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ABSTRACT
Windowed aggregates are a SQL 2003 feature for computing
aggregates in moving windows. Common examples include
cumulative sums, local maxima and moving quantiles. With
the advent over the last few years of easy-to-use data ana-
lytics tools, these functions are becoming widely used by
more and more analysts, but some aggregates (such as local
maxima) are much easier to compute than others (such as
moving quantiles). Nevertheless, aggregates that are more
difficult to compute, like quantile and mode (or “most fre-
quent”) provide more appropriate statistical summaries in
the common situation when a distribution is not Gaussian
and are an essential part of a data analysis toolkit.

Recent work has described highly efficient windowed im-
plementations of the most common aggregate function cat-
egories, including distributive1 aggregates such as cumula-
tive sums and algebraic aggregates such as moving averages.
But little has been published on either the implementation
or the performance of the more complex holistic windowed
aggregates such as moving quantiles.

This paper provides the first in-depth study of how to effi-
ciently implement the three most common holistic windowed
aggregates (count distinct, mode and quantile) by reusing
the aggregate state between consecutive frames. Our mea-
surements show that these incremental algorithms generally
achieve improvements of about 10× over näıve implementa-
tions, and that they can effectively detect when to reset the
internal state during extreme frame variation.

1. INTRODUCTION
Window functions (also known as analytic OLAP func-

tions) are defined by the SQL:2003 standard and imple-
mented to varying degrees by a number of database systems
([1, 2, 3, 4, 5, 16, 19, 6]). Moreover, in addition to these back
end database systems, a number of user–facing data analysis

1These terms are defined in Section 2.2
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tools ([7, 8]) provide analogues for many of these SQL func-
tions as part of their analytic environment. SQL interface
tools such as SQLShare [17] also provide window functions
in response to significant demand for them in scientific data
analytics.

Window functions can be used to perform a number of
analytically useful calculations such as rankings, cumula-
tive sums and moving statistical summaries. While this
functionality can often be implemented in earlier versions
of SQL, such implementations are extremely complex.

Traditional windowed aggregates (such as moving aver-
ages) are well suited to Gaussian data distributions where
the average is the same as the median and the mode, but
real world data sets often present more interesting distribu-
tions where the median and mode are not the same as the
average. To track how such distributions move over time,
an analyst needs access to more appropriate statistical sum-
maries, such as modes and quantiles.

Implementations of windowed versions of such aggregates
are almost non-existent. We were only able to verify im-
plementations for windowed median in Oracle and HANA.
Oracle also has limited support for windowed quantile and
count distinct, but only implemented partitioning, and
the aggregate was computed over the entire partition. Mov-
ing windowed quantile and count distinct are not sup-
ported. No database or research system in our survey had
support for windowed mode.

As a result, we have implemented three of the most impor-
tant holistic aggregates: count distinct, mode and discrete
quantile. These aggregates are problematic to implement
efficiently as simple aggregates, and windowed versions are
even more challenging. Previous work on efficient windowed
aggregation done by Lies et al. [20] focussed on the tradi-
tional aggregates. Our work builds on theirs by adding win-
dowed implementations of these more difficult aggregates.
We show that careful reuse of traditional aggregation data
structures in the windowing environment can lead to signif-
icant performance gains over simply calling the database’s
existing aggregate function in each window. Specifically our
contributions include:

• Multiple algorithms for efficiently implementing the
most common holistic aggregates;

• Rules for choosing between these algorithms;

• Measurements showing a range of performance gains
ranging from 1.5x to nearly 200x over the näıve imple-
mentations.
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The rest of the paper is organised as follows. Section 2
provides some detailed background on window functions ter-
minology. Sections 3 through 5 provide details of the al-
gorithms for count distinct, mode and discrete quantile.
Our experimental results are presented in Section 6. We
then discuss related work in Section 7 and conclude in Sec-
tion 8.

2. BACKGROUND
Window functions were introduced in SQL 2003 to ac-

commodate complex analytical tasks, because such compu-
tations are typically extremely difficult if not impossible to
implement in older versions of SQL. When it is possible,
the implementations often involve features such as recursive
queries and self-joins, and are quite verbose.

In order to appreciate the complexity of windowed aggre-
gation functions, we need to first describe the computation
environment of different classes of SQL functions, including
window functions. We also need to understand the com-
plexity of different aggregation types because we will be dis-
cussing windowed aggregates of the most complex type.

2.1 Computation Environments
SQL functions can be grouped by their computation en-

vironment into the following three classes:

• Tuple functions, whose computation environment is
a single tuple. These functions combine existing at-
tributes in the current tuple to compute a new at-
tribute in the same tuple. Examples include arithmetic
operations such as (A+B), and data manipulation func-
tions such as year(ShipDate).

• Aggregate functions, whose computation environment
is a set of tuples defined by a common grouping key.
These functions combine multiple values of a single
attribute that share a common set of values for the
grouping attributes. Examples include sum(Sales)

... group by State, City and median(Delay) ...

group by Sensor.

• Window functions, whose computation environment is
a set of adjacent tuples. These functions compute a
new attribute for each row by combining values from
neighboring rows, where “neighboring” is defined by a
partitioning, an ordering and a frame. Examples in-
clude rank() over (partition by Sport order by
Score desc) and avg(Sales) over (partition by
Team order by Date rows between 3 preceding
and 3 following

¯
).

The environment for Window functions is by far the most
complex and consists of three levels as shown in Figure 1.

• The tuples being processed are first partitioned into
disjoint groups based on 0 or more partition keys.

• The tuples in each partition are then ordered by sorting
the partition on 0 or more sorting keys.

• Finally, each window function can specify a subset of
the partition called a frame that restricts the compu-
tation to a consecutive set of rows within the ordered
partition.

Copyright © 2003-2016 Tableau Software, Incorporated.  All Rights Reserved. 
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Figure 1: The Window Computation Environment

Frames are specified using a number of tuples preceding
or following the tuple whose value is being computed. In
addition to a number of tuples, frame edges can also be un-
bounded. When both edges are unbounded, then the frame
degenerates into the entire partition.

As a concrete example of a windowed aggregate, consider
the computation given above by avg(Sales) over (parti-
tion by Team order by Date rows between 3 preced-
ing and 3 following

¯
). This function computes a moving

average of sales data for each team over time. Partitioning
by team keeps different teams’ sales data separate. Order-
ing by date specifies the time series for the moving average.
The rows preceding/following clause defines the aggrega-
tion frame and restricts the moving average to a seven-day
window.

Frames can also be specified using ranges of values relative
to the current value of the (single) ordering column. Range
frames can be converted to row frames by using either for-
ward scans (for fixed frames) or by using binary search (for
variable frames). Framing mode is independent of the type
of aggregate being computed, so we will assume from this
point on that we are using row framing.

Not all window functions specify frames, and aggregates
in particular can be either framed or unframed. Neverthe-
less, we can implement unframed aggregates by simply using
the framed aggregate with a frame specification that is un-
bounded at both ends. Unframed aggregates produce only
one value for the entire frame, and as optimising this is triv-
ial, we will assume from this point on that all aggregates are
using bounded framing.

2.2 Aggregate Complexity
Aggregate functions have traditionally [14] been grouped

into three categories based on their complexity:

• Distributive aggregates are those whose computation
can be “distributed” and recombined. Common exam-
ples of distributive aggregates include sum and max.

• Algebraic aggregates are those whose computation is
a simple algebraic function of the data and other ag-
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gregates. Common examples of algebraic aggregates
include average and variance.

• Holistic aggregates are those whose computation re-
quires looking at all the data at once, and hence their
evaluation cannot be decomposed into smaller pieces.
Common examples of holistic aggregates include count
distinct and median.

Holistic aggregates are the most difficult to compute ef-
ficiently because they cannot be decomposed into smaller
pieces. All of the aggregates we consider here (i.e. count

distinct, mode and quantile) are holistic.

2.3 Previous Work
Window functions are a relatively new feature of SQL, but

research on their optimisation is growing. The first research
publication on how to optimise window function queries is
given by Cao et al. [9]. Their work examines how to optimise
multiple window functions with different window definitions.
They propose multiple physical Window operators based on
the partitioning and sorting state of the previous window,
including the traditional Full Sort and two new operators
called Hashed Sort and Segmented Sort. Our work is based
on improving the performance of the Hashed Sort operator.

The most relevant previous work is the implementation of
a Window operator proposed by Leis et al. [20], and imple-
mented in HyPer [18], an in-memory database system. They
provided implementations of a number of important window
functions using a block–style interface, where multiple rows
are processed in a single call. They also present multiple al-
gorithms (such as Removable Cumulative Aggregation) and
acceleration structures (such as Segment Trees) for comput-
ing windowed aggregates. However, the aggregate window
functions they discuss are limited to distributive and alge-
braic aggregates such as sum and average. The goal of our
work is to extend the class of windowed aggregates to include
the most common holistic aggregates, and to show how to
compute them relatively efficiently.

The HyPer Window operator is similar to the Hashed Sort
operator from [9] and is highly scalable. Their implemen-
tation first partitions the windowed table by hashing the
partition keys into a fixed number (1024) of bins and then
sorts each bin on both the partition and sort keys. We have
based our Window operator on this model.

2.4 Our Implementation
We implemented our Window operator in the Tableau Data

Engine (TDE) [23], a block-iterated column store used in
the Tableau product suite. The TDE uses a traditional
Volcano [13] operator tree for execution. The physical op-
erator family consists of materialising (stop-and-go) opera-
tors called Tables and non-materialising (iterating) opera-
tors called Flows. The Window operator was implemented as
a Table operator that consumes another Table operator as
input.

During the hash partitioning phase of Window, we use 256
hash buckets because we materialise the column containing
the hash values and this choice allows us to materialise a
column that is only one byte wide, which reduces the mem-
ory overhead by a factor of two. This value is at the low end
of the bucket count “sweet spot” from Figure 9 in [20], and
our evaluation in Section 6.2 shows that this choice does not
impact performance.

Frame Data Result
0 [3 4 3 2] 7 2 5 4 3
1 3 [4 3 2 7] 2 5 3 4
2 3 4 [3 2 7 2] 5 3 3
3 3 4 3 [2 7 2 5] 3 3
4 3 4 3 2 [7 2 5 3] 4

Table 1: Count Distinct Example

The block–iterated interfaces used in the TDE are simi-
lar to the interfaces used by HyPer, and this design makes
it easy to share state between consecutive frames for incre-
mental evaluation of windowed aggregates.

For historical reasons, our sort code is a standard intro-

sort [21] with parallel sub-sorts, which has been adapted to
sort pairs of columns. We call out the implications of this
in the discussion in Section 6.

3. WINDOWED COUNT DISTINCT
The first holistic aggregate we will investigate is count

distinct. Consider the following SQL query which uses
this aggregate:

select State , count ( distinct Department )
from Sa l e s
group by State

This query returns the number of unique departments
that made sales in each state. States that have a low num-
ber may need to have more marketing resources devoted to
them to improve sales.

We could implement this functionality in terms of simpler
SQL operations by using a nested query:

select State , count (∗ )
from ( select State , Department

from Sa l e s
group by State , Department )

group by State

This two-level implementation works well for a single use
of count distinct, but if there is more than one (e.g. we
added a count distinct of customers to provide context),
then each count will have to be computed separately using
a variant of this two-level query and then explicitly joined
back to the main query on State:

select State , DeptCount , CustCount
from(

select State group by State as S
l e f t join (
select State , count (∗ ) as DeptCount
from ( select State , Department

from Sa l e s
group by State , Department )

group by State ) as D
on (S . State = D. State )
) l e f t join (
select State , count (∗ ) as CustCount
from ( select State , Customer

from Sa l e s
group by State , Customer )

group by State ) as C
on S . State = C. State
)
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Algorithm 1 Näıve Count Distinct

1: procedure NaiveCountFrame(counts, values, F )
2: counts← {}
3: for f ∈ F do
4: counts[values[f ]] += 1
5: end for
6: end procedure
7:
8: procedure NaiveCountD(result, values, frames)
9: counts← {}

10: for i ∈ [0, |result|) do
11: F ← frames[i]
12: NaiveCountFrame(counts, values, F )
13: result[i]← |counts|
14: end for
15: end procedure

This approach generates two hash tables per aggregate
(one for the group by and one for the join) and rapidly be-
comes unwieldy. Because of this complexity, count distinct

is sometimes implemented as an aggregate function that uses
a single hash set per row as the aggregate state. The hash
set tracks the unique elements of the domain that have been
seen and the final result is simply the size of the hash set.
This approach only requires one hash table per aggregate,
reducing complexity and increasing performance. It also is
much easier to implement in a windowing context because
we do not need to create aggregates and joins for every row
in the output.

3.1 Naı̈ve Count Distinct
The simplest windowed algorithm for count distinct is

to use a hash set as in the aggregate function state imple-
mentation and clear it at the start of each frame. We call
this algorithm Näıve Count Distinct and it is shown as Al-
gorithm 1.

In our implementation, we try to reuse the main hash set
memory, but the content buckets are freed for each frame.

3.2 Incremental Count Distinct
To compute the next count distinct value, we may be

able to reuse the hash table from the previous frame. Con-
sider the example in Table 1 with a 4-element wide frame.
There are 3 distinct values in the brackets of Frame 0.

When we move the frame one element to the right to
Frame 1, we remove a 3 on the left but there is still one
remaining, and we also added a new value (7) on the right,
so the new count of distinct values is 4. The second 3 will
remain in the window for one more frame before being re-
moved.

We can model this incremental change by tracking not
only the values, but their counts using a hash map. When-
ever we move to the next frame, we then only have to update
the hash map counts for the values that are removed and
those that are added. We call this algorithm Incremental
Count Distinct and it is shown as Algorithm 2.

In the example, we have used a single frame that moved by
one element each time, but frames can be variable width and
the changes between consecutive frames can be more than a
single element at each end. Nevertheless, each frame consists
of a single interval F , so two consecutive frames P and F are
either disjoint, or there are two (possibly empty) intervals
that belong either to F \P or P \F . If the consecutive frames

Algorithm 2 Incremental Count Distinct

1: procedure Increment(nonzero, counts, value)
2: if value ∈ counts then
3: counts[value] += 1
4: else
5: counts[value] = 1
6: nonzero += 1
7: end if
8: end procedure
9:

10: procedure Decrement(nonzero, counts, value)
11: counts[value] −= 1
12: if counts[value] = 0 then
13: nonzero −= 1
14: end if
15: end procedure
16:
17: procedure IncrementalCountD(result, values,

frames)
18: P ← [0, 0)
19: counts← {}
20: nonzero← 0
21: for i ∈ [0, |result|) do
22: F ← frames[i]
23: if nonzero ≤ τ · |counts| then
24: NaiveCountFrame(counts, values, F )
25: nonzero← |counts|
26: else
27: for f ∈ F \ P do
28: Increment(nonzero, counts, values[f ])
29: end for
30: for f ∈ P \ F do
31: Decrement(nonzero, counts, values[f ])

32: end for
33: end if
34: result[i]← nonzero
35: P ← F
36: end for
37: end procedure

are disjoint, then we can fall back to the näıve algorithm,
but if not we can increment the counts for the added frame
values in P \ F at Line 28 and then decrement the counts
for removed frame values in F \ P at Line 31. The result is
then the number of non-zero counts.

3.3 Autocorrelation
Suppose now that we have just moved to Frame 3, where

the second 3 has just been removed. In this situation, we
can either delete the hash table bucket or leave it with a
count of 0. If the domain being aggregated is uncorrelated
with the ordering dimension, such as counting distinct ZIP
codes for a time window in a data warehouse, then we want
to retain buckets that become empty because we are likely
to use them again soon. In our example, we can see that
3 is about to be reused in Frame 4, so freeing and then
reallocating the bucket a short time later is going to reduce
performance.

Conversely, if we are counting a domain that is highly cor-
related with the ordering dimension, such as counting ship
dates over that same time window, then we want to delete
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Frame Data Result Count
0 [c d c b] g b e d c 2
1 c [d c b g] b e d (g) 1
2 c d [c b g b] e d b 2
3 c d c [b g b e] d b 2
4 c d c b [g b e d] (d) 1

Table 2: Mode Example

buckets that become empty because they are wasting space
in the hash table. In our example, this would correspond to
having the numbers tending to increase over time.

We adaptively detect these two scenarios during the win-
dowing operation by comparing the number of empty buck-
ets to the total size at Line 23 and flushing the hash table
when the ratio reaches a threshold τ . Note that setting
τ ← 1 reduces the algorithm to Näıve Count Distinct. In
Section 6.3 we determine empirically that 0.25 is a good
value for τ .

However, τ is an imperfect parameter because it cannot
distinguish between true autocorrelation and a low frame
size to domain size ratio. If the window size is smaller than
the domain size (e.g. 10 and 100 respectively) then τ > 0.1
would trigger a flush, even though the hash table will never
grow larger than 100 entries. This is impossible to deter-
mine without knowing the domain size a priori, because
that domain size is effectively what we are calculating. Our
measurements in Section 6.3 show, however, that even with
this imperfect rule, the performance with flushing is better
than always clearing. Future work is needed in this area,
and one simple heuristic is to not flush hash tables up to a
certain size e.g. half of the L1 cache.

3.4 Frame Reordering
It is tempting to consider whether one could reorder the

frames in such a manner as to provide maximum overlap be-
tween frame computations, but determining this reordering
is NP-Hard (see the Appendix A for details.) A heuristic
approach to frame reordering may be a promising area for
future work, but it is beyond the scope of this paper.

4. WINDOWED MODE
The next aggregate we shall consider is mode. Recall that

the mode of a distribution is the most common value and
consider the following SQL query:

select State , mode( Department )
from Sa l e s
group by State

This query returns the Department with the highest trans-
action volume for each State. The result could be used to
bootstrap a system where departments with expertise in par-
ticular states can be enlisted to help other departments im-
prove their sales through consultation with the local experts.

Implementing a single mode aggregate by using elementary
SQL constructs is quite complex and involves multiple self-
joins (Appendix B). The implementation presented there
uses five hash tables to compute the mode value, and would
require a sixth to join back to the fact table were other
aggregates requested.

Due to this complexity, it is generally preferable to im-
plement mode by using an aggregate function with internal

state. This state is similar to that for count distinct but
a hash map from the values to the counts is maintained
for each aggregate state, together with the maximum count
and the corresponding value. The final result is the value
corresponding to the largest count seen so far.

Algorithm 3 Näıve Mode

1: procedure ModeAdd(mode, nonzero, counts, value)
2: counts[value] += 1
3: count← counts[value]
4: if count = 1 then
5: nonzero← nonzero+ 1
6: end if
7: if count >= mode.count then
8: mode.valid← true
9: mode.value← value

10: mode.count← count
11: end if
12: end procedure
13:
14: procedure ModeRm(mode, nonzero, counts, value)
15: count← counts[value]
16: if count = 1 then
17: nonzero← nonzero− 1
18: end if
19: counts[value] −= 1
20: if count == mode.count && value = mode.value

then
21: mode.valid← false
22: end if
23: end procedure
24:
25: procedure NaiveMode(result, values, frames)
26: for i ∈ [0, |result|) do
27: F ← frames[i]
28: mode.count← 0
29: counts← {}
30: nz ← 0
31: for f ∈ F do
32: ModeAdd(mode, nz, counts, values[f ])
33: end for
34: result[i]← mode.value
35: end for
36: end procedure

4.1 Naı̈ve Mode
The simplest windowed algorithm for mode is to use a hash

map containing counts (as in the aggregate function state
implementation) and clear the map for each frame. We call
this algorithm Näıve Mode and it is shown as Algorithm 3.
In our implementation, we reuse the main hash table mem-
ory, but the content buckets are freed each time. Note that
we update the mode at Line 7 even when the counts are
equal because we do not check the valid flag. This function-
ality will be used in the next section.

4.2 Incremental Mode
When we move to the next mode frame, we may be able

to reuse the hash map from the previous frame, along with
the previous result value and its count. To illustrate the
process, we use the example data from Table 2
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At Frame 0, we have determined that the mode is c with
a count of 2. When we move to Frame 1, we lose one of
the c values, so we no longer have a valid mode. Moreover,
any new value that gets added cannot be guaranteed to be a
valid mode unless its count exceeds that of the previous mode.
Since g is a new value that has never been seen before, it
only has a count of 1 so we cannot assume that it is the new
mode. When we have processed all the new values and not
found a new valid mode, we then have to rescan the hash
map to find a new mode with a smaller count. Since all the
counts are 1, we simply choose the last one that we see (g).

When we move to Frame 2, we remove d (which is not the
current mode) and then add a new value b that is already in
the hash map with a count of 1. This is greater than the
count for the previous mode, so we know that we have a new
valid mode without having to rescan the hash map.

We call this algorithm Incremental Mode and present it
as Algorithm 4.

The algorithm first goes through the subrange of the pre-
vious frame that lies outside the current frame (P \ F ) at
Line 15 and decrements the counts of those values (possibly
to zero). If the counts before decrementing and the values
are the same, then we have “lost track” of the real mode
because we no longer know whether there is another value
in the hash table that also had the same count. In this situ-
ation, we mark the mode as invalid at Line 21, but we retain
the count in case we exceed it in the next step.

Once we have removed all the values from P \F , we start
adding in new values from F \ P at Line 18. If this process
ever generates an updated count for a value that exceeds
the count determined by the previous frame, then this is a
new valid mode candidate, and we can start tracking again
as in the näıve algorithm. If we never generate such a new
mode candidate, then take a full pass over the hash table at
Line 24 to find the new mode.

Just as with Incremental Count Distinct, we have the
choice between deleting or keeping buckets with counts of
0 when there is autocorrelation. To detect this, we again
track the number of non-zero buckets and use τ to deter-
mine the flushing threshold. In Section 6.3 we determine
empirically that 0.25 is again a good value for τ .

4.3 Comparison to Count Distinct
The incremental versions of both count distinct and

mode use the same data structure (a hash map from value
to count) but they differ in one important respect: While
count distinct can always produce its result after the hash
map update process, mode may need to be re-derived if the
old mode is removed from the frame and the new mode is
not created by the new additions to the frame. In theory,
this re-derivation can reduce the performance of mode rel-
ative to count distinct by a large amount. Consider the
case where only one value is changed in a large hash table,
but that value happens to be the previous mode. The en-
tire hash table would then have to be re-scanned to generate
the new mode, which results in quadratic behaviour. In our
measurements, we only found a drop off of about 10%, but
future work may be able to quantify this more accurately.

5. WINDOWED QUANTILES
The two aggregates we have just discussed are quite simi-

lar in their implementation, but we move now to continuous

Algorithm 4 Incremental Mode

1: procedure IncrementalMode(result, values,
frames)

2: counts← {}
3: nz ← 0
4: P ← [0, 0)
5: for i ∈ [0, |result|) do
6: F ← frames[i]
7: if nz ≤ τ · |counts| then
8: counts← {}
9: nz ← 0

10: mode.count← 0
11: for f ∈ F do
12: ModeAdd(mode, nz, counts, values[f ])
13: end for
14: else
15: for f ∈ P \ F do
16: ModeRm(mode, nz, counts, values[f ])
17: end for
18: for f ∈ F \ P do
19: ModeAdd(mode, nz, counts, values[f ])
20: end for
21: end if
22: if not mode.valid then
23: mode.count← 0
24: for c ∈ counts do
25: if c.count > mode.count then
26: mode.valid← true
27: mode.value← c.value
28: mode.count← c.count
29: end if
30: end for
31: end if
32: result[i]← mode.value
33: P ← F
34: end for
35: end procedure

and discrete quantile, which require a significantly different
approach.

The most common approach for computing quantile ag-
gregates is to use a variant of Floyd and Rivest’s QuickSelect
algorithm [12] for finding the kth element in a list of N ele-
ments. This is algorithm is O(N) in the number of elements
being selected from, and has the side effect of partially sort-
ing the list, so that all values less than the selected value end
up to the left of it and all values greater end up to the right
of it. For reference, we have provided qselect and its utility
function partition as Algorithm 6 and Algorithm 5 respec-
tively. Note that the versions given here include indirection
to avoid modifying the values array.

5.1 Discrete Quantiles
The discrete quantile aggregate function has the signa-

ture quantile(expression, fraction) where fraction is a real
number varying between 0 and 1. It computes the value clos-
est to a given fractional position in the naturally ordered val-
ues of the expression (including duplicates.) For example,
given a set of expression values (0, 0, 2, 3, 4, 5, 6, 7, 8, 8, 10)
and a fraction of 0.2, the corresponding quantile value is
2. Setting fraction equal to 0.5 implements the discrete
median aggregate (which has the value 5 in the example).
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Algorithm 5 Partition

1: function partition(values, index, l, r, p)
2: v ← values[index[p]]
3: index[p]↔ index[r]
4: s← l
5: for i = l, i < r, i← i+ 1 do
6: if values[index[i]] < v then
7: index[s]↔ index[i]
8: s← s+ 1
9: end if

10: end for
11: index[s]↔ index[r]
12: return p
13: end function

Algorithm 6 QuickSelect

1: procedure qselect(k, values, index, l, r)
2: while l < r do
3: select p ∈ [l, r)
4: p← Partition(values, index, l, r − 1, p)
5: if k = p then break
6: else if k < p then
7: r ← p
8: else
9: l← p+ 1

10: end if
11: end while
12: end procedure

Discrete quantile can be easily implemented using Quick-
Select by converting the quantile value into the index k.

5.2 Continuous Quantiles
It is often the case, however, that the quantile dividing

point is not an integral index into the list of values. The
simplest example happens when computing the median of
an even number of values. For categorical domains (like
strings) we have to choose a value on one side or the other
of the “true” quantile, but for continuous domains (such as
real numbers) we have the option of averaging the two values
on either side of the true value. This average is called the
continuous quantile function. Working from the example
above, if we were to remove the last value from the list, then
the median would fall between 4 and 5 and the continuous
quantile would be 4.5.

From a computational point of view, however, when the
result of the continuous quantile differs from the discrete
quantile (because the quantile element falls between two
other elements), it suffices to perform two discrete quantile

computations and average the results. Moreover, we can
search for the first candidate k such that the other element k′

would be in the smaller of the intervals [0, k) and (k,w− 1].
Selecting k′ from its interval consists of searching for the
max (resp. min) value in that interval.

Searching for a simple extreme like this is twice as fast as
QuickSelect (there is no iteration), and assuming that the
cost of the few arithmetic instructions used in the averaging
operation is negligible, we can see that computing a con-
tinuous quantile is O(w) + 1

2
O(w/2) or roughly a factor of

1.25. Thus the implementation of continuous quantile can
be expressed in time-bounded terms of the discrete solution,

and without loss of generality, we can restrict our attention
to the discrete case for the rest of this discussion.

Algorithm 7 Näıve Quantile

1: procedure NaiveQuickSelect(result, values,
quants, frames)

2: for i ∈ [0, |result|) do
3: F ← frames[i]
4: k ← bquants[i] ∗ (|F | − 1)c
5: index← []
6: j ← 0
7: for f ∈ F do
8: index[j]← f
9: j ← j + 1

10: end for
11: qselect(k, values, index, 0, j);
12: result[i]← values[index[k]]
13: end for
14: end procedure

Algorithm 8 Quantile with Reuse

1: procedure ReuseQuantile(result, values,
quants, frames)

2: P ← [0, 0)
3: index← []
4: for i ∈ [0, |result|) do
5: F ← frames[i]
6: k ← bquants[i] ∗ (|F | − 1)c
7: ReuseIndexes(index, F , P )
8: qselect(k, values, index, 0, j)
9: result[i]← values[index[k]]

10: P ← F
11: end for
12: end procedure

5.3 Naı̈ve Quantile
For some applications the reordering caused by QuickSe-

lect may be acceptable, but if we use it to compute a win-
dowing aggregate, we need to restore the data to its original
order before we can compute the next value. We can avoid
this problem by sorting pointers (or indexes) to the values
instead of the values themselves.

The simplest implementation of quantile then is to build
an array of indexes for each window and then compute the
kth element using QuickSelect. We call this algorithm Näıve
Quantile and it is shown as Algorithm 7. In our implementa-
tion, we reuse the index array memory but not its contents.

Näıve Quantile is quadratic in the size of the frame and
the size of the partition, so we now investigate how reusing
the index could improve performance.

5.4 Quantile with Reuse
When we come to compute the next quantile value, we

don’t have to rebuild the index array from scratch. Instead,
we can simply scan the array, replacing any indexes that
have fallen out of the frame and inserting the new ones in
the holes. We call this algorithm Quantile with Reuse and
show it as Algorithm 8, but the bulk of the reuse logic is in
a utility function shown as Algorithm 9.
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Algorithm 9 Quantile Index Reuse

1: procedure ReuseIndexes(index, F , P )
2: j ← 0
3: for f ∈ [0, |P |) do
4: idx← index[f ]
5: if j 6= f then
6: index[j]← idx
7: end if
8: if idx ∈ F then
9: j ← j + 1

10: end if
11: end for
12: if j > 0 then
13: for f ∈ F \ P do
14: index[j]← f
15: j ← j + 1
16: end for
17: else
18: for f ∈ F [j :] do
19: index[j]← f
20: j ← j + 1
21: end for
22: end if
23: end procedure

The scan takes place at Line 3 and only starts shifting
indexes down at Line 6 when it has previously encountered
an index at Line 8 that is not in the new frame F . Once
the old frame indexes from P have been shifted down, we
can insert the new indexes from F at Line 13. If we did not
find any overlap, then we fall back to the NäıveQuickSelect
algorithm at Line 18

For highly variable frame sizes it may sometimes be worth
starting over when the intersection between the two frames
is small, but for frames that vary little, we can avoid large
numbers of cache writes by preserving as much of the exist-
ing index set as possible.

Another advantage of index reuse is that the values are
already partially ordered [15] when we move to the next
frame position. This in turn leads to better sampling of the
data for partitioning and fewer reordering operations.

In summary, Quantile with Reuse works best when there
is significant overlap between consecutive frames. The abil-
ity to reuse not only the indexes but their partial ordering
reduces the amount of work. This work is still O(W ), but
the constant can be significantly smaller.

5.5 Quantile with Replacement
In the fixed frame case, we typically replace only one value

as the window moves right one position. Fixed frames are
by far the most common frame type because varying the
size of a windowed statistical summary has limited utility.
In this situation it is extremely cheap to verify whether we
need to re-select at all. We call this algorithm Quantile with
Replacement and show it as Algorithm 11, but the main logic
is again in a utility function, this one shown as Algorithm 10.

The main algorithm checks for fixed frames at Line 8. If
it finds one, it uses the ReplaceIndex function. This first
scans for the new hole and breaks at Line 7 when it finds one.
It then checks whether the inserted value sorts before (resp.
after) the previous quantile and is inserted before (resp. af-
ter) it at Line 14. If either test succeeds, then the previous

Algorithm 10 Quantile Index Replacement

1: function ReplaceIndex(k, values, index, F , P )
2: same← false
3: j ← 0
4: for f ∈ [0, |P |) do
5: idx← index[f ]
6: if j 6= f then
7: break
8: end if
9: if idx ∈ F then

10: j ← j + 1
11: end if
12: end for
13: index[j]← F [−1]− 1
14: if k < j then
15: same← result[i− 1] < values[index[j]]
16: else if j < k then
17: same← values[index[j]] < result[i− 1]
18: end if
19: return same
20: end function

Algorithm 11 Quantile with Replacement

1: procedure ReplaceQuantile(result, values,
quants, frames)

2: P ← [0, 0)
3: index← []
4: for i ∈ [0, |result|) do
5: F ← frames[i]
6: k ← bquants[i] ∗ (|F | − 1)c
7: same← false
8: if |F | = |P | && P [0] + 1 = F [0] then
9: same← ReplaceIndex(k, values, index,
F , P )

10: else
11: ReuseIndexes(index, F , P )
12: end if
13: if same then
14: result[i]← result[i− 1]
15: else
16: qselect(k, values, index, 0, |F |)
17: result[i]← values[index[k]]
18: end if
19: P ← F
20: end for
21: end procedure

value is reusable. In the other cases, we have to re-select,
but because the data is already close to correct, the number
of operations is greatly reduced.

The primary benefit of Quantile with Replacement is that
it can avoid re-selecting roughly 50% of the time. Since
that is the most expensive step in the algorithm, avoiding
it has measurable performance benefits. In Section 6.5, we
show that this estimate is borne out in practice for larger
fixed frames with a the Replace algorithm showing a 2×
performance gain over Reuse.

6. EVALUATION
The algorithms proposed in this paper for count distinct,

mode and quantile have been integrated into Tableau Data
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Engine. In this section, we experimentally evaluate our im-
plementations. We attempted to compare our implemen-
tations with state-of-the-art commercial and open-source
database systems, but unfortunately, most systems do not
implement any windowed holistic aggregates. For the rest
that do implement some windowed holistic aggregates, we
experimented with them and found that the implementation
was incomplete (e.g. only partition keys with unbounded
frames were supported.) Therefore, it is not feasible to
compare our implementation with state-of-the-art commer-
cial or open-source database systems. In this section, we
first compare our implementation framework with the Hy-
Per implementation in [20] for non-holistic aggregates, and
use the result as the baseline to show the performance of our
implementations. The rest of the experiments focus exclu-
sively on a comparative performance study of our proposed
algorithms.

6.1 Experimental Setup
The experiments were performed with an Intel Xeon dual-

processor E5-2630 v2 with 12 cores (24 hardware threads)
at 2.6 GHz. The system has 32 GB of RAM and three SSD
drives. We used Windows 7 Enterprise SP1 as an operating
system and Microsoft Visual C++ 2013 as a compiler.

All our experiments were performed using 2-column 64-
bit integer tables of 10M rows with varying definitions for
the two columns for defining different partitioning (column
a) and ordering (column b) scenarios.

• The rank1 data set has a constant partition value, and
ordering values that are ascending, dense and unique.
The table is sorted on a hash of the ordering column.

• The rank100 data set has uniformly distributed set
of 100 partition values, and ordering values that are
ascending, dense and unique. The table is initially
sorted on the ordering column itself.

• The rank10M data set has two columns of ascending,
dense and unique values, but with different minimum
values. The table is initially sorted on the two columns.
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Figure 2: Scalability of rank queries

6.2 Window Operator Performance
In this section, we benchmark our implementation using

the experimental setup from [20] to demonstrate that we
correctly implemented their prior work on regular window
functions and windowed distributive aggregates. After this
validation, will proceed to an evaluation of our newer holistic

aggregates. The results were generally similar, so we restrict
our presentation to two representative experiments.

The first benchmark measures the scalability of our rank

implementation against multiple cores on the following query:

select rank ( )
over ( p a r t i t i o n by a order by b desc )

from rankP

The results are shown in Figure 2. Throughput measure-
ments are given in Million tuples per second (Mtps).

The resulting throughput is as expected (approximately
45 Mtps as in [20]), verifying the correctness of our imple-
mentation of the Window operator itself. The performance of
the rank1 data set appears to be bottlenecked by our colum-
nar sorting, which is most apparent when we have a single
partition.
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Figure 3: Performance of sum queries with constant
frame bounds for different frame sizes

The second benchmark measures the scalability of the sum
framed aggregate function using four algorithms with dif-
ferent frame sizes. For this benchmark and the remaining
experiments, we use the query:

select agg ( a ) over ( order by b asc rows
between W−1 preced ing and cur rent row )

from rank100

where agg is replaced by the aggregate under considera-
tion. The results are shown in Figure 3. The Näıve algo-
rithm uses a fixed width trailing frame. The Incremental al-
gorithm is a single value replacement algorithm, again with
a fixed trailing frame. The Segment Tree algorithm uses
precomputed segment trees as in [20] with a fixed trailing
frame. The Segment Tree (Variable) algorithm uses precom-
puted segment trees and a fixed size frame, but we perform
a simple pseudo-random integer computation to vary the
frame boundaries around each value:

select agg ( a ) over (
order by b asc
rows between mod( b ∗ p1 , p2 ) preced ing
and W − mod( b ∗ p1 , p2 ) f o l l o w i n g )

from rank100

The primes (p1 and p2) are chosen based on the frame
size, with p2 being roughly half of W and p1 being much
larger. The performance difference between the fixed and
variable segment tree runs is due to the frame computation
overhead.

As expected, the Incremental and Segment Tree algo-
rithms have performance that is roughly linear in the size of
the frame with throughput around 25Mtps [20].
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Having established our baseline performance, we turn now
to the evaluation of our new algorithms.
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Figure 4: Performance of count distinct queries
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Figure 5: Performance of mode queries

6.3 Count Distinct and Mode Evaluation
We compared the Näıve and Incremental algorithms for

both count distinct and mode by running them at both
fixed width trailing frames and pseudo-random frame starts.
The results are presented in Figure 4 and Figure 5 (note
that we have used log axes for Speedup here due to the
quadratic nature of the improvements.) With the high local-
ity of the fixed width trailing frames, we see little impact of
the window size upon throughput, and for pseudo-random
frame starts, we obtain significant performance gains over
the equivalent näıve measurements.

It is interesting to note that, even though only Incremental
Count Distinct can guarantee that the hash map will not be
rescanned, in practice Incremental Mode seems to provide
similar performance gains.
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Figure 6: Performance change with varying τ

6.4 Determination of Tau
We also performed some experiments to determine rea-

sonable values for τ (the hash table flushing threshold) in
both hash table algorithms. Because τ is driven by the level
of correlation between the window ordering and value being
counted, we used the unique ordering field b in the following
query:

select agg (b) over ( order by b asc rows
between W−1 preced ing and cur rent row )

from rank100

The relative performance of various frame sizes against τ
are shown in Figure 6. Values of τ greater than 0.0 and
less than 0.5 provide balanced trade-off between different
frame sizes. Values approaching 1.0 lead to highly degraded
quadratic performance with this data and were not mea-
sured. We have chosen 0.25 for our experiments.

The dip in Incremental performance at frame size 10 in
Figures 4 and 5 is caused by hash table flushing because the
ratio of the frame size to the domain size (100 in this case)
is lower than our value of τ . The performance gain over the
Näıve algorithm is more than 2×, which seems an acceptable
trade-off. Improving this heuristic is left for future work.

6.5 Quantile Evaluation
There are three different quantile algorithms to evalu-

ate (Näıve, Reuse and Replace) and we have profiled them
with fixed width trailing frames. We also profiled the Reuse
and Naive algorithms with pseudo-random frame starts, to
remove the effects of the frame computation. Because the
expected number of comparisons for QuickSelect is highest
for a quantile value of 0.5, we have elected to measure median
to cover the worst case. The results are shown in Figure 7.

All runs show a drop off as the frame size increases, but
the fixed frame Replace algorithm consistently outperforms
Näıve, and even increases its lead as the frame size increases,
exceeding 10× when the frame size reaches 10K elements.
The Reuse algorithm also improves its performance gains
over the Näıve versions with increasing fixed frame size, but
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Figure 7: Performance of median queries

only by about 6× at the 10K level. Even the Reuse algo-
rithm with a wildly varying frame start gives an improve-
ment of 1.5× at large frame sizes over the corresponding
Näıve algorithm.

7. RELATED WORK
Window functions were first defined as an optional part of

the SQL:1999 standard before being fully incorporated into
SQL:2003 [25]. By 2011, all major commercial and open
source databases had provided implementations, including
Oracle [1], IBM DB2 [3], Microsoft SQL Server [2], SAP
HANA [4] and Postgres [5]. User facing analytic packages
have also added similar functionality, in that time period,
including Tableau (2010) [7] and Spotfire [8].

In recent years, the body of work on window operators
and their associated functions has been growing. Cao et al.
[9] discuss optimising execution of multiple window opera-
tors through careful ordering derived from the partitioning
and ordering specifications. Interestingly, they also found
an NP-hard problem in their work and provided a heuristic
to work around this difficulty. We believe that the existence
of such hard problems in this area is related to the utility
of window functions for useful data analytics. The recent
work of Leis et al. [20] described a highly efficient framework
for implementing window operators and their functions, but
their work only focused on distributive and algebraic aggre-
gates. See Section 2.3 for a more detailed discussion of their
work.

Aggregate functions have been part of relational queries
since the original SEQUEL language proposal [10]. More
recently, incremental approaches to ordered aggregates were
explored by Yang and Widom [24], and to windowed ag-
gregates by Leis et al. [20]. Sliding window algorithms for
aggregates in data stream management systems were also
studied by Zhu and Shasha [26] and Datar et al. [11].

The need for more complete windowed analytics in SQL
is discussed in [17]. Their work followed the use of SQL
by academic data scientists and found the lack of such sup-
port to be one of the key barriers to adoption of relational
databases for scientific data analysis.

8. SUMMARY AND FUTURE WORK
As data analysts become more sophisticated, they are

starting to expect more computational depth from their
tools, and non-Gaussian statistical summaries such as quan-
tiles are the first step beyond Gaussian summaries such as
mean. Computing such measures quickly is essential for
maintaining interactive analytic flow, but the holistic na-
ture of these aggregates can make interactive performance
elusive.

Holistic aggregates are difficult to compute because of
the need to maintain global state for the entire aggregate.
This difficulty has resulted in no complete commercial or
open-source implementations of these windowed aggregates
to date. We have presented several algorithms for comput-
ing three holistic windowed aggregates (count distinct, mode
and quantile) that are generally faster than näıve implemen-
tations by reusing this shared state between frames. Some
of the implementations are linear in the size of the data
for common windowing scenarios (such as fixed–size mov-
ing window and running aggregates) and all of them are at
worst quadratic with smaller constants than the näıve ver-
sions. These constant differences can range from around
1.5x to nearly 200x in our test cases.

Future work in this area could focus on improving the
performance of these aggregates under extreme variations
in frame size and location, such as more precise characteri-
sation of the cost–benefits of data structure reuse. We would
also like to consider more realistic data sets with different
data volumes, data skews, window sizes and domain sizes.
Another area for future work would be to determine an ef-
fective heuristic for frame reordering for circumventing the
NP-hard nature of the overlap maximisation problem. Fi-
nally, there are other interesting statistical functions (such
as the spatio-temporal presence measure [22]) that might
benefit from our incremental approach.
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APPENDIX
A. FRAME REORDERING COMPLEXITY

Let F be the set of all frames in a partition, and let G be
the totally connected graph using F as its vertices. Define
the weight of the connection between two frames F and G
by w(F,G) := |F ∩G|. Then the total frame overlap along
any path through G is simply the sum of the weights of the
connecting nodes. In order to maximise the total overlap, we
need to find the path with the maximum length. But this
problem is trivially isomorphic to the Traveling Salesman
problem, which is NP-Hard.

B. MODE USING BASIC SQL
with Counts as (

select State , Department , count (∗ )
as Mode

from Sa l e s
group by State , Department )

select State , min( Department ) as Mode
from (

Sa l e s as S
inner join (
select State , Department
from (

Counts as C
inner join (
select State , max(Mode) as

Mode
from Counts
) as D
on (C. State = D. State and C

. Mode = D. Mode)
) as M
on S . State = M. State

group by State
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