
Oblivious RAM: A Dissection and Experimental Evaluation

Zhao Chang, Dong Xie, Feifei Li
School of Computing, University of Utah, USA;
{zchang, dongx, lifeifei}@cs.utah.edu

ABSTRACT
Many companies choose the cloud as their data and IT infrastruc-
ture platform. The remote access of the data brings the issue of
trust. Despite the use of strong encryption schemes, adversaries
can still learn valuable information regarding encrypted data by ob-
serving the data access patterns. To that end, one can hide the ac-
cess patterns, which may leak sensitive information, using Obliv-
ious RAMs (ORAMs). Numerous works have proposed different
ORAM constructions, but they have never been thoroughly com-
pared against and tested on large databases. There are also no open
source implementation of these schemes.

These limitations make it difficult for researchers and practition-
ers to choose and adopt a suitable ORAM for their applications. To
address this issue, we provide a thorough study over several prac-
tical ORAM constructions, and implement them under the same
library. We perform extensive experiments to provide insights into
their performance characteristics with respect to efficiency, scala-
bility, and communication cost.

1. INTRODUCTION
Increasingly, companies choose the cloud as their data and IT

infrastructure platform. Many public cloud services are available,
such as Amazon cloud and Microsoft Azure. These cloud plat-
forms allow users to upload their data to the cloud and provide
cloud computing services over the outsourced data. Many cloud
providers also offer cloud-based database systems such as Amazon
RDS and Redshift, Azure SQL, and Google Cloud SQL. While uti-
lizing cloud services for building applications is a cost-effective so-
lution, the remote access of the data inevitably brings the issue of
trust, and the potential risk of compromising sensitive information
is a serious challenge.

A necessary choice for keeping sensitive information private and
secure on a cloud is to encrypt the data. To that end, encrypted
databases such as Cipherbase [3, 2], CryptDB [29], TrustedDB
[7], and Monomi [34], as well as various query execution tech-
niques over encrypted databases [4, 19, 39] have been developed.
But the access patterns of users’ queries and operations can still
leak data privacy and sensitive information, even if the data is en-
crypted before uploading to the cloud. Consider the following ex-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 2150-8097/16/08.

ample [28]: if a sequence of queries q1, q2, q3 is always followed
by a stock-exchange action, the cloud can learn about the content of
these queries, even if both the queries and the data are encrypted.
The access patterns may allow the cloud to predict user actions
when the similar sequence of queries appears again. Islam et al.
[20] demonstrate that an attacker can identify as much as 80%
of email search queries by observing the access pattern of an en-
crypted email repository alone. Furthermore, observing access pat-
terns also relates to privacy issues in many applications, such as on-
line social networks. For example, Persona social network [6] can
perform operations on encrypted data. The objective is to protect
users’ sensitive information from the service provider. However,
a curious observer can still use access patterns to correlate activi-
ties of different users: the observation based on the access patterns
of users can contribute to correlating different users who are geo-
graphically close or have friendships [24].

To protect against this kind of sensitive information leakage, it
is necessary to hide the access patterns of clients’ operations in the
cloud. One can completely seal a client’s access patterns from the
cloud by using Oblivious RAMs (ORAMs). ORAM is originally
proposed by Goldreich [13] and Ostrovsky [26]. It allows a client to
access encrypted data in the cloud while hiding her access patterns.
Over around thirty years, various ORAMs have been proposed [13,
14, 28, 16, 18, 30, 21, 32, 33, 35, 23].

There are also efforts on designing oblivious query processing
techniques for specific query operations. Li et al. [22] propose
secure algorithms to compute theta-joins obliviously, i.e., keep-
ing the sensitive access patterns private. Arasu et al. [5] present
oblivious query processing algorithms for a rich class of database
queries involving selections, joins, grouping and aggregation. In
spatial databases, access patterns are often considered as sensitive
information and need to be protected as part of privacy preserving
requirements. Mouratidis et al. [25] propose solutions to perform
privacy-preserving shortest path computation, while protecting ac-
cess pattern information. These solutions are based on private in-
formation retrieval (PIR) [11, 36]. However, these PIR based solu-
tions need excessive cloud storage and many costly PIR operations
[38]. Recently, Xie et al. [38] propose ORAM based solutions to
perform privacy preserving shortest path computation. In general,
ORAM based solutions can provide much better performance and
scalability than PIR based solutions [38].

Nevertheless, it is a challenging task for users to choose an ap-
propriate ORAM construction for their applications owing to the
following issues. First, many of these ORAMs are of only theo-
retical interests, i.e., the focus of these works is to improve worst-
case theoretical bounds: they either hide large constant factors in
their analyses or they are difficult to be implemented and used
in practice. For example, the amortized computation overhead of

1113

Basic-HR [14] is O(log3 N) (see Table 1 for our notations), if the
AKS sorting network [1] is chosen as the oblivious sort algorithm.
But this amortized cost comes with a very large constant factor,
since AKS sorting network needs about 6100 · n log n comparisons
[28] for n items. In fact, the constant factor in Basic-HR is much
larger than 6100, since this oblivious sort operation is performed
for many times in the reshuffling step as originally presented in
[26]. Second, these ORAMs have not been thoroughly compared
with each other; and many have never been experimentally tested
against large data. For example, Basic-SR and Basic-HR [13, 14]
are only theoretically analyzed, and no evaluations are provided.
For many ORAMs, there is a huge gap between the amortized com-
putation overhead and the worst-case computation overhead. This
makes the comparison among various ORAMs based solely on Big-
O notations even more difficult and less meaningful. Lastly, high
quality open source implementations of ORAM are lacking, and
many ORAMs are rather contrived and not easy to be correctly im-
plemented with efficiency and scalability. This presents a signifi-
cant barrier for researchers and practitioners who want to employ
an ORAM in their study.

There is a survey for ORAMs in the literature [10], but it covers
only the Basic-SR and Basic-HR ORAMs. Furthermore, it does not
provide any experimental evaluation or implementations. To ad-
dress these issues, for the first time, we have implemented several
practical ORAM constructions in the same framework, and eval-
uated them thoroughly under the same experimental environment.
Our main contributions are summarized as follows:

• We provide a comprehensive survey on different ORAM con-
structions and perform a detailed time, space, and communi-
cation complexity analysis.

• We implement these ORAM constructions under the same li-
brary framework and optimize the implementations with re-
spect to efficiency, scalability, and communication cost.

• We perform extensive experiments on large data to compare
the performance of various ORAM constructions.

• We report insights gained from the comprehensive experi-
mental results. Our study exposes the strength and weakness
of different existing ORAMs, and provides guidelines on se-
lecting a suitable construction under different scenarios.

2. PROBLEM DEFINITION
We first formally model the problem of hiding access patterns.

The formulation includes a client and a cloud server. The client,
who has a small and secured memory, wants to store and later re-
trieve her data using the large but untrusted cloud storage, while
preserving the data privacy. Multiple clients may exist and retrieve
the data as long as they are trusted by the client who is the original
data owner and follow the same client side protocol.

In this paper, we consider the “honest-but-curious” cloud, which
is consistent with existing ORAMs in the literature. To ensure con-
fidentiality, the client needs to store the secret keys of a symmetric
encryption scheme. The encryption should be done with a semanti-
cally secure encryption scheme, and therefore two encrypted copies
of the same data block look different [28]. The client should re-
encrypt a block before storing it back to the cloud and decrypt a
block after retrieving it. Since these encryption/decryption opera-
tions are independent of the access patterns of any ORAM, we may
omit them while describing different ORAMs.

Data is encrypted, retrieved, and stored in atomic units (i.e.,
blocks), same as in a database system. We must make all blocks
of the same size; otherwise, the cloud can easily distinguish these
blocks by observing the differences in size. We use N to denote the

N Number of (real) data blocks in the database
B Block size in terms of number of entries per block
C The ratio of the total number of blocks to the number of

real data blocks (used in TP-ORAM [32])
R The background eviction rate, which is proportional to

the data access rate (used in TP-ORAM [32])
H The ratio of the number of blocks in each bucket to log N

(used in BB-ORAM [30])
E The background eviction rate, which is proportional to

the data access rate (used in BB-ORAM [30])
Z Number of blocks per bucket (used in Path-ORAM [33])

Table 1: Notations.
number of real data blocks in the database. Each block in the cloud
or client storage contains B entries (note that the value of B may
vary depending on the types of entries in a block, e.g., encrypted
record versus stash index values at the client side). Table 1 lists
some frequently-used notations in this paper.

The objective of the client is to hide the access patterns of her
operations from the observation of the cloud. Formally,

DEFINITION 2.1. Security of ORAM. An input ~y of the client
is an operation sequence of length M on her database. Suppose
~y = {(op1, id1, block1), · · · , (opM , idM , blockM)}. Each operation
opi (1 ≤ i ≤ L) is either a read operation, denoted by read(idi),
which reads the block with the identifier idi; or a write operation,
denoted by write(idi, blocki), which updates the block with the iden-
tifier idi using the new block content blocki. The parameter blocki

is null for a read operation.
Given the operation sequence as the input ~y, the access pattern

A(~y) is the (possibly randomized) sequence of accesses to the cloud
storage. An oblivious RAM is considered secure if and only if for
any two inputs ~y and ~y′ of the client, of the same length, their access
patterns A(~y) and A(~y′) are computationally indistinguishable for
anyone but the client.

Definition 2.1 implies that we must make different access types
(read and write operations) indistinguishable. A standard solu-
tion is to always perform read-and-then-write (potentially a dummy
write) operations, which is commonly used in existing ORAMs.

Like most ORAMs, Definition 2.1 does not consider privacy
leakage through a side-channel attack. For example, Definition 2.1
does not consider the time taken for each operation (timing attack).

3. PRELIMINARIES
Oblivious sort. Oblivious Sort is an oblivious algorithm used in
Basic-SR [13] and Basic-HR [14] ORAMs. It sorts a set of items
by accessing the items in a fixed, predefined order. Since such an
access pattern is independent of the final order of the items, the
corresponding sorting algorithm is an oblivious sort.

Existing works [13, 14] adopt the sorting network to perform
oblivious sort. Both Batcher sorting network [8] and AKS sort-
ing network [1] can be used. Assuming there are n items, the time
complexity of Batcher sort network is O(n log2 n). However, the
constant factor in its Big-O notation is very small (approximately
0.5). The time complexity of AKS sorting network is O(n log n),
but the hidden constant factor is as large as 6100 [28]. Thus, in
most cases (i.e., log n < 6100), Batcher sorting network performs
much better than AKS sorting network. Recently, Goodrich pro-
poses a new randomized Shell sort algorithm [15], which is also an
oblivious sort algorithm with O(n log n) complexity. However, this
randomized algorithm can fail with a small probability. Therefore,
we perform oblivious sorting using Batcher sorting network, which
is a deterministic, relatively efficient oblivious sort algorithm.
Oblivious hash. Oblivious Hash is an oblivious algorithm used
in Basic-HR [14]. It hashes a set of items into an array of hash
buckets, while hiding the information regarding the hash function

1114

(which bucket each item is hashed into) from the cloud. An oblivi-
ous hash is presented in [26], which is well-designed in theory. This
oblivious hash algorithm [26] relies on an oblivious sort method.
Suppose that the number of hash buckets is n, the size of each
hash bucket is m (i.e., each bucket holds at most m items), and
the total number of items, M, is not larger than nm. If each obliv-
ious sort operation is performed in O(n log n), the complexity of
the oblivious hash operation (total cost of hashing M items) is
O(mn(log m + log n)). Since we choose the Batcher sorting net-
work as the default oblivious sort method, thus, this complexity is
O(mn(log2 m + log2 n)) for hashing M ≤ nm items.
Oblivious random permutation. Oblivious Random Permutation
(in the context of ORAM) refers to a random ordering of T blocks
by the client. It is the permutation selected at random with uniform
probability from all possible permutations. Some ORAMs [13, 38]
use random permutation in reshuffling operations. When the client
has Ω(T) storage, we choose the Knuth shuffle [12] to generate the
random permutation. The algorithm retrieves T blocks from the
cloud server, generates a random permutation of T blocks in O(T)
time locally, and places them back to the cloud. When the client
only has o(T) storage, the cloud server has to be involved. The idea
is to attach each block with a hash value and perform oblivious
sort on these blocks according to the order of the hash values. The
client retrieves two blocks at a time from the cloud according to
the order in the oblivious sort method, compares them locally, and
places them back (swaps them if necessary) to the cloud.

In TP-ORAM [32], for permuting blocks within a level in the
client, it utilizes a keyed pseudo-random permutation (PRP) func-
tion, which plays a similar role to random permutation.
Oblivious storage. The conception of Oblivious Storage (OS) is
first introduced in [9] as a practical ORAM implementation. Obliv-
ious storage can be viewed as a collection of key-value pairs (i.e.,
items). The cloud server using an oblivious storage supports the
following basic operations:
• get(k): return the value of the item with key k.
• put(k, v): if the cloud server stores an item with key k, then

updates the value with v, else inserts a new item (k, v) into
the oblivious storage.

• getRange(k1, k2): return all items with keys in range [k1, k2].
• delRange(k1, k2): remove all items with keys in range [k1, k2].

Oblivious storage relaxes the size of client memory from O(1) in
the original ORAM definition to a sub-linear scale (w.r.t. N) [38].

4. OBLIVIOUS RAMS
4.1 Basic Square Root ORAM

Basic Square Root ORAM (Basic-SR) is the first ORAM pro-
posed in the literature [13]. It stores exactly (N + 2

√
N) blocks in

the cloud storage. The first N blocks are encrypted database blocks.
The extra storage in the cloud (i.e., the extra 2

√
N blocks) consists

of two parts. The first
√

N blocks are dummy locations, and the
second

√
N blocks are shelter locations. These extra locations are

employed to hide the access patterns, in case the same block is read
and/or written more than once by the client.

Basic-SR proceeds in rounds, and simulates
√

N block opera-
tions of the client in a round. The initialization and rounds of pro-
cessing in Basic-SR ORAM [13] are shown in Algorithm 1.

In the initialization phase, the first N blocks of the cloud stor-
age store the encrypted data blocks, with identifiers 1 through N,
from the client’s database. The other 2

√
N blocks (i.e., blocks in

dummy and shelter locations) are initialized with randomly gener-
ated blocks by the client with identifiers (N +1) through (N +2

√
N)

(Line 1). Right after initialization, the block with identifier i (i.e.,

Algorithm 1: Basic-SR ORAM
1: Initialization: the first N blocks in the cloud are encrypted data

blocks with identifiers 1 through N from client’s database; set the
other 2

√
N blocks (i.e., blocks in dummy and shelter locations) to

randomly generated blocks with identifiers (N + 1) to (N + 2
√

N).
2: Initialize p := 0.
3: while true do
4: p := p + 1;
5: Perform an oblivious random permutation π of the blocks in the

first (N +
√

N) locations (data + dummy blocks), and relocate
the block in location i (1 ≤ i ≤ N +

√
N) to location π(i).

6: for count := 1 to
√

N do
7: j := (p − 1)

√
N + count;

8: // Simulate the jth operation (op j, id j, block j) of the client.
9: Client retrieves the blocks in locations (N +

√
N + 1)

through (N + 2
√

N) (i.e., shelter locations) from the cloud
and looks for the block with the identifier id j.

10: if the block with id j is found in a shelter location x then
11: Retrieve a dummy block in location π(N + count).
12: Re-encrypt this block and write it back to same location.
13: else
14: Set x := −1. Retrieve the block id j in location π(id j).
15: Encrypt a randomly generated block and write it back in

location π(id j).
16: // Client asks the cloud to scan the shelter locations again.
17: for i := 1 to

√
N do

18: Read the block at shelter location (N +
√

N + i).
19: if (N +

√
N + i) = x then

20: if op j = write then
21: Write encrypted block j to location (N +

√
N + i).

22: else if op j = read then
23: Write the re-encrypted block at location

(N +
√

N + i) back to the same location.
24: else if i = count and x = −1 then
25: if op j = write then
26: Write encrypted block j to location (N +

√
N + i).

27: else if op j = read then
28: Write the re-encrypted block with id j (retrieved in

Line 14) into location (N +
√

N + i).
29: else
30: Write the re-encrypted block at location (N +

√
N + i)

back to location (N +
√

N + i).
31: Perform an oblivious sort on blocks in all (N + 2

√
N) locations,

where the sorting order is based on the block identifiers.

id = i) locates at the ith location. Note that block id is encrypted
and hidden from the cloud server.

The pth round in Basic-SR is described in the while loop (Line
4-Line 31). First, at the beginning of each round, client performs an
oblivious random permutation with the cloud as described in Sec-
tion 3. The blocks in locations 1 through (N +

√
N) are randomly

permuted according to a permutation π (Line 5). The Basic-SR
ORAM assumes that the client has only O(1) storage, hence, this
permutation is performed by interactive oblivious sorting with the
cloud. In this process, the client uses a hash function h : id → Z+

to map a block identifier to a random hash value (to be attached
to a block and used for oblivious sorting to achieve oblivious ran-
dom permutation). Note that using a standard cryptographic hash
function such as SHA-256, h uses only constant space and client
can remember h locally. Since block id is encrypted inside a block,
after the oblivious random permutation, cloud loses track of where
these (N +

√
N) blocks (data + dummy blocks) locate.

Next,
√

N operations of the client are processed in this round
(Line 6-Line 30). The jth operation (op j, id j, block j) is simulated
as follows. The client retrieves the shelter locations (from location
(N +

√
N +1) to location (N +2

√
N)) and checks whether the block

with identifier id j is in one of these locations (Line 9).

1115

If the block with id j is found in location x where x ∈ [N +
√

N + 1,N + 2
√

N], the client accesses a dummy block in location
π(N + count) (Line 10-Line 12, read and write the re-encrypted,
same block back), where count is an index to keep track of the
number of operations performed so far in the current round. Oth-
erwise, the client retrieves the block with identifier id j in location
π(id j) (Line 13-Line 15, read it and write a random block back).
Since the permutation function π is not stored in the client (which
would require O(N+

√
N

B) space), to access location π(N + count) or
π(id j), an interactive binary search is performed on blocks in loca-
tions 1 through (N +

√
N) between client and cloud, according to

the hash values produced by h.
Lastly, the client scans through the

√
N shelter locations again,

reads and writes each shelter block in this process (Line 17-Line
30). In particular, if the block id j has been found in a shelter loca-
tion and the operation is write, the client writes block j into the same
location. If the block id j has not been found in any shelter location,
and has been retrieved among (N +

√
N) data and dummy locations,

the client writes either that block (re-encrypted) or block j into the
shelter location (N +

√
N + count) for read and write respectively.

Otherwise, the client simply writes the same block (re-encrypted)
back to the same shelter location.

In a nutshell, for each operation, from the perspective of the
cloud, the client needs to scan all shelter locations, reads a seem-
ingly random location from the first (N +

√
N) data and dummy

locations, and finally reads and writes every shelter location again.
Clearly, the access to any block id j is oblivious to the cloud.

Finally, at the end of a round (after
√

N operations), we relocate
all (N + 2

√
N) blocks back to their locations in the initialization

phase, using an oblivious sort by their identifiers (Line 31).
It is straightforward to see that the cloud storage is O(N) and the

client storage is O(1). The computation overhead depends on the
choice of the oblivious sort algorithm. The key observation is that
an oblivious sort is performed every

√
N operations, which domi-

nates other costs associated with an operation (such as scanning the
shelter locations, whose cost is only O(

√
N)).

When an O(n log n) oblivious sort is chosen, the amortized cost
per operation is O(

√
N log N) and the worst-case cost per operation

(i.e., the last operation in a round that calls the oblivious sort) is
O(N log N). When an O(n log2 n) oblivious sort is used, the amor-
tized cost per operation is O(

√
N log2 N) and the worst-case cost

per operation is O(N log2 N). Since client storage is only O(1)
in this case, the number of communication rounds per operation,
and the total number of blocks communicated per operation are the
same as the number of blocks accessed in the cloud storage per
operation. In other words, they are given by the same Big-O ex-
pression as that for the time complexity shown above.
Remarks. For simplicity, for all subsequent ORAMs we focus on
only read operations. As seen in Basic-SR, the only difference for
a write operation is to write block j instead of writing back a re-
encrypted block that has been read. Furthermore, for each ORAM,
since for every operation, each block accessed by the cloud needs to
be retrieved and re-encrypted by the client, thus, the query overhead
for the cloud in terms of number of blocks accessed, the communi-
cation overhead in bytes, and the client’s computation cost has the
same Big-O complexity, and we refer to them as the Computation
Overhead per operation of an ORAM.

4.2 Interleave Buffer Shuffle SR-ORAM
Interleave Buffer Shuffle Square Root ORAM (IBS-SR) is pro-

posed in [38]. The oblivious storage scheme is used for building the
ORAM. It relaxes the client memory size from O(1) in Basic-SR to

Algorithm 2: IBS-SR ORAM
1: Initialization: choose a hash function h; the first N blocks in the

cloud storage are real data blocks attached with hash values h(1)
through h(N); the other

√
N blocks are dummy random blocks

attached with the hash values h(N + 1) through h(N +
√

N).
2: Initialize p := 0.

3: Let T :=
√

N +
√

N.
4: while true do
5: p := p + 1;
6: Choose a new hash function h′.
7: for i := 1 to T do
8: Retrieve and delete the blocks with the hash values

h ((i − 1)T + 1) through h (iT).
9: Update each block’s hash value using h′.

10: Perform a random permutation on these T blocks using
the new hash values.

11: Insert these T blocks back into the cloud storage.
12: Choose a new hash function h′′.
13: for i := 1 to T do
14: Retrieve and delete the blocks with the hash values

h′ (0 · T + i), h′ (1 · T + i), · · · , h′ ((T − 1) T + i).
15: Update each block’s hash value using new hash function h′′.
16: Perform a random permutation on these T blocks with the

new hash values.
17: Insert these T blocks back into the cloud storage.
18: for count := 1 to

√
N do

19: j := (p − 1)
√

N + count;
20: // Simulate the jth operation (op j, id j, block j) of the client.
21: Look for the block with the identifier id j in the client buffer

using the hash value h′′(id j).
22: if the block with identifier id j is found in client buffer then
23: Retrieve a dummy block with hash value h′′(N + count).
24: else
25: Retrieve the block with the hash value h′′(id j) (i.e., with

identifier id j).
26: Write all re-encrypted blocks in the client buffer to the cloud

storage. Clear the client buffer.

O(
√

N). IBS-SR stores (N +
√

N) blocks in the cloud storage. The
extra storage in the cloud is similar to dummy locations in Basic-

SR. The client buffer can hold
√

N +
√

N blocks, which serves
similar purpose to the shelter locations on the cloud in Basic-SR.
One contribution of IBS-SR is to propose a new oblivious shuffle
algorithm, Interleave Buffer Shuffle (IBS) (Line 6-Line 17 in Algo-
rithm 2), to optimize the oblivious storage scheme in [17]. During
the IBS operation, the Knuth shuffle [12] is performed to generate
an oblivious random permutation.

IBS-SR ORAM [38] is presented in Algorithm 2. Initially, the
client chooses a hash function h like SHA-256. The first N blocks
of the cloud storage are real data blocks attached with the hash
values h(1) through h(N). The other

√
N blocks are initialized to

randomly generated dummy blocks attached with the hash values
h(N + 1) through h(N +

√
N) (Line 1). Like Basic-SR, IBS-SR

proceeds in passes, and for each pass, IBS-SR [38] simulates
√

N

operations of the client. Let T be
√

N +
√

N (Line 3). The pth pass
is described in the while loop (Line 5-Line 26).

At the beginning of each pass, all (N +
√

N) blocks on the cloud
are randomly permuted with the help of the client buffer (Line 6-
Line 17). This oblivious random permutation works in two rounds,
since the client buffer can only hold T blocks. In the first round,
the client retrieves T blocks at a time, randomly permutes each
T blocks locally, and maps (N +

√
N) blocks to T different sets

over T iterations (Line 6-Line 11). After the first round, each set
will have T blocks. In the second round, the client permutes the
blocks in each set once more and generates the final permutation
on all (N +

√
N) blocks (Line 12-Line 17). To make the blocks

1116

before and after re-shuffling indistinguishable for the cloud, a new
hash function should be chosen at the beginning of each of the two
rounds (Line 6 and Line 12).

Next,
√

N operations of the client are simulated in the current
pass (Line 18-Line 25). The jth (j = (p− 1)

√
N + count) operation

(op j, id j, block j) is simulated as follows. The client checks whether
the block with identifier id j is in the client buffer using the hash
value h′′(id j) (Line 21). If it is found there, the client retrieves
a dummy block with the hash value h′′(N + count) (Line 22-Line
23). Otherwise, the client retrieves the block with the hash value
h′′(id j) (i.e., with identifier id j) (Line 24-Line 25). Finally, at the
end of the current pass, the client writes all re-encrypted blocks in
the client buffer to the cloud storage and clears the buffer (Line 26).

For each operation, from the perspective of the cloud, the client
reads a seemingly random location. Furthermore, the Interleave
Buffer Shuffle (the shuffling performed at the beginning of each
pass) is an oblivious operation in the eyes of the cloud. Hence, the
access to block id j for any j is oblivious to the cloud.

Obviously, the cloud storage is O(N) and the client storage is
O(
√

N). The amortized cost per operation is O(
√

N), and the worst-
case cost per operation is O(N). Since the client storage is O(

√
N)

rather than O(1), the amortized number of communication rounds
per operation is O(1), and the worst-case number of communication
rounds per operation is O(

√
N).

4.3 Basic Hierarchical ORAM
Basic Hierarchical ORAM (Basic-HR) [14] asks the cloud to or-

ganize the blocks into a hierarchical structure. For each level, the
blocks are stored according to a randomly selected hash function.
From top to bottom, each level contains an increasing number of
hash buckets. Each hash bucket contains log2 N blocks. Suppose
there are L levels in the cloud storage. The last level (i.e. level L)
has to contain at least N hash buckets.

In the original Basic-HR [14], each level ` (1 ≤ ` ≤ L) contains
4` hash buckets. In our implementation, each level ` contains 2`

hash buckets. Thus, the storage in level ` + 1 is exactly twice than
that in level ` (1 ≤ ` < L). This setting is consistent with all
newer hierarchical ORAMs and binary-tree ORAMs (eg. [30, 32,
33]). This change does not affect the complexity analysis. In our
implementation, the number of levels L is dlog2 Ne. Each level `
(1 ≤ ` ≤ L) will be (obliviously) reshuffled after every 2` client
operations.

Basic-HR ORAM [14] is presented in Algorithm 3. During ini-
tialization, client chooses ` different hash functions, one for each
level (2 ≤ ` ≤ L). N data blocks are hashed into the corresponding
hash buckets in level L (i.e., the last and largest level), based on
their block identifiers. All other blocks in any hash buckets from
all levels are initialized to random dummy blocks.

The jth client operation (op j, id j, block j) is simulated in the while
loop (Line 4-Line 19). First, the client retrieves both buckets in
level 1 and looks for the block with the identifier id j (Line 6). If
found, the client keeps a copy and writes a dummy block back;
otherwise, the client writes back the re-encrypted block. Next, the
client checks levels 2 through L (Line 7-Line 11). If the block with
the identifier id j has already been found, the client reads a random
bucket in level ` (Line 8-Line 9). Otherwise, the client scans the
hash bucket that the block id j might have been hashed into in level
` (Line 10-Line 11), based on the hash function of this level and
the identifier id j. If the block is found in that bucket, the client re-
trieves it and writes a dummy block back into the same location in
that bucket; otherwise, every retrieved block will be written back
to the same location with a re-encryption of the same block.

After going through all levels, client writes the re-encrypted block

Algorithm 3: Basic-HR ORAM
1: Initialization: choose a different hash function for each level `

(2 ≤ ` ≤ L); N data blocks are hashed into the corresponding hash
buckets in level L; set all other blocks in any hash bucket from any
level to random dummy blocks.

2: Initialize j := 0.
3: while true do
4: j := j + 1;
5: // Simulate the jth operation (op j, id j, block j) of the client.
6: Scan both buckets in level 1 and look for the block id j. If

found, write a dummy block back; otherwise, write the
re-encrypted block back.

7: for ` := 2 to L do
8: if the block id j has already been found then
9: Scan a random bucket (retrieve all blocks in the bucket)

in level ` and write the re-encrypted block back.
10: else
11: Scan all blocks in the hash bucket that block id j might be

hashed into. If it is found in the bucket, write a dummy
block back; otherwise, write the re-encrypted block back.

12: if j is an odd number then
13: Write the re-encrypted block id j into 1st bucket in level 1.
14: else
15: Write the re-encrypted block id j into 2nd bucket in level 1.
16: Let d := max {1 ≤ x < L | j mod 2x = 0}.
17: for ` := 1 to d do
18: Pick a new hash function for level ` + 1.
19: Shuffle data blocks, obliviously to cloud, in level ` and level

` + 1 together into level ` + 1 using the new hash function.

id j back to level 1. If j is an odd number, it is written into the first
bucket; otherwise, the second bucket is used. All data blocks in
level ` should be reshuffled after every 2` client operations, and
client can find the levels that need to perform reshuffling based on
this constraint after each operation (denoted by d in Line 16). For
each such level `, client shuffles the data blocks in level ` and level
` + 1 together into level ` + 1 using oblivious hash with a new
hash function for level `+ 1 (Line 17-Line 19). Since in the default
Basic-HR, client only has O(1) storage, these reshuffling operations
should be done via the oblivious hash algorithm.

In summary, for each operation, from the perspective of the cloud,
the client scans and writes a seemingly random bucket from each
level, and writes the re-encrypted block back to level 1. The data
blocks in level 1 are obliviously reshuffled into level 2 every 2 op-
erations, and data blocks in level 2 are obliviously reshuffled into
level 3 every 4 operations, and so far so forth for each level. The
oblivious hash hides the access patterns during reshuffling. Hence,
the access to any block id j is oblivious to the cloud.

The cloud storage is O(N log N) and the client storage is O(1).
The computation overhead depends on the choice of the oblivi-
ous sort algorithm (a subroutine called by the oblivious hash algo-
rithm proposed in [26]). When an O(n log n) oblivious sort is cho-
sen, the amortized computation overhead per operation is O(log3 N)
and the worst-case overhead per operation is O(N log2 N). When
an O(n log2 n) oblivious sort is chosen, the amortized computation
overhead per operation is O(log4 N) and the worst-case overhead
per operation is O(N log3 N). Since the client storage is only O(1),
the number of communication rounds is the same with the total
number of blocks accessed for an operation.

4.4 TP-ORAM
TP-ORAM [32] is an improved hierarchical ORAM by lever-

aging partitioning. Each partition of TP-ORAM is viewed as an
ORAM blackbox, providing a read and write interface, while hid-
ing the access patterns within that partition [32]. Thus, a new par-
tition based ORAM can be constructed by using the framework in
[32] and supplying an ORAM construction for each partition.

1117

The original TP-ORAM [32] chooses P =
√

N partitions. In
the cloud storage, each partition contains L = (log2

√
N) + 1 =

1
2 log2 N + 1 levels. Except for the largest level (i.e. level L), each
level ` contains 2` blocks. Level L needs to store (2L +ε) = (2

√
N +

ε) blocks, where ε is to accommodate the fact that some partitions
may have more blocks than others when the blocks are assigned
randomly to the partitions [32]. Thus, each partition holds (4

√
N −

2 + ε) blocks in total. In [32], the total number of blocks in each
partition is set to 4.6

√
N. Therefore, the total cloud storage is 4.6N

blocks (i.e. C = 4.6 in Table 1). For each level `, at most half of
the blocks are data blocks, and the others are dummy blocks.

The client storage consists of the following components. The
first component is the shuffling buffer (or job queue). The shuffling
buffer is used for temporarily storing two or more levels in a par-
tition for the reshuffling operation. The size of the shuffling buffer
is O(

√
N). The second component is the stash 1. Stash is a client

cache that stores data blocks retrieved from the cloud temporar-
ily. In TP-ORAM [32], the stash consists of P groups, and each
group corresponds to one partition of the cloud storage. The total
stash size is also O(

√
N), which is theoretically proved and empir-

ically demonstrated in [32]. The third component is the position
map. For a data block with identifier id j, the position map keeps
track of which partition the block currently resides in (denoted by
position[id j]). In TP-ORAM, for each data block, the position map
is extended to also record the level number and the location in the
level. The total size of the position map is O(N

B).
TP-ORAM [32] is presented in Algorithm 4. Initially, the client

stash is empty. Each of N data blocks is assigned to an indepen-
dently selected random partition. Index s is used to identify the
next group to be “evicted” in the stash.

The jth client operation (op j, id j, block j) is simulated in the while
loop (Line 4-Line 26). First, the client randomly generates a par-
tition number r (Line 6). By checking the position map, the client
finds partition p that block id j currently resides in on the cloud
(Line 7). Client sets this block to partition r in his position map
(Line 8). Next, client searches for block id j in the pth group of his
stash (i.e., stash[p]). If found, the block is read and deleted from
stash[p], and a dummy block is retrieved from partition p from the
cloud. (Line 9-Line 11). Otherwise, the block is read directly from
partition p in the cloud (Line 12-Line 13). The client then adds
block id j into stash[r] (Line 14).

Client performs a piggy-backed eviction to group p in the stash
after each operation (Line 16-Line 19); and periodically (based on
eviction rate R, Line 21), client performs an eviction to group s in
the stash (Line 22-Line 25) and sets s to the next group (Line 26).
This is to prevent the stash from building up.

The client evicts blocks in the stash to the cloud. In a piggy-
backed eviction, if the client performs an operation on the block
that currently resides in partition p, it can piggy-back a write-back
to partition p just after the preceding operation. The background
evictions take place at a rate (i.e., the background eviction rate,
denoted by R in Table 1) proportional to the number of client oper-
ations. Background evictions are performed by going through each
group of the stash at a fixed rate R (i.e., sequential evictions) in a
round-robin fashion. For each group, a data block in the stash is
selected at random, deleted from the stash, and written back (re-
encrypted) to the corresponding partition in the cloud.

The client also performs shuffling data blocks in a recently ac-
cessed partition after every few operations. The idea behind this
shuffling operation is similar to that in the hierarchical ORAM.

1The term “stash” is adopted in Path-ORAM [33]. The stash plays
the same role as the data cache does in TP-ORAM [32].

Algorithm 4: TP-ORAM
1: Initialization: the client stash is empty; each of N data blocks is

assigned to an independently selected random partition.
2: Initialize j := 0. s := 1.
3: while true do
4: j := j + 1;
5: // Simulate the jth operation (op j, id j, block j) of the client.
6: Let r be a random integer in the range [1, P].
7: p := position[id j];
8: position[id j] := r;
9: if block id j is found in stash[p] then

10: Read and delete block id j from stash[p].
11: Read a dummy block from partition p in the cloud storage.
12: else
13: Read block id j from partition p in the cloud storage.
14: Add block id j into stash[r].
15: // Piggy-backed eviction
16: if stash[p] is empty then
17: Write a dummy block to partition p in the cloud storage.
18: else
19: Write a block from stash[p] to partition p in the cloud

storage. Remove the block from stash[p].
20: // Sequential eviction
21: if b j · Rc − b(j − 1) · Rc = 1 then
22: if stash[s] is empty then
23: Write a dummy block to partition s in the cloud storage.
24: else
25: Write a block from stash[s] to partition s in the cloud

storage. Remove the block from stash[s].
26: s := (s mod P) + 1;

To reduce client storage, we can recursively apply an ORAM to
build the position map. That is to say, we can store the position
map in another smaller ORAM in the cloud rather than store it in
the client. This can be recursively applied until the space cost of
the position map in the client becomes O(1). However, this clearly
leads to higher computation and communication overheads.

Since each partition of TP-ORAM can be viewed as an ORAM
blackbox, Stefanov et al. [32] employ a Cuckoo Hashing ORAM
[16] (rather than the original partition ORAM) as the blackbox par-
tition ORAM to build their recursive TP-ORAM for theoretical
interest. Since ensuring security of Cuckoo Hashing ORAMs in
practice is non-trivial (refer to Section 5.1), we adopt the original
partition ORAM as the blackbox partition ORAM to implement
the recursive construction in practice. In our construction, for each
block that the client uploads to the cloud in the eviction process,
the client needs to update its position map by recursively accessing
corresponding blocks in a series of smaller ORAMs. The amortized
number of such blocks for each eviction is O(log N).

TP-ORAM also supports concurrent read and write operations
[32], as a way to optimize the worst-case shuffling cost. Note
that “concurrent” read and write operations in this context refer
to the fact that shuffling is integrated while processing an opera-
tion, rather than after every few operations. It does NOT refer to
processing “concurrent” client operations. Since it does not im-
prove the amortized cost, and complicates the implementation sig-
nificantly, we do not adopt this approach in our study. Therefore,
we perform extensive experiments and make detailed evaluation on
non-concurrent TP-ORAM constructions (both non-recursive and
recursive) and omit “concurrent” ones.

In summary, for each operation, the cloud sees that client reads
and then writes the block from/to a seemingly random partition.
The access pattern within a partition is protected by the ORAM of
the partition. The sequential background eviction follows a fixed,
predefined order and scans through partitions one by one. Hence,
the access patterns are oblivious to the cloud.

For the non-recursive, non-concurrent TP-ORAM, cloud storage

1118

is O(N) and client storage is O(
√

N + N
B). The amortized compu-

tation overhead per operation is O(log N) and the worst-case com-
putation overhead per operation is O(

√
N). Since batch accesses to

blocks from the same partition in the cloud can be used (see details
in [32]), both the amortized and worst-cost number of communica-
tion rounds are O(1) per operation. If “concurrent” read and write
are used, the worst-case computation overhead per operation can
be reduced to O(log N).

For recursive, non-concurrent TP-ORAM, using Cuckoo Hash-
ing ORAM [16] as the partition ORAM of theoretic interest, client
storage is reduced to O(

√
N), but the amortized computation over-

head per operation will be as large as O(log2 N/ log B) and the num-
ber of communication rounds per operation will be O(log N/ log B)
rather than O(1). If “concurrent” read/write is used, the worst-case
computation overhead per operation is reduced to O(log2 N/ log B).

For the recursive, non-concurrent TP-ORAM, in our construc-
tion (i.e., using the original partition ORAM as the blackbox parti-
tion ORAM), client storage is reduced to O(

√
N), but the amortized

computation overhead per operation will become O(N log log N/ log B)
and the worst-case overhead will be O(N log N/4 log B+O(1)). The num-
ber of communication rounds per operation will be O(N log log N/ log B).
If “concurrent” read/write is used, the worst-case computation over-
head per operation can be reduced to O(N log log N/ log B).

4.5 Basic Binary-Tree ORAM
Basic Binary-Tree ORAM (BB-ORAM) is proposed in [30]. BB-

ORAM is a binary-tree ORAM that achieves poly-logarithmic amor-
tized and worst-case cost. It requires no oblivious sorting or reshuf-
fling. The cloud storage is treated as a binary tree and each data
block is mapped to a leaf node (but not necessarily stored there),
selected uniformly at random, in the binary tree of the cloud stor-
age. A block is always placed in some node along the path from
the root to the leaf node that it is mapped to in the binary tree. The
client uses a position map to keep track of the index of the leaf node
that any data block b is currently mapped to.

Note that BB-ORAM has been improved by Path-ORAM [33]
(see details in Section 4.6), which uses a similar construction with
new optimizations. Thus, we investigate and examine Path-ORAM
in details, as the state-of-the-art binary-tree ORAM, rather than pre-
senting the details of BB-ORAM.

The non-recursive ORAM construction requires O(N
B) blocks of

storage in the client. To reduce this storage cost, one may recur-
sively apply the same ORAM over the index structure in the client,
just like the recursive TP-ORAM.

4.6 Path-ORAM
Path-ORAM [33] is an optimized binary-tree ORAM. The cloud

storage is treated as a binary tree and each data block is mapped to
a leaf node (but not necessarily stored there), selected uniformly at
random, in the binary tree of the cloud storage. A block is always
placed in some node along the path from the root to the leaf node
that it is mapped to in the binary tree.

The cloud stores a binary tree, which is similar to that in BB-
ORAM. The only difference is each bucket contains Z blocks (as
highlighted in Table 1) rather than H log N blocks. It suffices to
choose a small constant for the value of Z such as Z = 4 [33]. The
cloud server stores a binary tree of L = dlog2 Ne levels (root is at
level 0) with 2L leaves. Each node of the tree is called a bucket.
Each bucket contains Z blocks (as highlighted in Table 1). The
bucket will be padded with dummy blocks, if it contains less than
Z data blocks. It suffices to choose a small constant for the value of
Z such as Z = 4 [33]. Let x ∈ [0, 2L − 1] denote the xth leaf node
in the tree. The xth leaf node u defines a unique path from the root

Algorithm 5: Path-ORAM
1: Initialization: client stash S is empty; buckets in cloud contain

dummy random blocks (except locations with data blocks which
are oblivious to cloud); for each data block b, its position map
position[b] is initialized to the leaf node index that it is mapped to.

2: Initialize j := 0.
3: while true do
4: j := j + 1;
5: // Simulate the jth operation (op j, id j, block j) of the client.
6: Let r be a random integer in the range [0, 2L − 1].
7: x := position[id j];
8: position[id j] := r;
9: Retrieve path P(x); find block id j in a bucket from P(x); insert

all data blocks from P(x) to stash S .
10: for ` := L to 0 do
11: Let S ′ be a subset of S , where for each block with an

identifier s in S ′, P(x, `) = P(position[s], `).
12: if |S ′ | > Z then
13: Delete some blocks from S ′ and make |S ′ | = Z.
14: else
15: Append dummy random blocks to S ′ and make |S ′ | = Z.
16: S := S − S ′;
17: Writes the blocks in S ′ back to the bucket location P(x, `).

node to u, denoted by P(x). Let P(x, `) denote the bucket in level `
(0 ≤ ` ≤ L) of path P(x) in the tree.

The client storage consists of two components. The first one is
a stash (i.e., a buffer to cache accessed data blocks at the client
side) with size O(log N) · ω(1). It is shown that the stash size can
only exceed O(log N) · ω(1) with probability at most N−ω(1) (i.e.,
negligible in N) [33]. Our experimental results show that after each
ORAM read/write operation, the stash always holds no more than
30 blocks when Z ≥ 4. Client also maintains a position map, which
is similar to that in BB-ORAM. For any unstashed data block b,
the position map keeps track of the index of the leaf node that b is
currently mapped to. The size of the position map is O(N

B).
Path-ORAM [33] is presented in Algorithm 5. Initially, the client

stash S is empty. The buckets in cloud are initialized to dummy
blocks with random bytes (except the locations that data blocks
are stored). For each data block b, its position map position[b] is
initialized to the leaf node index that it is mapped to.

The jth client operation (op j, id j, block j) is simulated in the while
loop (Line 4-Line 17). First, the client generates a random leaf node
index r (Line 6). By checking the position map, client finds the leaf
node index x, which defines the path P(x) that block id j currently
resides in (Line 7). Next, client assigns block id j to path P(r) (i.e.,
to another random path, Line 8). Client retrieves the path P(x) from
the cloud (which guarantees to hold block id j), checks each bucket
in every level of P(x), and finds block id j. In this process, all data
blocks found in P(x) are inserted into stash S (Line 9).

Finally, client writes the path P(x) back to the cloud from the bot-
tom level bucket to the top level bucket, which ensures that blocks
in the stash can be pushed as deep down into the tree as possible
(Line 10-Line 17). For each level ` in the path, let S ′ be a subset
of the stash S , where for each data block with an identifier s in S ′,
P(x, `) = P(position[s], `), i.e., it can be written back to the bucket
location P(x, `) (Line 11). Client sets the size of stash S ′ to Z, by
deleting some blocks from S ′ or appending random blocks to S ′

(Line 12-Line 15). Client then removes all data blocks in S ′ from
the stash S (Line 16) and writes the data blocks in S ′ back to the
bucket location P(x, `) (Line 17).

One may reduce client storage by building the position map us-
ing a recursive ORAM in a similar fashion as that in TP-ORAM.

In summary, for each operation, from the perspective of the cloud,
the client reads and then writes a seemingly random path. Clearly,
the access to any block id j is oblivious to the cloud.

1119

For the non-recursive Path-ORAM, the cloud storage is O(N)
and the client storage is O(log N) · ω(1) + O(N

B). Since no reshuf-
fling operations are performed in Path-ORAM, both the amortized
computation overhead and the worst-case computation overhead
are O(log N) per operation. As the path can be retrieved or written
back in one round, both the amortized and the worst-cost number
of communication rounds are O(1) per operation. For the recursive
Path-ORAM, the client storage can be reduced to O(log N) · ω(1),
but the computation overhead per operation will be as large as
O(log2 N

log B) and the number of communication rounds per operation

will be O(log N
log B) rather than O(1).

4.7 A Comparison of ORAMs
Table 2 compares these ORAMs in terms of cloud storage, client

storage, number of communication rounds per operation, and com-
putation overhead per operation. Recall that for all ORAMs, per
operation, number of blocks accessed by the cloud, client’s com-
putation cost, and number of blocks communicated have the same
Big-O expression for their complexity; thus we use the computa-
tion overhead to denote the Big-O complexity of these 3 metrics.

5. OTHER ORAMS
5.1 Cuckoo Hashing ORAM

Cuckoo Hashing is proposed in [27]. Its objective is to ensure
constant time in the worst case for each lookup operation and amor-
tized constant time for each insertion operation. Cuckoo Hashing
ORAMs are investigated in [28, 16, 18]. However, it has been
shown that cuckoo hashing may potentially lead to a severe reduc-
tion in security [21]. Kushilevitz et al. [21] explicitly construct
an adversary that breaks the security of the scheme of [28]. Since
ensuring security of such ORAMs in practice is non-trivial, we do
not evaluate this ORAM in our study.

5.2 Balanced ORAM
Balanced ORAM (B-ORAM) [21] proposes a novel theoretical

ORAM. It uses only O(1) memory in the client, and its amortized
computation overhead per operation is O(log2 N

log log N). It can be viewed
as a combination of Bucket Hashing ORAM (a variant of Basic-HR
[14]) and Cuckoo Hashing ORAM. However, according to [21],
the last level in its Bucket Hashing ORAM (i.e., the (K−1)th level)
needs to store 2K−k log2 N hash buckets. Based on the settings in
[21], K = 7 log2 log2 N and k = log2 log2 N + 1. Thus, the last
level stores 26 log2 log2 N−1 log2 N = 1

2 log7
2 N hash buckets. Note that

common Bucket Hashing ORAM requires that the last level should
store no less than N hash buckets. If this is the case, the Cuckoo
Hashing ORAM will not be used in B-ORAM. B-ORAM [21] the-
oretically uses O(log7 N) + O(N) = O(N) in its deduction and as-
sumes 1

2 log7
2 N < N. However, in practice, the number of data

blocks, N, is typically far less than 234. For example, when the size
of each block is 4 KB, N = 234 means 64 TB of data, which is
very rare in typical applications. When N < 234, we actually have
1
2 log7

2 N > N. For example, when N = 220, 1
2 log7

2 N is 640 million
but N is only a little more than 1 million. That is to say, in prac-
tice, B-ORAM is essentially equal to Bucket Hashing ORAM (i.e.,
a variant of Basic-HR). Thus, we do not evaluate the performance
of B-ORAM in our experiments.

5.3 Secure Multi-Party Computation
Some recent works explore building an ORAM for secure multi-

party computation (SMC) [35, 23]. SMC is a powerful crypto-
graphic primitive that allows multiple parties to perform rich data
analytics over their private data, while preserving each party’s data
privacy [23]. That is to say, all parties can obtain the computation

result, but no party can learn the data from another party. However,
the cloud database model is clearly different from that of SMC.
Therefore, these ORAMs [35, 23] are designed for a different con-
text and we do not evaluate them in our study.

5.4 Additional ORAMs
PrivateFS [37] is an oblivious file system based on a new paral-

lel Oblivious RAM mechanism. The objective is to enable access
to remote storage and keep both the file content and client access
patterns secret. Its major contribution is to support multiple ORAM
clients. Shroud [24] is a general storage system and functions as
a virtual disk, which can hide the access patterns from the cloud
servers running it. It achieves this objective by adapting oblivi-
ous algorithms to enable parallelization. It focuses on using many
inexpensive coprocessors acting in parallel to improve request la-
tency. ObliviStore [31] is a high performance, distributed ORAM
based cloud data store. It uses an ORAM construction that is simi-
lar to TP-ORAM [32]. The major contribution of ObliviStore is to
achieve high throughput by making I/O operations asynchronous.
It can prevent information leakage not only through access patterns
but also through timing of I/O events.

Since our focus is to evaluate classical ORAMs with one cloud
server and one client, we omit the details of these ORAMs.

6. EXPERIMENTAL EVALUATION
All experiments were conducted between two machines via 1

Gbps LAN. We use a Ubuntu 14.04 PC with Intel Core i7 CPU (8
cores, 3.20 GHz) and 6 GB main memory as the client. The cloud
server is a Ubuntu 14.04 machine with Intel Xeon E5645 CPU (24
cores, 2.40 GHz), 95 GB main memory and 1 TB hard disk.

In our experiments, the cloud server hosts a MongoDB instance
as the outsourced cloud database and storage. The cloud server
needs to support storing and retrieving data blocks. Therefore, we
implemented a MongoDB connector class, which supports the fol-
lowing basic operations on data blocks inside the MongoDB en-
gine: insertion, deletion, and update. By utilizing these basic oper-
ations on data blocks, the cloud server can support read and write
operations from a client using different ORAMs.

All ORAMs are implemented in C++. SHA-256 and AES/CFB
from Crypto++ library are adopted as our hash function and en-
cryption/decryption function respectively in all ORAMs. The key
length of AES encryption is 128 bits. We set the size of each en-
crypted block to 4 KB (the same setting is used in [31, 38]).

We perform 3N read/write operations for each parameterization
of an ORAM. By default, we use uniform random access patterns
to perform these reads/writes, since the operation cost of an ORAM
is independent of the distribution of access patterns [32].
Default parameter values. The default values for some key pa-
rameters are as follows. We set the block size to 4 KB (which is the
same as earlier studies in [31, 38]). We set C, the ratio of the total
number of blocks to the number of real data blocks in TP-ORAM
to 4.6 (the same with the setting in [32]). We set the background
eviction rate, R, in TP-ORAM to 0.9. This makes the worst-case
stash size in TP-ORAM to be about

√
N blocks (shown both in our

experiments and in Figure 8 of [32]). We set H, the ratio of the
number of blocks in each bucket to log N in BB-ORAM [30], to
2. We set E, the background eviction rate in BB-ORAM [30], to 2
as well according to the asymptotic analysis in [30]. We set Z, the
number of blocks in each bucket in Path-ORAM [33], to 4.

6.1 Cloud and Client Storage Costs
Figure 1(a) shows the cloud storage cost of the six ORAMs, as

database size N increases from 210 blocks to 224 blocks (i.e., from
4 MB to 64 GB). BB-ORAM and Basic-HR has much larger cloud

1120

ORAM Construction Computation Overhead a
Cloud Storage Communication Round Client StorageAmortized Worst-Case Amortized Worst-Case

Basic-SR [13] O(n log n)
Oblivious Sort

O(
√

N log N) O(N log N) O(N) O(
√

N log N) O(N log N) O(1)

O(n log2 n)
Oblivious Sort

O(
√

N log2 N) O(N log2 N) O(N) O(
√

N log2 N) O(N log2 N) O(1)

IBS-SR [38] O(
√

N) O(N) O(N) O(1) O(
√

N) O(
√

N)

Basic-HR [14] O(n log n)
Oblivious Sort

O(log3 N) O(N log2 N) O(N log N) O(log3 N) O(N log2 N) O(1) b

O(n log2 n)
Oblivious Sort

O(log4 N) O(N log3 N) O(N log N) O(log4 N) O(N log3 N) O(1)

BB-ORAM [30] Non-Recursive O(log2 N) O(log2 N) O(N log N) O(log2 N) O(log2 N) O(N
B)

Recursive O(log3 N) O(log3 N) O(N log N) O(log3 N) O(log3 N) O(1)

TP-ORAM [32]
Non-Recursive,
Non-Concurrent

O(log N) O(
√

N) O(N) O(1) O(1) O(
√

N + N
B)

Non-Recursive,
Concurrent

O(log N) O(log N) O(N) O(1) O(1) O(
√

N + N
B)

Recursive, Non-
Concurrent c

O(log2 N
log B) O(

√
N) O(N) O(log N

log B) O(log N
log B) O(

√
N)

Recursive,
Concurrent c

O(log2 N
log B) O(log2 N

log B) O(N) O(log N
log B) O(log N

log B) O(
√

N)

Recursive, Non-
Concurrent d

O(N
log log N

log B) O(N
log N

4 log B +O(1)) O(N) O(N
log log N

log B) O(N
log log N

log B) O(
√

N)

Recursive,
Concurrent d

O(N
log log N

log B) O(N
log log N

log B) O(N) O(N
log log N

log B) O(N
log log N

log B) O(
√

N)

Path-ORAM [33] Non-Recursive O(log N) O(log N) O(N) O(1) O(1) O(log N)·ω(1)+O(N
B)

Recursive O(log2 N
log B) O(log2 N

log B) O(N) O(log N
log B) O(log N

log B) O(log N) · ω(1)

Table 2: Comparison of different ORAMs’ performance.
aFor each operation of the client, the number of blocks retrieved/stored in the cloud, the total communication overhead in bytes, the cost of encryption/de-

cryption in the client, and the total running time in the client have the same Big-O complexity. All of them are shown as the Computation Overhead.
bIn fact, for each of log2 N levels in Basic-HR [14], the client needs to store a hash function. Thus, it needs extra client storage to save O(log N) hash

functions. However, in the practical setting, this cost is much less than the size of a constant number of blocks.
c The complexity of recursive TP-ORAM using Cuckoo Hashing ORAM [16] as the partition ORAM of theoretical interest.
d The complexity of recursive TP-ORAM using the original partition ORAM as the blackbox partition ORAM in our implementation.

10 12 14 16 18 20 22 24
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

cl
ou

d
st

or
ag

e
(G

B
)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(a) cloud storage cost.

10 12 14 16 18 20 22 24
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

cl
ie

nt
 s

to
ra

ge
 (

K
B

)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(b) client storage cost.
Figure 1: Cloud and client storage costs.

storage than other constructions because of O(N log N) cloud stor-
age overhead. The cloud storage of Basic-HR reaches 704 GB
for a 16 GB database. Although the cloud storage cost of the
other ORAMs is the same in theory as O(N), Path-ORAM and
TP-ORAM have larger constant factors (8X and 4.6X when N is
sufficiently large) than Basic-SR and IBS-SR, as reflected in Fig-
ure 1(a). Basic-SR and IBS-SR show the smallest cloud storage
overhead, using just a little more storage than the database size.

Figure 1(b) shows the client storage cost. For TP-ORAM and
Path-ORAM, since the stash size may vary, we always report their
worst-case client storage in our studies. But the impact of the stash
size is rather limited: after each ORAM read/write operation, the
stash size is only a small fraction of the client storage. Basic-SR
and Basic-HR use around 10 KB (a little more than two blocks)
client memory, since they need only O(1) client storage. The client
storage of IBS-SR is around

√
N blocks, confirming its theoretical

bound. Path-ORAM shows a little less client storage cost than IBS-
SR when N is small and a little larger client storage cost when N
becomes larger. When N is small, the O(log N) data blocks in an

10 12 14 16 18 20 22 24
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

nu
m

be
r

of
 b

lo
ck

s
ac

ce
ss

ed

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(a) amortized cost.

10 12 14 16 18 20 22 24
10

1

10
3

10
5

10
7

10
9

10
11

10
13

10
15

10
17

nu
m

be
r

of
 b

lo
ck

s
ac

ce
ss

ed

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(b) worst-case cost.
Figure 2: Number of blocks accessed per operation in cloud.

accessed path dominate the client storage of Path-ORAM. When
N is large, the O(N

B) blocks in the position map dominate the client
storage of Path-ORAM. BB-ORAM employs a little less client stor-
age than Path-ORAM, since client communicates with the cloud
block by block and does not need the stash. Lastly, TP-ORAM has
the largest client storage, which uses roughly 282 MB client storage
when the database size reaches 64 GB.

6.2 Query Performance in the Cloud
Since in all ORAMs, there are hardly any expensive computation

involved on the cloud and the query cost in the cloud is dominated
by the number of blocks the cloud server needs to access. Thus,
to study the query performance in the cloud, we report the number
of blocks accessed in each client operation for different ORAMs
in Figure 2. We show both the amortized cost per operation and
the worst-case cost per operation over 3N read/write operations (as
described earlier in our experimental setup), when N varies from
210 to 224. Clearly, TP-ORAM has achieved the best amortized
cost and Path-ORAM has demonstrated good amortized cost and
the best worst-case cost.

1121

10 12 14 16 18 20 22 24
10

0

10
1

10
2

10
3

10
4

10
5

10
6

ru
nn

in
g

tim
e

(m
s)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(a) amortized cost.

10 12 14 16 18 20 22 24
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

ru
nn

in
g

tim
e

(m
s)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(b) worst-case cost.
Figure 3: Client-side query time per operation.

10 12 14 16 18 20 22 24
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

ru
nn

in
g

tim
e

(m
s)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(a) amortized cost.

10 12 14 16 18 20 22 24
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

ru
nn

in
g

tim
e

(m
s)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(b) worst-case cost.
Figure 4: Cost of encryption/decryption per operation.

Both TP-ORAM and Path-ORAM have excellent scalability, in
terms of both amortized and worst-case costs, as database size in-
creases. When database size increases from 210 to 224 blocks, the
average number of blocks accessed per operation only increases
from 32 to 56 blocks for TP-ORAM, and increases from 88 to 200
blocks for Path-ORAM. Path-ORAM does have better worst-case
cost compared with TP-ORAM. Its worst-case cost is the same with
its amortized cost, while TP-ORAM needs to access almost 60,000
blocks per operation in the worst case when N = 224. TP-ORAM
accesses more blocks than Path-ORAM in the worst case due to its
costly shuffling operation.

In contrast, IBS-SR shows a sharp increase in cost. For a database
with 224 blocks, it needs to access more than 16,000 blocks per op-
eration on average, and in the worst case it has to retrieve nearly
6.7 × 107 blocks for an operation. The results confirm the the-
oretical analysis earlier that IBS-SR accesses more blocks in the
cloud, since its amortized cost is O(

√
N) compared with O(log N)

in the case of TP-ORAM and Path-ORAM. BB-ORAM accesses
more blocks per operation than IBS-SR when N is small. But BB-
ORAM performs much better than IBS-SR in the worst case, since
its worst-case cost is the same with its amortized cost.

Lastly, both Basic-SR and Basic-HR ORAMs perform poorly
and lead to much more expensive cloud overhead.

6.3 Query Cost for the Client
We next study the query cost at the client side. We report the

running time per operation for each ORAM, in terms of both amor-
tized and worst-case costs in Figure 3. Since each block accessed
in the cloud storage needs to be decrypted and re-encrypted by the
client, the running time at the client side is roughly linear to the
number of blocks an ORAM has to access in the cloud.

The cost of encryption/decryption operations paid by the client
for each operation is shown in Figure 4. Comparing the results in
Figure 3 and those in Figure 4, they confirm that encryption/de-
cryption operations dominate the computation cost in the client.

That said, TP-ORAM shows the smallest computation cost for
the client on average, which takes only a few milliseconds per op-
eration on average and increases very slowly as database size in-
creases. Path-ORAM also has small overhead for the client and
takes about 10 milliseconds per operation on average. It does have
smaller worst-case overhead compared with TP-ORAM (which can
reach more than 1,000 milliseconds per operation).

10 12 14 16 18 20 22 24
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

co
m

m
un

ic
at

io
n

ov
er

he
ad

 (
M

B
)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(a) amortized cost.

10 12 14 16 18 20 22 24
10

−1

10
1

10
3

10
5

10
7

10
9

10
11

10
13

co
m

m
un

ic
at

io
n

ov
er

he
ad

 (
M

B
)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(b) worst-case cost.
Figure 5: Communication overhead in bytes per operation.

10 12 14 16 18 20 22 24
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

nu
m

be
r

of
 r

ou
nd

s

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(a) amortized cost.

10 12 14 16 18 20 22 24
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

nu
m

be
r

of
 r

ou
nd

s

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(b) worst-case cost.
Figure 6: Number of communication rounds per operation.

10 12 14 16 18 20 22 24
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

ru
nn

in
g

tim
e

(m
s)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(a) amortized cost.

10 12 14 16 18 20 22 24
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

ru
nn

in
g

tim
e

(m
s)

log
2
 N

Basic−SR
IBS−SR
Basic−HR
TP−ORAM
BB−ORAM
Path−ORAM

(b) worst-case cost.
Figure 7: End-to-end running time per operation.

6.4 Communication and End-to-End Cost
We measure the communication overhead in terms of both total

bytes transmitted and the rounds of communication needed.
The total bytes communicated between client and cloud, per op-

eration, is shown in Figure 5. Since all accessed blocks in the cloud
need to be retrieved by the client, this result is consistent with that
in Figure 2. The number of communication rounds per operation
is shown in Figure 6. Path-ORAM only needs two communication
rounds (i.e. retrieving and storing the blocks along the accessed
path) for each operation. TP-ORAM only needs a constant num-
ber of communication rounds, since batch read/write operations
can be performed while retrieving/storing levels of blocks. IBS-SR
needs O(

√
N) rounds of communication during the shuffling phase.

However, in the amortized case, it only needs a constant number
of communication rounds, since the communication rounds in the
shuffling operation are amortized into

√
N operations. BB-ORAM

needs many more communication rounds than IBS-SR in the amor-
tized case, since its client communicates with the cloud block by
block. Basic-SR and Basic-HR need many more communication
rounds, due to their O(1) client storage requirements.

We also measure the end-to-end running time for each opera-
tion of these ORAMs, where the results are shown in Figure 7.
The measurement starts when client submits a query operation and
stops when client gets the final query response. Given our findings
so far, it is not surprising to note that TP-ORAM shows the best
amortized cost per operation, and Path-ORAM has the best worst-
case performance. Note that in our setting, the bandwidth between
the client and the cloud is 1 Gbps, and Crypto++ 5.6.0 Benchmarks
show that the rate of encryption/decryption is 108 MB/Second us-
ing AES/CFB (128-bit key). Hence, the bottleneck of the end-to-
end running time lies in client computation.

1122

12 14 16
10

−2

10
−1

10
0

10
1

10
2

10
3

log
2
 N

cl
ou

d
st

or
ag

e
(G

B
)

TP−ORAM Rec−TP BB−ORAM

Rec−BB Path−ORAM Rec−Path

(a) cloud storage.
12 14 16

10
1

10
2

10
3

10
4

10
5

log
2
 N

cl
ie

nt
 s

to
ra

ge
 (

K
B

)

TP−ORAM Rec−TP BB−ORAM

Rec−BB Path−ORAM Rec−Path

(b) client storage.
12 14 16

10
1

10
2

10
3

10
4

10
5

10
6

log
2
 N

nu
m

be
r

of
 b

lo
ck

s
ac

ce
ss

ed

TP−ORAM Rec−TP BB−ORAM

Rec−BB Path−ORAM Rec−Path

(c) blocks accessed.
12 14 16

10
−1

10
0

10
1

10
2

10
3

log
2
 N

co
m

m
un

ic
at

io
n

ov
er

he
ad

 (
M

B
)

TP−ORAM Rec−TP BB−ORAM

Rec−BB Path−ORAM Rec−Path

(d) bytes communicated.
12 14 16

10
0

10
1

10
2

10
3

10
4

10
5

log
2
 N

ru
nn

in
g

tim
e

(m
s)

TP−ORAM Rec−TP BB−ORAM

Rec−BB Path−ORAM Rec−Path

(e) end-to-end.
Figure 8: Recursive ORAMs vs. non-recursive ORAMs: amortized cost used for (c), (d), and (e).

10 12 14 16 18 20 22 24
10

−2

10
−1

10
0

10
1

10
2

10
3

log
2
 N

ru
nn

in
g

tim
e

(m
s)

Uni Zipf

PathUni PathZipf

(a) spatial locality.

10 12 14 16 18 20 22 24
10

−2

10
−1

10
0

10
1

10
2

10
3

log
2
 N

ru
nn

in
g

tim
e

(m
s)

Scan Repeat

PathScan PathRepeat

(b) temporal locality.
Figure 9: Using ORAM vs. not using ORAM (point query).

10 12 14 16 18 20 22 24
10

−1

10
0

10
1

10
2

10
3

10
4

log
2
 N

ru
nn

in
g

tim
e

(m
s)

Uni Zipf

PathUni PathZipf

(a) spatial locality.

10 12 14 16 18 20 22 24
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

log
2
 N

ru
nn

in
g

tim
e

(m
s)

Scan Repeat

PathScan PathRepeat

(b) temporal locality.
Figure 10: Using ORAM vs. not using ORAM (range query).

6.5 Recursive ORAMs
For TP-ORAM, BB-ORAM and Path-ORAM, to reduce client

storage, we can recursively apply them to build their position map,
i.e., we can store the position map in another smaller ORAM in
the cloud rather than storing it in the client. It can be recursively
applied until the position map size in the client becomes O(1).

Figure 8 shows the comparison between recursive ORAMs and
non-recursive ORAMs. As Figure 8(a) shows, the cloud storage of
these recursive ORAMs is nearly the same with that of their corre-
sponding non-recursive ones. The client storage has reduced dra-
matically for recursive BB-ORAM compared to non-recursive BB-
ORAM, due to O(1) client storage for the recursive BB-ORAM. As
for TP-ORAM and Path-ORAM, such reduction is limited, since
the position map does not dominate the client storage when N is
not large enough. But recursive constructions lead to the increase
of all other costs including number of blocks accessed by the cloud,
communication overhead, and the overall end-to-end running time.
This overhead is significant for TP-ORAM. In the amortized case,
for every O(log N) blocks that the client uploads to the cloud in
each eviction, the client has to update its position map by recur-
sively accessing corresponding blocks in a series of smaller ORAMs.

6.6 Using ORAM vs. Not Using ORAM
We made a comparison between queries using ORAM and that

of not using ORAM. For queries without ORAM, the client re-
encrypts a block before directly storing it back to the cloud, and
decrypts a block after directly retrieving it, but does not hide any
access patterns. We investigated both point and range queries. A
point query is to read/write block id j. A range query with length `
is to read/write blocks id j through id j + ` − 1. By default, ` = 10.

We vary both query distribution and query permutation. In other
words, we vary the distribution and the permutation of block iden-
tifiers id j in a query workload. We perform 10N read/write op-
erations for each case. To study spatial locality, we consider uni-
form distribution (Uni) and the distribution obeying Zipf’s law with

skewness parameter s = 1 (Zipf). To study temporal locality, we
consider scanning all blocks pass by pass (Scan) and repeatedly
accessing each block for ten times (Repeat) under uniform distri-
bution. We report the performance comparison using Path-ORAM
(i.e., PathUni, PathZipf, PathScan, and PathRepeat), which has best
worst-case cost per operation among all ORAMs, and that of not
using ORAM (i.e., Uni, Zipf, Scan, and Repeat).

Figure 9 shows the average end-to-end query time per operation
regarding point queries. As expected, query distribution and query
permutation have no influence on the performance of Path-ORAM.
However, for queries without using ORAM, the query workload
with skewed query distribution (i.e., Zipf) clearly leads to better
performance (than Uni). Furthermore, “Repeat” can perform nearly
10X faster than “Scan” in the case of not using ORAM, due to much
higher cache hit rates. But they show no difference for queries with
ORAM. Figure 10 shows similar trends for range queries.

6.7 Remarks
Our results indicate that Path-ORAM and TP-ORAM have the

best overall performance with respect to all metrics. TP-ORAM
typically has the best amortized cost per operation, while Path-
ORAM has much smaller variance in terms of cost per operation,
and hence, has the best worst-case cost per operation. IBS-SR
has acceptable performance, and achieves smaller cloud storage
overhead than Path-ORAM and TP-ORAM (by almost one order
of magnitude), hence, can be used when reducing cloud storage
overhead is a significant concern. Basic-SR and Basic-HR have
poor performance, but they require only O(1) client storage. BB-
ORAM shows acceptable performance and recursive BB-ORAM
only needs O(1) client storage, and can be used for relatively small
databases and when client device or computation environment is
extremely tight on memory space (e.g., a sensor).

We expect IBS-SR, TP-ORAM, and Path-ORAM will be used
for most applications. Figures 11, 12, and 13 give further insights
into their performance by tuning their key parameters.

7. CONCLUSION AND FUTURE WORK
This paper provides a comprehensive and detailed analysis on

a wide spectrum of existing ORAMs. Despite the strong privacy
guarantee, there are still some major limitations while using ORAM
to build an encrypted database. First, using an ORAM harms the
performance of the database, since it destroys any locality of refer-
ences and also adds operation overheads due to shuffling and other
procedures needed to hide access patterns. Second, ORAM only
supports read and write operations. Thus, using ORAM to answer
more complex queries, such as joins, may lead to large overhead,
which needs new techniques to be developed to optimize such oper-
ations. Last but not least, how to support concurrency in an efficient
and scalable manner using ORAM is still a major challenge.

Lastly, note that our ORAM library is released as an open source
library, named SEAL-ORAM, on GitHub.

8. ACKNOWLEDGMENT
We appreciate the comments from the anonymous reviewers.

Zhao Chang, Dong Xie and Feifei Li were supported in part by
NSF grants 1514520 and 1200792.

1123

12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

log
2
 N

cl
ou

d
st

or
ag

e
(G

B
)

α=1 α=3 α=5 α=7 α=9

(a) cloud storage.
12 14 16

0

2000

4000

6000

8000

10000

12000

log
2
 N

cl
ie

nt
 s

to
ra

ge
 (

K
B

)

α=1 α=3 α=5 α=7 α=9

(b) client storage.
12 14 16

0

200

400

600

800

1000

1200

1400

log
2
 N

nu
m

be
r

of
 b

lo
ck

s
ac

ce
ss

ed

α=1 α=3 α=5 α=7 α=9

(c) blocks accessed.
12 14 16

0

1

2

3

4

5

log
2
 N

co
m

m
un

ic
at

io
n

ov
er

he
ad

 (
M

B
)

α=1 α=3 α=5 α=7 α=9

(d) bytes communicated.
12 14 16

0

10

20

30

40

50

60

log
2
 N

ru
nn

in
g

tim
e

(m
s)

α=1 α=3 α=5 α=7 α=9

(e) end-to-end.
Figure 11: Effect of α in IBS-SR: client uses O(α

√
N) memory, amortized cost used for (c), (d), and (e).

12 14 16
0

0.5

1

1.5

log
2
 N

cl
ou

d
st

or
ag

e
(G

B
)

R=0.3 R=0.5 R=0.7

R=0.9 R=1.1

(a) cloud storage.
12 14 16

0

2000

4000

6000

8000

10000

log
2
 N

cl
ie

nt
 s

to
ra

ge
 (

K
B

)

R=0.3 R=0.5 R=0.7

R=0.9 R=1.1

(b) client storage.
12 14 16

0

10

20

30

40

50

60

70

log
2
 N

nu
m

be
r

of
 b

lo
ck

s
ac

ce
ss

ed

R=0.3 R=0.5 R=0.7

R=0.9 R=1.1

(c) blocks accessed.
12 14 16

0

0.05

0.1

0.15

0.2

0.25

0.3

log
2
 N

co
m

m
un

ic
at

io
n

ov
er

he
ad

 (
M

B
)

R=0.3 R=0.5 R=0.7

R=0.9 R=1.1

(d) bytes communicated.
12 14 16

0

1

2

3

4

5

6

log
2
 N

ru
nn

in
g

tim
e

(m
s)

R=0.3 R=0.5 R=0.7

R=0.9 R=1.1

(e) end-to-end.
Figure 12: Effect of R in TP-ORAM: background eviction rate, amortized cost used for (c), (d), and (e).

12 14 16
0

0.5
1

1.5
2

2.5
3

3.5
4

log
2
 N

cl
ou

d
st

or
ag

e
(G

B
)

Z=3 Z=4 Z=5 Z=6

(a) cloud storage.
12 14 16

0

100

200

300

400

500

log
2
 N

cl
ie

nt
 s

to
ra

ge
 (

K
B

)

Z=3 Z=4 Z=5 Z=6

(b) client storage.
12 14 16

0

50

100

150

200

250

log
2
 N

nu
m

be
r

of
 b

lo
ck

s
ac

ce
ss

ed

Z=3 Z=4 Z=5 Z=6

(c) blocks accessed.
12 14 16

0

0.2

0.4

0.6

0.8

1

log
2
 N

co
m

m
un

ic
at

io
n

ov
er

he
ad

 (
M

B
)

Z=3 Z=4 Z=5 Z=6

(d) bytes communicated.
12 14 16

0

5

10

15

20

log
2
 N

ru
nn

in
g

tim
e

(m
s)

Z=3 Z=4 Z=5 Z=6

(e) end-to-end.
Figure 13: Effect of Z in Path-ORAM: number of blocks in each bucket, amortized cost used for (c), (d), and (e).

9. REFERENCES
[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting

network. In STOC, pages 1–9, 1983.
[2] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik,

D. Kossmann, R. Ramamurthy, P. Upadhyaya, and R. Venkatesan.
Secure database-as-a-service with cipherbase. In SIGMOD, 2013.

[3] A. Arasu, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, and
R. Ramamurthy. Transaction processing on confidential data using
cipherbase. In ICDE, pages 435–446, 2015.

[4] A. Arasu, K. Eguro, R. Kaushik, and R. Ramamurthy. Querying
encrypted data. In SIGMOD, pages 1259–1261, 2014.

[5] A. Arasu and R. Kaushik. Oblivious query processing. In ICDT,
pages 26–37, 2014.

[6] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin.
Persona: An online social network with user-defined privacy. In
SIGCOMM, pages 135–146, 2009.

[7] S. Bajaj and R. Sion. Trusteddb: A trusted hardware-based database
with privacy and data confidentiality. TKDE, 26(3):752–765, 2014.

[8] K. E. Batcher. Sorting networks and their applications. In AFIPS
Spring Joint Computing Conference, pages 370–314, 1968.

[9] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious storage:
Making oblivious RAM practical. In MIT CS Technical Report, 2011.

[10] E. E. Chapman. A survey and analysis of solutions to the oblivious
memory access problem. In Tech Report, Portland State, 2012.

[11] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private
information retrieval. J. ACM, 45(6):965–981, 1998.

[12] R. Durstenfeld. Algorithm 235: Random permutation.
Communications of the ACM, 7(7):420, 1964.

[13] O. Goldreich. Towards a theory of software protection and simulation
by oblivious RAMs. In STOC, pages 182–194, 1987.

[14] O. Goldreich and R. Ostrovsky. Software protection and simulation
on oblivious RAMs. Journal of the ACM, 43(3), 1996.

[15] M. T. Goodrich. Randomized Shellsort: A simple oblivious sorting
algorithm. In SODA, pages 1262–1277, 2010.

[16] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of
outsourced data via oblivious RAM simulation. In ICALP, 2011.

[17] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Practical oblivious storage. In CODASPY, 2012.

[18] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Privacy-preserving group data access via stateless oblivious RAM
simulation. In SODA, pages 157–167, 2012.

[19] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL
over encrypted data in the database-service-provider model. In
SIGMOD, pages 216–227, 2002.

[20] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and
mitigation. In NDSS, 2012.

[21] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of
hash-based oblivious RAM and a new balancing scheme. In SODA,
pages 143–156, 2012.

[22] Y. Li and M. Chen. Privacy preserving joins. In ICDE, 2008.
[23] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A

programming framework for secure computation. In S&P, 2015.
[24] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman.

Shroud: Ensuring private access to large-scale data in the data center.
In FAST, pages 199–214, 2013.

[25] K. Mouratidis and M. L. Yiu. Shortest path computation with no
information leakage. PVLDB, 5(8):692–703, 2012.

[26] R. Ostrovsky. Efficient computation on oblivious RAMs. In STOC,
pages 514–523, 1990.

[27] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[28] B. Pinkas and T. Reinman. Oblivious RAM revisited. In CRYPTO,
pages 502–519, 2010.

[29] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing.
In SOSP, pages 85–100, 2011.

[30] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with
O((log N)3) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

[31] E. Stefanov and E. Shi. ObliviStore: High performance oblivious
cloud storage. In S&P, pages 253–267, 2013.

[32] E. Stefanov, E. Shi, and D. X. Song. Towards practical oblivious
RAM. In NDSS, 2012.

[33] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path ORAM: An extremely simple oblivious RAM
protocol. In CCS, pages 299–310, 2013.

[34] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing
analytical queries over encrypted data. PVLDB, 6(5):289–300, 2013.

[35] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi.
SCORAM: Oblivious RAM for secure computation. In CCS, 2014.

[36] P. Williams and R. Sion. Usable PIR. In NDSS, 2008.
[37] P. Williams, R. Sion, and A. Tomescu. PrivateFS: A parallel

oblivious file system. In CCS, pages 977–988, 2012.
[38] D. Xie, G. Li, B. Yao, X. Wei, X. Xiao, Y. Gao, and M. Guo.

Practical private shortest path computation based on oblivious
storage. In ICDE, 2016.

[39] B. Yao, F. Li, and X. Xiao. Secure nearest neighbor revisited. In
ICDE, pages 733–744, 2013.

1124

