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ABSTRACT
We address the problem of expressing and evaluating compu-
tations on hierarchies represented as database tables. Engine
support for such computations is very limited today, and so
they are usually outsourced into stored procedures or client
code. Recently, data model and SQL language extensions
were proposed to conveniently represent and work with hier-
archies. On that basis we introduce a concept of structural
grouping to relational algebra, provide concise syntax to ex-
press a class of useful computations, and discuss algorithms
to evaluate them efficiently by exploiting available indexing
schemes. This extends the versatility of RDBMS towards a
great many use cases dealing with hierarchical data.

1. INTRODUCTION
In business and scientific applications hierarchies appear in
many scenarios: organizational or financial data, for exam-
ple, is typically organized hierarchically, while the sciences
routinely use hierarchies in taxonomies. In the underlying
RDBMS they are represented in hierarchical tables using
relational tree encodings [4, 8]. Looking at typical queries
especially in analytic applications, we see hierarchies serve
mainly two purposes. The first is structural pattern match-
ing, i. e., filtering and matching rows based on their positions
in a hierarchy. The second is hierarchical computations:
propagating measures and performing aggregation-like com-
putations alongside the hierarchy structure. To address both
purposes on RDBMS level, we need to solve two challenges:
how can a user express a task at hand intuitively and con-
cisely in SQL (expressiveness)? —and: how can the engine
process these SQL queries efficiently (efficiency)? Regarding
pattern matching queries, both can be considered adequately
solved, as they boil down to straightforward filters and struc-
tural joins on hierarchy axes, and techniques for appropriate
indexes and join operators are well-studied [13, 26, 1, 3]. The
same cannot be said of hierarchical computations. For the
purpose of computations, a subset of the hierarchy nodes
is dynamically associated with values to be propagated or
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ID Node Weight
'A1' A1 NULL
'A2' A2 NULL
'B1' B1 0.5
'B2' B2 0.5
'C1' C1 0.4
'C2' C2 0.6
'C3' C3 0.25
'C4' C4 0.75
'D1' D1 0.8
'D2' D2 0.2
'D3' D3 1.0

Figure 1: A hierarchical table HT

aggregated, and possibly filtered. In analytic applications,
this has always been a routine task: Dimension hierarchies
are typically modeled by denormalized leveled tables such as
City–State–Country–Continent. Certain computations can
then be expressed using SQL’s basic grouping mechanisms
(in particular ROLLUP [12]). However, this is insufficient for
computations beyond simple rollups, especially when the
hierarchy is not organized into levels but exhibits an irreg-
ular structure—where nodes on a level may be of different
types—and arbitrary depth. Consider the hierarchy in Fig. 1.
Suppose we wanted to compute weighted sums of some val-
ues attached to the leaves—how could we state a rollup
formula incorporating the edge weights? This quickly turns
exceedingly difficult in SQL. One tool that comes to mind
are recursive common table expressions (RCTEs). However,
more intricate computations tend to result in convoluted,
inherently inefficient statements. Lacking RDBMS support,
today users resort to stored procedures or client code as
workarounds. These are unsatisfactory not only concern-
ing expressiveness, they also ignore the known hierarchy
structure and are thus handicapped in terms of efficiency.

We address the open issues of expressiveness and efficiency
regarding complex computations on arbitrary irregular hier-
archies by enhancing the RDBMS backend. Our foundation
are the data model and SQL constructs from [2], which allow
the user to conveniently define and query arbitrary hierar-
chies. This opens up new opportunities: the backend becomes
aware of the hierarchy structure and can rely on powerful
indexing schemes for query processing. We first introduce
the basic concepts of hierarchical computations (Sec. 2), then
proceed to corresponding SQL constructs (Sec. 3), which
are translated into structural grouping operations in rela-
tional algebra (Sec. 4). The efficient evaluation of structural
grouping requires index-assisted physical algebra operators
(Sec. 5). We assess them against common alternative ap-
proaches (Sec. 6). Finally, we examine related work (Sec. 7)
and wrap up the key properties of our solution (Sec. 8).
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2. MOTIVATION
Our starting point is a representation of hierarchical data
in a relational table. More specifically, we assume a table
that encodes—using a suitable scheme—a forest of ordered,
rooted, labeled trees, such that one table tuple (row) rep-
resents one hierarchy node. The labels of a node are the
associated row’s fields. For trees a 1 : 1 association between
a node and its incoming edge can be made, so each field
value can be interpreted as a label on either the node or edge.
In our example table HT of Fig. 1, we view Weight as an
edge label. The ordered property means that siblings have a
defined order. It implies that every node has a well-defined
rank in the pre- or post-order sequence of all nodes; e. g., B1

in the figure has pre rank 2 and post rank 3. While there
are lots of options regarding the actual tree encoding to use,
we intend to keep our discussion of hierarchical computa-
tions completely encoding-agnostic. The hierarchical table
model [2] helps us with that: it conveniently hides the encod-
ing details through an abstract data type NODE. The Node
attribute of HT identifies a row’s position and is backed by
a hierarchy index H, which encapsulates the forest structure.
We assume the index supports at the minimum two basic
primitives, is-before-pre and is-before-post, in O(log |HT|)
or even O(1). Given a pair (ν1, ν2) of node values, they test
whether ν1 precedes ν2 with respect to pre- and post-order
traversal of the hierarchy. This allows us to test pairs of
nodes against the main hierarchy axes:

preceding: is-before-pre(ν1, ν2) ∧ is-before-post(ν1, ν2)
descendant : is-before-pre(ν2, ν1) ∧ is-before-post(ν1, ν2)
following: is-before-pre(ν2, ν1) ∧ is-before-post(ν2, ν1)
ancestor : is-before-pre(ν1, ν2) ∧ is-before-post(ν2, ν1)
self : ν1 = ν2

In HT, C3 follows B1 / C1 / C2 and precedes A2 / C4 / D3 .
The ancestor/descendant and preceding/following axes are
symmetric. (Refer to [13] for a very visual discussion.) In
pseudo code we denote e. g. “H.is-descendant(ν1, ν2)” for
an axis check “ν1 is a descendant of ν2”, and sometimes
use “-or-self” variants with the obvious meaning. Specific
index implementations will natively support these and other
axes as well as further primitives (e. g. is-child, level), but
our algorithms rely only on is-before-pre/post. An example
implementation is the simple PPPL labeling scheme [8]. Here,
Node is a 4-tuple storing the pre/post ranks, the parent’s pre
rank, and the level of the node. Additionally, the hierarchy
table is indexed on the pre/post ranks using two simple
lookup tables. With PPPL, the index primitives obviously
boil down to very cheap O(1) arithmetics on Node, so this is
as fast as a hierarchy index can get. If some degree of update
support is needed, however, a more sophisticated indexing
scheme must be chosen; see [8] for a recent overview. Note
again that, while we rely on the NODE abstraction for ease of
presentation, the concepts and algorithms of this paper could
easily be adapted to any specific “hard-coded” encoding that
affords the said primitives.

A hierarchical computation propagates or accumulates data—
usually numeric values—along the hierarchy edges. Data
flow can happen either in the direction towards the root
(bottom up) or away from the root (top down, matching the
natural direction of the edges). Unlike the “static” labels
stored with the base table itself (e. g. ID and Weight in HT),
the computation input is generally the result of an arbitrary
subquery that associates some hierarchy nodes with input
values, such as table Inp1 in Fig. 2a.

Inp1
Node Value
B1 10
C1 100
C2 200
D1 1000
D2 2000
D3 3000

Out1
A1

B1

C1

Inp2
Node ID Weight Value
C1 'C1' 0.4 100
C2 'C2' 0.6 200
B1 'B1' 0.5 10
D1 'D1' 0.8 1000
D2 'D2' 0.2 2000
C3 'C3' 0.25 NULL
D3 'D3' 1.0 3000
C4 'C4' 0.75 NULL
B2 'B2' 0.5 NULL
A1 'A1' NULL NULL
A2 'A2' NULL NULL

(a) (b)

Figure 2: Example tables — (a) input/output nodes for bi-

nary grouping; (b) combination of HT and Inp1 for unary grouping

In an analytic scenario, HT may be a so-called dimension
hierarchy arranging products (leaves) into products groups
(inner nodes), and a fact table Sales may associate each sale
item with a specific product, i. e., a leaf of HT:

Sales : {[Sale, Item, Customer, Product, Date, Amount]}
Here, the computation input are the amounts from Sales,
attached to some of the product leaves via join. A canonical
task in such scenarios known as rollup is to sum up the
revenue of certain products—say, “type A”—along the hier-
archy bottom up and report these sums for certain product
groups visible in the user interface—say, the three uppermost
levels. The following SQL statement I-a computes the rollup,
using the self-explanatory IS DESCENDANT OR SELF and LEVEL

constructs from [2]:

WITH Inp1 AS ( I-a
SELECT p.Node, s.Amount AS Value

FROM HT p JOIN Sales s ON p.Node = s.Product
WHERE p.Type = 'type A' )

SELECT t.*, SUM(u.Amount) AS Total
FROM HT t LEFT OUTER JOIN Inp1 u

ON IS DESCENDANT OR SELF(u.Node, t.Node)
WHERE LEVEL(t.Node) <= 3
GROUP BY t.*

This represents a class of hierarchical computations with two
particular characteristics: First, only a subset of nodes carry
an input value—often only the leaves, as in the example; we
call these input nodes. Second, the set of input nodes is
mostly disjoint from the output nodes that after the compu-
tation carry a result we are interested in. Input and output
nodes are therefore determined by separate subqueries and
the queries follow a join–group–aggregate pattern. We refer
to this scheme as binary structural grouping. “Structural”
here alludes to the role the hierarchy structure plays in form-
ing groups of tuples. The query plans are typically variations
of Γt.∗; x : f (e1[t] u< t e2[u]), where denotes the left outer
join, Γ denotes unary grouping (cf. [17]), and < reflects the
input/output relationship among tuples. Suppose we wanted
to compute a rollup based on our example input Inp1, and
we are interested in three output nodes given by Out1 in
Fig. 2a. To do so, we use e1 = Out1, e2 = Inp1, and define
the < predicate as H.is-descendant-or-self(u.Node, t.Node)
and f(X) as

∑
u∈X u.Value. This yields the sums 6310, 310,

and 100 for A1 , B1 , and C1 , respectively.
Such query plans perform acceptably when f is cheap

to compute and the set of output nodes is rather small.
However, there is a major efficiency issue: for each e1 tuple,
the computation f bluntly sums up all matching input values
from e2, while ideally we would reuse results from previously
processed e1 tuples. In our example, to compute the sum for
A1 we can save some arithmetic operations by reusing the
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sum of B1 and adding just the input values of D1 / D2 / D3 .
With respect to <, we say that the output node B1 is covered
by the output node A1 and thus carries a reusable result.
To enable such reuse, the binary grouping algorithms we
propose in this paper process the e1 tuples in < order and
memorize any results that may be relevant for upcoming e1
tuples. Thereby they overcome the mentioned inefficiencies.

From an expressiveness point of view, the widespread join–
group–aggregate statements are fairly intuitive to most SQL
users, yet not fully satisfactory: they lack conciseness, since
conceptually a table of < pairs must be assembled by hand
prior to grouping, and the fact that a top-down or bottom-up
hierarchical computation is being done is somewhat disguised.
They become tedious especially when the output and input
nodes largely overlap or are even identical, as in

SELECT t.Node, SUM(u.Value) II-a
FROM Inp1 AS t LEFT OUTER JOIN Inp1 AS u

ON IS DESCENDANT OR SELF(u.Node, t.Node)
GROUP BY t.*

Our proposed extensions to SQL’s windowed table mecha-
nism will allow us to equivalently write:

SELECT Node, SUM(Value) OVER (HIERARCHIZE BY Node) II-b
FROM Inp1

We refer to this scheme as unary structural grouping, since
the computation now works on a single table. It inherently
yields a result for every tuple, i. e., every node acts as both an
input and output node. A binary grouping query can usually
be rewritten to unary grouping by working on a merged
“e1∪e2” table and filtering the output nodes a posteriori. For
example, Inp2 in Fig. 2b shows a combination of HT and
Inp1; here we assigned NULL as a neutral value to nodes which
do not carry a meaningful value. Rewriting binary to unary
computations will often result in more concise and intuitive
statements. Especially when there is no clear distinction
between input and output nodes, unary grouping is the most
natural approach.

The unary structural grouping mechanism offers us an-
other attractive language opportunity: support for structural
recursion. Using a structurally recursive expression we can
state the rollup in Stmt. II-a and II-b in yet another way:

SELECT Node, RECURSIVE INT (Value + SUM(x) OVER w) AS x II-c
FROM Inp1 WINDOW w AS (HIERARCHIZE BY Node)

This expression for x sums up the readily computed sums x
of all tuples that are covered by the current tuple. Unlike
binary grouping, unary grouping with structural recursion
makes the reuse of previous results explicit and thus in-
herently translates into the efficient evaluation approach.
Furthermore, it enables us to state significantly more com-
plex computations with remarkable conciseness. For example,
we can now straightforwardly take the edge weights from
Inp2 into account in our rollup:

SELECT Node, RECURSIVE DOUBLE ( III
Value + SUM(Weight * x) OVER w ) AS x

FROM Inp2 WINDOW w AS (HIERARCHIZE BY Node)

Rather than actually performing recursion, our operators
evaluate unary grouping in a bottom-up fashion, leveraging
a <-sorted input table like their binary counterparts.

3. EXPRESSING COMPUTATIONS IN SQL
Unlike binary grouping, unary structural grouping is a novel
concept to SQL. Following our informal motivation in the
previous section, we now cover the syntax and semantics of
our extensions for unary grouping.

3.1 Windowed Tables and Hierarchies
Windowed tables are a convenient and powerful means for
aggregations and statistical computations on a single table,
which otherwise would require unwieldy correlated subqueries.
Their implicitly self-joining nature makes them a natural fit
for structural grouping. We therefore extend this mechanism
by hierarchical windows. Let us first briefly review the
standard terminology and behavior of windowed tables (refer
to e. g. [25] for details). A standard window specification may
comprise a partition clause, an ordering clause, and a frame
clause. Consider how we may annotate our Sales table from
Sec. 2 with per-customer sales totals running over time:

SELECT Customer, Date, SUM(Amount) OVER w
FROM Sales WINDOW w AS (

PARTITION BY Customer ORDER BY Date
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
EXCLUDE NO OTHERS )

The frame clause “RANGE...NO OTHERS” is the implicit default
and could be omitted. Briefly put, the query is conceptu-
ally evaluated as follows: (1) the Sales are partitioned by
Customer; (2) each partition is sorted by Date; (3) within
each sorted partition, each tuple t is associated with a group
of tuples relative to t, its window frame as determined by
the frame clause, in this case: all sales up to t; (4) the
window function (SUM) is evaluated for that group and its
result appended to t. The frame is always a subsequence
of the current ordered partition. Note that tuples need not
be distinct with respect to the ORDER BY fields. Tuples in t’s
frame that match in these fields are called peers or TIES.

For unary structural grouping, our windowed table will be
some collection of nodes (e. g. Inp1); that is, there is a NODE

field whose values are drawn from a hierarchical base table
(e. g. HT). We extend the standard window specification with
a new HIERARCHIZE BY clause specifying a hierarchical window.
This clause may take the place of the ordering clause behind
the partitioning clause. That is, partitioning happens first
as usual, and hierarchizing replaces ordering. While window
ordering turns the partition into a partially ordered sequence,
hierarchizing turns it into an acyclic directed graph derived
from the hierarchy. We begin our discussion with a minimal
hierarchical window specification, which omits partitioning
and the frame clause (so the above default applies):

HIERARCHIZE BY ν [BOTTOM UP|TOP DOWN]

The clause determines the NODE field ν, its underlying hier-
archy index H, and the direction of the intended data flow
(bottom up by default), giving us all information we need to
define an appropriate < predicate on the partition:

top-down: u < t :⇐⇒ H.is-descendant(t.ν, u.ν)
bottom-up: u < t :⇐⇒ H.is-descendant(u.ν, t.ν)

We additionally need the notion of covered elements we used
informally in Sec. 2. An element u is said to be covered by
another element t if no third element lies between them:

u <: t :⇐⇒ u < t ∧ ¬∃u′ : u < u′ < t. Eq. 1

Using <: we can identify the immediate < neighbors (des-
cendants/ancestors) of a tuple t within the current partition.
Note that in case all hierarchy nodes are contained in the
current partition, the “tuple u is covered by t” relationship is
equivalent to “node u.ν is a child/parent of t.ν”. However, we
need the general <: notion because the current partition may
well contain only a subset of the nodes. The <: predicate
helps us establish a data flow between tuples even when
intermediate nodes are missing in the input.
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Inp3 Window Frame Result
Node Value 0 1 2 3 4 5 x
C1 100 0 =̂ 100
C2 200 1 =̂ 200
D1 1000 2 =̂ 1000
D3 3000 3 =̂ 3000
B2 20 4 <: <: =̂ 4020
A1 1 5 <: <: < < <: =̂ 4321

[ A1 , ·]

B1

[ C1 , ·] [ C2 , ·]

[ B2 , ·]

C3

[ D1 , ·]

C4

[ D3 , ·]

Figure 3: A bottom-up hierarchical window

A tuple u from the current partition can be related in four
relevant ways to the current tuple t:

(a) u < t (b) t < u (c) u.ν = t.ν (d) neither of those

To reuse the syntax of the standard window frame clause
without any modifications, we have to reinterpret three con-
cepts accordingly: PRECEDING tuples are those of category (a);
FOLLOWING tuples are those of category (b); TIES are tuples
of category (c). In the bottom-up case, PRECEDING tuples
correspond to descendants and FOLLOWING tuples to ancestors
of t.ν. These terms are not to be mixed up with the preceding
and following hierarchy axes. Tuples on those axes, as well as
tuples where ν is NULL, fall into category (d) and are always
excluded from the frame. The default frame clause includes
categories (a), (c), and the current row itself. The handling
of (c) tuples can be controlled independently via the EXCLUDE

clause, but we omit these details for brevity.
Consider Fig. 3, where we apply a bottom-up hierarchical

window to table Inp3 and compute x = SUM(Value) like in
Stmt. II-b from Sec. 2. The matrix indicates the relation-
ships of the tuples. Since our window uses the default frame
clause, the frames comprise exactly the <, <:, and tied =̂
tuples. Summing over them yields the x values shown to the
right. Note that although Inp3 does not include the interme-
diate nodes B1 / C3 / C4 , the input values of C1 / C2 do still
count into A1 , and likewise for D1 / D3 and the B2 tuple,
as illustrated by the data flow graph to the right. As said,
unary grouping does not require all intermediate nodes to be
present in the input. In that, it behaves precisely like the al-
ternative binary approach based on an IS DESCENDANT OR SELF

join (Stmt. II-a). For basic rollups, which are by far the
most common type of hierarchical computation, the implicit
window frame clause does just the “right thing”—thanks to
our definitions of < and the PRECEDING/FOLLOWING concepts—
and it is hard to imagine a more concise and readable way
of expressing them in SQL.

3.2 Recursive Expressions
Thus far, hierarchical windows are merely a shorthand; they
can equivalently be expressed through join–group–aggregate
statements. Structural recursion, however, significantly ex-
tends their expressive power. To enable recursive expressions,
we recycle the SQL keyword RECURSIVE and allow wrapping it
around expressions containing one or more window functions:

RECURSIVE [τ] (expr) AS c

This makes a field c of type τ accessible within any contained
window function, and thus provides a way to refer to the
computed expr value of any tuple in the window frame. If
c is used anywhere in expr, τ must be specified explicitly,
and an implicit CAST to τ is applied to expr. Automatic
type deduction in certain cases is a possible future extension,
but it is not generally possible without ambiguity. The
following additional rules apply: First, if expr contains one
or more window function expressions of the form “expri

OVER wi”, all used hierarchical windows wi must be equal
(same partitioning and HIERARCHIZE clause, i. e., NODE field and
direction). Second, the frame of each window wi is restricted
as follows: only the covered tuples (“RANGE 1 PRECEDING”)
can potentially be included in the frame, and in particular
EXCLUDE GROUP is enforced. That is, the frame clause of every
window function within expr effectively becomes:

RANGE BETWEEN 1 PRECEDING AND CURRENT ROW EXCLUDE GROUP

This in particular ensures that the window frame will not
contain the CURRENT ROW, any TIES, or any FOLLOWING tuples.
If any of those were contained in the frame, any access to
field c within expr would create a circular dependency. It is
conceivable to loosen the restrictions somewhat and give the
user more control via a custom RANGE clause, but we do not
consider that in this paper. Third, the field c may appear
only within one of the window function expressions expri;
say, in combination with an aggregate function AGG:

RECURSIVE τ (. . . AGG(expr′) OVER w . . .) AS c

Mentioning c outside a window function would implicitly ac-
cess the current tuple, which is forbidden, whereas according
to SQL’s rules mentioning c within expr′ implicitly accesses
the frame row (FRAME ROW), which thanks to our restrictive
window frame can only be a covered tuple for which c is
available. While this standard behavior is what is usually
intended and convenient, SQL has a way to override the im-
plicit frame row access. We can e. g. refer to the current tuple
even within AGG using a so-called nested window function:

AGG(. . .VALUE OF(c AT CURRENT ROW). . .) OVER w

We prohibit this for c, but allow it for any other field.
Returning to our Fig. 3, we can now equivalently apply

the recursive rollup expression of Stmt. II-c, x = RECURSIVE

INT (Value + SUM(x) OVER w), to Inp3. The window frames are
now restricted to the covered <: tuples. Since Inp3 is already
ordered suitably for bottom-up evaluation—i. e. postorder—
we can fill in the x result column in a single pass and always
have the x values of our frame rows at hand.

3.3 Further Examples
Even with non-recursive expressions, hierarchical windows
are already an attractive alternative to verbose join–group–
aggregate statements. Consider our opening query I-a from
Sec. 2. SQL allows aggregation to be restricted by a FILTER.
This handy feature allows us to state this query as follows:

SELECT * FROM ( I-b
SELECT HT.*,

SUM(Amount) FILTER (WHERE Type = 'type A') OVER w
FROM HT LEFT OUTER JOIN Sales s ON Node = s.Product

WINDOW w AS (HIERARCHIZE BY Node)
) WHERE LEVEL(Node) <= 3

This saves us one join over Stmt. I-a. Note the outer join may
yield tuples where Amount is NULL, but these are conveniently
ignored by SUM. Altogether there are three points where we
could add WHERE conditions: a priori (before windows are
formed), as FILTER (restricting the computation input but
not affecting the table), and a posteriori (restricting the
output). For the latter we must nest two selections, as SQL
currently has no HAVING equivalent for windowed tables.

Fig. 4 shows further meaningful expressions, including
non-recursive variants where possible, each based on either
a bottom-up or a top-down hierarchical window on Inp2:

SELECT Node, expr FROM Inp2 IV
WINDOW td AS (HIERARCHIZE BY Node TOP DOWN),

bu AS (HIERARCHIZE BY Node BOTTOM UP)
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(1a) SUM(Value) OVER bu
(1b) RECURSIVE INT (Value + SUM(x) OVER bu) AS x

(2a) PRODUCT(Weight) OVER td -- non-standard

(2b) RECURSIVE DOUBLE (
Weight * COALESCE(FIRST VALUE(x) OVER td, 1) ) AS x

(3a) SUM(Value) OVER (bu RANGE 1 PRECEDING EXCLUDE GROUP)
(3b) RECURSIVE (SUM(Value) OVER bu)

(4a) RECURSIVE DOUBLE (Weight * (Value + SUM(x) OVER bu)) AS x
(4b) RECURSIVE DOUBLE (Value + Weight * (SUM(x) OVER bu)) AS x
(4c) RECURSIVE DOUBLE (Value + SUM(Weight * x) OVER bu) AS x
(4d) RECURSIVE DOUBLE (Value

+ SUM(VALUE OF(Weight AT CURRENT ROW) * x) OVER w) AS x

(5) RECURSIVE VARCHAR (
COALESCE(FIRST VALUE(x) OVER td, '') || '/' || ID ) AS x

(6a) COUNT(*) OVER td
(6b) RECURSIVE INT (COALESCE(FIRST VALUE(x) OVER td, 0) + 1) AS x

(7a) COUNT(*) OVER bu
(7b) RECURSIVE INT (COALESCE(FIRST VALUE(x) OVER td, 0) + 1) AS x

(8) RECURSIVE INT (1 + COALESCE(MAX(x) OVER bu, 0)) AS x

(9a) COUNT(*) OVER (bu RANGE 1 PRECEDING EXCLUDE GROUP)
(9b) RECURSIVE (COUNT(*) OVER bu)

(10) RECURSIVE (MY FUNC(ARRAY AGG(ROW(ID, x)) OVER w)) AS x

Figure 4: SQL examples for unary computations

(1) is our familiar rollup. Besides SUM, the operation in (1a)
could e. g. be AVG, MIN, MAX, COUNT (cf. Ex. 7), EVERY, ANY, or
ARRAY AGG to simply collect all values in an array. SQL’s
DISTINCT and FILTER constructs add further expressiveness.
E. g., in a bill of materials we may count the distinct types
of subparts from some manufacturer each part is built of:

COUNT(DISTINCT Type) FILTER(WHERE Manufacturer = 'A') OVER bu

(2) is a top-down counterpart to (1); it yields the effective
weights by multiplying over all tuples on the root path. (2a)
uses a hypothetical PRODUCT aggregation function, which is
curiously missing from standard SQL; (2b) works around
that via recursion, aptly taking advantage of FIRST VALUE.
To understand the example, note that for a top-down recur-
sive computation, the window frame can be either empty—
making FIRST VALUE yield NULL—or contain one covered an-
cestor. In our bill of materials the weight could be the part’s
multiplicity (“how often?”) within its super-part; here the
product would tell us often the part appears in total in the
assembly. (3) is a variant of (1) summing over only the
covered tuples. In (3b) we access only Value but not the ac-
tual expression result (thus, its type τ can be auto-deduced);
still, the semantics are those of recursive evaluation. As Inp2
happens to contain all HT nodes, the relation <: becomes
equivalent to the IS CHILD predicate as noted earlier; so the
same could as well be achieved via join–group–aggregate. (4)
are variants of weighted rollup. (4d) is mostly equivalent to
(4b), but brings it into a form similar to (4c) using a nested
window function to access the Weight of the current row. In
general, such weighted rollups cannot be performed without
(structural) recursion. That said, a non-recursive solution
that sometimes works is to “multiply out” the expression
according to the distributivity law and use two separate
computations: First (2a), yielding absolute weights w for
each tuple, then SUM(w * Value) bottom up. (5) constructs a
path-based Dewey representation of the hierarchy using the
same technique as (2): it builds a string from the ID values
on the root path, e. g. '/A1/B1/C1' for C1 . (6–9) compute
properties of the data flow graph over the input table. As
Inp2 contains all nodes of HT, they are equal to the node’s
(6) level, (7) subtree size, (8) subtree height, and (9) child

count. In general (7) gives us the size of the window frame
and (9) the number of covered tuples. Finally (10), to go
beyond the capabilities of SQL’s aggregate functions and
expression language, we can use ARRAY AGG to collect data
from the covered tuples and pass it to a user-defined function.
This way arbitrary computations can be plugged in.

4. STRUCTURAL GROUPING
This section covers the relational algebra level. We propose
two logical operators for evaluating hierarchical computation
queries, one for unary and one for binary structural grouping.

4.1 Binary Grouping
Binary structural grouping queries typically feature an inner
or left outer join on a hierarchy axis such as IS DESCENDANT,
and subsequent grouping of the outer side. They are initially
translated into plans of the form Γ(· θ ·) with a suitable
hierarchy predicate θ. Due to the efficiency issues noted in
Sec. 2, we want the query optimizer to rewrite this pattern
into a single combined operator. This idea is not new to
relational algebra but commonly known as binary grouping
or groupjoin. It has been explored in depth in [17] mainly for
the equi-join setting, together with relevant rewrite rules for
query optimization. We repeat [17]’s definition of the binary
grouping operator with minor adaptions. It consumes two
input relations {τ1}b and {τ2}b given by expressions e1 and
e2, where τ1 and τ2 are tuple types and {τi}b denotes a bag
of τi tuples. Let θ be a join predicate, x a new attribute
name, and f a scalar aggregation function {τ2}b → N for
some type N . Then is defined as

e1
θ
x : f e2 := {t ◦ [x : f(e2[θt])] | t ∈ e1}b,

where e[θt] := {u |u ∈ e∧ θ(u, t)}b. It extends each t ∈ e1 by
an x attribute of type N , whose value is obtained by applying
function f to the bag e[θt] containing the relevant input tuples
for t. As an example, the plan Γt.∗; x : f (Out1[t] u<t Inp1[u])
from Sec. 2 can be rewritten into Out1 <

x : f Inp1, using
the same definitions of f and <. Beyond optimizing Γ(· θ ·)
plans, we also use to evaluate hierarchical windows with
non-RECURSIVE expressions. Those are translated into binary
self-grouping e θ

x : f e, with θ = is-descendant-or-self in the
bottom-up and θ = is-ancestor-or-self in the top-down case
(modulo handling details of the frame clause and EXCLUDE).
Further optimizations are possible from there. Consider Stmt.
I-b from Sec. 3.3. It has a condition φ = (H.level(ν) ≤ 3) on
the output that does not depend on the computed sum x.
Select operators σφ of this kind can typically be pushed down
to the left input. A FILTER ψ can be handled by f or pushed
down to the right input. Such rewriting from σφ(e x : fψ e)

to σφ(e) x : f σψ(e) will always pay off, especially when the
selections can be pushed down even further.

4.2 Unary Structural Grouping
To evaluate recursive expressions on a hierarchical window,
we need a new operator: unary structural grouping. Since the
concept as such may be useful beyond hierarchical windows,
we define it in terms of an abstract < comparison predicate
on the tuples of its input relation, which drives the data
flow. It is required to be a strict partial order: irreflexive,
transitive, and asymmetric. The operator arranges its input
in an acyclic directed graph whose edges are given by the
notion of covered tuples <: (Eq. 1 in Sec. 3.1). On that
structure it evaluates a structural aggregation function f ,
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(1b) total Value ↑ t.Value +
∑
u∈X u.x

(2b) absolute Weight ↓ t.Weight ∗ Πu∈Xu.x

(3b) Value sum over <: ↑
∑
u∈X u.Value

(4a) weighted rollup ↑ t.Weight ∗ (t.Value +
∑
u∈X u.x)

(4b) t.Value + t.Weight ∗ (
∑
u∈X u.x)

(4c) t.Value +
∑
u∈X u.Weight ∗ u.x

(4d) t.Value +
∑
u∈X t.Weight ∗ u.x

(5) Dewey conversion ↓ 〈t.ID〉 if X = {}b,
u.x ◦ 〈t.ID〉 if X = {u}b

(6b) level ↓ 1 +
∑
u∈X u.x

(7b) subtree size ↑ 1 +
∑
u∈X u.x

(8) subtree height ↑ 1 if X = {}b, else 1 + maxu∈Xu.x

(9b) degree ↑ |X|
Symbols: ↑ bottom up ↓ top down

Figure 5: Example definitions of Γ̂’s f(t,X)

which performs an aggregation-like computation given a
current tuple t and the corresponding bag of covered tuples.
In other words, a variable, pseudo-recursive expression f is
evaluated on a recursion tree predetermined by <.

Let expression e produce a relation {τ}b for some tuple
type τ ; let < be a comparator for τ elements providing a strict
partial ordering of e’s tuples, x a new attribute name, and f
a structural aggregation function τ × {τ ◦ [x : N ]}b → N , for

a scalar type N . The unary structural grouping operator Γ̂
associated with <, x, and f is defined as

Γ̂<x : f (e) := {t ◦ [x : rec<x : f (e, t)] | t ∈ e}b, where

rec<x : f (e, t) := f(t, {u ◦ [x : rec<x : f (e, u)] |u ∈ e[<:t]}b).

We reuse the symbol Γ of common unary grouping for Γ̂.
Both are similar in that they form groups of the input tuples,
but Γ̂ does not “fold away” the tuples. Instead, it extends
each tuple t in e by a new attribute x and assigns it the
result of “rec”, which applies f to t and the bag of its
covered tuples u. The twist is that each tuple u in the bag
already carries the x value, which has in turn been computed
by applying rec to u, in a recursive fashion. Thus, while
f itself is not recursive, a structurally recursive computation
is encapsulated in Γ̂’s definition. The recursion is guaranteed
to terminate, since < is a strict partial order.

For hierarchical windows, we define < as in Sec. 3.1 in
terms of H.is-descendant, which is indeed irreflexive, transi-
tive, and asymmetric. We can now translate our two state-
ments from Sec. 2 into plans based on Γ̂:

II-c Γ̂<x : f (Inp1), f(t,X) = t.Value +
∑
u∈X u.x

III Γ̂<x : f (Inp2), f(t,X) = t.Value +
∑
u∈X u.Weight ∗ u.x

Fig. 5 shows definitions of f corresponding to the SQL expres-
sions of Fig. 4. As the examples attest, RECURSIVE expressions
translate almost literally into suitable f(t,X) formulas.

4.3 Unary Versus Binary Grouping
Theoretically, there are little restrictions on the function f
of Γ̂ and ; the practical limit is what SQL’s expression lan-
guage allows us to write. It is, however, useful to distinguish
a class of common “simple” functions that let us establish a
correspondence between Γ̂(e) and binary self-grouping e e.
An aggregation function {τ}b → N for use with is simple
if it is of the form acc⊕; g(X) :=

⊕
u∈X g(u), where function

g : τ → N extracts or computes a value from each tuple,
and ⊕ is a commutative, associative operator to combine the
N values. This largely corresponds to what SQL allows us to

express in the form AGG(expr) where AGG is a basic aggregate
function such as SUM, MIN, MAX, EVERY, or ANY without DISTINCT

set quantifier. (A further extension to arbitrary FILTER(WHERE
ψ) conditions is possible.)

We can define a structural counterpart as follows: A struc-
tural aggregation function τ × {τ ◦ [x : N ]}b → N for use

with Γ̂ is simple if it is of the form

str-accx :⊕; g(t,X) := g(t)⊕
⊕
u∈X

u.x.

In Fig. 5, functions 1b, 2b, 6b, and 7b are in fact simple.
To obtain our correspondence, consider R := Γ̂<x : str-acc(e).

If the acyclic digraph imposed by < on e is a tree—i. e. there
are no undirected cycles—the following holds for all t ∈ R:

t.x = g(t)⊕
⊕

u∈R[<:t]

u.x = g(t)⊕
⊕

u∈e[<t]

g(u) =
⊕

u∈e[≤t]

g(u)

where u ≤ t :⇐⇒ u < t ∨ u = t. The simple form of
the aggregation function allows us to “hide” the recursion
through the < predicate and obtain a closed form of the
expression for t.x based on the original input e. We can thus
state the following correspondence:

e ≤
x : acc⊕; g

e = Γ̂<x : str-accx :⊕; g
(e).

Note that this equivalence will not hold if there are multiple
chains u <: . . . <: t connecting two tuples u < t in the input e.
In this situation Γ̂ indirectly counts u multiple times into
t’s result, while does not. This is due to the particular
semantics of structural recursion, which simply propagates
x values along the <: chains. When we apply Γ̂ in our
hierarchical window setting, the equivalence holds, as <: is
derived from the acyclic tree structure of H, if we additionally
make sure there are no duplicate ν values in the current
window partition. The correspondence is then useful in both
directions and enables significant optimizations: As many
typical non-recursive hierarchical window computations (and
sometimes even join–group-aggregate queries) fit the form of

acc, we can rewrite their initial translation e e into Γ̂(e).
As we assess in Sec. 6, even when e is just a table scan,
our Γ̂ algorithms outperform due to their simpler logic
(e need not be evaluated twice) and effective pipelining. Vice
versa, if we can algebraically transform a given RECURSIVE

expression into the form of str-acc, is an alternative to Γ̂.
If a WHERE condition φ on the output or a FILTER condition ψ is
applied, σφ(e) σψ(e) will usually be superior to σφ(Γ̂fψ (e)),
as already noted in Sec. 4.1. Finally, our manual rewrite of
Stmt. I-a to I-b, where we saved one join, demonstrates an
advanced optimization from e1 e2 to Γ: By “merging” the
two inputs into e12, we could (without going into details)

rewrite e1 e2 to e12 e12 and then Γ̂(e12), which pays off
if e12 can be further simplified, e. g. when e1 and e2 were very
similar in the first place. Establishing relevant equivalences
to enable such optimizations is part of future work.

5. PHYSICAL ALGEBRA OPERATORS
We now discuss efficient algorithms for θ

x : f and Γ̂<x : f .

5.1 Overview
[ −Γ] A general approach for is to treat θ as an opaque
join predicate with partial order properties, and stick to a
generic sort-based join–group–aggregate technique: sort both
inputs e1 and e2 according to θ, then use a sort-based left
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outer join e1[t] θ e2[u], and then sort-based unary grouping
Γt.∗; x:f to compute the result. This requires a non-equi join
operator that can deal with the fact that some tuples may be
incomparable through θ, and retains the order of e1. Since we
make no assumptions on e1 and e2, we have to use a nested
loops join, making the runtime complexity an unattractive
Θ(|e1| · |e2|). An index-based nested loops join could not be
used since there generally is no index on the given inputs—
only the hierarchical base table HT is indexed. We refer to
this approach by “ −Γ”. It is usually the only option when
an encoding such as PPPL from Sec. 2 is hand-implemented
in an RDBMS without further engine support.

[hierarchy- −Γ] When and Γ̂ are used for hierarchi-
cal computations and θ and < operate on NODE fields, the
underlying hierarchy index H can and should be leveraged.
A big improvement over −Γ is to use a hierarchy merge
join, a sort-based structural join operator with a time and
space complexity of O(|e1|+ |e2|+ |e1 e2|). Al-Khalifa et
al. [1] describe two variants of the algorithm, which consume
preordered inputs and join on the descendant axis: “stack-
tree-desc” retains the order of e2 in the output; the somewhat
less efficient “stack-tree-anc” retains the e1 order. Although
originally applied to XML data, both can be adapted to our
SQL setting. We refer to this approach by “hierarchy- −Γ”.
It can be considered the state of the art and a natural base-
line for our native Γ̂ and algorithms. Note that even
though more sophisticated join techniques have been studied
in the XML world, most of them are not applicable to our
setting since we are working on arbitrary inputs rather than
the base table HT, as mentioned above—see also Sec. 7.

[hierarchy-Γ̂, hierarchy- ] While the said approaches
keep implementation efforts low by reusing existing oper-
ators, they cannot evaluate the structural recursion of Γ̂,
and they suffer from the efficiency issues noted in Sec. 2: all
< join pairs rather than just the <: pairs are materialized and
processed during query evaluation, and results from covered
tuples are not reused. We therefore propose four specialized
operators: hierarchy-Γ̂ and hierarchy- , each in a top-down
and a bottom-up variant. The top-down variants require the
inputs to be sorted in preorder, the bottom-up variants in
postorder; this order is retained in the output. We proceed
to discuss their pseudo code. For ease of presentation, we di-
rectly use concepts from relational algebra level: An abstract
data type Aggregate represents a tuple bag X and supports
self-explanatory operations clear(), add(u), and merge(X ′).

During execution of e1 hierarchy- e2 or hierarchy-Γ̂(e1), we
create one Aggregate instance X per tuple t ∈ e1, assemble
the appropriate input tuples in it and feed it to the aggre-
gation function f(X) or f(t,X) to obtain t.x. In the actual
query-specific implementation of an Aggregate and its oper-
ations, significant optimizations may be possible depending
on f ; Sec. 5.4 will discuss them.

5.2 Unary Hierarchical Grouping
Alg. 1 shows the two variants of hierarchy-Γ̂. In a single pass
through the input e, they effectively issue the following call
sequence for each tuple t:

X.clear(); X.add(u) for each u <: t; yield t ◦ [x : f(t,X)]

where “yield” outputs a result tuple. The stack S (line 1)
manages previously processed tuples u and their computa-
tion states, i. e., u.x and the corresponding aggregate X for
potential reuse. For each t ∈ e (l. 3) we first check whether

Algorithm 1: hierarchy-Γ̂νx : f (e)

Input: e : {τ}b, where τ has a ν : NODEH field;
e ordered by ν in post-/pre-order (bottom up/top down)

Output: {τ ′}b, where τ ′ := τ ◦ [x : N ]; same order

1 S : Stack 〈[ν : NODEH , u : τ ′, X : Aggregate〈τ ′〉]〉
2 X : Aggregate〈τ ′〉
3 for t ∈ e
4 if S 6= 〈〉 ∧ S.top().ν = t.ν
5 skip // reuse previous X

6 else
7 X.clear()
8 〈collect input〉*
9 yield t′ ← t ◦ [x : f(t,X)]

10 S.push([t.ν, t′, X])

*〈collect input〉 — bottom up:

11 while S 6= 〈〉 ∧ ¬H.is-before-pre(S.top().ν, t.ν)
12 [·, u,Xu]← S.pop()
13 X.add(u) // leverage Xu if possible!

*〈collect input〉 — top down:

14 while S 6= 〈〉 ∧H.is-before-post(S.top().ν, t.ν)
15 S.pop()

16 if S 6= 〈〉
17 for [ν, u,Xu] ∈ upper part of S where ν = S.top().ν
18 X.add(u) // leverage Xu if possible!

t.ν equals the previous node; in this case, we reuse X as
is. (This step can be omitted if ν is known to be duplicate-
free.) Otherwise, the “collect input” block (l. 8) maintains S
and collects the tuples X covered by t. We then compute
f(t,X), construct and yield an output tuple and put it on S
together with X for later reuse. Regarding “collect input”,
consider first the bottom-up case (postorder input): Previ-
ous tuples on S, if any, are postorder predecessors and as
such on the descendant and preceding axes relative to t.ν,
in that order when viewed from the top of stack (whereas
upcoming e tuples are on the ancestor or following axes).
The covered tuples X we need for t are thus conveniently
placed on the upper part of S. The while loop (l. 11) collects
and removes them, as they will no longer be needed. Any
remaining S entries are preceding and irrelevant to t, but
might be consumed later. In the top-down case (preorder
input), S may, when viewed from the top, contain obsolete
preceding tuples, then relevant covered ancestor tuples to
add to X, then further non-immediate ancestors. The while
loop (l. 14) first dismisses the preceding tuples. If there is an
entry left on top of S (l. 16), it is a covered ancestor u <: t,
and the for loop (l. 17) collects it and further tuples below
with equal ν (if not distinct in e). Due to the tree-structured
data flow, there cannot be any further covered tuples. Unlike
in the bottom-up case, we cannot pop the covered entries,
since they may still be needed for upcoming following tuples.

Note that the algorithm needs no checks for <:, as the
covered tuples are identified implicitly. Note also that in l. 13
and 18, the full Xu state corresponding to u.x is available
to add(). This state is needed for non-trivial computations
where u.x alone does not provide enough information (cf.
Sec. 5.4). In case it is not needed, we need not keep X
(marked blue) on S at all. Likewise, we may include only
the fields of u actually accessed by f to save memory.

5.3 Binary Hierarchical Grouping
Alg. 2 shows hierarchy- . The bottom-up variant (postorder
inputs) joins on is-descendant-or-self, the top-down variant
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Algorithm 2: e1 hierarchy- ν1; ν2
x : f e2

Input: e1 : {τ1}b and e2 : {τ2}b, where τi has a νi : NODEH field
ei ordered by νi in post-/pre-order (bottom up/top down)

Output: {τ1 ◦ [x : N ]}b, same order as e1

1 p : int, initially p← 0 // position in e2 (iterator)

2 S1 : Stack 〈[ν : NODEH , X : Aggregate〈τ2〉, i : int]〉
3 S2 : Stack 〈τ2〉
4 X : Aggregate〈τ2〉
5 for t1 ∈ e1
6 if S1 6= 〈〉 ∧ S1.top().ν = t1.ν1
7 yield t1 ◦ [x : f(X)] // reuse previous X

8 continue
9 X.clear()

10 〈collect input〉*
11 yield t1 ◦ [x : f(X)]
12 S1.push([t1.ν1, X, |S2|])

*〈collect input〉 — bottom up:

13 while S1 6= 〈〉 ∧ ¬H.is-before-pre(S1.top().ν, t1.ν1)
14 [·, X′, ·]← S1.pop()
15 X.merge(X′)

16 while S2 6= 〈〉
17 t2 ← S2.top()
18 if ¬(t1.ν1 = t2.ν2 ∨H.is-before-pre(t1.ν1, t2.ν2))
19 break
20 S2.pop()
21 X.add(t2)

22 while p 6= e2.size()
23 t2 ← e2[p]
24 if H.is-before-post(t1.ν1, t2.ν2)
25 break
26 if t1.ν1 = t2.ν2 ∨H.is-before-pre(t1.ν1, t2.ν2)
27 X.add(t2)
28 else
29 S2.push(t2)

30 p← p+ 1

*〈collect input〉 — top down:

31 while S1 6= 〈〉 ∧H.is-before-post(S1.top().ν, t1.ν1)
32 S1.pop()

33 i′ ← 0
34 if S1 6= 〈〉
35 [·, X′, i′]← S1.top()
36 X.merge(X′)

37 while i′ 6= S2.size() ∧H.is-before-post(t1.ν1, S2[i′].ν2)
38 X.add(S2[i′])
39 i′ ← i′ + 1
40 pop S2[i′], . . . , S2.top()
41 while p 6= e2.size()
42 t2 ← e2[p]
43 if H.is-before-pre(t1.ν1, t2.ν2)
44 break
45 if t1.ν1 = t2.ν2 ∨H.is-before-post(t1.ν1, t2.ν2)
46 X.add(t2)
47 S2.push(t2)

48 p← p+ 1

(preorder inputs) on is-ancestor-or-self, with left outer join
semantics. Other axes (child/parent and the non-“self” vari-
ants) as well as inner joins could be handled with minor
adaptions, which we omit for brevity. Both inputs are se-
quentially accessed: The outer loop (l. 5) passes through e1,
whereas e2 is accessed via an iterator p. S2 stashes processed
e2 tuples that may still become relevant as join partners. S1

collects processed nodes ν1 from e1 with the corresponding
aggregates X of θ-matched e2 tuples for reuse. i refers to an
S2 position and is needed in the top-down case only.

For each t1 ∈ e1 (l. 5) we again either reuse X from a

previous equal node (l. 6–8) or assemble X via “collect input”,
before producing an output tuple and memoizing X on S1.
In the bottom-up case (postorder inputs), “collect input”
first (l. 13) removes all covered descendant entries from S1

and merges their aggregates into X. This operation is the
key to effectively reusing previous results as motivated in
Sec. 2. The following loop (l. 16) moves relevant θ matches on
the descendant-or-self axis from S2 to X, and the final loop
(l. 22) advances the right input e2 up to the first postorder
successor of ν1. Any encountered t2 is either a postorder
predecessor or ν2 = ν1; if t2 is also a preorder successor, it
is a descendant. θ matches are added straight to X (l. 27),
preceding tuples are stashed on S2 (l. 29).

The top-down case (preorder inputs) is more involved: S1

and S2 entries may be consumed multiple times and therefore
cannot be immediately popped from the stacks. S1 and S2

are maintained in such way that they comprise the full chain
of ancestor tuples from e1 and e2 relative to ν1. Field i on S1

establishes the relationship to S2: For an S1 entry [ν,X, i],
the bag X incorporates all θ matches for ν, corresponding
to the S2 range [0, i[ (i. e., from the bottom to position i,
exclusively). If there is another S1 entry [ν′, X ′, i′] below,
then ν′ is the covered ancestor of ν, and X consists exactly
of X ′ plus the S2 tuples at positions [i′, i[. Maintaining these
invariants requires four steps: First (l. 31), we pop obsolete
preceding entries from S1. Second (l. 34), any remaining entry
on S1 is an ancestor, so we reuse its X ′. Third (l. 37), we add
to X any additional ancestors t2 that were not already in X ′

(starting from position i′). Then, the remaining S2 tuples
from positions i′ to top are preceding and therefore obsolete
(l. 40). Finally (l. 41), we advance e2 up to the first preorder
successor of ν1, adding ancestor-or-self tuples to X and S2

but ignoring preceding tuples.

5.4 Further Discussion
Recall from Sec. 4 that we use hierarchy-Γ̂ for RECURSIVE

expressions on hierarchical windows and hierarchy- for non-
recursive expressions (through self-grouping e e) as well as
certain classes of join–group–aggregate statements. Handling
the details of hierarchical windows—i. e., different variants
of frame and EXCLUDE clauses—requires further additions to
Alg. 1 and 2; in particular, tuples with equal ν values must
be identified and handled as a group. As these adaptions are
straightforward, we omit their discussion.

Inline Computations. The following optimization is cru-
cial to the practical performance of and Γ̂: While the
pseudo code of Alg. 1 and 2 explicitly collects tuples into a
bag X, we can often avoid this buffering altogether by eval-
uating f on the fly. To this end the query compiler has to
generate specific code in place for the Aggregate operations:

1 X.clear(), 2 X.add(u), 3 X.merge(X ′), 4 f(t,X).

Consider Expr. 1b from Fig. 5: The actual state of X would
be a partial sum x : N , and the operations boil down to

1 x← 0, 2 x← x+u.x, 3 x← x+X ′.x, and 4 x+t.x.

This works with both Γ̂ and . As a structurally recursive
example with Γ̂, consider Expr. 4c: here the state remains
the same but 2 becomes x← x+ u.Weight ∗ u.x.

Eliminating X like this works whenever either the scalar
x value itself or some data of O(1)-bounded size can ade-
quately represent the required state of a subcomputation.
This roughly corresponds to the classes of distributive (e. g.
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COUNT, MIN, MAX, and SUM) and algebraic aggregation functions
(e. g. AVG, standard deviation, and “k largest/smallest”) iden-
tified in [12]. But then there are SQL expressions, such
as ARRAY AGG or DISTINCT aggregates, for which we have to
actually maintain X or some state of size Θ(|X|). Consider

COUNT(DISTINCT Weight): To evaluate this using either Γ̂ or ,
the Aggregate has to maintain a set of distinct Weight values.
Still, our mechanism for reusing subcomputations provides
certain optimization opportunities; like using an efficient set
union algorithm for operation 3 .

Complexities. With this in mind, let us consider the
runtime and space complexities. We can assume the is-
before primitives to be in O(1) for most static indexes and
in O(log |HT|) for common dynamic indexes [8], |HT| being
the hierarchy size; either way, they are not affected by the
input sizes of Γ̂ and . Furthermore, if the computation is
done inline as discussed, the size and all operations on X
are actually in O(1). Under this assumption, the time and

space complexity is O(|e|) for hierarchy-Γ̂ and O(|e1|+ |e2|)
for hierarchy- . If the computation can not be inlined, we
fall back to actually collecting the respective input tuples in
the X bags; this means our algorithms degenerate to plain
hierarchy merge join algorithms and their time and space
complexities become O(|e1| + |e2| + |e1 e2|). To obtain
these results, an amortized analysis is needed to argue that
the inner loops of the algorithms do not contribute to the
overall complexity: Regarding hierarchy-Γ̂, observe that the
outer for loop pushes each e tuple once onto S (so |S| ≤
|e|), whereas the inner while loops remove one S entry per
iteration; their bodies can thus be amortized to the respective
pushes. Regarding hierarchy- , the loop bodies of l. 22 and
l. 41 are executed |e2| times in total, regardless of the outer
loop; at most |e1| and |e2| tuples are pushed onto S1 and S2,
respectively; and since the other loops pop either an S1 or
S2 entry within each iteration, a similar argument applies.

6. EVALUATION
We explore the performance of our operators using a stand-
alone single-threaded execution engine written in C++. It
allows us to hand-craft query plans based on a push-based
physical algebra. Our algorithms of Sec. 5 by design fit
into this execution model by simply leaving out the outer
for loops. Through careful use of C++ templating, GCC 5.2.1
with -O3 is able to translate the algebra expressions into
efficient machine code with no visible operator boundaries
within pipelines; thus, there is minimal friction loss through
the algebra, and we get effective pipelining. We found the
resulting code to be comparable in quality to what modern
engines such as HyPer [18] and HANA Vora [21] emit. Our
test machine runs Ubuntu 15.10 and has two Intel Xeon
X5650 CPUs at 2.67 GHz (6 cores, 2 hyperthreads each),
12 MB L3 cache, and 24 GB RAM.

For our hierarchy table HT we use the schema from Fig. 1,
where each tuple has a unique CHAR(8) ID and a TINYINT

Weight randomly drawn from the small domain [1, 100]. We
vary the table size |HT| from 103 to 106 to also cover loads
that by far exceed L3 cache capacity: at 106, HT and its
index use ≈ 218 MB. For the hierarchy index we compare
two alternatives: [static] refers to the simple PPPL labeling
scheme from Sec. 2, which does not support updates but is
extremely fast and thus attractive for read-mostly analytic
scenarios. [dynamic] refers to the BO-tree indexing scheme

proposed in [8], where each Node is linked to two entries in
a dynamic B+-tree structure. We use the suggested config-
uration with mixed block sizes and gap back-links. It is a
good allround fit for dynamic OLTP scenarios, although the
support for updates comes at a cost of computationally non-
trivial O(log |HT|) index primitives and increased memory
traffic. Other dynamic indexing schemes will of course show
different characteristics (as studied in [8]); still, comparing
dynamic vs. static gives us a good hint of the overhead to
expect from accessing an external, dynamic index structure.
All experiments use a generated forest structure Regular〈k〉
where each tree is given m = 104 nodes and each inner node
exactly k children. This way increasing |HT| does not affect
the total height h. To assess the influence of the hierarchy
shape, we compare very deep (k = 2, h ≈ 13.2) trees to very
shallow (k = 32, h ≈ 3.6) trees.

Hierarchical Windows. To assess the bare performance
of hierarchical windows, we run Stmt. IV (Sec. 3.3) with var-
ious expressions from Fig. 4 on a pre-materialized table Inp.
Queries Q1 and Q2 compute Expr. 1a bottom up and top
down, respectively and represent non-recursive computations.
Q3 computes Expr. 4c and represents a structurally recursive
computation. Q4 computes COUNT(DISTINCT Weight) bottom
up and features a comparatively expensive duplicate elimina-
tion. For each query we measure alternative plans. All plans
work on the same input Inp, which is prepared a priori as fol-
lows: We select the contents of HT (thus, |Inp| = |HT|), add
a randomly populated INT Value field, project the required
fields and sort the data in either preorder or postorder as
needed by the respective plan. The measurements thus show
the bare performance of the respective operators without any
pre- or post-processing—in particular, without sorting—but
including materialization of the query result. We compare
the following plans, where applicable: (a) the straight trans-

lation into hierarchy-Γ̂(Inp); (b) the alternative hierarchy-

(Inp, Inp), to assess the overhead over hierarchy-Γ̂; (c) the
hierarchy- −Γ approach of Sec. 5.1 with a preorder-based
hierarchy merge join; (d) the −Γ approach with a nested
loops join. As explained in Sec. 5.1, (c) is a natural baseline,
whereas (d) would be the only option with hand-implemented
encodings. We furthermore consider two plans based on a
semi-naive least-fixpoint operator, which mimic SQL’s re-
cursive CTEs: (e) iterative uses repeated IS CHILD hierarchy
merge joins to first compute all < pairs bottom up (Q1)
or top down (Q2) and then performs the actual computa-
tion using sort-based grouping. (f) iterative* additionally
applies sort-based “early grouping” within each iteration,
inspired by [20]. This gives us a hint of the performance
to expect from an exceptionally well-optimized RCTE or
from a hand-crafted iterative stored procedure. We com-
monly see such procedures in real-world applications that
still rely on trivial parent/child tables (known as adjacency
list model, cf. Sec. 7). However, (e) and (f) are no general
solutions; they work in our setup only because all HT nodes
are present in Inp. Note also that plans (b)–(f) work only
for non-recursive computations.

Fig. 6 shows the results, normalized with respect to the
processed elements |Inp|. The red line indicates the speed
of tuple-by-tuple copying a precomputed result table as the
physical upper bound (≈ 37.6M/s). In Q1–3 with static, Γ̂ is
remarkably close to this bound (≈ 25.4M/s, or 67%). That

non-recursive computations (Q1) using Γ̂ are not slower than
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Figure 6: Experimental Results

recursive ones (Q3) comes at no surprise since the algorithm

is identical. For both Γ̂ and , the top-down algorithms
(Q2) are slightly slower than the bottom-up algorithms (Q1),
as they cannot dismiss covered tuples as early and thus in-
herently issue more index calls. The duplicate elimination of
Q4 is costly—both Γ̂ and become roughly 3× to 4× slower
over the trivial arithmetics of Q1–3. When comparing e e
to Γ̂(e) over all queries Q1–4, we see the latter is on average
around 32% faster. The overhead of binary grouping stems
from evaluating e twice (which in this case is a table scan)
and from the extra index calls needed to associate e1 and e2
tuples. hierarchy- −Γ is significantly slower than , mostly
in bottom-up Q1 (e. g. ≈ 11× slower at k = 2) but also in top-
down Q2 (≈ 3.5× at k = 2); the gap grows with the hierarchy
height. This confirms the known “groupjoin advantage” also
for the hierarchical case—in line with the reports on hash-
based equi-groupjoins of [17]. hierarchy- −Γ is somewhat
handicapped at Q1, as the hierarchy merge join algorithm
of [1] we use is preorder-based; as preorder is more natural to
top-down computations, it performs noticeably better at Q2.
Interestingly, it is not slowed down as much at Q4 vs. Q1 as
the others; the intermediate join apparently dominates the
costs so that the subsequent processing-friendly sort-based
grouping does not matter much. Thus, the overhead over
hierarchy- is smaller at Q4, but still noticeable.

The iterative solutions are generally slow. Early aggrega-
tion helps much in the bottom-up case, where iterative* even
approaches hierarchy- −Γ at |HT| = 106. In the top-down
case, however, early aggregation does not help reduce the
intermediate result sizes, as IS PARENT is an N : 1 join; here,
the (minor) savings over iterative come from saved arithmetic
operations by reusing results of previous iterations.

Regarding dynamic versus static indexes, the more complex
axis checks of the former are clearly noticeable; especially in
top-down Q2, where inherently more axis checks are issued.
Note our BO-tree is freshly bulkloaded; in practice the per-
formance of most dynamic indexes tends to further degrade
from incremental updates.

If we consider the hierarchy shape, deep k = 2 versus flat
k = 32, we see that iterative and iterative* are very sensitive—
unsurprisingly, as their time complexity is proportional to h—
whereas Γ̂ and are practically indifferent. The intermediate
join result of hierarchy- −Γ is somewhat proportional to h,
so it is also affected to some extent (factor 2–3).

Increasing the hierarchy size |HT| should slow down dy-
namic due to the O(log |HT|) complexity of the index prim-

itives. However, for the chosen block-based BO-tree index
this apparently does not matter much in practice: the figures
are practically indifferent to |HT|. One reason for this is
the favorable data locality in the ordered inputs: the nodes
involved in is-before checks are usually close in terms of
pre/post distance, therefore the relevant BO-tree blocks will
be in cache. hierarchy- −Γ and iterative are much more
sensitive to |HT| due to their growing intermediate results.

Note that the above experiments assess only e1 e2 where
e1 = e2, i. e., a unary hierarchical window setup. We also
conducted measurements where e1 6= e2 with varying |e1|
and |e2| sizes. However, as we found the results to be com-
pletely in line with the linear time and space complexities of
hierarchy- , we omit them given the limited space.

Sorting. Being order-based, hierarchy-Γ̂ and hierarchy-
require pre- or post-ordered inputs. It is up to the cost-based
optimizer to provide them by employing (a) explicit Sort
operations via is-before; (b) ordered hierarchy index scans on
the base table HT to establish the order in the first place; and
(c) order-preserving operators such as hierarchy merge join
to retain the order once established. (See [22] for the relevant
techniques on maintaining interesting orders.) Even though
this topic is orthogonal, we conducted some benchmarks.
Queries Q5 and Q6 run Expr. 2b from Fig. 4 directly on
HT. In the bottom-up case Q5, we compare e1 = Γ̂(HTpost)
on an already post-ordered copy of HT, just like in Q1;
e2 = Γ̂(Sortpost(HT)), a full sort; e3 = Γ̂(IndexScanpost(
HT)), which accesses HT through a hierarchy index scan;

and e4 = Γ̂(Rearrangepost(HTpre)); mutatis mutandis in the
top-down case Q6. The Rearrange operator consumes an
already pre-ordered HT copy and employs a stack-based
structural sorting algorithm similar to Γ̂; its advantage is
that it allows limited pipelining.

From the results in Fig. 6 we observe that full sorting is
less expensive than one may expect (roughly 3× slower with
static), considering that our algorithm is not multithreaded.
Leveraging an index scan also helps much. But most inter-
estingly, the “order-based sorting” of Rearrange is greatly
superior to a full Sort, especially in the bottom-up static case:
Rearrange closely approaches the “perfect” speed of e0. This
is again explained by pipelining effects and the favorable
data locality in the already preordered inputs. Thus, our
bottom-up algorithms are not restricted to postorder; they
could be applied to preorder inputs as well at only moderate
extra costs. To a slightly lesser extent this also applies to
the preorder-based top-down algorithms.
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Report Query. Having assessed hierarchical windows in
isolation, we next look at a complete query, Q7. To emulate
the setting of Stmt. I-a from Sec. 2, we use |HT| = 104 and
k = 8, and prepare a table Inp with only a subset of the
hierarchy HT, namely p% of its 8751 leaf nodes, randomly
chosen. At the heart, Q5 performs a bottom-up rollup as
Q1, but additionally (a) needs a join/union with the relevant
output nodes of HT, (b) computes the contribution in % of
each node’s x value to the parent’s total, (c) carries 128 bytes
of further payload through the computation, (d) outputs
only the 3 upper levels (584 nodes), ordered in preorder, and
visualizes the nodes’ positions to the user by Dewey-style
path strings. Such additional “stress factors” are commonly
found in real-world queries. An example result line may
be ['/A1/B1/C2', 125, 10%, payload ], if the x value of '/A1/B1'
is 1250. In SQL:

WITH T1 (Node, ID, Payload, x) AS (
SELECT HT.Node, HT.ID, HT.Payload,

SUM(Inp.Value) OVER (HIERARCHIZE BY HT.Node)
FROM HT LEFT OUTER JOIN Inp ON HT.Node = Inp.Node ),

T2 (Node, ID, Payload, x, Contrib, Path) AS (
SELECT Node, ID, Payload, x,

RECURSIVE ( 100.0 * x / FIRST VALUE(x) OVER w ),
RECURSIVE VARCHAR (
COALESCE(FIRST VALUE(P) OVER w, '') || '/' || ID ) AS P

FROM T1 WINDOW w AS (HIERARCHIZE BY Node TOP DOWN) )
SELECT Path, x, Contrib, Payload FROM T2
WHERE LEVEL(Node) <= 3 -- φ

ORDER BY PRE RANK(Node)

We measure the following hand-optimized plans:

a. Γ̂(Rearrangepre(σφ(Γ̂x(Sortpost(HTφ) ∪ Sortpost(Inp)))))

b. Γ̂(Rearrangepre(Sortpost(HTφ) x Sortpost(Inp)))
c. Map( ( (Γx(Sortpre(HTφ) Sortpre(Inp)))))
d. Sort(Map( ( (Γx(HTφ Inp)))))
e. Iterativeφ(HT, Inp)

In all plans, σφ has been pushed down and is handled by an

ordered index scan of HT. Plans a and b use our Γ̂ and
operators. The outer Γ̂ handles both top-down computations
and preserves the desired preorder. For Plan c we assume the
hierarchical table model without our enhancements: It relies
only on hierarchy merge joins , i. e., the hierarchy- −Γ
approach. Lacking our syntax extensions, a lot of manual
“SQL labor” is involved: The upper 3 levels must be joined
via two IS PARENT joins and the path strings built by hand
(the two outer and Map operators in c/d). For Plan d
we assume a hand-implemented static PPPL-like labeling
scheme. Lacking engine support, it can use only nested loops
joins, i. e., the −Γ approach. For Plan e, we assume again
the adjacency list model and a hand-written stored procedure
which does an iterative fixpoint computation, like iterative in
Q1–2. Although plans d–e are severely handicapped versus a–
c, they are representative of the state of the art in real-world
applications we encountered.

Fig. 6 shows the measured query throughput over varying p.
The biggest pain point is the expensive sorting of Inp, which
could be alleviated by parallel sorting. Nevertheless, we still
see the merits of our proposed syntax and algorithms: Both
Γ̂ and reasonably handle the query, but the latter more
naturally fits its binary nature. Their advantage over plain
hierarchy- −Γ (c) is still visible, but less pronounced due
to the damping effect of the sorting. It is not surprising
that Plans c, d, and e—besides being unwieldy hand-crafted
solutions—cannot hold up in terms of expressiveness and
efficiency. Q7 is just one example query typically found in
our application scenarios. We plan to study a wider range of
application patterns in our future work.

7. RELATED WORK
Expressing Hierarchical Computations. While some
query languages such as MDX [16] or XML/XQuery [10,
24] offer native support for hierarchical data and certain
computations, our goal is to remain in the world of SQL [23].
Prior to the hierarchical tables of [2], a uniform data model
and language for handling hierarchies in RDBMS was lack-
ing. Earlier solutions [4] are therefore usually hard-wired to
particular relational encodings, which largely dictate the com-
putations that can be expressed: On the low end is the trivial
adjacency list model [4] based on foreign key references to
parent nodes, where recursion (see below) is required even for
simple tasks. More sophisticated path- or containment-based
encodings (e. g. [26, 13]) alleviate many tasks by allowing us
to replace recursion by hierarchy joins, but computations are
then limited to what join–group–aggregate statements can
do. Another common “scheme” is the leveled model, where a
denormalized table encodes a hierarchy with a fixed number
of homogenous levels [19, 16]. Targeting this model in par-
ticular, SQL has a ROLLUP construct [12, 23] for simple sums,
counts, and the like, but this is merely syntactic sugar for
GROUPING SETS and again of limited expressiveness. The hier-
archical table model relieves the user from dealing with the
complexities and limitations of a hand-implemented encoding.
Its abstract nature ensures that the provided constructs work
with a multitude of indexing schemes on the query/update
performance spectrum, as surveyed in [8]. Moreover, its main
concept of a NODE field encapsulating the hierarchy provides
attractive syntax opportunities (cf. Sec. 3).

Recursion in SQL. The only two common RDBMS-level
mechanisms for working with recursively structured data are
RCTEs [9, 23] and (iterative or recursive) stored procedures.
[4] explores both. These mechanisms afford generative recur-
sion and are thus more powerful than the structural recursion
of our RECURSIVE expressions. But their power and generality
also makes them difficult to handle and optimize. While the
topic itself is old, recently Ordonez et al. [20] studied the
optimization of linearly recursive CTEs with GROUP BY. They
consider directed graphs, whereas our focus is specifically on
tree structures. Unsurprisingly, our specialized algorithms
easily outperform techniques for RCTEs (cf. Sec. 6). Also, the
simple nature of structural recursion—where the recursion
tree is predetermined—leaves more room for optimizations
(as Sec. 4.3 outlines). Aside from performance one may
ask whether RCTEs are at least “sufficient” in terms of ex-
pressiveness, i. e.: can RCTE-based recursion with GROUP BY

emulate structural grouping? Alas, all our attempts to phrase
such a computation in an iterative way—starting at the <-
minimal tuples, then sweeping breadth-first over the input
via <:—led us to very convoluted EXISTS subqueries. Also,
GROUP BY is forbidden in an RCTE to enable the semi-naive
fixpoint evaluation [9]. Even if GROUP BY could be used, it
would not generally capture all relevant covered nodes in
each iteration. Thus, for our use cases, the computational
power of RCTEs is only of theoretical relevance.

Evaluating Aggregation Queries. Extensive literature
exists on evaluating GROUP BY using either sort-based or hash-
based methods [11]. Like sort-based grouping, our operators
require ordered inputs and are order-preserving. Groupjoin
[17, 15, 5] improves upon join–group–aggregate plans by
fusing and Γ. While [17] discusses mainly hash-based equi-
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groupjoins, [15, 7] consider the non-equi case, which is more
comparable to our hierarchy- setting. Regarding ROLLUP,
[12] discusses possible implementations. One approach uses
a dedicated single-pass operator that reuses results of lower
levels, which is similar in spirit to our approach. Regarding
windowed tables [25], see [14] for a recent guide. Alas, tech-
niques for standard windows cannot easily be adapted to our
hierarchical windows due to their unique semantics.

Hierarchy-aware Operators. Since XML data is inher-
ently hierarchical and often stored in relational tables, there
is a significant body of work on querying native XML stores
or XML-enhanced RDBMS. Structural join operators resem-
bling self-merge-joins were studied in [26, 1, 13, 6]. Similar
to our algorithms, they leverage an available (though hard-
wired) hierarchy encoding and maintain a stack of relevant
intermediate results. Not all techniques from the XML world
fit into our setting, however: Some of the more sophisticated
join operators were designed to work directly on an indexed
XML document. This enables advanced optimizations such
as skipping [13]. In contrast, our operators are usually ap-
plied to arbitrary input tables with a NODE field (e. g. Inp1)
rather than the hierarchical table (e. g. HT) itself. As index-
ing Inp1 on the fly seems infeasible, we rely only on HT’s
index, which renders many of the optimizations inapplicable.
While we could e. g. adapt Staircase Join [13] for cases where
the computation runs directly on HT, this would benefit only
a limited number of queries. Beyond binary structural joins,
powerful tree pattern matching operators (e. g. twig joins)
were proposed in the XML context; but these are beyond
the requirements for handling hierarchical data in RDBMS.

8. CONCLUSION
Expressing hierarchical computations in RDBMS has always
been severely impeded by data model and language issues,
and even when possible, convoluted RCTEs or procedure
calls rendered an efficient evaluation very difficult. We re-
solve this situation by exploiting the opportunities of the
hierarchical table model [2] regarding expressiveness and en-
gine support. The NODE type and SQL’s windowed tables turn
out to be a natural fit. Together with structural recursion,
a useful class of computations can be expressed concisely
and intuitively. For their evaluation we propose order-based,
index-assisted structural grouping operators. They rely en-
tirely on pre- and post-order primitives and thus work with
a multitude of indexing schemes. Our experiments confirm
their merits over conventional approaches, which result from
their robust linear space and time complexities and their
computational power. As part of future work, we plan to
investigate rewrite rules for optimizing structural grouping
plans, adaptions of our algorithms to acyclic digraphs, and
their interplay with temporal and multidimensional data.
Based on experiences with applications at SAP, we will also
consider refinements to our SQL extensions. Altogether this
novel functionality promises to greatly simplify and speed up
the many applications that deal with hierarchies, in business
software and beyond, by allowing them to push even more
logic down to the RDBMS layer.
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