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ABSTRACT
To lower hosting costs and service prices, database-as-a-service
(DBaaS) providers strive to maximize cluster utilization without
negatively affecting their users’ service experience. Some of the
most effective approaches for increasing service efficiency result in
the over-booking of the cluster with user databases. For instance,
one approach is to reclaim cluster capacity from a database when it
is idle, temporarily re-using the capacity for some other purpose, and
over-booking the cluster’s resources. Such approaches are largely
driven by policies that determine when it is prudent to temporarily
reclaim capacity from an idle database. In this paper, we examine
policies that inherently tune the system’s idle sensitivity. Increased
sensitivity to idleness leads to aggressive over-booking while the
converse leads to conservative reclamation and lower utilization
levels. Aggressive over-booking also incurs a “reserve” capacity cost
(for when we suddenly “owe” capacity to previously idle databases.)
We answer these key questions in this paper: (1) how to find a “good”
resource reclamation policy for a given DBaaS cluster of users; and
(2) how to forecast the needed near-term reserve capacity. To help us
answer these questions, we used production user activity traces from
Azure SQL DB and built models of an over-booking mechanism.
We show that choosing the right policy can substantially boost the
efficiency of the service, facilitating lower service prices via lower
amortized infrastructure costs.

1. INTRODUCTION
One of the main challenges of a database-as-a-service (DBaaS)

provider such as Microsoft is to control costs (and lower prices)
while providing excellent service. With the DBaaS adoption rate
skyrocketing along with the increasing focus on big-data analytics,
providers are seeing consistent year-over-year growth in subscribers
and revenue. Microsoft’s own infrastructure footprint to support this
growth includes data centers spanning 22 regions with five more
regions on the way (at time of preparing this paper [2],) where each
data center investment costs hundreds of millions of dollars. At
billion dollar scale, in a low-margin business, achieving additional
percentage points of efficiency results in $10Ms-$100Ms of yearly
savings.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

The efficiency challenge is to maintain high user density (and
utilization levels) on these clusters without noticeable disruption to
the users’ workloads. To solve, or combat, this so-called “multi-
tenancy problem”, many different approaches have been presented
and studied in the recent literature (see Section 2.1.) These ap-
proaches all focus on optimizing for compatible tenant co-location
or co-scheduling – essentially to try to over-book the cluster with
databases. It is not the goal of this paper to re-examine these is-
sues, but to focus on an ignored, real-world problem that providers
must deal with when striving for high service efficiency – managing
the capacity-related side-effects of employing these over-booking
policies. Specifically, what happens when, after aggressive over-
booking, due to a change in cluster-wide usage, we suddenly find
that we owe more capacity than we actually have?

To start, we shall consider a straight-forward multi-tenant mech-
anism that can be used – reclaiming capacity when a user is idle
for a prolonged time. Certain DBaaS architectures, such as the
current architecture used in Azure SQL DB (ASD), trade-off higher
performance isolation and manageability at the expense of lower
user density and efficiency by focusing on modularity. In the ASD
architecture, we can consider a SQL Server instance process as act-
ing as a quasi-virtual machine, that executes queries for its attached
databases. For certain tiers of ASD subscribers, namely Basic and
Standard, these attached databases are backed by files stored via a
“shared disk” architecture. While these databases are attached, the
instance process is up and consuming cluster capacity. However,
if we “detach” a database from the instance1, (when the database
is idle,) then this SQL Server instance may be shut down and its
resources can be reclaimed. When a query is issued, an instance is
brought back online in the cluster wherever the necessary capacity
is available and the database is re-attached.2 This suggests an im-
mediate opportunity: if databases are idle for considerable periods
of time, then we can detach them from the instance to reclaim ca-
pacity for other databases – effectively quiesce them. This act can
immensely boost cluster utilization.

Obviously, there are certain problems that arise from employing
this mechanism and over-booking a cluster. To illustrate, we can
consider how a parking lot that sells reserved spots to customers,
might operate. On any given day, at any given time, some of the
customers may not be present to occupy their parking space. When
this happens, given the under-utilization of the lot, additional cus-
tomers may be accommodated in the reserved spots. At a holistic
view, as long as there is a net-positive (or net-zero) increase of free
parking spots, this is sustainable. Unfortunately, sometimes, more

1The detach mechanism is only used here as a simplified example, and not a
real or complete mechanism in use.
2Building an efficient mechanism is an important aspect of this problem, but
is neither a sufficient solution, nor is it within the scope of this paper.
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Figure 1: (a) Capacity (in core minutes) reclaimed and (b) re-
served, along with (c) the observed DBs resumed per minute
based on different quiescence policy lengths over a three month
period from a production ASD cluster.

parking spots are being claimed than freed, a net-negative trend.
As a result, the parking lot may need to dedicate some reserved
capacity to handle net-negative capacity changes. We address this
oft-ignored problem that arises in the context of DBaaS when we
employ quiescence techniques to over-book the cluster – a set re-
serve capacity must be kept on hand for when quiesced DBs require
resources forcing them to be resumed.

In a cloud service like Azure SQL DB, there are generally periods
of ebb and flow in user activity (think weekends and holidays),
where there are sustained periods of net-positive and net-negative
quiescence. The problem that we (and the parking lots) have is
that we don’t know how long we should wait before we quiesce an
idle DB and provide the capacity to some other DB. One straight-
forward approach is to hypothesize that if the DB has been idle for
a static amount of time, then it is likely to continue in this way and
hence it is safe to quiesce. We can think of this duration of idle time
as being defined by the idleness based quiescence policy.

As the astute reader may already surmise, the quiescence pol-
icy has a direct implication on the amount of reserve capacity that
must be kept on hand, as well as the amount of capacity that we
can reclaim. Note however, that while the efficiency of the quiesce
mechanism may help mitigate this issue to some extent, the act of
over-booking itself creates the possibility of zero available capacity
that cannot be solved fully by any degree of mechanism improve-
ment. Our first goal is therefore, given a production cluster (and
users), to find its “ideal” quiescence policy.

In Figure 1 we provide an example result from our analysis.
These results are from a single cluster located in the US over a three
month period ending 01/31/16 (results for additional clusters are
presented in Section 6). Here we used the production telemetry

data to determine user activity and idle periods as an input into
our quiescence model. For these results, we have employed eight
different quiescence policy lengths (the idle time required before
we initiate the mechanism) from 1 hour to 7 days. The methods
by which we model the required reserve capacity are described in
Sections 4 and 5, but in essence, for each policy, we calculate the
amount of net churn of DBs quiesced and resumed over the entire
three month period. As we model quiescence, we can determine
how much potential capacity we will reclaim with this mechanism.

Figures 1(a) and (b) contrast the potentially reclaimable capacity
(in millions of CPU core minutes – a simplified metric for this paper),
versus the reserve capacity required, respectively. As we shorten
the policy length from 7 days to 1 hour, we see in Figure 1(a) that
the amount of capacity reclaimed increases – by almost 30% – from
about 200 to 260 million CPU core minutes. Correspondingly, we
also see an increase in the required reserve capacity in Figure 1(b).
Figure 1(c) shows the 99th percentile of all DBs resumed per minute
of the three month period given the real user activity. We see that
the number of DBs resumed per minute climbs dramatically as
we shorten the policy length. This would increase the operational
complexity and may sometimes decrease user satisfaction.

To determine the “ideal” policy, we must normalize DBs re-
sumed per minute so that we can come up with a single mea-
sure per policy. We did this by conservatively assuming that, if
a DB is resumed more than five times in a month, (assuming a
99.99% Azure SQL DB SLA [2],) then a capacity compensation (of
one month) will be provided. Consequently, we find the measure:
net reclaim potential = (reclaim potential−reserve capacity
−compensated capacity). In relation to Figure 1, we found that
for this US cluster, the 1 day policy was the best out of these 8 op-
tions and provided an 18% improvement over the worst performing
policy, which was the 1 hour policy due to high compensation. At
scale, in the context of billions of dollars of global infrastructure
costs, choosing the right policy can swing service operating costs
by tens or even hundreds of millions of dollars a year, and these are
savings which can be directly passed to customers.

As we will show, different clusters exhibit different activity pat-
terns due in part to the population makeup. Therefore, none of this
would do us any good if we aren’t able to continuously forecast,
monitor, and adjust our reserve capacities in a production setting. In
this paper, we will also discuss our second goal to develop a predic-
tive model for the amount of reserve capacity and show the results of
evaluating our model. Our evaluations of historical production data
provides penalty measures for various quiescence policies and fore-
casting models which show us how well we would have done. We
employ penalty measures such as a capacity outage when databases
are resumed but no reserve capacity is available (over-aggressive
forecasting) and unused reserve capacity (over-conservative fore-
casting). Our three month evaluation can be found in Section 6.

To summarize, we make the following contributions in this paper.

• We introduce and formulate the oft-ignored problem due to over-
booking DBaaS clusters: setting aside the right amount of reserve
capacity and directly costing potential user impact.

• Using a quiescence mechanism, we define a tuning variable, a
policy analysis model, and various metrics that provide insights
towards answering the above problems.

• We present our analysis-backed solutions to two real-world prob-
lems: how to find the ideal quiescence policy for our mechanism
and how to periodically forecast the reserve capacity.

• We evaluate our solutions over extensive three month datasets
from two production clusters and present our results and findings.
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2. PRELIMINARIES
To begin, we discuss related work on the topic of database-as-a-

service followed by some background on the Azure SQL DB service
as well as the telemetry data that we used.

2.1 Related Work
Along with the sudden surge in adoption in data processing in the

cloud, we have also seen a swing in research towards the relevant
topics. The different approaches to cloud data processing can be
broadly divided by the different architectures [10]: shared hard-
ware [4], shared table [1, 24], and finally the middle ground model
shared process [3, 22]. These different architectures trade isolation
and manageability against properties such as density and efficiency.
Azure SQL DB employs a different model – a process-centric model
that focuses on performance and security isolation [3, 7, 21, 22].

On the topic of efficient multi-tenant scheduling and placement,
there have been many methods and schemes discussed in the liter-
ature [5, 6, 12, 13, 15, 16, 18, 20, 23]. While some of the placement
schemes do not consider “over-booking” (as a consequence of a
specific cloud architecture), most of the tenant placement research
strives to take advantage of underutilization or temporal contra-
patterns, which inevitably leads to the problem that we have sold
more capacity than we actually have. Similarly, most of the schedul-
ing research leans toward providing resources when they’re needed
but taking them away when they’re not. However, as we mentioned
in Section 1, none of them consider the actual problem associated
with over-booking, that is, what to do if we have used up all of our
capacity and a user that was idle now demands resources?

The other aspect that has garnered significant attention is that
of efficient database migration mechanisms to allow placement
reconfigurations and failovers [8, 11, 17]. Mechanisms such as these
are extremely important as to reduce latency of any capacity re-
arragement. Ultimately effective full solutions must incorporate
well-designed mechanisms as well as the analysis framework that
we focus on to determine the right policies to employ.

Other efforts more similar to ours deal with developing models on
the workloads to aid in the system’s decision-making. These include
developing machine learning models [9,25] or statistical models [19]
to predict changes that the system must adapt to. However, none of
these prior studies focus on our over-booked capacity problem, nor
do they build and evaluate their models on the quality and quantity
of production Azure SQL DB data that we have here.

2.2 Azure SQL DB Service
We now provide the basics of Microsoft’s Azure SQL DB service

necessary for this paper; additional information can be found at [2].
Azure SQL DB operates on a process-oriented model where multiple
customer databases may be co-located and served together via a
single (Azure) SQL Server process. Given that Azure SQL DB is
running on SQL Server, many of the basic database management
concepts of on-prem SQL Server remain available to the service.

Most notably, we could consider the SQL Server detach/attach
mechanism (as an example mechanism for our purposes) that allows
a database to be “disconnected” from the SQL Server instance
process. After the database is detached, its physical files can be
moved or reattached by any other SQL Server instance and the
database will then consume resources provided by the new instance.

Note that this mechanism is not free. For example, detaching a
database can take minutes or longer depending on the volume of
dirty memory pages in the buffer pool and I/O latency. Other factors
can influence the latency of a reattach as well and we account for
these (see Section 3.1.)

DB a unique identifier for the customer’s database
slo the subscription t-shirt size
timestamp the timespan from (timestamp − 15s) to timestamp
node the node that the database resides on
avg cpu the average cpu utilization (%)
avg io the average I/O utilization (%)
avg memory the average memory utilization (%)

Table 1: Telemetry Schema

Azure SQL Database currently offers a tiered subscription model
that allows customers to choose from databases with different sub-
scription levels, also known as ‘t-shirt’ sizes. T-shirt sizes corre-
spond not only to various levels of performance, but also availability,
and reliability objectives. Azure SQL Database’s current subscrip-
tion model consists of three tiers: Basic, Standard, and Premium
(Standard and Premium are further subdivided into four and three
sub-level t-shirt sizes, respectively.)

The main difference that sets Premium databases apart is the
fact that the physical data files are stored on the same node that
hosts the SQL Server instance and not as files stored in Azure
Storage volumes. This distinction provides immense benefits in
performance, but the Azure DB service must now manage physical
data file replication on other Azure SQL DB nodes for availability.
On the other hand, Basic and Standard tier databases are backed by
physical files stored on the Azure Storage layer, which performs
replication, thereby providing availability. For these two tiers, we
can attach and detach databases at will, changing the location of the
SQL engine within the cluster. Databases subscribing to these two
lower-cost tiers also make up the vast majority of all databases in
the service.

Finally, all of the t-shirt sizes come with performance SLOs that
essentially define the capacity requirements of a particular database.
These are defined using a proprietary metric ‘database transaction
unit’ (DTU), which is an internal transactional benchmark metric in
the spirit of TPC-C [2]. Internally, these DTUs map to traditional
CPU core, memory, and I/O bandwidth metrics. 3 In this paper, we
will frequently use CPU Cores as a normalizing capacity metric.

2.3 Telemetry Data
In this work, we relied upon the performance telemetry data to

tell us about an Azure SQL DB user’s activity. Instead of telling
us what queries were run, or how often they were issued, it tells us
the amount of CPU, memory, and I/O that was consumed by this
database (in the process of executing queries.) The rough schema of
the data is described by the column descriptions in Table 1.

This telemetry was collected from two Azure SQL DB clusters,
one from the US and the other from Europe. The data is very similar
to the telemetry described in [14], but it is of the current Azure
architecture instead of the earlier version (v1) of Azure DB released
in that paper. The main difference is that we now have data of
finer granularity (records are emitted every 15 seconds instead of
every 5 minutes) and generally, fewer anomalies are present. Ev-
ery 15 seconds, every database could emit a row containing the
resource utilization of that database during that timespan. Simi-
lar to the prior data release, to reduce data volume, records are
not emitted if the database was completely idle (all three resource
metrics were 0). This implies, for instance, that if we see tuple
(db3, basic, 01/01/16 12:00:15, n38, 0.85, 0.20, 0.14) followed by
tuple (db3, basic, 01/01/16 12:05:15, n38, 0.32, 0.19, 0.12), then
db3 was idle for five minutes.

3We will not disclose the exact mappings.
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Figure 2: Quiescence State Diagram for some database dbi and
policy length p. past utilization is a function that returns the
utilization level of the dbi in the past T time.

3. PROBLEM FORMULATION
We now formulate two capacity management problems involved

in the over-booking of database clusters. First, we will discuss a
mechanism that can be employed to over-book clusters, and then we
will describe the problems in the context of Azure SQL DB service.

3.1 Mechanism Background
The quiesce mechanism that is relatively straight-forward to im-

plement (and think about) in SQL Server is the act of detaching a
database.4 When the database is detached, it can no longer service
queries as the database engine no longer has access to the data.
When a database is detached, certain memory and log operations
may need to be performed and/or completed. This includes memory
resident data checkpointing which can take a non-trivial amount of
time to complete (minutes or longer).

Conversely, if the user requests a data page from a quiesced
DB, then it must be “resumed”, which would include invoking
SQL Server’s database attach function. Similarly, this is not an
instantaneous action as the database’s physical files stored in the
“shared disk” layer must be found, sufficient free capacity for the
DB’s subscription tier must be found, and the attach itself performed.
Therefore, both of the transitions – quiesce and resume – must be
accounted for.

Figure 2 illustrates the intuitive four-state state diagram for our
quiesce/resume workflow.

DEFINITION 3.1. A database can be modeled as being in one of
four states: (1) Active; (2) Quiesce; (3) Quiescent; and (4) Resume.

In our model, databases remain in state 1 if there is any level of
utilization in the past T length timespan. If sufficient idleness is
detected, the db is transitioned to state 2 where it stays until the
quiesce process is completed and it moves onto state 3. While there
are no requests of this database, it remains in the quiescent state.
Once a database receives a request, it transitions to state 4 and stays
there until resume completes, at which point it returns to state 1.

4 Note that this detach/attach mechanism is only used here as a simplified
example, and is not a real or complete mechanism in use.

3.2 Formulation
Now that we have described our mechanism, we can focus on the

problems associated with over-booking. Using the above mecha-
nism, we may attempt to increase service efficiency by reclaiming
cluster resources from databases that are idle (e.g., by detaching
such databases), and using the reclaimed capacity to host more
databases. A question that immediately arises here is: How do we
decide which databases should be detached? In other words, we
need a reasonable approach to identify the right quiesce candidates,
hereafter referred to as the quiescence policy.

While there could be several quiescence policies possible, in this
paper we restrict ourselves to a set of policies based on the duration
of idleness exhibited by databases. The idleness-based quiescence
policy is defined as follows: A database is deemed to be a candidate
for quiesce if it exhibits continuous idleness for a specified duration
T, which we call the quiescence policy length. The idleness-based
quiescence policy P is parameterized by the policy length T , and
is based on the hypothesis that if a database has remained idle for
time T , it is likely to remain idle for a longer duration and hence, is
a suitable quiesce candidate.

Enforcing a quiescence policy P (T ) involves quiescing the data-
bases that are identified by the policy, thus freeing up the corre-
sponding cluster resources. The amount of resources that would
free up as a result of applying policy P (T ) is referred to as the
reclaim potential of P (T ). However, enforcing a quiescence policy
also implies that a fraction of the quiescent databases may have to
be resumed. There are continually databases being quiesced and
resumed, so we care about the net churn in these databases. In the
case of negative net churn (where we are resuming more databases
than we quiesce), we need to accommodate these resumed DBs by
reserving certain cluster resources. The reserve capacity required
in order to enforce a policy is essentially the capacity necessary for
the continuous swings in the net churn. The cost of maintaining this
reserve is the reserve capacity cost of P (T ).

Another important factor that needs to be considered is the re-
sume cost. Resume incurs costs because they involve operations
that include bringing back an instance online in the cluster wherever
the necessary capacity is available, and re-attaching the database to
it. Too many DBs being resumed can increase operational complex-
ity and may even lead to dissatisfied customers, and hence is not
desirable. Therefore, we account for the resume cost by taking a
very conservative stance. We assume that if a database is resumed
more than 5 times in a month, (4.5min. with a simplified 1 minute
resume time,) it fails the 99.99% Azure SQL DB SLA [2], and has
to be compensated in capacity. The capacity compensation incurred
due to enforcing a policy is the resume cost of a policy P (T ).

Therefore, the total policy cost of a quiescence policy is the sum
of its resume cost and the cost of the reserve capacity. Assuming
that this cost is fulfilled from the reclaim potential, we can arrive
at the net reclaim potential of P (T ) by subtracting the total policy
cost from its reclaim potential.

net reclaim potential =reclaim potential

− reserve capacity cost

− resume cost

(1)

With the above notions, we are now ready to formulate the first
problem we address in this paper.

PROBLEM 1. Determine the quiescence policy P (T ) that leads
to the maximum net reclaim potential.

Observe that there is a trade-off here, between the reclaim po-
tential and the total policy cost. Analyzing and understanding the
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Figure 3: Example of processing the raw telemetry of a single
database into our state model.

nature of this trade off is one of the important contributions we make
in this paper.

The above problem aims to identify a suitable quiescence policy.
Once a policy is chosen, a key aspect of enforcing the policy is to
reserve a certain amount of cluster resources for databases that may
need to be resumed. Note that this reserve capacity is not only a
function of the chosen quiescence policy, but it also varies with time.
Several factors such as weekends, holidays, special events etc. can
impact the usage patterns of databases on the cloud, and implicitly
impact both quiese and resume rates. Perhaps, more importantly, as
the service takes on (and loses) customers the aggregate behavior
of the database population may change. Therefore, we need to be
able to continuously forecast the reserve capacity required in the
future. This forecasting, based on observed patterns of resource
utilization, needs to be robust enough to withstand variations in
resource utilization. This leads us onto the other problem that we
consider in this paper.

PROBLEM 2. Given the resource utilization telemetry data and
a quiescence policy P (T ), evolve robust prediction and evaluation
schemes for forecasting the reserve capacity.

Predicting reserve capacity in a conservative manner may be
safe in terms of reducing the resume cost. However, the downside
of conservative predictions is that it may result in reserve cluster
capacity that may remain unused. This defeats the stated goal of our
work, which is to increase the density of databases on the cluster.
On the other hand, aggressive predictions may increase the number
of databases by over-booking to a large extent, but may end up
in a situation where there may be insufficient cluster capacity for
databases that need to be resumed. Therefore robust prediction
schemes that can balance these constraints, are critical to achieving
our goal. Evaluating these predictions is a key aspect of ensuring
that our predictions are production ready. The evaluations should
allow us to reason about our predictions (and the resulting cluster
behavior) in sufficient detail. Therefore prediction and evaluation
go hand in hand in addressing the problem.

In Sections 4 & 5, we will describe how we use the Azure SQL DB
telemetry described in Section 2.3, to answer the above problems.

4. QUIESCENCE MODELING
We now discuss how we start with the raw, analog telemetry

data, discretize it to a basic binary signal, and then apply different
quiescence models by varying the policy P (T ). In Figure 3, we
present an illustrative example of how we process and analyze the
data. First, as we described in Section 2.3, the raw data that serves
as the input to all of this contains a row per database per timepoint
if the database was not idle (i.e., at least one performance metric’s
value was non-zero.) This is why, in Figure 3, the raw telemetry
data is not a continuous curve per database, but a series of curve
fragments. Given this property of the raw data, it is straightforward
to convert the “analog signal” into a binary one of “activity” or
“idle”. Finally, we must fit the binary data into the state model
(Figure 2) by applying some chosen policy length T .

It is important to notice three key points from this transformation
in Figure 3: (1) the first long idle period is significantly reduced
when we transform it into “quiescent” because the policy P (T )
causes T amount of idle time to be spent in the ”active” state. (2) we
notice that the second idle period is completely eliminated because it
is shorter than length T . Finally, (3) we must account for all quiesce
and resume time in the model processing. (In this example, we also
make a simplifying assumption that a database can be dropped from
the quiescent state. Removing this assumption is straightforward.)

At this point, we need to introduce a bit of formalism to help
describe the cluster-level capacity bookkeeping and also to set up
our discussion in Section 5 and beyond. Recall, we have our state
model given in Definition 3.1. Given these states, at any point in
time that a database exists, it must be found in one of these four
states:

DEFINITION 4.1. While a database dbi exists in timespan [j, k),
state(dbi, t, s) ∈ {1, 0} indicates whether or not dbi is in state s
at time t, where j ≤ t < k; k =∞ if dbi is not dropped.

Finally, we can determine the minimum capacity requirement for
any database in terms of a minimum CPU reservation in unit “cores”
(a simplification for this paper):

DEFINITION 4.2. capacity map(dbi) ∈ R+ provides the
mapping between a database dbi and its CPU core capacity reser-
vation.

For simplicity, we assume that a database never changes its core
capacity reservation although, we can easily extend Definition 4.2 by
adding a time component. With the above, for any state of interest,
we can compute the total number of databases (and correspondingly,
the capacity in CPU cores,) at any point in time. For instance, the
equation below defines how we can compute the total capacity units
(in cores) spent in the resume state 4 between minutes 580 and 600.

for state 4:
600∑

t=580

∑
∀dbi

state(dbi, t, 4)× capacity map(dbi)

(2)
In Figure 4, we show the result of applying Equation 2 over three

months of data for all four states. The data is from a production
cluster in the U.S. The quiescence policy we use in this modeling
is P (12hr). Each point in the figure represents a single minute. In
this figure, with a 12hr quiescence policy, we can readily see daily
and weekly patterns in both the Active and Quiescent state models.

If we focus in on the quiescent state results and model a variety of
policies, we get Figure 5. In this figure, we zoom in on December for
the same U.S. cluster as in Figure 4. We can see that as we increase
the idle sensitivity, we begin to see much finer detail corresponding
to weekend and daily patterns. Also, we can see that the level of
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Figure 4: Application of Equation 2 for all four states over three
months of production data with a policy P (12hr).

quiescent cores increased (and was prolonged) during the Christmas
holiday, eliminating the five day pattern for that work week. With
the ability to model the impact of various quiescence policies, we
can now attack the two problems.

5. ANALYSIS AND PREDICTION
With the method described in Section 4, we can model quiescence

policies with different quiescence policy lengths. A careful and
systematic analysis of these models is required in order to determine
solutions to problems that we formulated in Section 3. In order to
compare quiescence policies (Problem 1) and in order to forecast
and evaluate the reserve capacity (Problem 2), certain metrics were
defined in Section 3. We now make those definitions more concrete,
and show how they are computed. Then, in Sections 5.2 and 5.3
we show how they can be used in answering the questions we are
interested in.

5.1 Computing the Metrics
Consider the output of modeling a quiescence policy P (12hr) on

a cluster , shown in Figure 4. In particular, the quiescence patterns
over a 3 week period in December is shown by the curve in Figure 6.
The daily and weekly quiesce (and resume) patterns are easy to
observe in Figure 6. A churn of quiesce and resume can be seen
for each week day, and a large number of quiesces can be seen
during weekends. For a given quiescence policy P with length T ,
we consider the following metrics.

Figure 5: Quiescent State while varying the policy P (T ) for the
month of December on the U.S. cluster.

5.1.1 Reclaim Potential
The reclaim potential is the amount of resources that would be

freed up due to enforcing policy P for a specified duration. This is
measured in terms of core minutes, denoted by reclaim potential(P).
In Figure 6, the entire area under the polygons is a measure of the
cores that are always in a quiescent state, which is, in other words,
the capacity that is now reclaimed due to quiescence. Therefore,
for N weeks, the reclaim potential of policy P is given by the
equation below, where free heightmin(w) and free heightmax(w)
are respectively the minimum and the maximum heights under the
polygon for week w (shown for week 3 in Figure 6), and minutes(w)
is the number of minutes in the week.
N∑

w=1

1/2(free heightmin(w)+free heightmax (w))×minutes(w)

(3)

5.1.2 Cost of Reserve Capacity
The cost of reserve capacity is the amount of reserve capacity

required if policy P has to be enforced for a specified duration. This
is essentially the net number of DBs resumed that was observed, and
have to be accommodated. It is measured in terms of core minutes
and denoted by cost of reserve(P ). In Figure 6, a net positive
resume value is indicated by a downward trend in the number of
quiescent cores. For a single day, the number of DBs resumed that
have to be accommodated is equal to the net decrease in the number
of quiescent cores observed within that day. Accumulating this
over a one-week duration, we get the required cost of reserve(P).
The dashed polygons that bound the quiescence pattern in Figure
6 encapsulate the “churn” of quiesce and resume for every week.
Therefore the area of this polygon is equal to the cost of reserve(P)
for a given week. In general, for N weeks, the cost of reserve
capacity is given by the following equation:

N∑
w=1

1/2(rsv heightmin(w)+ rsv heightmax (w))×minutes(w)

(4)

1250



TIME

Q
U

IE
SC

EN
T 

C
O

R
ES

Week 1 Week 2 Week 3… …
fr

ee
_h

ei
gh

t m
in

(w
3

)

fr
ee

_h
ei

gh
t m

ax
(w

3
)

rsv_heightmin(w3)

rsv_heightmax(w3)

Figure 6: Quiescence patterns with bounding polygons over a 3
week period using the quiescence policy P (12hr).

where rsv heightmin(w) and rsv heightmax(w) are respectively
the minimum and the maximum heights of the polygon for week w
(shown for week 3 in Figure 6), and minutes(w) is the number of
minutes in the week.

5.1.3 Resume Cost
As described in Section 3, it is not desirable to incur too many

DB resumes. Therefore, we account for the resume cost by making
a pessimistic assumption that if a database is resumed more than 5
times in a month, it has to be compensated in capacity (since it fails
the 99.99% Azure SQL DB SLA [2]). The capacity compensation
incurred due to enforcing a policy for a specified duration is the
resume cost of a policy P (T ) and is denoted as resume cost(P).

The capacity compensation policy that we use is as follows. Con-
sider a database belonging to subscription tier Y that is resumed
more than 5 times in a month. Then, we compensate such a database
with a 30 day reservation of tier Y subscription. This essentially
translates to the CPU core capacity reservation given in Defini-
tion 4.2 for that database for 30 days.

5.1.4 Net Reclaim Potential
The amount of cluster resources that would become available due

to enforcing policy P for a specified duration, after incorporating
all the costs involved. The total cost of enforcing policy P includes
the cost of the reserve capacity (cost of reserve(P)) and the cost due
to resume compensation that violate the SLA resume cost(P). This
is computed as described in Equation 1.

5.2 Comparing Quiescence Policies
As stated earlier, the goal of the first problem is to determine

the quiescence policy P (T ) that leads to the maximum net reclaim
potential. This can be done by comparing the set of policies under
consideration, based on the metrics defined above. These compar-
isons can be performed as totals in order to get an overall idea of
the reclaim potential over the entire duration under consideration.
Another alternative that can help make this decision is to observe
the behavior of the costs on a week-by-week basis, and study their
variance over time. In Section 6, we show the results of these
comparisons and describe these comparisons in more detail.

Clusters exhibit activity patterns that undergo changes over time
due to changes in the population.Therefore the choice of the quies-
cence policy may have to be revisited periodically. In our analysis
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Figure 7: Forecasting reserve capacity: Training and validation
phases.

however, we observed that the ideal quiescence policy remained
quite stable over three months. In a production setting, we could
re-determine the ideal quiescence policy using the above metrics
when necessary.

5.3 Forecasting Reserve Capacity
The focus of the second problem is to come up with robust

schemes for prediction and evaluation of reserve cluster capacity.
Intuitively, reserve capacity is the height of the “churn” of quiesce
and resume observed. In these terms, forecasting reserve capacity
essentially translates to predicting the height of this churn, for a
specific duration in the future.

For evaluating our model, we use the standard cross validation
approach, in order to estimate how accurately our model works in
practice. We first train our model on the training data set, which
yields a prediction. Subsequently, this prediction is validated against
a validation data set. The goal of cross validation is to define a
dataset to “test” the model in the validation phase, in order to limit
problems like overfitting and give an insight on how the model will
generalize to an unknown (future) dataset.

The immediate question that arises here is regarding the ratio
of durations for training and prediction. Considering a large dura-
tion for training might improve the accuracy and robustness of our
predictions. However, we also do not want our predictions to be un-
necessarily biased by past anomalies either. Considering this trade
off, we have currently used a (2 week:1 week) training:validation
ratio in our analysis and experiments. Another factor that influences
this decision is the granularity of prediction that is required. In pro-
duction, we envision this forecasting to be performed on a weekly
basis, therefore we predict for a duration of one week.

In general, given a training-validation ratio of t : v (where t and
v are measured in weeks), we consider a sliding window of (t+ v)
weeks duration. Figure 7 shows the sliding window of 3 weeks
corresponding to our 2:1 training-validation ratio. The training
is performed on the first t weeks. The predictions yielded in the
training phase are validated on the v weeks of validation duration.
Then we slide the window by a week, and repeat the procedure.
Below we describe the training and validation phases in detail.

5.3.1 Training phase
The training phase is shown in Figure 7, with time points Tstart

and Tend indicating its start and end times. For every week of the
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training period (2 weeks in our case), we bound the quiesces and
resumes using polygons as shown in Figure 6. Then, we compute
the maximum height of all the polygons seen during training. Let
this maximum height be Trainmax. Intuitively, Trainmax is the
largest churn seen during training. As it turns out, Trainmax itself
is in fact a decent indicator of the required reserve capacity for the
following validation period. Therefore, we derive simple prediction
schemes as functions of Trainmax. The output of the training
phase is the predicted reserve capacity C which is given by the
following equation.

C = f(Trainmax) (5)

While complex prediction strategies are possible, our aim is to
choose the simplest strategy that performs well in production. There-
fore, we consider simple functions of Trainmax that tilt the pre-
dictions to be either aggressive or conservative. Some prediction
strategies that we have considered are given below.

f(Trainmax) =



1.75× Trainmax,

1.50× Trainmax,

1.25× Trainmax,

T rainmax,

0.75× Trainmax

(6)

5.3.2 Validation phase
During the validation phase, we use the value predicted in the

training phase (C) as the available reserve capacity. Then, the
time series is played out for the entire validation period. While
playing out the time series, the reserve capacity is used to allo-
cate resources whenever resumes occur. Conversely, when quiesce
occurs, the reclaimed capacity is added to the reserve, until the
predicted capacity(C) is reached.

As an illustration, consider the validation phase shown in Figure 7.
The time points Vstart and Vend indicate the start and end points of
the validation phase respectively. Let C denote the predicted reserve
capacity based on the training. At the beginning of the validation
phase (i.e. at Vstart), some of the reserved capacity might already
be in use, and hence we cannot assume that the entire capacity
C is available. We therefore make a conservative estimate of the
initial state of the reserve capacity during the validation phase. Let
DC[Tstart : Tend] denote the series of quiescent cores during the
training phase and DC[Vstart] denote the number of quiescent cores
at time Vstart. We conservatively assume that the reserve usage
at the beginning of the validation phase (ReserveUsage[Vstart ]) is
given by the following equation.

ReserveUsage[Vstart ] = max (DC [Tstart : Tend ])−DC [Vstart ]
(7)

From Equation 7, it follows that the available reserve capacity at
the start of the validation phase (denoted as AvailableReserve[Vstart ])
is given by

AvailableReserve[Vstart ] = C − ReserveUsage[Vstart ] (8)

With the above reserve capacity, our validation phase starts, play-
ing out every time point. Consider the time point Va in Figure 7,
a local minimum point during week 3. Between Vstart and Va,
there is a steep decrease in the number of quiescent cores, which
essentially means that there have been a series of resumes during
this period. This intuitively makes sense since Va corresponds to the
monday activity after a weekend. By the time the validation phase
reaches Va, all the DBs that have been resumed between Vstart and
Va have received resources from the reserve capacity. Therefore,

the reserve capacity that is available at Va (AvailableReserve[Va ])
would be

AvailableReserve[Va ] = AvailableReserve[Vstart ]

− (DC [Vstart ]−DC [Va ]) (9)

Consider another time point Vb in Figure 7, which corresponds
to a local maximum point during week 3. Observe that there is a
steep increase in the number of DBs quiesced just before Vb. By
the time the validation phase reaches Vb, all the DBs quiesced prior
to Vb lead to freed capacity, which in turn goes back to the reserve
capacity. Thus, at every point through the validation phase, the
AvailableReserve goes up and down according to the quiesce and
resume actions that have occurred.

For each minute time unit during the validation phase, information
about the state of the cluster is captured. We capture the following
information which is then aggregated over the required duration:

• Unavailable cores: If there are many more DBs resumed than
our forecasted value, the reserve capacity gets fully used up,
thereby leading to a situation where resuming DBs can no longer
be accommodated in the cluster. This means that some resume
actions fail due to unavailable capacity; this points to a non-robust
prediction strategy. At every time unit during validation, we keep
track of the number of cores that were required for resume but
were unavailable.

• Unavailable minutes: Similar to unavailable cores, this metric
captures the duration in which DBs couldn’t be resumed. This is
a clear indicator of the robustness of the prediction strategies.

• Unused reserve capacity: If there are fewer observed DBs re-
sumed than predicted by our model, the reserve capacity remains
unused during that time period. Having a lot of unused reserve
capacity reduces the utilization levels of the cluster, which is
against our goal. Therefore, this metric captures the extent of
reserve capacity that remains unused, due to our choice of the
prediction strategy.

As we can see, these data points provide a generic way to compare
different prediction strategies and measure their robustness and
accuracy. An aggressive prediction strategy would have less unused
reserve capacity, but may lead to more unavailable cores and minutes.
On the other hand, a conservative prediction may avoid the situation
of unavailable capacity for resumed DBs, at the cost of higher
unused reserve capacity.

As we show in our experimental evaluation, this comparison helps
in making a choice of how aggressive or conservative we wish to be,
with our forecasting. At the end of the validation phase, the results
are consolidated, and the sliding window moves ahead by a week.
The entire forecasting process is repeated similarly.

6. RESULTS
We now present the results for our two stated problems in Sec-

tion 3: (1) finding the right policy, and (2) how to properly forecast
reserve capacities. These results are based on our analysis over
the production traces of performance telemetry from two clusters
over three months ending January 31st, 2016. One of the clusters is
located in the US and the other cluster is located in Europe (denoted
EU). Each of these datasets contains trillions of rows.

We note that the EU cluster has roughly four times more nodes
than the US cluster and the EU cluster has a higher proportion of
Basic and Standard DBs to Premium DBs in the population than
the US cluster. For our model, we assume a one minute quiesce
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(a) Reclaim Potential (US) (b) Cost of Reserve (US) (c) Resume Cost (US)

(d) Reclaim Potential (EU) (e) Cost of Reserve (EU) (f) Resume Cost (EU)

Figure 8: The total reclaim potential, reserve capacity cost, and resume cost for the US (a)-(c) cluster and the EU (d)-(f) cluster over
a three month period as we vary the policy P (T ). Y-axis units are in millions of core minutes.

Figure 9: US cluster total Net Reclaim Potential over three
months.

and resume latency. Our analysis framework is implemented using
SQL Server 2016 with R integration. Throughout the remaining
discussion, we will highlight some key observations to take away.

6.1 Problem 1: Finding the Right Policy
In Section 5.1, we described three different metrics for our quies-

cence model: the reclaim potential, the reserve capacity cost, and
the resume cost. By combining these 3 component metrics, we can
determine the net reclaim potential per quiescence policy based on
Equation 1, which answers problem 1.

6.1.1 Component Metrics
In Figures 8, for each metric, for each quiescence policy P (T ),

we present the totals over the entire three month period as we de-
scribed in 5.2. First, we consider the trend of reclaim potentials for
each of the clusters shown in Figures 8(a) and (d). In both clusters,
we see that the reclaim potential increases as we drop the policy

Figure 10: EU cluster total Net Reclaim Potential over three
months.

length (increase idle sensitivity) from 7 days to 1 hour. The EU
cluster (d) has substantially more Basic and Standard databases than
the US (a) cluster and this visibly translates to a significantly higher
reclaim potential. Perhaps what’s interesting is the fairly linear in-
crease in the measure as we change the policy’s length non-linearly,
which leads us to our first observation.

Observation 1: The amount of reclaimable capacity increases
at a disproportionately higher rate as we decrease the quiescence
policy (increase the idle sensitivity.)

However, we see that the rate of the increase in the reclaim po-
tential between the two clusters is different: the relative difference
between 7 day and 1 hour is 30% for the US cluster and almost 50%
for the EU cluster.

Next, we examine the reserve capacity costs for the US and EU
clusters (Figures 8(b) and (e) respectively). We see that both the 7
and 5 day policies for both clusters require relatively small reserve
capacities. This is because with long policy lengths that span work
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Figure 11: Distribution of the weekly cost of reserve capacity
for the US cluster, for different quiescence policies. Y-axis units
are in millions of core minutes.

weeks, the analysis can no longer pick up on work week patterns.
We observed this in Figure 5 where we saw virtually no periodicity
in the Quiescent state in the 7 and 5 day policies. With the relatively
linear trends in the quiescent state, indicating minimal net database
churn, we don’t need significant reserve capacity.

Observation 2: As we decrease the policy length P (T ), drop-
ping shorter than the typical 5 day work week, (or other temporal
patterns,) requires a substantial increase in reserve capacity.

Finally, in our examination of Figure 8, we look at resume costs
as described in Section 5.1.3.What we immediately observe is that
the results for the US (c) and EU (f) clusters look almost exactly
the same except for the change in scale. Since this analysis is
somewhat analogous to a histogram analysis on the idle periods
of cloud databases, this indicates that despite the population size
difference between the two clusters, the broad usage patterns in the
populations are fairly similar.

Observation 3: We don’t see significant resume activity until the
policy length falls below 1 day indicating that if a database is idle
for a day, it is likely to remain idle for a prolonged period.

6.1.2 Net Reclaim Potential
As we previously described, to determine the best policy P (T )

for a given cluster, we must be able to consolidate the three metrics
presented in Figure 8 into the combined metric, the net reclaim
potential. We present the net reclaim potential for all eight policies
for both US and EU clusters in Figures 9 and 10 respectively.

It is important to see that even though in Figure 8(a) and (d), the
reclaim potential for the shortest (most sensitive) policy we tested
(1hr) was the highest for both clusters, this policy turns out to be
the worst when the costs (reserve capacity cost and resume cost) are
factored in. Furthermore, while we have included the resume cost
here, there are other potential complexities in the system that in-
crease with many databases constantly being quiesced and resumed.
Of course, the resume cost model is not only hypothetical, but also
conservative since the implementation of the resume operation will
determine its user experience impact.

Observation 4: The high reclaim potential associated with shorter
policies may not be able to overcome the potential cost of resume.

Finally, to directly answer problem 1, we find that the ideal policy
length (according to the net reclaim potential measure) for the US
cluster is 1 day while it is 5 days for the EU cluster. The 1 day policy
in the US cluster provides 18% greater net benefit than the 1 hour
policy and 6% greater benefit than the 7 day policy. In the EU cluster,

Figure 12: Distribution of the weekly cost of reserve capacity
for the EU cluster, for different quiescence policies. Y-axis units
are in millions of core minutes.

the 5 day policy provides over 150% higher net reclaimable capacity
over the 1 hour policy (owing to high resume costs, Figure 8(f)) and
8% more than the 7 day policy. The capacity reclaimed directly
translates to additional profit as we can host other databases that we
otherwise could not. Again, at billion dollar scale, such percentages
over the life-time of the cluster mean 100s of millions of dollars in
savings.

6.2 Problem 2: Forecasting and Evaluation
Now, we consider the problem of forecasting the reserve capacity.

We first describe the characteristics of reserve capacity, and then
show our results of comparing various prediction strategies.

6.2.1 Reserve capacity characteristics
In order to forecast reserve capacity, it is important to understand

the characteristics of the reserve capacity requirements in a cluster.
In particular, it is useful to observe the variability of the required
reserve capacity over time. We have therefore computed the cost
of reserve on a weekly basis for the 3 month period. Figure 11 and
Figure 12 show the distribution of these costs for the US and EU
cluster respectively, for different quiescence policies.

The box and whisker diagrams of Figure 11 and Figure 12 depict
the following information. The bottom and the top of each box are
the first and third quartile respectively, and the band inside the box
represents the median. The lower and upper ends of the whiskers
represent the data points within 1.5 times the inter-quartile range of
the lower and upper quartiles, respectively. The small circles depict
the data points outside the whiskers, and represent outliers.

Observation 5: Irrespective of the quiescence policy chosen, the
reserve forecasting has to be able to accommodate the variability
observed in the cost of reserve capacity. We can also observe that
the characteristics drastically vary across clusters, implying that the
predictions have to be cluster dependent as well.

6.2.2 Comparing prediction strategies
We now show the results of our evaluation and comparison of

various prediction strategies for forecasting reserve capacity. As
described in Section 5, we have performed cross validation with
a 2:1 training-validation ratio. During the validation phase, we
play out the time series by using the predicted reserve capacity
(Section 5.3.2) and capture information about the state of the cluster
that helps in evaluating prediction strategies.
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(a) Unavailable Cores (US) (b) Unavailable Minutes (US) (c) Unused Reserve (US)

(d) Unavailable Cores (EU) (e) Unavailable Minutes (EU) (f) Unused Reserve (EU)

Figure 13: The total unavailable cores (in millions), unavailable minutes (in thousands) and unused reserve capacity (in millions of
cores) for the US (a)-(c) cluster (with quiescence policy P (1day)) and the EU (d)-(f) cluster (with quiescence policy P (5day)) over a
three month period as we vary the prediction strategy.

Based on the observations we made in Section 6.1 for Problem 1,
we have chosen the 1 day quiescence policy for the US cluster and
the 5 day quiescence policy for the EU cluster. We have considered
5 prediction strategies as given by Equation 6. Figures 13 show the
results of comparing the 5 strategies based on the metrics given in
Section 5.3.2, aggregated over the entire 3 month period. The value
Trainmax in Equation 6 is denoted as “Max” in Figures 13.

Figures 13(a) and (d) show the unavailable cores for different
prediction strategies for the US and EU clusters respectively, and
show similar trends.

Observation 6: The more aggressive the prediction strategy, the
higher the number of unavailable cores, and hence the higher the
number of DBs failing their resume.

The strategy “0.75Max” is the most aggressive among the strate-
gies we have considered, and leads to many DBs failing their resume
in both the clusters. The most conservative strategy is “1.75Max”,
which results in zero unavailable cores for both the clusters. Observe
that “1.25Max” and “1.5Max’ also lead to zero unavailable cores
for the US cluster, but non-zero values for EU. Figures 13(b) and (e)
show unavailable minutes (out of a total of 131,040 minutes), and
follow the same trends as Figures 13(a) and (d). Using “1.75Max”
on the EU cluster leads to zero unavailable time, but using “0.75Max”
leads to 6% unavailable time (Figure 13(e)), .

Next, consider Figures 13(c) and (f). They show the aggregated
unused reserve capacity over the 3 month period. Figure 14 and
Figure 15 show the distribution of unused reserve over time, for the
US and EU cluster respectively.

Observation 7: The more conservative the prediction strategy,
the more the unused reserve capacity, and hence the lower the
utilization of the cluster.

“1.75Max”, being the most conservative of the strategies we
consider, results in a lot of reserve capacity that remains unused. In
fact, the unused reserve for “1.75Max” is at least 4 times more than
that of “0.75Max” (the most aggressive strategy) in the US cluster.

Figure 14: Distribution of weekly unused reserve capacity for
the US cluster. Y-axis units are in millions of core minutes.

The differing variance across prediction strategies depicted in
Figures 13, 14, and 15 also serve to reaffirm Observation 5 – that
the policies and strategies chosen must be cluster dependent.

For instance, consider the US cluster (Figures 13(a)-(c)). Here,
“1.25Max” is the best strategy to use, since it is always safe (i.e., zero
unavailable cores in 3 months), and it uses the least reserve capacity
compared to the more conservative predictions. However, this strat-
egy is clearly not the right one for the EU cluster (Figures 13(d)-(f)),
where “1.75Max” is the safest strategy. Also, observe that “Max”
itself is not a safe enough forecast for either of the clusters. This is
not surprising, given the growing number of DBaaS adoptions.

7. FUTURE WORK
In the context of this work, we believe there are at least two main

categories of future work: (1) complex quiescence policies; and (2)
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Figure 15: Distribution of weekly unused reserve capacity for
the EU cluster. Y-axis units are in millions of core minutes.

pre-emptive resume. As we saw, even basic static policies can be
very effective in reclaiming capacity. However, we did not consider
dynamic policies or policies for sub-groups of user databases. As
opposed to a static policy, a dynamic policy may change the idle
length window depending on factors such as the time of the year or
statistics of the user population. Furthermore, we employed a single
policy for all databases whereas a more sophisticated scheme may
consider classifying databases for different policies.

Another avenue of work involves attempting to pre-emptively
provide resources and capacity to a database even before it needs
it. In this way, we will not need to wait for a login or a query
to be submitted before we decide to “resume” the database. This
work can involve enhancing the mechanism, or the policy, or both.
Determining when and which databases to resume, is an interesting
area of future work.

8. CONCLUSIONS
In this paper, we described real-world problems that arise from

over-booking databases onto a database-as-a-service cluster. We
discussed these problems in the context of a simplified quiescence
mechanism of detaching a database from its database engine process
to reclaim cluster capacity. The problem is having to set aside
reserve capacity to mitigate changes in the aggregate user behavior
and handling databases that need to be resumed. In our work, we
explored the policies that we may put in place to control the use
of this mechanism as well as developed an analysis model and
several metrics for evaluation of our scheme. The broader take-
aways from our work are that, first, we must examine each cluster
independently to determine the ideal policy to employ as the volume
and usage patterns of the users vary. We showed that the benefits of
choosing the right policy over a less-optimal one can very significant
considering the scale at which we are operating. Secondly, if we
continuously study historical data, we can provide accurate forecasts
of the necessary amount of reserve capacity for the near future. This
is required in order to to adapt to changes in the user population,
the service offering, and even the infrastructure. We believe that
this paper represents key steps towards capacity optimization in the
cloud with many others still to follow.
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