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ABSTRACT
Revealing the latent community structure, which is crucial to un-
derstanding the features of networks, is an important problem in
network and graph analysis. During the last decade, many ap-
proaches have been proposed to solve this challenging problem in
diverse ways, i.e. different measures or data structures. Unfortu-
nately, experimental reports on existing techniques fell short in va-
lidity and integrity since many comparisons were not based on a
unified code base or merely discussed in theory.

We engage in an in-depth benchmarking study of community de-
tection in social networks. We formulate a generalized community
detection procedure and propose a procedure-oriented framework
for benchmarking. This framework enables us to evaluate and com-
pare various approaches to community detection systematically and
thoroughly under identical experimental conditions. Upon that we
can analyze and diagnose the inherent defect of existing approaches
deeply, and further make effective improvements correspondingly.

We have re-implemented ten state-of-the-art representative al-
gorithms upon this framework and make comprehensive evalua-
tions of multiple aspects, including the efficiency evaluation, per-
formance evaluations, sensitivity evaluations, etc. We discuss their
merits and faults in depth, and draw a set of take-away interesting
conclusions. In addition, we present how we can make diagnoses
for these algorithms resulting in significant improvements.

1. INTRODUCTION
Intrinsic community structures are possessed by many real-world

networks, e.g. biological data, communication networks and social
graphs, to name but a few. Given a network, it is particularly in-
teresting as well as challenging to detect the inherent and hidden
communities. Communities, which have no quantitative definition,
are also called clusters. They are usually considered as groups
of nodes, in which intra-group connections are much denser than
those inter-group ones. Just as many classic puzzles, community
detection is intuitive at first sight but actually an intricate problem.

Community detection [8] aims at grouping nodes in accordance
with the relationships among them to form strongly linked sub-
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graphs from the entire graph [26]. Since networks are usually mod-
eled as graphs, detecting communities in multifarious networks is
also known as the graph partition problem in modern graph theory
[7, 2], as well as the graph clustering [1] or dense subgraph discov-
ery problem [16] in the graph mining area. In the last decade, lots
of solutions have emerged in the literature [5, 9, 19, 24, 14, 25, 12,
3, 29, 4, 11], trying to solve this problem from various perspectives.

The extensive research work has promoted the prosperity of the
family of community detection approaches. However, it also raises
a new difficulty, how to choose the most appropriate approach in
specific scenarios, since many latest approaches have not been com-
pared with each other upon unified platforms with same datasets
and uniform configurations. Given the huge diversity of various
approaches, it is usually not easy to analyze, compare and eval-
uate the extensive existing work. In this sense, a general bench-
mark for community detection is quite necessary and beneficial.
In this paper, we make a benchmarking study for community de-
tection, which contains a universal procedure-oriented framework
and a comprehensive evaluation system. Upon that, we are able
to analyze, evaluate, diagnose and further improve the existing ap-
proaches thoroughly, and get interesting and credible conclusions.

1.1 Challenges
An in-depth benchmarking study for community detection is non-

trivial and poses a set of unique challenges.
Firstly, considering the various existing approaches, the lack of a

procedure-oriented framework for community detection makes it a
puzzle to understand, compare and diagnose them. Since these ap-
proaches are of various categories, a universal framework of com-
munity detection is quite difficult to be summarized and abstracted.

Secondly, to make a fair comparison and build a general bench-
mark for evaluation, it is a necessity to re-implement different ap-
proaches of various categories based on a common code base. Ac-
tually, the re-implementation is really a tough work.

Finally, when proposing a new approach, authors often testify
their work via limited metrics that perform well. In our benchmark-
ing evaluation, we need a suite of metrics which can embody full
structural characteristics of communities to evaluate the approaches
as comprehensively and thoroughly as possible.

There exist two pieces of research work similar to ours. Yang
et al. only investigated the performances of different metrics for
communities with ground-truth [28]. Xie et al. made an evaluation
on overlapping community detection [27]. However, they failed to
present a universal framework. Instead, we conduct a systematic
in-depth benchmarking study to solve the above challenges.

1.2 General Benchmark
In this paper, we have designed a benchmark for community de-

tection. As shown in Fig. 1, our benchmark consists of four core
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Figure 1: Benchmark for community detection

modules: (1) Setup, including a set of algorithms (Sec. 2.2), real-
world and synthetic datasets (Sec. 6.1), parameter configurations
(Sec. 6.2), and a unified graph model converted from the datasets;
(2) Detection Framework, a generalized detection procedure with
high abstraction of the common workflow of community detection
(the details of the framework are introduced in Sec. 3; the proce-
dure mappings in Sec. 4); (3) Diagnoses, which provide targeted
diagnoses on these algorithms based on our framework, leading
to directions of improvement over the existing work (Sec. 5); (4)
Evaluation, a comprehensive evaluation system for community de-
tection from different aspects (Sec. 6.3–6.11).

The benchmark contains a universal framework which abstracts
the key factors, phases and steps from many approaches to com-
munity detection tasks, and makes it easy to implement classical or
latest algorithms for comparison. Moreover, it consists of a com-
prehensive suite of widely-recognized metrics for evaluation of var-
ious concerned aspects, including the efficiency evaluation on the
time cost, performance evaluations on accuracy and effectiveness,
sensitivity evaluations on network density and mixture degree, and
additional evaluations on community distribution and the ability to
avoid excessive outliers. By modularizing and separating key fac-
tors and steps, our framework allows us to study the strength and
weakness of each algorithm thoroughly, and make diagnoses and
targeted prescriptions for improvement. In this benchmark we pro-
vide a common code base with algorithms implemented in the same
environment, and thus make the comparison more fair and credible.

1.3 Contributions
We have conducted a comprehensive benchmarking study which

focuses on the in-depth analysis, evaluation and comparison of the
extensive work. To the best of our knowledge, this is the first work
on the benchmarking study with a generalized framework on non-
overlapping community detection techniques. We make the follow-
ing main contributions:
• We propose a novel procedure-oriented framework by for-

mulating a generic workflow of community detection via ab-
stracting and modularizing the key factors and steps.
• We review the family of community detection approaches,

and re-implement ten state-of-the-art representative algorithms
in a common code base (using standard C++) by mapping
them to the framework based on their specifics.
• We make in-depth evaluations on these approaches based on

our benchmark using both real-world and synthetic datasets.
• We draw a set of interesting take-away conclusions, and pro-

vide intuitive and brief ratings on concerned algorithms.
• We also present how to make diagnoses for existing approaches,

leading to significant performance improvements.

The remainder of this paper is organized as follows. We formu-
late the problem of community detection and sketch out existing
work in Sec. 2. In Sec. 3 we propose a universal framework for
benchmarking in community detection, and then in Sec. 4 we map
the existing approaches to the framework. Afterwards we present
how to make targeted diagnoses based on the framework in Sec. 5.
We evaluate these approaches with our benchmark and report the
results and findings in Sec. 6, and conclude this study in Sec. 7.

2. PRELIMINARY AND BACKGROUND
As preliminaries, we first define basic concepts and the problem

of community detection, and then review the existing approaches.

2.1 Problem Definition
Social Networks. A social network with n individuals and m

social ties can be denoted as G(V,E), where V is the set of nodes,
|V | = n, and E is the set of undirected relationships, E ⊆ V ×V ,
|E|= m. A social network is also referred to herein as a graph.

Communities. Non-overlapping communities are not confined to
a graph partition, and clusters which incompletely cover the graph
are usually more desirable. Here we define the communities as
a list of non-empty node subsets: Coms = {V ′1, · · · ,V

′
cn}, where⋃cn

i=1V
′
i ⊆ V , and cn is the total number of communities. Please

note Coms should try to satisfy V
′
i
⋂

V
′
j = /0. A community is also

referred to as a cluster or a part.
Outliers. Since community detection does not force each node

into a certain group, some independent nodes, which cannot be
grouped into any communities, are allowed far outside the detected
groups [13]. We define them as outliers: Outs = {v|v ∈ V, @V

′
i ∈

Coms∧ v ∈V
′
i }=V −

⋃cn
i=1V

′
i . It is worth mentioning that outliers

can be directly identified by original algorithms or be produced by
disbanding the tiny groups, whose sizes are less than the predefined
threshold of minimal valid size (mvs) of communities.

PROBLEM DEFINITION 1. Generally, given a network G(V,E),
and an mvs, the community detection problem aims at finding the
optimal community assignment R(Coms,Outs) from G, s.t. (1) Coms
∩Outs = /0 and (2) Coms∪Outs = V . Herein the optimal assign-
ment refers to closely connected groups of nodes (Coms) and a
moderate number of disparate outliers (Outs).

v1

v4

v5

v2

v7

v12

v11
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Figure 2: An example of community detection
An intuitive example of the results of community detection is il-

lustrated in Fig. 2. When mvs = 2 (a general setting which means
only singletons will be eliminated), there are three communities:
Coms= {{v1,v2,v3,v4,v5,v6}, {v7,v8,v9,v10}, {v11,v12,v13,v14}},
and one outlier: Outs = {v15}.

2.2 Detection Algorithms
Community detection has been studied unremittingly all these

years, and a particularly large number of effective approaches have
been proposed. In this study we focus on the fundamental problem
of non-overlapping community detection, which aims at finding the
definite group (community) that each node belongs to in the graph.
We categorize the existing approaches according to the formation
process of communities, as shown in Fig. 3 which covers most rep-
resentatives from all popular approaches proposed.
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The first kind of approaches starts from the original graph and
decomposes the entire graph to local parts gradually, trying to sep-
arate out communities from the entire graph.

Division algorithms in hierarchy clustering methods, such as
Radicchi [23] and Spectral [19], gradually separate the entire net-
work into local parts by the edge clustering coefficient or the eigen-
value of modularity matrix.

Direct partitioning methods separate the entire network into
disjoint communities. The Scalable Community Detection (SCD)
algorithm [22] partitions the network by maximizing the weighted
community clustering [21], a recently proposed metric of commu-
nity. Maximal k-Mutual-Friends (M-KMF) [29] algorithm incre-
mentally filters out the connections by the number of mutual friends
between nodes to let the communities spontaneously emerge.

Conversely, the second kind of approaches takes a bottom-up
manner from local structures to the whole graph, and the commu-
nities are formed during this process.

Label propagation methods start from local neighborhood to
recognize communities automatically. The Label Propagation Al-
gorithm (LPA) [24] adopts an asynchronous update strategy where
nodes join in groups under their neighbors’ choices. The HANP al-
gorithm [17] based on Hop Attenuation and Node Preference adopts
additional rules to ensure more stable and robust results.

Leadership expansion methods find communities according to
local leader groups, since members always gather together around
some core nodes with high centralities to form communities. The
TopLeaders [12] algorithm gradually associates nodes to the near-
est leaders and locally reelects new leaders during each iteration.

Clique percolation methods assume communities are constructed
by multiple adjacent cliques. Based on the original approach [20],
the Sequential Clique Percolation (SCP) [14] algorithm sequen-
tially generates cliques to form connected communities.

The third kind of the approaches maintains a tree, which is a
multi-level structure reorganized from the original graph, aiming at
finding communities corresponding to the branches of the tree.

Agglomeration algorithms in hierarchy clustering methods usu-
ally build an explicit hierarchical tree from small clusters to large
ones. Based on the Newman Fast Greedy Algorithm (NFGA) [18],
Claust et al. proposed an agglomeration algorithm CNM [5] which
starts from single nodes, maintains the change of modularity, and
iteratively generates the optimal level of the hierarchy structure.

Matrix Blocking technique can also be utilized in community
detection by constructing a hierarchy tree to order nodes in a net-
work. As a representative, the Matrix Blocking Dense Subgraph
Extract (MB-DSGE) algorithm [4] reorders the network, and ex-
tracts dense subgraphs as communities.

Skeleton clustering methods reveal dense connected clusters
based on the skeleton of the original network, which is an efficient
way of finding communities. The SCOT+HintClus algorithm [3]
detects the hierarchical cluster boundaries of a network to extract
the meaningful cluster tree. Inspired by this idea, the Graph Skele-
ton Clustering (gCluSkeleton) algorithm [11] projects the network
to its core-connected maximal spanning tree, and then detects the
optimized core-connected clusters on it.

3. FRAMEWORK FOR BENCHMARKING
In this section, we present our procedure-oriented framework for

benchmarking in community detection, which consists of two fun-
damental concepts abstracted from existing detection algorithms
and a generalized procedure of community detection.

3.1 Fundamental Concepts
Existing algorithms usually solve the community detection prob-

lem with various methods based on different assumptions. This
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Figure 3: Categories of community detection approaches

makes it difficult to comparatively analyze these algorithms thor-
oughly. For the sake of a better understanding of the underlying
principles of community detection algorithms, we abstract two fun-
damental concepts, including the propinquity measure and the
revelatory structure, which play critical roles in the community
detection task and can be used to distinguish different approaches.

Definition 1. (Propinquity Measure). Given a subset M of the
elements (such as nodes, relationships or other specific structures)
in a graph G, the propinquity measure of M, denoted as φ(M), is
the measurement of the nearness of M by the inner-connections,
and is the primary criterion to estimate the priority of the elements
when they are transformed to make the communities emerge.

Definition 2. (Revelatory Structure). Given a graph G, the rev-
elatory structure corresponding to G, denoted as Π, is an assistant
structure derived from G, provides yet another way to organize the
massive graph elements and enlightens us on the community struc-
ture from the intertwined connections among them.

The two concepts lay the basis for different community detec-
tion algorithms. The former determines the tendency of grouping
nodes to communities, while the latter records the gradual forma-
tion of communities and leads to a more effective detection process
especially for approaches of the third category.

It should be noted that the specific definitions of the above con-
cepts could be quite different in various approaches and thus we
only give a general definition here. The propinquity measure may
be the modularity [5], node centrality [12], etc., and the revelatory
structure may appear as the hierarchy tree [4, 18], G∗ graph [14] or
other particular structures. We will discuss how the two concepts
are defined specifically in different algorithms in Sec. 4.

3.2 The Generalized Procedure
We formulate a generalized procedure of community detection

in this framework. As illustrated in the “Detection Framework”
module in Fig. 1, the procedure consists of three phases, including
initialization, transformation and construction, and characterizes
the generic workflow of community detection via a series of the
key steps. The details of the procedure are shown in Alg. 1.
Phase 1: Initialization

In this phase, the graph elements need to get their initial propin-
quity values and form a primary community assignment (R0

tmp). As
shown in Alg. 1, after the propinquity measure (φ ) and the reve-
latory structure (Π) are defined (Line 1), the procedure calculates
initial propinquity values via PRECOMPUTE (Line 3) and allocates
the primary assignment via FIRSTALLOCATE (Line 4).
Phase 2: Transformation

In this phase, the inner structures and relations underlying the
network elements are transformed and clarified iteratively, result-
ing in a set of intermediate detection results SRtmp . We abstract
three key steps for each iteration, including SELECT, FLUCTUATE
and UPDATE (Line 6–8). First of all, in SELECT, the candidate ele-
ments CadT are picked out from the graph. After that, in FLUCTU-
ATE, the revelatory structure Π correlated with these elements will
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Algorithm 1 GENERICDETECTPROC

Input: G(V,E), mvs and Tmax
Output: R(Coms,Outs)
1: initialize φ and Π;
2: T ← 0, SRtmp ← /0, SR← /0, CadT ← /0;
3: PRECOMPUTE(G,φ);
4: RT

tmp← FIRSTALLOCATE(G,Π);
5: while T ! = Tmax&&!STABLE(Π)&&!OPTIMAL(φ) do
6: CadT ← SELECT(G,Π);
7: RT

tmp← FLUCTUATE(CadT ,Π);
8: UPDATE(INVOLVE(CadT ),φ);
9: SRtmp ← SRtmp ∪RT

tmp;
10: T ++;
11: end while
12: if SRtmp has multiple results then
13: for each level ∈Π do
14: SR← SR ∪COLLECT(SRtmp );
15: end for
16: R←MULTILEVELDRAFT(SR,φ or ψ);
17: else if SRtmp has no obvious result then
18: R← EXTRACT(Π,φ or ψ);
19: else R is obtained in the iteration;
20: end if
21: R.Outs← R.Outs∪ERASE(R.Coms,mvs);
22: ORDER(R.Coms);
23: return R;

be transformed, i.e. being fluctuated to form a more apparent inter-
mediate result (RT

tmp). Following these structural transformations,
in UPDATE, the propinquity of other involved elements will be re-
computed and the next iteration starts. These three steps are con-
ducted iteratively until the iteration terminates. During the itera-
tions, the latent communities can form in many ways, as the afore-
mentioned categories, i.e. from the whole graph to communities,
from local structures to communities or from trees to communities.

Three indicators are usually employed to terminate the iterative
procedure (as shown in Line 5): (1) whether the iteration number
reaches the fixed threshold Tmax (which is usually chosen to ensure
an approximate convergence of an algorithm); (2) whether the reve-
latory structure Π is stable (STABLE(Π)); and (3) whether the value
of the propinquity measure φ is optimal (OPTIMAL(φ )). According
to specific algorithms, these indicators may be chosen and designed
specifically in different approaches.
Phase 3: Construction

In the last phase, the final result R is constructed by refining the
current intermediate results SRtmp . If SRtmp has multiple choices,
COLLECT (Line 14) needs to gather the result at each level of Π.
Then MULTILEVELDRAFT (Line 16) weighs the collected results
and picks up the best-performing one. Usually, based on Π, EX-
TRACT (Line 18) is employed to let the communities emerge. In
most cases, EXTRACT or MULTILEVELDRAFT may also adopt φ

as a measure, nevertheless, sometimes another measure ψ can be
adopted, e.g. density in [4]. Eventually, the invalid communities
are removed by ERASE according to mvs, and R.Coms is sorted via
ORDER by the community size (Line 21–23).

3.3 Highlights
Composed of two fundamental concepts and a generalized pro-

cedure, our framework is beneficial for understanding and analyz-
ing the community detection approaches. The two concepts are the
basis for solving the problem of community detection, and differ-
ent implementations may lead to quite different performances, even
for the same approach (as illustrated in Sec. 5.1). The procedure is
the modularization of the critical steps of this problem, and uncov-
ers the generic detection workflow, making it easy to study various
approaches deeply within the identical framework.

Furthermore, the framework provides flexible combinations of
the optional steps, making itself adaptable to different kinds of al-
gorithms. Generally, all of the three categories of algorithms dis-
cussed in Sec. 2.2 can be mapped to this framework.

The framework is light-weight. It unifies the input and output,
handles the overall detection process, and provides necessary inter-
faces. Algorithms can be integrated easily by defining the factors
in Sec. 3.1 and implementing the functions in Sec. 3.2. Both the
framework and algorithms are developed using standard C++.

4. IMPLEMENTATION UPON FRAMEWORK
The present section recaps ten of the state-of-the-art algorithms

for community detection and describes how they work under this
framework. Fig. 4 shows the overall procedure mapping of these
algorithms to the framework. Based on the specific perspectives,
we consider the following representatives:
• Agglomeration algorithm CNM [5], and division algorithms

Radicchi [23] and Spectral [19] (hierarchy clustering, Sec. 4.1).
• M-KMF [29] (direct partitioning, Sec. 4.2).
• LPA [24] and HANP [17] (label propagation, Sec. 4.3).
• TopLeaders [12] (leadership expansion, Sec. 4.4).
• SCP [14] (clique percolation, Sec. 4.5).
• MB-DSGE [4] (matrix blocking, Sec. 4.6).
• gCluSkeleton [11] (skeleton clustering, Sec. 4.7).

4.1 Hierarchy Clustering
The hierarchy clustering algorithms (CNM [5], Radicchi [23],

Spectral [19], etc.) form communities in a multi-level structure
progressively on the basis of the original graph. This process falls
into two types, i.e. agglomeration or division, depending on their
construction order of the hierarchy structure.

The revelatory structure. Agglomeration algorithms usually main-
tain an explicit hierarchy tree as the revelatory structure Π, in which
the leaves denote nodes of the graph and the branches combine
nodes or groups at different levels. Actually, without constructing a
hierarchy tree, most division algorithms, such as Radicchi [23] and
Spectral [19], start from the entire graph and split out the commu-
nities gradually. For the lack of space here, we only introduce the
procedure mapping of the classical agglomeration algorithm CNM.

The propinquity measure. CNM employs modularity [5] as the
propinquity measure φ to make a greedy choice, trying to optimize
the global modularity of the final community partition: φ(R)= ∑

cn
i=1[

Ii
m −

(
2Ii+Oi

2m

)]
, where Ii indicates the total number of internal re-

lationships within the community Ci, Oi the number of outgoing
relationships between nodes in Ci and any node outside. For CNM,
any node would be grouped into a community during the transfor-
mation, and thus the cn communities cover all nodes in the graph.

The initialization phase. At the beginning, PRECOMPUTE ob-
tains an initial value of φ(G) and FIRSTALLOCATE takes each node
as a single tree (tiny mono-community with only one member) to
form a primary forest (R0

tmp).
The transformation phase. In the iteration T , SELECT chooses

two candidate trees (i.e. current communities) CadT , whose com-
bination may lead to the maximum increase of φ(RT−1

tmp ). Then,
FLUCTUATE combines them to form a new tree (a new commu-
nity of RT

tmp). Afterwards UPDATE recalculates the new value of
φ(RT

tmp), and then the algorithm turns to the next iteration.
The construction phase. In some early methods, COLLECT needs

to gather the result in each level of Π, and then MULTILEVEL-
DRAFT selects the best one (with the maximum φ(R)) [18]. The
improvement in CNM lies in SELECT and UPDATE. It breaks the
iteration once the latest combination cannot increase the modularity
any more (∆φ < 0 and OPTIMAL(φ(R)) is true). Consequently, the
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Algorithms PreCompute FirstAllocate Select Fluctuate Update Terminate Collect & MultiLevelDraft Extract 
CNM ↦ → ↷ → → ↬ ⇢ ↣ 
Radicchi ↦ → ↷ → → ↝ ⇢ ⇢ 
Spectral ↦ → ↷ → → ↝ ⇢ ⇢ 
LPA ⇢ ↦ ↷ → ⇢ ↺ ⇢ ↣ 
HANP ⇢ ↦ ↷ → → ↺ ⇢ ↣ 
TopLeaders ↦ → ⇢ ↷ → ↝ ⇢ ↣ 
SCP ⇢ ⇢ ↷ → ⇢ ↺ ⇢ ↣ 
M-KMF ↦ ⇢ ↷ → → ↬ ⇢ ↣ 
MB-DSGE ↦ → ↷ → ⇢ ↺ ⇢ ↣ 
gCluSkeleton ↦ → ↷ → ⇢ ↺ ↣ ⇢ 

↦: start step
→: normal step 
↷: into the iteration 
↺: iterate to Tmax 
↬: break when optimal
↝: break when stable 
↣: end step 
⇢: skipped step 

Figure 4: The overall procedure mapping of ten studied algorithms
current forest makes up the result. Without a direct output during
the iteration, CNM needs to take all the leaves in each individual
tree as the members of a same community via EXTRACT.

4.2 Direct Partitioning
Partitioning a graph directly is an intuitive way to get the closely

connected communities. We take M-KMF [29] as a representative
and present its mapping to our framework as follows.

The revelatory structure. In M-KMF the k-mutual-friends sub-
graphs are taken as Π and the most appropriate ones get separated
out as communities. Each node v ∈Π has the degree d(v)≥ k and
each relationship belongs to at least k triangles.

The propinquity measure. In M-KMF, the φ(r) of each relation-
ship r is defined as the number of triangles T R(r) containing r.

The initialization phase. Without an initial assignment of com-
munities, M-KMF merely executes PRECOMPUTE to initialize the
φ(r) of each relationship. Before that, it also handles a degree filter
which pulls nodes with d(·)< k+1 out as outliers.

The transformation phase. In each iteration T , SELECT picks out
the relationships (CadT ) for whom φ(r) < k, and FLUCTUATE re-
moves all these candidates from the current graph. Once a batch of
relationships are erased, new disconnected parts (RT

tmp) may arise.
Hence, they are closer to the k-mutual-friends subgraphs we look
for. Then, UPDATE copes with each relationship involved by these
deletions and recomputes φ(r) for the next iteration.

The construction phase. The iteration ends precisely when there
is no relationship to be marked. At this moment, each living re-
lationship belongs to k triangles, so that the mutual friends be-
tween each pair of connected nodes is maximum (OPTIMIZE(φ(r))
is true). To fetch the final communities, EXTRACT needs to traverse
the current Π to get the connected components.

4.3 Label Propagation
Label propagation algorithms (LPA [24], HANP [17], etc.) iden-

tify communities via different labels spreading among neighbors.
The revelatory structure. Π herein is defined as the label distri-

bution where different labels stand for different communities.
The propinquity measure. LPA has no special propinquity mea-

sure, whereas HANP adopts hop score and preference of each node
vi to improve its robustness: φ(vi) = S(i) ·P(i)ω where ω is a reg-
ulatory factor. Please note that the preference P(i) can be d(i), and
the hop score S(i) = max j∈NL(i) S( j)−σ where NL(i) is the neigh-
bors having the same label with i and σ is the attenuation factor.

The initialization phase. In FIRSTALLOCATE, nodes are as-
signed unique labels indicating different mono-communities (R0

tmp).
The transformation phase. In the iteration T , SELECT generates

a random permutation of nodes (CadT ). For LPA, in FLUCTUATE,
each node changes its label to the most frequent one of the labels
of its neighbors. While for HANP, the process is extended by intro-
ducing the hop score and the node preference to the label frequency.
The new label distribution makes up the new temporary result RT

tmp.
Without φ , LPA needs no UPDATE while HANP needs UPDATE to
recompute the S(i) of φ(vi) w.r.t. σ , which controls how far the
particular label of the newly fluctuated node can spread.

The construction phase. Empirically, label propagation algo-
rithms limit the number of iterations to a maximum value Tmax to
ensure that the label distribution achieves a steady status approxi-
mately. At last, EXTRACT will classify nodes with same labels to
same communities.

4.4 Leadership Expansion
Leadership expansion methods (e.g., TopLeaders [12]) regard a

community as a set of followers congregating around a potential
leader, and form communities by identifying promising leaders and
then iteratively assembling followers.

The revelatory structure. All leaders try to expand their own
leader groups (i.e. Π) respectively to form the final communities.

The propinquity measure. The TopLeaders algorithm adopts de-
gree centrality φ(vi) = d(i) of a node vi to measure the leadership.

The initialization phase. Specifically, PRECOMPUTE first com-
putes the global degree centrality of each node in the graph. Then,
FIRSTALLOCATE elects the ld most pivotal nodes as the leaders
by the FNiC strategy (Few Neighbors in Common, which assures
neighborhoods of any two leaders have an intersection less than
λmax) and forms initial states of the groups (R0

tmp).
The transformation phase. In each iteration T , TopLeaders skips

SELECT and executes FLUCTUATE directly. In FLUCTUATE, each
node explores its neighbors within l hops using the BFS strategy
and counts the common neighbors with each leader. Once the num-
ber of common neighbors with any leader exceeds the threshold
λmin before the BFS reaches the maximum depth, dp, the node joins
the corresponding group around that leader. Then, the leader group
gets enlarged (RT

tmp). Please notice that any node who has multi-
ple choices and cannot make this decision until l reaches the upper
bound will be regarded as a hub, i.e. a special outlier. Besides, any
node whose common neighbors cannot reach λmin anyhow will be
regarded as an outlier. In consequence of the expansion, UPDATE
needs to recompute φ(vi) locally and tries to reelect new leaders.

The construction phase. The transformation process repeats until
no new leader comes to power any more (STABLE(Π) is true). Once
all the leaders win a second term, each current leader group can be
obtained via EXTRACT as a final community.

4.5 Clique Percolation
In clique percolation algorithms, a clique is an atomic element

in the graph. As a representative, SCP [14] detects communities
sequentially based on the idea of clique percolation. Unlike other
algorithms, SCP does not define an explicit propinquity measure.

The revelatory structure. SCP maintains the G∗graph as the rev-
elatory structure Π, in which the κ-1-cliques are taken as nodes. If
two κ-1-cliques belong to a same κ-clique, they are connected in
the G∗ graph. Generally, SCP assumes κ = 3 or 4. If κ = 3, for the
endpoints of a relationship, the κ-cliques can be directly obtained
by their common neighbors. If κ = 4, each pair of the connected
common neighbors can make up a 4-clique together with the two
endpoints. In the experiments later, we will show the effect of κ .

The transformation phase. SCP goes directly into the transfor-
mation. In each iteration T , SELECT first gets the common neigh-
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bors of the endpoints of a relationship, and forms the corresponding
κ-cliques (CadT ). Then, in FLUCTUATE, all inner κ-1-cliques are
inserted into the G∗ graph (RT

tmp). All the κ-1-cliques which belong
to a same upper clique will be linked in this graph.

The construction phase. The iteration is nothing but a sequen-
tial traversal of the relationships and ends after dealing with all
κ-cliques (Tmax = m). At last, EXTRACT hunts for all connected
components in the G∗ graph and takes them as communities.

4.6 Matrix Blocking
Matrix blocking technique (e.g., MB-DSGE [4]) finds the dense

subgraphs, i.e. the communities, based on the rearrangement of G.
The revelatory structure. The hierarchy tree is adopted as Π.
The propinquity measure. MB-DSGE utilizes the cosine similar-

ity to measure the propinquity of two nodes: φ(vi,v j)=
<A(:,i),A(:, j)>
|A(:,i)||A(:, j)|

where A is the adjacent matrix of G.
The initialization phase. PRECOMPUTE first computes φ(vi,v j)

of each pair of nodes (not only those who have connections). Then,
triples (i, j,φ(vi,v j)) are sorted in descending order according to
the value of φ to form a queue CQ. In FIRSTALLOCATE, trees rep-
resenting single nodes form the original forest (R0

tmp).
The transformation phase. In the iteration T , SELECT pops a

triple (i, j,φ(vi,v j)) from CQ with the maximal cosine similarity
and finds the trees corresponding to node i and j (CadT ). Then,
FLUCTUATE combines the two trees to form a new branch (RT

tmp)
in Π if they have no common ancestor. Since CQ has been obtained
before, UPDATE is unnecessary in MB-DSGE.

The construction phase. The entire iteration ends once the whole
tree is built (Tmax = n− 1). Since an obvious result cannot be ob-
tained now, MB-DSGE constructs the final communities using an-
other measure density. EXTRACT firstly counts the wrap-up nodes
V (b) and relationships E(b) for each branch b of Π in a bottom-
up way. Then, it traverses Π in a top-down way and computes the
density (ψ(b) = 2|E(b)|

|V (b)|(|V (b)|−1) ) of each branch. Once the density
of b is higher than the predefined threshold ρmin, b is pruned out
and all the leaves within it turn out to be the tightly interconnected
members of a community.

4.7 Skeleton Clustering
Skeleton clustering algorithms (e.g., gCluSkeleton [11]) try to

find closely connected communities based on the skeleton of the
original graph G to make the detection process more efficient.

The revelatory structure. The gCluSkeleton algorithm makes the
skeleton-based clustering just on the core-connected maximal span-
ning tree (CCMST) of G. Therefore, the CCMST and the hierarchy
tree together make up the revelatory structure Π.

The propinquity measure. The gCluSkeleton algorithm adopts
the structural similarity (denoted as ε) to measure the propinquity
of the endpoints of a relationship r. The propinquity measure φ(ri j)

=
|N(i)∩N( j)|√
|N(i)|·

√
|N( j)|

where N is the self-contained neighborhood of a

node. The propinquity measure φ here owns a suite of derivatives:
(1) core-similarity (CS), (2) reachability-similarity (RS), (3) core-
connectivity-similarity (CCS), and (4) attachability-similarity (AS).
For node i, CS(i) is the maximum structural similarity ε̂ . It means
node i should have at least µ adjacent relationships whose structural
similarities are greater than ε̂ . RS(ri j) = min{CS(i),φ(ri j)} stands
for the reachability from node j to i. CCS(ri j) = min{RS(i, j),
RS( j, i)}, ensures the bidirectional reachability of the two nodes.
AS(i) is the maximum RS( j, i) obtained with all neighbors of node
i, and the corresponding neighbor j is called an attractor of i.

The initialization phase. In PRECOMPUTE, the CCS of all the
relationships is computed, and meanwhile the triples of (i, j, AS(i))
are initialized and stored in a priority queue AIQ. Taking CCS as

weight, FIRSTALLOCATE produces the CCMST of G and stores all
unique CCS in CCMST in the ε-queue in descending order.

The transformation phase. In the iteration T , SELECT takes the
first ε out of the ε-queue and filters all relationships in CCMST
with CCS < ε to reveal the current core-connected clusters (CadT ).
When necessary (µ > 2), SELECT fetches attractors from AIQ to
enlarge the clusters. FLUCTUATE then takes these clusters as bran-
ches in the hierarchy tree and the clusters produced in the previous
iteration as subbranches of them. Along with the decreasing of ε ,
each previous branch definitely belongs to a current one.

The construction phase. Without a wise indicator of the termina-
tion state, the iteration goes on until all the branches form a whole
tree (Tmax = n− 1, at most), when the ε-queue is empty. Now,
COLLECT brings the homologous clusters w.r.t. the branches into
buckets (SR) with different ε values (different levels in Π). MUL-
TILEVELDRAFT then picks up the best result R using an extended
modularity function ψ(R).

5. DIAGNOSES AND IMPROVEMENTS
With high abstraction and modularization of the fundamental

factors and key steps of the general detection approaches, the pro-
posed framework provides not only a testbed to compare various
approaches with a fair benchmark, but also a microscope for us to
study the strength and weakness of each algorithm. It allows us to
conduct diagnoses for algorithms which do not perform well, and
further makes targeted prescriptions for improvement. Due to the
space limitation, here we discuss directions for diagnosing and im-
proving the algorithms with two examples.

5.1 Diagnosing Key Factors
As analyzed earlier, the propinquity measure φ plays a critical

role in many approaches to community detection. Different approa-
ches usually adopt various implementations of φ , but not all of them
are the best choices. Thus one promising direction for improve-
ment is to look again at the propinquity measures inside existing
approaches and seek more appropriate implementations.

We take MB-DSGE as an example. In Fig. 5(a) we illustrate how
MB-DSGE works on the given network shown in Fig. 2. According
to the current propinquity measure φ defined using cosine similar-
ity, v9 is closer to v10, with whom it has two common neighbors,
than v7 and v8. Thus, in MB-DSGE, v9 would be merged with v10
first. However, without even a relationship, they are factually not
so close. On the contrary, v9 is closer to the directly-connected v7
and v8. Consequently, it may result in sparse communities with
low density. Another possible drawback of the current definition
lies in that the individual outliers cannot be identified clearly since
they usually have few neighbors and may be prematurely merged
(e.g. v15 in Fig. 5(a)).

324 56 7 9 10 1512111 13 148

density=0.73

density=0.36

(a) MB-DSGE

645 21 8 7 10 1412113 13 159

density=0.73

density=0.83 density=0.7

(b) MB-DSGE*
Figure 5: Comparison of the hierarchy tree and the results of
MB-DSGE and MB-DSGE* (ρmin = 0.35)

We can improve MB-DSGE by replacing φ , leading to an im-
proved algorithm MB-DSGE*. Since the propinquity measure φ in
MB-DSGE does not take the direct connections between two nodes
into consideration, we can replace it with the corresponding φ in
gCluSkeleton, i.e. the structure similarity, to correct this omission.
Note that for MB-DSGE*, φ needs to be computed for each pair of
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nodes, while for gCluSkeleton it only needs to be computed for the
endpoints of each relationship.

The execution processes of MB-DSGE and MB-DSGE* on the
network of Fig. 2 are visualized in Fig. 5 with the built hierarchy
tree and the communities denoted with the dotted boxes. Compared
with Fig. 5(a), the new hierarchy tree in Fig. 5(b) seems more order-
ly since MB-DSGE* generates a combination order {3,5,1,4,2,6}
in accordance with the nearness of nodes in the subgroup. MB-
DSGE* produces three dense subgraphs while MB-DSGE cannot
differentiate the two groups in the right part of the graph. Conse-
quently, the rationality of the result gets heightened a lot.

5.2 Diagnosing Key Steps
In Sec. 3.2, we abstract the main phases and key steps of general

approaches to community detection. As presented in Sec. 4, algo-
rithms can be implemented within our framework via step mapping.
This enables us to examine the performance of each single step and
analyze their influence on the whole algorithm in depth. Upon that
we can propose targeted improvements by adding a beneficial step,
removing an unnecessary one, or modifying an inefficient one.

We illustrate this with the LPA algorithm as example. In original
LPA, no propinquity measure is defined. Thus there do not exist
important steps of evaluating and updating the propinquity of ele-
ments in the network. In this way the varying importance of nodes
and relationships is neglected.

This inspires a direction to improve LPA. The nodes with differ-
ent confidences should be considered differently during the label
propagation process. Thus we introduce the activeness of nodes,
which shows how many times a node changes its label in the whole
iteration. Intuitively, there is a negative correlation between the
confidence of a node and its activeness, and thus we define the
propinquity measure as φ(vi) = 1/Activeness(i)ω . In the transfor-
mation phase, we modify the FLUCTUATE step, in which nodes also
choose their labels according to the neighbors’ confidence, and add
a critical step UPDATE to recompute the propinquity of nodes.

As demonstrated in the experiments later in Sec. 6.10, the spe-
cific diagnoses achieve great improvements over original algorithms.
It should be noted that in this study we only take two examples
for illustration due to the limit of space. More diagnoses may be
conducted for other existing approaches based on our framework.
For instance, instead of a trivial MULTILEVELDRAFT, a smart EX-
TRACT step may be preferred in gCluSkeleton. It may also make
the iteration in TopLeaders more efficient by adding an extra SE-
LECT for choosing the candidates.

6. BENCHMARKING EVALUATION
In this section, we conduct in-depth evaluations for the commu-

nity detection algorithms within our framework using the proposed
benchmark, which covers the efficiency, accuracy, effectiveness,
density sensitivity, mixture sensitivity, outliers, community distri-
bution and diagnosis effects. We introduce the datasets and param-
eter configurations in the benchmark at first, and then report our
thorough evaluation methodology and results. We summarize our
findings and rate the algorithms intuitively at last. All experiments
are conducted on a computer running Windows Server 2008 with
an Intel Xeon 2.0 GHz CPU and 256 GB RAM.

6.1 Datasets
Towards a better and thorough evaluation of the existing ap-

proaches, in this study we adopt three categories of datasets.
In the first category, we consider two widely-used small-scale

real-world networks, including Strike and Football [12], for which
we can obtain the authentic communities. The statistics are shown
in Table 1, where cn is the number of real communities.

Table 1: Small-scale real-world networks with ground-truth
Name n m cn Supp.
Strike 24 38 3 /
Football 180 788 11 61 outliers, 4 hubs

We also employ seven large-scale real-world networks without
ground-truth from the Stanford Large Network Dataset Collection
(http://snap.stanford.edu/data/), ranging from co-author networks
(CA-HepPh, DBLP), co-purchasing networks (Amazon), commu-
nication networks (Email-Enron) to friendship networks (BrightKit,
Gowalla and YouTube). We report the statistics in Table 2, where
ccavg is the average clustering coefficient, and diam the network
diameter. We cannot obtain the real communities of these networks
and thus we adopt a widely-recognized metrics to evaluate the per-
formance in terms of the quality of clusters instead of the accuracy.

Table 2: Large-scale real-world networks
Name n m ccavg diam
CA-HepPh 12,008 118,505 0.6115 13
Email-Enron 36,691 183,830 0.4970 11
BrightKit 58,228 214,078 0.1723 16
Gowalla 196,591 950,327 0.2367 14
DBLP 317,080 1,049,866 0.6324 21
Amazon 334,863 925,872 0.3967 44
YouTube 1,134,890 2,987,624 0.0808 20

Furthermore, we use the Lancichinetti-Fortunato-Radicchi (LFR)
networks [15] with ground-truth. Tens of synthetic datasets are pro-
duced for in-depth evaluations, and we only list some representa-
tives in Table 3. Here d is the average degree of nodes, dmax the
maximum node degree, cmin the minimum community size, and
cmax the maximum size. In LFR, another critical parameter is the
mixing parameter u (0.2 by default [11]) which indicates the pro-
portion of relationships a node shares with other communities.

Table 3: Synthetic networks with ground-truth
Name n m d dmax cmin cmax
S 10K 10,000 50,302 10 50 20 100
S 100K 100,000 504,371 10 50 50 100
S 200K 200,000 953,230 10 100 60 200
S 500K 500,000 2,938,555 10 250 100 500

6.2 Configurations
In our benchmarking evaluation, all requisite parameters of the

studied algorithms are set as the recommended values in their orig-
inal papers, as shown in Table 4.

In particular, for Radicchi, we choose the weak option, i.e. the
community definition Ω=weak (see in Sec. 6.5), to avoid excessive
outliers. For TopLeaders, the number of leaders ld needs to be
provided manually or in advance by other means. For MB-DSGE,
although the prevalent value of ρmin is 0.1, we may need to run
the algorithm repeatedly for better results (e.g., 0.5 on Football),
since a slightly inappropriate ρmin may lead to awful results as the
scale of the network increases. More details about the effects of the
parameters are presented in the following evaluations.

Table 4: Parameter setting
Algorithm Value Algorithm Value
Radicchi Ω=weak TopLeaders λmax=5, λmin=0, dp=2
LPA Tmax=6 HANP Tmax=20, ω=0.1, σ=0.05
SCP κ ∈{3, 4} M-KMF k ∈{1, 2, 3}
MB-DSGE ρmin=0.1 gCluSkeleton µ ∈{2, 3}

6.3 Efficiency
In this subsection, we discuss the efficiency of the concerned

algorithms from both theoretical and experimental aspects.
Theoretical analyses. The time complexities of the ten algo-

rithms in each phase are illustrated in Table 5. Most social net-
works are sparse, and we usually have O(m)≈ O(n). The commu-
nity structures become non-significant when m tends to n2 [8].
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Figure 6: Time costs with node scale under different phases in the framework w.r.t. various algorithms

Theoretically, many classical hierarchy clustering algorithms have
high time overheads, such as Radicchi, Spectral and NFGA. How-
ever, CNM can greatly reduce the time complexity since it needs
no MULTILEVELDRAFT after the transformation. Obviously, label
propagation algorithms traverse all nodes and their neighbors for
Tmax times while TopLeaders executes this process for an uncertain
time T . Moreover, TopLeaders has a tough work in FIRSTALLO-
CATE to find the original leaders. The time cost for SCP depends on
the quantity of non-repeating κ-1-cliques (Nc) in the network. For
M-KMF, the involved elements are mostly relative to the average
degree davg of nodes in each iteration, and the worst case is that all
relationships are removed. MB-DSGE spends O(m logm) time in
PRECOMPUTE, and O(n logn) in tree building. For gCluSkeleton,
Nε is the size of ε-queue (i.e. Tmax), which equals to n−1 at most.

Table 5: Overview of time complexity
Algorithm Initialization Transformation Construction
CNM O(m+n) O(mlog2n) O(n)
Radicchi O(m+n) O(m4/n2) —
Spectral O(n2) O(n2 logn) —
LPA & HANP O(n) O(Tmax(m+n)) O(n)
TopLeaders O(n logn+ ld2) O(T (m+n)) O(n)
SCP — O(Nc) O(m+n)
M-KMF O(m+n) O(davgm) O(m+n)
MB-DSGE O(m logm) O(n logn) O(n)
gCluSkeleton O(m+n logn) O(m logn) O(Nε (m+n))

Experiments on synthetic networks. We evaluate the efficiency
and scalability of these algorithms on synthetic networks, whose
scales vary from 100K nodes to 500K nodes (Fig. 6(a) – (d)). We
find Spectral even cannot handle S 100K due to an enormous con-
sumption of 40 GB of RAM for a single-pass iteration, which is
an unbearable space overhead in practice. Thus we only evaluate
other approaches according to the three phases of the workflow.

Fig. 6(a) shows the initialization time of six algorithms varying
with the node scale (with logarithmic coordinate for Y axis). The
time costs of LPA and HANP are much lower than others and thus
omitted for brevity, and SCP does not have an initialization phase.
In accordance with the above analyses, TopLeaders spends the most
time in PRECOMPUTE, followed by MB-DSGE and gCluSkeleton,
both of which need to compute and sort values of φ in this step.

The time costs of the transformation phase of each algorithm are
shown in Fig. 6(b). M-KMF outperforms others significantly. For
SCP, the iteration performs slightly faster by utilizing the OpenMP
API (http://openmp.org) to optimize the process in FLUCTUATION.
TopLeaders can hardly get stabilized on large-scale datasets, and
thus we relax the proportion of the two-term leaders to 95% ap-
proximately. Consequently, this tiny modification increases the ef-
ficiency significantly in our experiments with little influence on per-
formance. CNM, MB-DSGE and gCluSkeleton cost much more
time in this phase than others. For CNM, the iteration number
is supposed to be O(log(n)), but actually, it nearly reaches O(n)
(e.g., the number of iteration is 99,404 on S 100K which contains
100,000 nodes). Although the iteration of gCluSkeleton is similar
to that of Kruskal algorithm (O(m logn)), the high time cost may

be attributed to the pairwise association of clusters in FLUCTUATE.
In the construction phase, except gCluSkeleton, most algorithms

complete this process within negligible time, as shown in Fig. 6(c),
since EXTRACT usually only traverses Π to get the final results.
The gCluSkeleton costs much time due to the existence of the time-
consuming COLLECT and MULTILEVELDRAFT. The overall time
costs of these algorithms are shown in Fig. 6(d), almost the same
as those in the transformation phase.

Experiments on real-world networks. We also conduct exper-
iments on the efficiency of the algorithms on real-world networks.
The overall time costs on datasets CA-HepPh, Email-Enron, Ama-
zon and DBLP are presented in Fig. 7. In general, the ranking of
the processing time is consistent with those on synthetic networks,
and thus we do not discuss them in detail for brevity.
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Figure 7: Time overheads on real-world networks
Influence of framework implementation. To evaluate the in-

fluence on efficiency of the framework standardization of the orig-
inal algorithms, we compare the overall processing time of them in
both their native implementation and framework implementation
on S 500K. The result of the comparison is shown in Fig. 8. Since
our re-implementation based on the framework is just an encapsu-
lation of original algorithms with the generalized detection proce-
dure, it has almost no effect on the efficiency of the algorithms.
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Figure 8: Comparison on the efficiency of framework imple-
mentation vs. native implementation

Remarks. Considering the overall time overheads, we find that
M-KMF performs more efficiently than others. Generally, these
algorithms can be ordered w.r.t. the efficiency as M-KMF > SCP
> TopLeaders > Radicchi > (LPA, HANP) > (CNM, MB-DSGE,
gCluSkeleton). The approaches themselves are efficient under the
time complexity O(n logn), but the transformation is the most time-
consuming phase.

6.4 Accuracy
In this subsection, we evaluate the accuracy of an algorithm on

datasets with ground-truth by examining to what extent the commu-
nities delivered by an algorithm are consistent with the real ones.

Metrics. Cross Common Fraction (Fsame) compares each pair of
communities, in which one comes from the detected result and the
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Figure 9: Accuracy and effectiveness of various algorithms on six metrics (accuracy: Cross Common Fraction (Fsame), Jaccard Index
(Jaccard), Normalized Mutual Information (NMI); effectiveness: Cluster Coefficient (CC), Strength (S), modularity (Q))
other comes from the real one, to find the maximal shared parts.
Formally, it is defined as

Fsame =
1
2

cn

∑
i=1

max
j
|Ci ∩C′ j |+

1
2

cn′

∑
j=1

max
i
|Ci ∩C′ j |, (1)

where cn and cn′ are the quantities of detected and real communi-
ties respectively, and Ci and C′ j are the i-th detected community
and j-th real community respectively.

Jaccard Index [10] is a widely used similarity measure. It is
more sensitive for it can overcome the little variance of the cross
common fraction when nodes from several different communities
in one result join together as a single community in another result
[24]. It can be defined as Ps

Ps+Ps1+Ps2
where Ps stands for the number

of node pairs which are respectively classified into the same com-
munity in both results, Ps1 stands for the number of node pairs ap-
pearing in the same community in the algorithm-produced results,
but in different communities in the truth, and Ps2 vice versa.

Normalized Mutual Information (NMI) [6] is a popular criterion
for evaluating the accuracy of community detection based on the
information theory. The score of NMI stands for the agreement of
two results and it is defined as

NMI =
−2∑i, j Ni j log

Ni j Nt
Ni.N. j

∑i Ni. log Ni.
Nt

+∑ j N. j log
N. j
Nt

, (2)

where N is the confusion matrix whose element Ni j is the number
of the shared members between a detected community Ci and a
real one C′ j. Ni. and N. j are the sum over row i and column j
respectively, and Nt = ∑i ∑ j Ni j.

Remarks. The scores of the above metrics are shown in Fig. 9(a).
Based on the accuracy evaluation, we can find that SCP, M-KMF,
MB-DSGE and gCluSkeleton perform outstandingly on networks
containing many outliers, such as Football. The results of these
algorithms show high stability, except MB-DSGE which may be
easily influenced by the scale of nodes. Moreover, it is obvious that
LPA and HANP produce eminently believable and accurate results
on networks without any outliers, such as synthetic networks.

6.5 Effectiveness
Most large-scale real-world networks have no ground-truth. In

this situation, we evaluate the effectiveness of algorithms by exam-
ining the quality of detected communities via various metrics.

Metrics. Clustering Coefficient (CC) focuses on the tendency
of community members to cluster together. Thus, high clustering
coefficient means high probability that the connections inside the
detected communities are dense. The global clustering coefficient
of an undirected network can be computed as

CC =
1
cn

cn

∑
i=1

(
1
|Ci| ∑v∈Ci

2 |{ets : vt ,vs ∈ N(v)
⋂

Ci,ets ∈ E}|
d(v)(d(v)−1)

)
, (3)

where N(v) consists of the neighbors of node v, d(v) is the degree
of v, cn is the community quantity, and Ci is the i-th community.

Strength (S) measures the intensity of detected communities. Ev-
idence shows that the result usually seems valid if most members
are in the same community with their neighbors. We inherit Radic-
chi’s community definitions [23] to get the strength score of a re-
sult. Suppose that d(v)in and d(v)out stand for degrees inside and
outside the community C containing node v, respectively. If d(v)in >

d(v)out for ∀v∈C, C is a strong community; if ∑v d(v)in >∑v d(v)out ,
C is a weak community; otherwise C is invalid. To make the global
evaluation, we define the strength as: S = 1

cn ∑
cn
i=1 score(Ci). In this

work, we let score(Ci) = 1 for a strong community; 0.5 for a weak
one; and 0 for an invalid one.

Modularity (Q) is the most widespread quality function for com-
munity detection. It compares the result with a randomized one
to indicate how reasonably the nodes are assigned into different
groups. The definition of this metric has been given in Sec. 4.1.

Remarks. As illustrated in Fig. 9(b), almost all algorithms show
highly-consistent effectiveness on different datasets. Most algo-
rithms get satisfactory CC so that communities produced by these
algorithms have high internal aggregation. Specifically, with the
similar φ defined based on the number of triangles, Radicchi and
M-KMF perform very well w.r.t. S, showing strong preference for
intra-group links than inter-group ones. However, their scores of
modularity are much worse than those of others. Differently, CNM
gets the best Q among all the algorithms since it takes this metric
as φ and achieves the optimal value at the end of transformation.
It is worth mentioning that without prior knowledge of the leader
number, TopLeaders does not perform well any more. In general,
communities detected by HANP, LPA and CNM have higher qual-
ities than those produced by other algorithms.

6.6 Density Sensitivity
We are also interested in the sensitivity of algorithms when they

are applied to datasets with various network densities. In this ex-
periment we generated synthetic networks on the basis of S 10K by
gradually increasing its density by modifying the average degree d
(from 10 to 70, ∆d = 10, note that |E|= η |V | and d ≈ 2η ).

The variations of the overall time costs are shown in Fig. 10. Ex-
cept SCP, CNM, LPA and HANP, the growing tendency of the rest
algorithms are in line with that demonstrated in Fig. 6(d). We also
studied the variations of effectiveness, accuracy as well as commu-
nity quantity of the concerned algorithms on datasets with different
densities, and present the results in Fig. 11. For space limitation,
here we take the CC and Fsame as representatives of effectiveness
and accuracy, respectively, and similar tendencies are observed on
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Figure 10: Overall time costs of varying d

other metrics. With the increase of density, most algorithms ex-
cept SCP produce communities with higher CC values as expected.
From the perspective of accuracy evaluated with Fsame, Radicchi,
LPA and HANP not only outperform others significantly, but also
show more stable performance with less sensitivity on the density.
On the contrary, the performances of SCP, M-KMF and MB-DSGE
decrease obviously when networks become denser. Furthermore,
we find the quantities of detected communities decrease consis-
tently with the increasing density. Since k =1 here, M-KMF is
more likely to form large connected k-mutual-subgraphs so that the
total number of communities drops rapidly.
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Figure 11: Tendency of different scores of varying d

Remarks. The increase of density of networks usually leads to
higher clustering coefficients, and for most algorithms it produces
fewer detected communities. Moreover, since there are more links
among nodes so that there are fewer outliers produced by these
algorithms as the density increases. In general, Radicchi, LPA and
HANP are superior to others on both the overall performance and
stability. The growth in the density of a network has the strongest
impact on both the efficiency and the performance of SCP.

6.7 Mixture Sensitivity
Mixing (or overlapping) structures are common in real-world so-

cial networks, which make it more difficult to differentiate commu-
nities from the entire network. In this experiment, we study the
performance and sensitivity of these algorithms on datasets with
different mixture degrees.

For synthetic networks generated by LFR, the mixture degree
depends on the mixing parameter u, as we discussed in Sec. 6.1. A
small value of u leads to large diversities among different commu-
nities while a high value of u may produce overlapping communi-
ties. We generated synthetic datasets using LFR with 100K nodes
and different settings of u from 0.1 to 0.5 (∆u=0.1). Usually, it is
meaningless to find communities on network where more than half
of them are overlapped.
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Figure 12: Effectiveness and accuracy of varying u

We evaluate the performance in terms of the effectiveness (mod-
ularity score Q) and the accuracy (Jaccard index) of the concerned
algorithms and illustrate the results in Fig. 12. The modularity
of most algorithms except gCluSkeleton declines linearly when u
grows, while the Jaccard index of them shows different change ten-
dencies: CNM and gCluSkeleton deteriorate much faster than oth-
ers while LPA and HANP are more stable and insensitive to the
mixture degree.

Remarks. We can find that all the algorithms perform worse
on datasets with higher mixture degrees, and both the effectiveness
and accuracy would decrease when the communities overlap more
with each other and become less discriminative. In comparison,
the label propagation algorithms are more stable and show better
capability of distinguishing communities from confusing mixtures.

6.8 Outliers
Focusing only on the produced clusters in the community de-

tection tasks, sometimes we may be hoodwinked and come to a
conclusion unilaterally. Because of the existence of outliers, we
should also care about how many nodes are discriminated outside
the groups meanwhile. As we discussed in Sec. 2.1, outliers can
be affirmed automatically by the original algorithms or the prede-
fined threshold mvs. In the former case, dense groups of nodes are
revealed from the network so that the rest parts are naturally re-
garded as outliers. In the latter case, a proper partition of the entire
network is obtained so that the components whose sizes are less
than mvs will be disbanded, and the members of them are consid-
ered as outliers. In this subsection, we evaluate the extent to which
these algorithms identify nodes as outliers, as shown in Fig. 13.
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Figure 13: Proportion of produced outliers

We test the ability of discovering outliers for these algorithms on
Football which contains 65 labeled outliers. When mvs = 2, CNM,
Radicchi, SCP, M-KMF, MB-DSGE and gCluSkeleton can iden-
tify outliers with the F1-Score higher than 0.90, while others rarely
consider outliers. We also conducted experiments on large-scale
real-world networks without any priori knowledge about the exact
outliers, and illustrate the proportion of outliers (OP = |Outs|/|V |)
in Fig. 13. Here mvs is set to 3 since on large-scale networks,
we think only two people cannot form a community [28]. LPA
and HANP are not included in the figure since they produced rare
outliers. Once the label distribution tends to be steady, there are
few tiny groups flagged with unique labels (2 on both Amazon and
DBLP for HANP, 57 and 32 on them for LPA). Similarly, outliers
found by CNM and TopLeaders are also quite few. Since MB-
DSGE has higher preference towards local dense connected groups,
it produces more outliers. Especially, if we set κ to 4 for SCP, or
increase k from 1 to 3 for M-KMF, more outliers will be produced
for stricter limitation of Π. For gCluSkeleton, we set µ =3 only for
Amazon and DBLP to ensure better effectiveness of communities,
which may lead to more outliers.

Remarks. By label propagation algorithms, we can hardly get
outliers in a network. Compared with other algorithms we studied,
generally, MB-DSGE produces the most outliers and has the lowest
coverage ratio (1−OP) of a network. The outliers produced by
SCP, M-KMF and gCluSkeleton are too sensitive to the value of
the key parameter, i.e. κ , k and µ , respectively. Moreover, we can
find that outliers are easily to be revealed on datasets with lower
ccavg (e.g. only 0.1723 of BrightKit).
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Table 6: Comparison between LPA and LPA*
Alg. CA-HepPH Email-Enron Gowalla DBLP

CC S Q CC S Q CC S Q CC S Q
LPA 0.7037 0.5985 0.4201 0.7340 0.7912 0.2983 0.7685 0.7902 0.3690 0.7317 0.6149 0.6930
LPA* 0.7227 0.6617 0.4449 0.7408 0.8118 0.4954 0.7751 0.8058 0.5303 0.7381 0.6404 0.7032

Alg. S 10K S 100K S 200K S 500K
Fsame Jaccard NMI Fsame Jaccard NMI Fsame Jaccard NMI Fsame Jaccard NMI

LPA 0.9681 0.9945 0.9992 0.9967 0.9917 0.9992 0.9935 0.9783 0.9969 0.9980 0.9944 0.9989
LPA* 0.9980 0.9940 0.9993 0.9979 0.9945 0.9995 0.9984 0.9956 0.9994 0.9992 0.9976 0.9996

Table 7: Comparison between MB-DSGE and MB-DSGE*
Alg. Strike Football

CC S Q Fsame Jaccard NMI CC S Q Fsame Jaccard NMI
MB-DSGE 0.7508 0.5000 0.2864 0.7708 0.4438 0.5777 0.4266 0.8000 0.5179 0.6139 0.8040 0.9767
MB-DSGE* 0.7747 0.8333 0.5474 0.9583 0.8208 0.8660 0.5097 0.6923 0.5408 0.6389 0.7154 1.0000

Alg. CA-HepPH BrightKit Gowalla DBLP
CC S Q CC S Q CC S Q CC S Q

MB-DSGE 0.5865 0.2834 0.3929 0.5443 0.1952 0.0961 0.5508 0.2165 0.1075 0.6303 0.3830 0.3964
MB-DSGE* 0.6223 0.3106 0.4437 0.6672 0.2715 0.1940 0.6269 0.2579 0.1883 0.6686 0.4413 0.5166

6.9 Distribution of Communities
The distribution of communities, i.e. the distribution of quan-

tities of communities with different sizes, is also a key indicator
of the validity of an algorithm. We visualize the community dis-
tributions produced by various algorithms on Amazon and DBLP
in Fig. 14 (with double logarithmic coordinates) for comparison.
We find that LPA and HANP produce regular power law distribu-
tions, while CNM prefers more large communities so that the dis-
tributions are more plain and long-tailed. For SCP, when κ =3,
the distribution on Amazon is reasonable while the distribution on
DBLP is uneven due to an undivided large-scale community whose
size is about 105. It may result from the small value of κ which
makes different κ-1-cliques form together more easily. The results
of Radicchi and M-KMF are quite homogeneous due to the simi-
lar φ . As discussed in Sec. 6.8, undesirable excessive outliers will
be found by M-KMF if we increase k. For MB-DSGE, even with
an expectation for community density of 0.1, the results also show
remarkable sparsity. Unlike M-KMF, MB-DSGE only takes those
dense groups away, leaving others as poor outliers. The community
distribution generated by gCluSkeleton is a little messy which may
be caused by the lower differentiation of the values of φ , i.e. the
values of the ε-queue, on large-scale networks. At last, we find
that a predefined ld makes the detection much more purposeful,
and thus TopLeaders presents quite dissimilar distributions.
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Figure 14: Distributions of community size of each algorithm

Remarks. The distributions produced by CNM, LPA and HANP
are closer to regular power law distribution. TopLeaders has a dif-
ferent community distribution with other algorithms due to the pre-
defined leader number. On large-scale networks, for many algo-
rithms such as Radicchi, M-KMF, SCP as well as gCluSkeleton, the
existence of an undivided large component, which means a lower
separation degree, is actually an intractable problem to be solved.

6.10 Diagnosis Effects
Based on the two targeted diagnoses discussed in Sec. 5.1 and

5.2, we compare the modified algorithms with their original ones
respectively, i.e. MB-DSGE* vs. MB-DSGE and LPA* vs. LPA, to
verify the effects of improvement.

Table 6 shows the superiority of LPA* on both real-world and
synthetic networks. Similarly, MB-DSGE* also leads obvious im-
provements of the performance on real-world networks, as shown
in Table 7. For lack of space, here we only present the result on
part of the datasets we used. Based on the verification, we find
LPA* shows significant improvements over LPA which has already
outperformed other algorithms on many datasets. MB-DSGE* also
leads to better performance on most metrics, in both accuracy and
effectiveness. In particular, we find MB-DSGE* can significantly
reduce the proportion of the excessive produced outliers, as shown
in Table 8. In sum, the diagnoses based on our framework can
improve the performance in accuracy and effectiveness, and both
modifications will not increase the processing time.

Table 8: Reduction of outlier proportion
Alg. CA-HepPH Gowalla BrightKit Amazon DBLP
MB-DSGE 0.3218 0.7692 0.8841 0.4244 0.4105
MB-DSGE* 0.1220 0.4027 0.4882 0.1446 0.1665

6.11 Summary
According to the above comprehensive evaluations covering multi-

aspects of community detection, we can find that each approach has
its own merits and faults. They vary in the efficiency of process-
ing, have various adaptabilities to different metrics of performance
as well as different characteristics of datasets. To sum up, Table 9
shows an intuitive summary on the performance, adaptability and
competitiveness of the studied approaches. We give general rat-
ings from multiple critical aspects in this table, including process
efficiency (Effi.), accuracy (Accu.), effectiveness (Effe., in terms of
CC, S and Q), the stability w.r.t. density sensitivity (Dens.) or mix-
ture sensitivity (Mixt.), as well as to what extent an algorithm can
avoid producing excessive outliers (Outl.).

From the perspective of efficiency, we see that M-KMF is the
most efficient approach, while CNM, MB-DSGE and gCluSkeleton
cost much more time than others.
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Table 9: A visualized summary of studied approaches (more
stars refer to better performances in the corresponding aspect)

Alg. Effi. Accu. Effe. Dens. Mixt. Outl.CC S Q
CNM ?? ?? ????? ???? ????? ???? ? ????

Radicchi ??? ???? ????? ????? ? ???? ?? ???

LPA ??? ????? ????? ???? ???? ????? ??? ?????

HANP ??? ????? ????? ???? ???? ????? ??? ?????

TopLeaders ???? ??? ???? ?? ???? ??? ?? ????

SCP ???? ???? ???? ?? ?? ? ?? ???

M-KMF ????? ???? ????? ????? ? ?? ?? ???

MB-DSGE ?? ??? ???? ?? ?? ?? ?? ?

gCluSkeleton ?? ? ???? ? ? ??? ? ??

Among the most important aspects, the accuracy evaluates the
performance of algorithms using datasets with ground-truth. In this
respect, LPA and HANP perform best in our study, showing the
strongest capability of identifying authentic communities.

As for the effectiveness which measures the inner- and intra-
structures of the detected communities with various metrics, we
find different algorithms with different characteristics show differ-
ent performances w.r.t. different metrics. CNM, Radicchi, LPA,
HANP and M-KMF prefer to produce communities with high clus-
tering coefficients (CC), Radicchi and M-KMF tend to form com-
munities with high strength (S), while CNM is the best one at find-
ing communities with high modularity (Q).

These algorithms have different sensitivities with the density and
the mixture degree of the datasets. Comparably speaking, LPA and
HANP are the most stable approaches which keep excellent perfor-
mance even when networks become much denser or the communi-
ties become highly mixed. Moreover, Radicchi and CNM are also
less sensitive with the varying network density.

Considering the tendency of producing outliers, MB-DSGE tends
to pick out excessive outliers and performs better on networks with
more outliers. While LPA and HANP hardly identify nodes as sin-
gletons and are more applicable on networks with few outliers. Be-
sides, the community distributions produced by LPA, HANP and
CNM are closest to the power law distribution.

All in all, with an acceptable time cost, the label propagation
algorithms are more excellent and stable approaches which could
produce more accurate and valid communities with reasonable com-
munity distributions and fewer outliers under most circumstances.

7. CONCLUSIONS
In this paper, we conduct a comprehensive benchmarking study

on approaches to community detection in social networks. Within
the proposed benchmark, we formulate a generalized procedure-
oriented framework, with high abstraction and nice modularization
of the fundamental factors and critical steps of this problem. We
have re-implemented ten state-of-the-art representative algorithms
by mapping them to the proposed framework, and make in-depth
evaluations on them based on our benchmark using both real-world
and synthetic datasets. We discuss their merits and faults thor-
oughly, draw a set of interesting take-away conclusions, and pro-
vide intuitive ratings. In addition, we present how to make diag-
noses for these algorithms based on our framework, and report sig-
nificant improvements in the experimental study.

8. ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-

dation of China (No. 61170064, No. 61373023) and the National
High Technology Research and Development Program of China
(No. 2013AA013204).

9. REFERENCES
[1] C. C. Aggarwal and H. Wang. A survey of clustering algorithms for

graph data. Managing and Mining Graph Data, pages 275–301.
Springer, 2010.

[2] B. Bollobás. Modern Graph Theory, volume 184. Springer, 1998.
[3] D. Bortner and J. Han. Progressive clustering of networks using

structure-connected order of traversal. ICDE, pages 653–656, 2010.
[4] J. Chen and Y. Saad. Dense subgraph extraction with application to

community detection. TKDE, 24(7):1216–1230, 2012.
[5] A. Clauset, M. E. Newman, and C. Moore. Finding community

structure in very large networks. Physical Review E, 70(6):066111,
2004.

[6] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas. Comparing
community structure identification. Journal of Statistical Mechanics:
Theory and Experiment, 2005(09):P09008, 2005.

[7] R. Diestel. Graph Theory, volume 173. Springer, 2000.
[8] S. Fortunato. Community detection in graphs. Physics Reports,

486(3):75–174, 2010.
[9] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense

subgraphs in massive graphs. VLDB, pages 721–732, 2005.
[10] L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, H. Keters,

R. Rousseau, and A. Vanhoutte. Similarity measures in scientometric
research: the jaccard index versus salton’s cosine formula.
Information Processing & Management, 25(3):315–318, 1989.

[11] J. Huang, H. Sun, Q. Song, H. Deng, and J. Han. Revealing
density-based clustering structure from the core-connected tree of a
network. TKDE, 25(8):1876–1889, 2013.

[12] R. R. Khorasgani, J. Chen, and O. R. Zaı̈ane. Top leaders community
detection approach in information networks. SNA-KDD, 2010.

[13] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of
online social networks. Link Mining: Models, Algorithms, and
Applications, pages 337–357. Springer, 2010.
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