R and Spark MLlib. As we increase the number of nodes
from 1 to 8, we proportionally increase the number of rows
in the dataset from 30M to 240M (i.e., 8×). In an ideal
distributed system the per-iteration execution time should
remain constant for this setup.

There are three interesting observations from Figure 13.
First, the ddR version of K-means, on both Spark and Dis-
tributed R, scales almost perfectly as the dataset size and

1 node/30M 2 node/60M 4 node/120M 8 node/240M

0
2
4
6
8

10

Pe
r-i

te
ra

tio
n 

tim
e 

(m
in

.)

Spark MLlib
spark.ddR
distributedR.ddR
Distributed R

Figure 13: K-means: Weak scaling. Lower is better.

the number of machines is increased. When Spark is used
as the backend, the ddR algorithm takes around 7 min-
utes per iteration. With Distributed R as the backend the
per-iteration time of ddR is around 6 minutes. Second,
on this dataset the Distributed R backend outperforms the
Spark backend. Therefore, if a user has both the backends
installed, it can choose to run the application written in
ddR, without any modifications, on Distributed R for better
performance. Finally, our evaluation shows that the ddR
version of the algorithm gives the same or sometimes even
better performance than the custom algorithm implementa-
tion on the same framework. The ddR algorithm with Dis-
tributed R as the backend (distributedR.ddR) is within 5%
of the K-means library that ships with Distributed R. The
ddR algorithm with Spark as the backend is in fact slightly
faster than Spark’s MLlib algorithm when the dataset size
is 120M and 240M.

6.3 Summary
The single server and multi-server results validate our hy-

pothesis that ddR provides application portability along
with good performance. For example, algorithms written in
ddR can run on different backends without any code mod-
ifications or the user fearing loss of accuracy in the results.
The performance of the same ddR algorithm will depend
on the backend used (e.g., how well a backend handles data
transfers), but we found that most backends, with the ex-
ception of SNOW, result in good performance. For the single
server case, we recommend using parallel which provides
the best performance, and is readily available since it ships
with R. On multi-server environment, a user may choose to
run ddR with Distributed R or Spark, based on availabil-
ity of the infrastructure. Even though the ddR algorithms
have been written independent of the backend, our results
show that their performance is comparable to, and some-
times even better than, the native algorithms in other ma-
chine learning frameworks such as H2O and Spark MLlib.

7. RELATED WORK
Distributed frameworks. MapReduce started the wave
of programming models and infrastructures that provide a
simple yet fault tolerant way to write distributed applica-
tions [10]. Even though simple, many found the MapRe-
duce model too low level to program. As a result, the sec-
ond wave of distributed systems, such as Pig [23], HIVE [28]
and DryadLINQ [33], focused on programmer productivity
by providing a SQL like interface. These systems are batch
processing systems and not well suited for iterative machine

1301



learning or streaming tasks. Even the machine learning Ma-
hout library, based on the open source MapReduce imple-
mentation, has fallen out of favor due to its poor perfor-
mance [1]. Finally, the third wave of distributed systems
focus on domain specific applications and leverage hard-
ware, such as main memory, to improve performance. Spark
uses in-memory processing and lineage based fault toler-
ance to improve performance of distributed applications [34].
Pregel [21], GraphLab [19], and Concerto [18] advocate a
vertex-centric programming model to express both graph al-
gorithms as well as machine learning algorithms. Storm [29],
Spark Streaming [35] and Naiad [22] provide support for
streaming applications.

For data scientists, implementing applications on these
distributed frameworks with custom interfaces is a night-
mare. There have been efforts to provide R-friendly in-
terfaces to many of these systems. Notable examples are
Ricardo [9], RHadoop [6], and SparkR for the MapReduce
and Spark programming model. Unfortunately, these inter-
faces typically expose the custom underlying functions of
the framework but in R, such as map and reduce in the case
of RHadoop. The data scientist still needs to learn the un-
derlying system. Moreover, applications written using these
interfaces are not portable across frameworks. ddR solves
these issues by exposing a simple unified interface with simi-
lar semantics as R’s current single-threaded data structures.

SystemML provides a declarative approach for machine
learning which initially focused on MapReduce and now on
Spark [12]. By relying on a declarative syntax it inherits
certain powerful aspects of databases such as a plan opti-
mizer [8]. ddR differs from the approach of SystemML by
improving R itself, instead of proposing a new declarative
language, introducing a simple but expressive distributed
parallelism primitive, dmapply, and implementing portable
distributed algorithms and utility functions. One could en-
vision integrating ddR and certain optimization techniques
of SystemML similar to how compilers provide program op-
timizations.
Databases and machine learning. Most databases pro-
vide support for machine learning algorithms either through
the ability to call custom UDFs or by exposing in-built algo-
rithms or by integrating with external tools. Many vendors
such as Oracle, HPE Vertica, Microsoft SQL server, and
others embed R in their database. Users can call any of
the thousands of R packages inside a single UDF, though
performance is limited by the single threaded R package.
As an example, customers may funnel a table through a
single threaded R K-means UDF, but they cannot create a
distributed K-means function by simply invoking multiple
K-means UDFs. In all these cases, the R user interacts with
the database primarily through a thin SQL wrapper, such
as the hugely popular dplyr package [32]. These wrapper
R packages are natural for data wrangling in SQL but do
not provide a portable way to implement machine learning
algorithms. MADlib like approaches show how in-database,
machine learning algorithms can be implemented via user-
defined functions, and SQL statements [15, 2]. Unfortu-
nately, to contribute an in-database algorithm one needs
to follow the programming paradigm and the low level lan-
guage API proposed by MADlib. Finally, many databases
support fast connectors to external frameworks, from single
threaded R with SAP HANA [14] to distributed frameworks
like Spark and HPE Distributed R with Vertica [24]. When

using external frameworks to run machine learning applica-
tions outside of the database, the user still has to express
her application using the custom interface exposed by Spark
or Distributed R.
Parallel libraries in R. R is inherently single-threaded,
but there are over 25 packages that provide some form of
parallelism extensions to R [11]. Some well known packages
include parallel, SNOW, foreach, and Rmpi. All of these
packages expose their custom syntax for expressing paral-
lelism, and none of them have the concept of distributed
data structures. Not surprisingly, even with so many par-
allel extensions, R has hardly any parallel machine learning
algorithms written using them. While the parallel pack-
age exposes parallelism based on the functional semantics
of the apply class of functions, it is a single node solution
and does not tackle distributed systems issues such as par-
titioned distributed data structures. HPE Distributed pro-
vides an infrastructure for distributed computing in R, but
has similar shortcomings: it exposes a custom syntax and
applications written on it cannot run on other frameworks
such as SparkR [30, 31].

8. ONGOING WORK
While we have focused on expanding the data structures

available in R and integrating with recent distributed ana-
lytics systems, one could imagine using a parallel database
as a ddR backend. By using a parallel database and ddR,
R users can continue to program in their familiar API, while
benefiting from the optimized execution engines of databases.
In our ongoing work to integrate ddR with a database (such
as Vertica), we leverage the fact that many databases sup-
port R based user-defined functions. Here we outline one
way to implement a database driver for ddR.
Maintaining order and partitions. Elements of R ob-
jects (e.g., matrix) have implicit structure and ordering with
respect to other elements. We expect a database table to in-
clude specific columns that denote row or column indices of
each element. Similarly, the ddR interface also maintains
a correspondence between data and the partitions to which
they belong. One could create these partitions on the fly us-
ing indices or store an explicit database column for partition
ids.
Database query. We can express a multivariate dmapply

by using joins and R user-defined functions. One way to
implement the generic dmapply(FUN(x,y,z), X, Y,

MoreArgs = list(z=3.0)) function in Vertica, while ensur-
ing parallel UDF processing, is as follows:

SELECT FUN(COMBINED. data1 ,COMBINED. data2 , 3 . 0 ) OVER
(PARTITION BY COMBINED. p a r t i t i o n )

FROM (SELECT X. data AS data1 ,Y . data AS data2 ,X .
p a r t i t i o n AS p a r t i t i o n FROM

X JOIN Y ON X. i ndex=Y. i ndex ) AS COMBINED;

9. CONCLUSION
R is a powerful tool for single-threaded statistical analy-

sis, but lacks proper language bindings for distributed com-
puting. Our design and implementation of ddR is a first
step in extending the R language and providing a unified
interface for distributed computing. We have shown the ex-
pressive power of the ddR interface, and how algorithms
implemented in this interface have performance compara-
ble to custom implementations. Customers will no longer

1302



need to struggle with custom interfaces for each distributed
backend; instead, they can write portable R applications
using ddR, and leverage the already implemented ddR al-
gorithms across their favorite distributed computing infras-
tructure.

10. ACKNOWLEDGMENTS
We thank Michael Lawrence from R-core who worked with

us to design and implement ddR. We thank Arash Fard and
other members of the HPE Vertica team for contributing
algorithms to ddR. We also thank the R Consortium and
attendees of the HPE Workshop on Distributed Computing
in R for their support and feedback.

11. REFERENCES
[1] Apache Mahout. http://mahout.apache.org.

[2] Comparing pattern mining on a billion records with
HP Vertica and Hadoop.
http://www.vertica.com/2013/04/08/comparing-

pattern-mining-on-a-billion-records-with-hp-

vertica-and-hadoop/.

[3] H2O: Machine learning library. http://www.h2o.ai/.

[4] MATLAB–parallel computing toolbox.
http://www.mathworks.com/products/parallel-

computing/.

[5] Revolution R enterprise scaler.
http://www.revolutionanalytics.com/revolution-

r-enterprise-scaler.

[6] RHadoop and MapR. https:
//www.mapr.com/resources/rhadoop-and-mapr.

[7] The s4 object system.
http://adv-r.had.co.nz/S4.html.

[8] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen,
Y. Tian, D. R. Burdick, and S. Vaithyanathan. Hybrid
parallelization strategies for large-scale machine
learning in systemml. Proc. VLDB Endow.,
7(7):553–564, Mar. 2014.

[9] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J.
Haas, and J. McPherson. Ricardo: Integrating R and
Hadoop. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’10, pages 987–998, New York, NY, USA,
2010. ACM.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proceedings of the
6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, pages
10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[11] D. Eddelbuettel. High-performance and parallel
computing with r. https://cran.r-project.org/
web/views/HighPerformanceComputing.html.

[12] A. Ghoting, R. Krishnamurthy, E. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. Systemml: Declarative machine
learning on mapreduce. In Proceedings of the 2011
IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 231–242, Washington,
DC, USA, 2011. IEEE Computer Society.

[13] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse
matrices in matlab: Design and implementation.
SIAM J. Matrix Anal. Appl., 13(1):333–356, Jan.
1992.

[14] P. Große, W. Lehner, T. Weichert, F. Färber, and
W.-S. Li. Bridging two worlds with RICE integrating
R into the SAP in-memory computing engine.
PVLDB, 4(12), 2011.

[15] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The MADlib analytics library:
Or MAD skills, the SQL. Proc. VLDB Endow.,
5(12):1700–1711, Aug. 2012.

[16] M. Kearns. Efficient noise-tolerant learning from
statistical queries. J. ACM, 45(6):983–1006, Nov.
1998.

[17] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprograms for fortran
usage. ACM Trans. Math. Softw., 5(3):308–323, Sept.
1979.

[18] M. M.-J. Lee, I. Roy, A. AuYoung, V. Talwar, K. R.
Jayaram, and Y. Zhou. Views and transactional
storage for large graphs. In Middleware, volume 8275
of Lecture Notes in Computer Science, pages 287–306.
Springer, 2013.

[19] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
graphlab: A framework for machine learning and data
mining in the cloud. Proc. VLDB Endow.,
5(8):716–727, Apr. 2012.

[20] E. Ma, I. Roy, and M. Lawrence. ddR: Distributed
data structures in R. https://cran.r-
project.org/web/packages/ddR/index.html.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages
135–146, New York, NY, USA, 2010. ACM.

[22] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP
’13, pages 439–455, New York, NY, USA, 2013. ACM.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for
data processing. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’08, pages 1099–1110, New York, NY,
USA, 2008. ACM.

[24] S. Prasad, A. Fard, V. Gupta, J. Martinez, J. LeFevre,
V. Xu, M. Hsu, and I. Roy. Large-scale predictive
analytics in vertica: Fast data transfer, distributed
model creation, and in-database prediction. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15,
pages 1657–1668, New York, NY, USA, 2015. ACM.

[25] D. Robinson. Package downloads over time.
https://dgrtwo.shinyapps.io/cranview/.

[26] D. Smith. New surveys show continued popularity of
R. http:
//blog.revolutionanalytics.com/2015/11/new-

surveys-show-continued-popularity-of-r.html.

[27] C. tao Chu, S. K. Kim, Y. an Lin, Y. Yu, G. Bradski,
K. Olukotun, and A. Y. Ng. Map-reduce for machine

1303



learning on multicore. In B. Schölkopf, J. C. Platt,
and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19, pages 281–288.
MIT Press, 2007.

[28] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
A warehousing solution over a map-reduce framework.
Proc. VLDB Endow., 2(2):1626–1629, Aug. 2009.

[29] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 147–156, New York, NY,
USA, 2014. ACM.

[30] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung,
and R. S. Schreiber. Presto: Distributed machine
learning and graph processing with sparse matrices. In
Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 197–210, New
York, NY, USA, 2013. ACM.

[31] S. Venkataraman, I. Roy, A. AuYoung, and R. S.
Schreiber. Using R for iterative and incremental
processing. In 4th USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud’12, Boston, MA, USA,

June 12-13, 2012, 2012.

[32] H. Wickham. dplyr:A grammar for data manipulation.
https://cran.r-

project.org/web/packages/dplyr/index.html.

[33] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: A system for
general-purpose distributed data-parallel computing
using a high-level language. In Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pages 1–14, Berkeley,
CA, USA, 2008. USENIX Association.

[34] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

[35] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant
streaming computation at scale. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 423–438, New
York, NY, USA, 2013. ACM.

1304


