
Indexing Highly Dynamic Hierarchical Data

Jan Finis∗ Robert Brunel∗

Alfons Kemper∗ Thomas Neumann∗ Norman May† Franz Faerber†

∗ Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
† SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

∗ firstname.lastname@cs.tum.edu † firstname.lastname@sap.com

ABSTRACT
Maintaining and querying hierarchical data in a relational
database system is an important task in many business appli-
cations. This task is especially challenging when considering
dynamic use cases with a high rate of complex, possibly
skewed structural updates. Labeling schemes are widely con-
sidered the indexing technique of choice for hierarchical data,
and many different schemes have been proposed. However,
they cannot handle dynamic use cases well due to various
problems which we investigate in this paper. We therefore
propose our dynamic Order Indexes, which offer competitive
query performance, unprecedented update efficiency, and
robustness for highly dynamic workloads.

1. INTRODUCTION
Hierarchical data has always been ubiquitous in business
and engineering applications, especially with the advent of
the inherently hierarchical XML data format. Relational
database systems (RDBMS) continue to be the predomi-
nant platform on which such applications are built. These
facts have inevitably and repeatedly led to the challenge of
representing hierarchical data in relational tables, or more
specifically, encoding the structure of a hierarchy in a table
such that a table row represents a hierarchy node. We revisit
the challenge of finding a representation that provides decent
query capabilities without sacrificing update performance.
This classic trade-off strikes particularly hard with hierarchi-
cal data and vast amounts of papers have been written on
working around it. Unlike many of those works, we place our
focus on update performance. In SAP’s application scenarios
we encounter fine-grained, complex updates—in particular
relocations of large subtrees—and at the same time need to
provide a certain set of primitive query operations where we
cannot tolerate significant performance losses. After thor-
ough searching, we have come to the conclusion that a robust,
efficient solution is still missing to date.

In this paper we use indexing scheme as a collective term
for any technique for representing a hierarchy with the aim of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 10
Copyright 2015 VLDB Endowment 2150-8097/15/06.

providing an acceptable tradeoff between query and update
performance. Two major classes of schemes exist: Labeling
schemes [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20,
21, 22, 23], on one hand, attach a label to each node and
answer queries by considering only these labels. The labels
are maintained in one or more table columns, and those
columns are in practice usually augmented by one or more
general-purpose database indexes, such as B-trees. Index-
based schemes [7, 19], on the other hand, enhance the RDBMS
by special-purpose index structures.

Especially labeling schemes are backed by a massive body
of research on XML databases, on techniques for storing
XML fragments in an RDBMS backend, and on evaluating
query languages such as XPath and XQuery. However, in
this paper we make a case for index-based schemes. Our
first contribution is an analysis of query versus update con-
siderations (Sec. 2) and a taxonomy of existing indexing
schemes in that light (Sec. 3). It leads us to conclude that
previously proposed dynamic labeling schemes are unable to
fulfill desired properties: they either ignore important query
primitives, or they inherently suffer from certain problems
inhibiting their update flexibility or robustness. Sophisticated
index-based schemes can help us overcome the inherent prob-
lems of plain labeling schemes and support highly dynamic
use cases efficiently. Our main contribution is a family of
index-based schemes called Order Indexes designed to achieve
this (Sec. 4). We propose three specific implementations,
the AO-Tree, the BO-Tree, and the O-List, and discuss per-
formance optimization techniques for each. We conduct a
number of experiments (Sec. 5) to assess the merits and
drawbacks of the implementation variants, and we show that
they support complex updates efficiently, avoid degeneration
in case of unfavorable update patterns, and at the same time
provide the query capabilities of common labeling schemes
with highly competitive performance. We recently proposed
a SQL language extension [3] for seamless handling of hier-
archical data in SAP HANA and apply Order Indexes as a
promising back-end for it. However, they are also applicable
to non-relational systems such as XML databases.

2. HANDLING DYNAMIC HIERARCHIES
The considerations for representing hierarchical data in rela-
tional systems differ somewhat from special-purpose systems.
For example, XML indexing techniques commonly rely on
clustering data by structure, e. g., arranging it in pre-order.
In business applications such as SAP ERP, which we ana-
lyzed in [3], a hierarchy is rarely the primary dimension of a
table. Therefore, clustering by hierarchy structure is usually

986

A

H IB C

F GED

A

H IB

C

F GED

Key
A
B
C
D
E
F
G
H
I

Parent
null

A
A
C
C
C
C
A
A

NI
[0,17]
[1,2]
[3,12]
[4,5]

[8,9]
[10,11]
[13,14]
[15,16]

[6,7]

PSL
0 ; 8 ; 0

Ordpath
1
1.1
1.3
1.3.1

1.3.5
1.3.7
1.5
1.7

1.3.3

GapNI
[0,1700]
[100,200]
[300,1200]
[400,500]

[800,900]
[1000,1100]
[1300,1400]
[1500,1600]

[600,700]

1 ; 0 ; 1
2 ; 4 ; 1
3 ; 0 ; 2
4 ; 0 ; 2
5 ; 0 ; 2
6 ; 0 ; 2
7 ; 0 ; 1
8 ; 0 ; 1

Key
A
B
C
D
E
F
G
H
I

Parent
null

A
H
C
C
C
C
A
A

NI
[0,17]
[1,2]
[4,13]
[5,6]

[9,10]
[11,12]
[3,14]
[15,16]

[7,8]

PSL
0 ; 8 ; 0

Ordpath
1
1.1
1.5.1
1.5.1.1

1.5.1.5
1.5.1.7
1.5
1.7

1.5.1.3

GapNI
[0,1700]
[100,200]
[1309,1390]
[1318,1327]

[1354,1363]
[1372,1381]
[1300,1400]
[1500,1600]

[1336,1345]

1 ; 0 ; 1
3 ; 4 ; 2
4 ; 0 ; 3
5 ; 0 ; 3
6 ; 0 ; 3
7 ; 0 ; 3
2 ; 5 ; 1
8 ; 0 ; 1

Ω(s)

Relocate C
below H

Figure 1: Various labeling schemes (left); labels that need to be changed when subtree C is relocated (right)

infeasible or not preferable; in other words, hierarchy in-
dexes are generally secondary indexes. We employ the model
from [3] representing a hierarchy by a node column plus a
secondary index structure. The column contains the labels of
the indexing scheme; the index structure indexes the values
in that column. Depending on the use case, the order among
siblings may be meaningful, so a hierarchy can either be
ordered (e. g., in XML) or unordered. Even in the unordered
case, indexing schemes usually impose an internal storage or-
der and treat both ordered and unordered hierarchies equally.
Therefore, we assume ordered hierarchies hereinafter, but
note that our findings apply to both settings.

In Sec. 1 we claim that previously proposed indexing
schemes lack certain important capabilities in the light of
highly dynamic use cases. The three problems we identify
in this section characterize these missing capabilities. The
hierarchy from Fig. 1 helps us exemplify the problems; it also
illustrates several indexing schemes, which we explain later.

P1 Lack of Query Capabilities. Certain indexing schemes
do support updates decently, but fail to offer query capabili-
ties to answer even fundamental queries, which renders them
infeasible for our use cases. An example is the adjacency
list model, a common way of näıvely encoding a hierarchy in
SQL by storing the primary key of the parent node (Parent
in Fig. 1): it cannot even handle the ancestor-descendant
relationship efficiently. In Sec. 2.1 we identify fundamental
query primitives to be supported sine qua non.

P2 Lack of Complex Update Capabilities. Various ERP
use cases demand for an indexing scheme that supports a rich
set of update operations efficiently. However, most existing
schemes are confined to leaf updates, that is, insertion or
deletion of single leaf nodes, and fail to recognize more
complex operations. Consider subtree relocation, where a
subtree of a certain size s rooted in a specific node is moved in
bulk to another location within the hierarchy. Ironically, the
trivial adjacency list model naturally supports this. However,
virtually all labeling schemes by design preclude an efficient
implementation, because they inherently require relabeling
all nodes in the relocated subtree at a cost of Ω(s). The
right side of Fig. 1 shows the hierarchy from the left with the
subtree rooted in C moved below H, and highlights the Ω(s)
fields that need to be updated. In Sec. 2.2 we explore further
conceivable complex update operations.

P3 Vulnerability to Skewed Updates. Certain dynamic
labeling schemes crumble when confronted with skewed up-
dates, such as when inserts are issued repeatedly at the same
position. In some scenarios these updates are more frequent
than is commonly acknowledged. For example, when inserting
a new plant into an enterprise asset hierarchy, many nodes
will be added at a position. Fixed-length labeling schemes
commonly indulge in excessive relabeling in this case, while
variable-length schemes decay in their query performance
and memory effectiveness due to overly growing labels.

binary predicates
is descendant(a, b) whether a is a descendant of b
is child(a, b) whether a is a child of b
is before pre(a, b) whether a precedes b in a pre-order traversal
is before post(a, b) whether a precedes b in a post-order traversal

node properties
level(a) the number of edges on the path from a root to a
is root(a) whether a is a root node
is leaf(a) whether a is a leaf node, i. e., has no children

traversal (c is a cursor of the secondary index structure)
find(a) a cursor c to node a
next pre(c) a cursor to the next node in pre-order
next post(c) a cursor to the next node in post-order
next sibling(c) a cursor to the next sibling

Figure 2: Essential query primitives on hierarchies

2.1 Query Capabilities
In [3] we explore end-user queries on hierarchies that com-
monly appear in business scenarios. Query primitives are the
building blocks for such high-level queries. Fig. 2 shows an
essential set of primitives that are needed to answer fundamen-
tal queries. An index that fails to support these primitives
cannot be considered a general-purpose hierarchy index. We
distinguish between three kinds of primitives. Binary predi-
cates compare two nodes. They are often used for self-joining
the hierarchy to navigate along certain axes. is descendant
and is child are of utmost importance, as most queries nav-
igate along these axes. is before pre and is before post are
useful for ordering nodes in a depth-first, either parent-before-
child (e.g., document order in XML) or child-before-parent
manner. Node properties are used to filter nodes, for example,
when the user wishes to restrict the result to leaf nodes or to
nodes at certain levels. An example is the so-called explosion
query often found in ERP applications, which consists of find-
ing all descendants of a node up to a certain level. Traversal
operations are useful to implement an index-nested-loop join
or an index scan. Such an operation commonly starts with a
find, that is, the position of a node in the index structure is
looked up. From there, the traversal functions are used to
scan the index in various directions. The following SQL code
uses the language extensions from [3] on a table H exposing
a node column named pos. It shows a simple, meaningful
query making use of all three kinds of primitives:

SELECT S.pos, R.pos, LEVEL(R.pos)
FROM H AS S JOIN H AS R ON IS_DESCENDANT(R.pos, S.pos)

The query features a hierarchy join over the descendant axis
and computes the node level. It can be answered efficiently
using an index-nested-loop join. Fig. 3 shows the pseudo
code in terms of the query primitives.

for all s ∈ S do
r ← next pre(find(s))
while is descendant(r, s) do

emit (s, r, level(r))
r ← next pre(r)

Figure 3: A hierarchy index-nested-loop join

987

A

G JB
ED

C F
IH

A

G JB

ED

C F

IH

A

G JB
ED

C F
IH

A
G JB

ED
C

F

IH

A

G JB
ED

C F
IH

A
G J

B
ED

C FIH

A

G JB
ED

C F
IH

A

G J

B ED C

F
IH

relocate_subtree (C, below J) relocate_range ([B, F], below J) relocate_inner (C, [F, J])relocate_leaf (E, below J)

Figure 4: Various classes of relocation updates on an example hierarchy: before (top) and after (bottom)

bulk updates
bulk build(T) bulk-builds the hierarchy from a tree representation T

leaf updates alter a single leaf node
delete leaf(a) deletes a leaf node a
insert leaf(a, p) inserts the new leaf node a at position p
relocate leaf(a, p) relocates a leaf node a to position p

subtree updates alter a subtree
delete subtree(a) deletes the subtree rooted in a
insert subtree(a, p) inserts the new subtree rooted in a at position p
relocate subtree(a, p) relocates the subtree rooted in a to position p

range updates alter subtrees rooted in a range of siblings
delete range([a, b]) deletes all subtrees rooted in range [a, b]
insert range([a, b], p) inserts all subtrees rooted in range [a, b] at position p
relocate range([a, b], p) relocates all subtrees rooted in range [a, b] to position p

inner node updates alter an inner node
delete inner(a) deletes node a from the hierarchy; the former children

of a become children of a’s parent
insert inner(a, [b, c]) inserts the new node a as child of the parent of b and c;

nodes in range [b, c] become children of a
relocate inner(a, [b, c]) makes all children of a children of a’s parent; a becomes

the parent of all nodes in range [b, c], and the child of
the previous parent of b and c

Figure 5: Update operations on hierarchies

For each tuple s from the left input S we obtain a cursor to s
in the index. Then, we iterate over the index in pre-order
using next pre as long as there are further descendants of s.

2.2 Update Capabilities
In Fig. 5 we present a taxonomy of update operations that a
dynamic indexing scheme shall support. p indicates a target
position in the hierarchy. Depending on whether the sibling
order is meaningful, p can have different values, such as “as
first child of node x”, “as direct left sibling of x”, “below x”,
or “as a sibling of x”. How exactly p is represented is not
important here. The syntax [x, y] denotes a sibling range of
nodes: y must be a right sibling of x (or x itself), and [x, y]
refers to all siblings between and including x and y.

The first class of updates is bulk-building a hierarchy, using
for example the bulk build operator from [3]. Fortunately, all
indexing schemes—even static ones—support this efficiently.
The other classes are leaf node updates, subtree updates,
sibling range updates, and inner node updates, each named
after the entities involved in the update. Within each class,
three update kinds are conceivable: delete updates, which
delete existing nodes, insert updates, which insert new nodes,
and relocate updates, which alter the positions of existing
nodes. Fig. 4 illustrates the various classes with regard to
the relocate kind on an example hierarchy. The other kinds,
insert and delete, are similar; the only difference is that the
entities being updated (green in the figure) enter or leave the
hierarchy, respectively, instead of being relocated. In a sense,
the relocate kind subsumes the other two: inserts and deletes
are relocations into and out of the hierarchy, respectively.
Thus, any index that handles relocation efficiently supports
efficient insertion and deletion as well.

Most related works consider only leaf updates, which are
most common in XML. In addition, they are the simplest

update class and implementing them efficiently is rather easy
in comparison to the other classes of updates.

Our focus is particularly on subtree updates. As a leaf
node is also a trivial subtree, they subsume the corresponding
leaf updates. But since indexing schemes usually afford
optimized operations for leaves, distinguishing between leaf
and subtree operations is useful in practice. Most indexing
schemes implement subtree operations näıvely through node-
by-node processing, requiring at least s leaf updates for
a subtree of size s. For small subtrees, Ω(s) update cost
might be negligible. However, real-world hierarchies—such
as the hierarchies found in SAP’s ERP applications—have
a large average fan-out. Thus, even if a node that has
only leaves as children is relocated, s will often be in the
magnitude of thousands. Of course, the fact that updating
larger subtrees is a slow operation for labeling schemes will
be detrimental to overall system performance only if a lot of
such operations appear in the workload. However, in many
ERP use cases, a high percentage of updates are indeed
subtree relocations. For example, in [7] we found that 31%
of all updates performed on an enterprise asset hierarchy are
subtree relocations. Furthermore, note that although subtree
relocation may appear as an unnatural bulk operation in
comparison to single leaf insertion or deletion, the operation is
quite fundamental to SQL users: In the adjacency list model—
the predominant format for representing hierarchies within
an RDBMS—any change to a parent field corresponds to a
subtree relocation. For example, we achieve the relocation in
Fig. 1 by simply setting the Parent of C to H in the table.
In other words, every issued UPDATE statement touching the
parent column incurs a certain number of subtree relocations.

The inner node updates are useful for inserting a new level
into the hierarchy, and for wrapping a subtree into a new
root. As an example application, certain tree differentiation
algorithms such as MH-Diff [5] emit edit scripts featuring
these operations. Therefore, a hierarchy index that is being
used for replaying such edit scripts has to support them.

The sibling range update might seem obscure at first sight,
but is in fact very powerful: It subsumes subtree and leaf
updates, because a subtree rooted in a or a leaf a are trivial
sibling ranges [a, a]. It also subsumes inner node updates,
because moving all children of an inner node to another
position makes this node a leaf, so a simple leaf update
can delete or relocate it. Thus, range updates subsume all
other update operations, and indexes that supports them—
specifically, our Order Indexes—can implement all mentioned
operations in terms of range relocation.

3. RELATED INDEXING SCHEMES
In the following we explore existing indexing schemes and
assess to which extent they suffer from one of the problems
P1 to P3 we identify in Sec. 2. It turns out that most
contributions are variations of basic schemes with similar

988

Scheme Update Operations

leaf subtree inner node range skew[u]
n

ä
ıv

e Adjacency 1 1 c c 1

Linked 1 1 c c 1

co
n

ta
in

m
en

t NI n n n n n

Dyn-NI 1 s 1 s u

Dyn-NI-Parent 1 s c s u

Dyn-NI-Level 1 s s s u

p
a

th Dewey lf l(f + s) l(f + s) l(f + s) l(f + s)

Dyn-Dewey l ls ls ls l+u

in
d

ex

AO-Tree 1 logn logn logn 1

BO-Tree[B] 1 B logBn B logBn B logBn 1

O-List[B] 1 s/B+B s/B+B s/B+B u/B2

DeltaNI log u log u log u log u log u

n: hierarchy size, l: level of node, c: number of children
s: number of descendants, u: number of updates, B: block size

f : number of following siblings plus their descendants
Qualitative rating: efficient mostly efficient inefficient

Figure 6: Asymptotic update complexities for vari-
ous indexing schemes (amortized, average case)

capabilities and asymptotic properties, so we can group them
into a small taxonomy. Fig. 6 shows the asymptotic amor-
tized update complexities of all groups of schemes in our
taxonomy. The columns represent the different classes of
updates. Column skew[u] represents skewed leaf node inser-
tions; it depicts the complexity of a single skewed insertion
after u other skewed insertions have taken place and thus ex-
presses how skew-resilient an indexing scheme is. The figure
includes two näıve representations. They are pragmatic, easy-
to-implement solutions, which, however, do not provide the
efficient query capabilities of indexing schemes (P1). First,
the Adjacency list introduced earlier. Second, Linked, a simple
in-memory tree representation whose structure matches the
hierarchy structure and which uses per-node pointers to the
parent, the first and last child, and the previous and next
sibling. Besides these two, there are three major categories of
indexing schemes: containment-based labeling schemes, path-
based labeling schemes, and index-based schemes. Note that
labeling schemes are usually indexed by a B-tree and thus an
additional logn factor applies (not displayed in Fig. 6).

Containment-based Labeling Schemes, also referred to
as order-based or nested intervals schemes, label each node
with a [lower, upper] interval or a similar combination of
values. As the term “nested” alludes to, their main property
is that a node’s interval is nested in the interval of its parent
node. Queries can be answered by testing the intervals of the
involved nodes for containment relationships.

Column NI in Fig. 1 shows a nested intervals labeling that
is commonly used in XML and other database applications,
e. g. [23, 9, 11]. We can see that node E is a descendant of
node A, because E’s interval [6, 7] is a proper subinterval of
A’s interval [0, 17]. A variation is the pre/post scheme [8],
where each node is labeled with its pre- and post-order ranks.
Plain NI and pre/post have similar, limited query capabilities:
For example, we cannot test the important is child predicate,
because neither scheme allows us to compute the distance
between a node and an ancestor. This severe limitation makes
a nested intervals scheme without further fields useless (P1).
It can be mitigated by either storing the level of a node or
its parent in addition to the interval. Considering updates,
the mentioned schemes are static (P2). Their fundamental
problem is that each insertion or deletion requires relabeling
O(n) labels on average, as all interval bounds behind a newly
inserted bound have to be shifted to make space. This group
of static nested interval schemes is called NI in Fig. 6.

Various mitigations for the nested intervals update problem
have been proposed (Dyn-NI in Fig. 6). Li et al. [15] suggest
pre-allocating gaps between the interval bounds. Column
GapNI in Fig. 1 illustrates this. As long as a gap exists, new
bounds can be placed in it and no other bounds need to be
shifted; as soon as a gap between two nodes is filled up, all
bounds are relabeled with equally spaced values. The caveats
are that relabelings are expensive, and skewed insertions may
fill up certain gaps overly quickly and lead to unexpectedly
frequent relabelings (P3). In addition, all s nodes in a range
or subtree being updated still need to be relabeled (P2).

Amagasa et al. [1] propose the QRS encoding based on
pairs of floating-point numbers. Schemes along these lines
are essentially gap-based as long as they rely on fixed-width
machine representations of floats. In [2], Boncz et al. tackle
the update problem using their pre/size/level encoding (PSL,
cf. Fig. 1) by storing the pre values implicitly as a page offset,
which yields update characteristics comparable to gap-based
schemes. W-BOX [19] uses gaps but tries to relabel only
locally using a weight-balanced B-tree; its skewed update
performance is therefore superior to basic gap-based schemes.
The Nested Tree [22] uses a nested series of nested interval
schemes to relabel only parts of the hierarchy during an
update and is therefore comparable to gap-based schemes.

Another idea to tackle the update problem for NI is to use
variable-length data types to represent interval bounds: For
example, the QED [12], CDBS [13], and CDQS [14] encod-
ings by Li et al. are always able to derive a new label be-
tween two existing ones, and thus avoid relabeling completely.
EXCEL [16] uses an encoding comparable to CDBS. It tracks
the lower value of the parent for enhanced query capabilities.
While these encodings never have to relabel nodes, they bear
other problems: The variable-length labels cannot be stored
easily in a fixed-size relational column and comparing them
is more expensive than comparing fixed-size integers. In
addition, labels can degenerate and become overly big due to
skewed insertion (P3). Cohen et al. [6] have proved that for
any labeling scheme that is not allowed to relabel existing
labels upon insertion, an insertion sequence of length n exists
that yields labels of size Ω(n). Thus, the cost of relabeling is
traded in for a larger (potentially unbounded) label size.

All gap-based and variable-length NI schemes can handle
inner node updates decently by simply wrapping a node range
into new bounds. For example, GapNI in Fig. 1 is able to
insert a parent node K above D, E, and F by assigning it the
bounds [350, 950]. However, as soon as the node level [2] or
its parent [16] (Dyn-NI-Parent and Dyn-NI-Level in Fig. 6)
are to be tracked explicitly—which is necessary for many
queries (P1)—the inner node update turns expensive, as
the parent of all c children of K (D, E, and F) or the levels
of all s descendants change. Subtree and range updates of
size s always require all s labels to be altered. So, since all
containment-based schemes suffer from the problems P2 and
P3 , their use in a highly dynamic setting is limited.

Path-based Labeling Schemes encode the path from the
root down to a node into the label. Dewey [20] is a prominent
example, and the basis of several more sophisticated schemes.
It builds upon the sibling rank, that is, the 1-based position
of a node among its siblings. Each node is labeled with
the label of its parent node plus a separating dot plus its
sibling rank. In the example hierarchy of Fig. 1, node G
receives the Dewey label 1.2.4, as G is the fourth child of C,
which is the second child of A, which is the first root. Dewey

989

is not dynamic (P2): We can easily insert a new node as
rightmost sibling, but in order to insert a node a between two
siblings, we need to relabel all siblings to the right of a and
all their descendants (f in Fig. 6). Since insertion between
siblings is a desirable feature, several proposals try to enhance
Dewey correspondingly: One prominent representative is
Ordpath [17], which is used in Microsoft SQL Server for
the hierarchyid data type. It is similar to Dewey, but uses
only odd numbers to encode sibling ranks, while reserving
even numbers for “careting in” new nodes between siblings.
This way, Ordpath supports insertions at arbitrary positions
without having to relabel existing nodes. In Fig. 1, for
example, inserting a sibling between C and H results in the
label 1.4.1. Note that the dot notation for labels is only
a human-readable surrogate; Ordpath stores it in a more
compact binary format. A lot of further dynamic path-based
schemes have been proposed: DeweyID [10] improves upon
Ordpath by providing gaps that are possibly larger than the
ones of Ordpath, thus resulting in less carets and usually
shorter labels. CDDE [21] also aims to provide a Dewey
encoding with shorter label sizes than Ordpath. The encoding
schemes [12, 13, 14] can also be used for building dynamic
path-based schemes. In Fig. 6, Dewey refers to static path-
based schemes such as Dewey itself and Dyn-Dewey refers
to dynamic ones (e. g., Ordpath and CDDE). Dynamic path-
based schemes are variable-length labeling schemes, and the
proof of [6] holds as well, so they pay the price of potentially
unbounded label sizes. In addition, all path-based schemes
pay a factor l on all update and most query operations, since
the size of each node’s label is proportional to its level l.

Considering updates, the dynamic variants are able to
insert leaf nodes, but cannot handle inner node updates effi-
ciently, as the paths and thus the labels of all descendants of
an updated inner node would change. An exception to this is
OrdpathX [4], which can handle inner node insertion without
having to relabel other nodes. All path-based schemes inher-
ently cannot handle subtree and range relocations efficiently,
as the paths of all descendants have to be updated (P2).
They are also vulnerable to skewed insertions (P3); however,
an update sequence that triggers worst-case behavior is much
less common than one for a containment-based scheme.

Index-based Schemes use special-purpose secondary index
structures to answer queries rather than considering a label.
Their advantage is that they generally offer improved update
support. B-BOX [19] uses a keyless B+-tree to represent
a containment-based scheme dynamically. It has the same
update complexity as the BO-Tree in Fig. 6. However, it
represents only lower and upper bounds but does not support
level or parent information and thus has limited query capa-
bilities (P1). Our DeltaNI [7] uses an index to represent a
containment-based scheme with level support. As a versioned
index, it is able to handle time-travel queries. It can be used
for unversioned hierarchies by simply keeping all data in a
single version delta. While DeltaNI bears none of the three
identified problems, its overall query performance is poor
in comparison to an unversioned scheme, as our evaluation
shows. Both DeltaNI and B-BOX can handle subtree and
range relocations in logarithmic worst-case complexity, so
they do not show any of the update problems.

4. ORDER INDEXES
We propose the concept of an Order Index and three specific
data structures AO-Tree, BO-Tree, and O-List. By combining

A

F GB

C

EDKey

A
B
C
D
E
F
G

lo
w

e
r

u
p

p
er

RID

0
1
2
3
4
5
6

[0 [2

[1

]3

[4

[3

]2

]1

[6]0

]6

]5

]4

[5

Hierarchy edge
Pointers
Back-link
Association

Legend

[0

RID

[=L]=U
Hierarchy (conceptual)

Order
Index

Table

le
ve

l

0
1
2
3
3
1
1

Label

Figure 7: A hierarchy with Order Index (AO-Tree)

various ideas, from keyless trees (B-BOX) to accumulation
trees (DeltaNI) through to gap allocation techniques (GapNI),
we avoid the mentioned problems of prior works.

Order Indexes are index-based schemes and as such must
be integrated into the database system. They are designed as
back-ends for the hierarchy framework devised in [3], which
is integrated into the HyPer kernel and is currently being
integrated into HANA as well. Consequently, we discuss
them in a main-memory context and do not cover disk-based
systems, although adapting the concepts is straightforward
for BO-Tree and O-List. Order Indexes can be integrated
straightforwardly into any database engine that implements
hierarchy-aware operators in terms of the query and update
primitives from Fig. 2 and 5, such as the framework from [3].

4.1 The Order Index Concept
An Order Index conceptually represents each hierarchy node
by a lower bound, an upper bound, and its level. However, the
bounds are not explicit numbers or other literals, but rather
entries in an ordered data structure. Therefore, the index
can be viewed as a dynamic representation of a containment-
based scheme along the lines of NI, with implicitly represented
bounds and explicitly maintained level. Altogether, an Order
Index generally consists of three table columns lower, upper,
and level, plus the secondary index structure. lower and
upper contain pointers into the index structure. We call these
pointers back-links, as they point back from a table row to an
index entry, while common secondary indexes merely point
from an index entry to a row through its row ID (RID).
example. Fig. 7 shows an example hierarchy (top) and a pair of
an Order Index and a table representing it. The index is actually
an AO-Tree, which we explain in Sec. 4.2. A few exemplary back-
links are shown as red arrows. An opening bracket denotes a lower
and a closing bracket an upper bound; for example,]3 is the entry
for the upper bound of row #3.

The index structure maintains the relative order of its entries
(hence the term Order Index) and provides the following
interface (e is an index entry, l a back-link):

find(l) — the entry e to which l points
rid(e) — the id of e’s associated row
lower(e) — whether e represents a lower bound
before(e1, e2) — whether e1 is before e2 in the entry order
next(e) — the next entry in the entry order
adjust level(e) — the level adjustment for e (see below)

Regardless of which data structure is actually chosen, rid and
lower can be implemented straightforwardly by storing the
RID and a lower flag with each index entry; next corresponds
to a basic traversal of the data structure. Only adjust level,
find, and before differ among our three implementations.

990

Operation Implementation

is descendant(a, b) e← find(a.lower);
before(find(b.lower), e) ∧ before(e, find(b.upper))

is child(a, b) is descendant(a, b) ∧ level(a) = level(b) + 1
is before pre(a, b) before(find(a.lower), find(b.lower))
is before post(a, b) before(find(a.upper), find(b.upper))
level(a) a.level + adjust level(find(a.lower))
is root(a) level(a) = 0
is leaf(a) e← find(a.lower); rid(next(e)) = rid(e)
find(a) find(a.lower)
next pre(e) n← next(e); if lower(n) then n else next pre(n)
next post(e) n← next(e); if ¬lower(n) then n else next post(n)
next sibling(a) next(find(a.upper))

Figure 8: Implementing the query primitives

All query primitives introduced in Sec. 3 can be imple-
mented in terms of the six index operations, as shown in
Fig. 8. Considering update operations, insert leaf corresponds
to inserting a lower and an upper bound as adjacent entries
into the data structure and storing the back-links and an
initial level in the corresponding table row. delete leaf simply
removes the two entries from the data structure and the
table row. For relocate range, we conceptually “crop” the
corresponding range of bounds [a, b], then alter the level ad-
justment—the value returned by adjust level—for that range,
and finally reinsert [a, b] at the target position. As explained
in Sec. 2.2, the other updates are implemented in terms of
these operations, so we do not have to cover them explicitly.

Level adjustments enable us to maintain level information
dynamically. adjust level is always added to the level stored
in the table row (cf. level(a) in Fig. 8). This way we avoid
having to alter the table in case of a range relocation; rather,
we update the level adjustment of the relocated range. To
do this efficiently we reuse a technique that we originally
applied in DeltaNI [7] for different purposes: accumulation.
Accumulation works for any hierarchically organized data
structure that stores its entries in blocks, such as a B-tree or
a binary tree (where the “blocks” are just nodes). The idea
is to store a block level with each block. The level adjustment
of an entry e is obtained by summing up the levels of all
blocks on the path from e’s block to the root block. This
allows us to efficiently alter levels during a range relocation:
After cropping the bound range [a, b], we add the desired level
delta δ to the block level of the root block(s) of that range,
which effectively adds δ to the levels of all entries within [a, b].
Accumulation brings along the cost that level(a) becomes
linear in the height of the data structure, usually O(logn).
However, during an index scan, the level adjustment can be
tracked and needs to be refreshed only when a new block
starts. This yields amortized constant time for level.

4.2 Order Index Structures
As specific Order Index structures, we propose the AO-Tree
based on a keyless AVL tree, the BO-Tree based on a keyless
B+-tree, and the O-List based on a linked list of blocks.

AO-Tree. Self-balancing binary trees, such as the AVL tree
(our choice) or the red-black tree, offer logarithmic complexity
for most operations, which makes them good candidates for
an Order Index structure. We must maintain pointers to
parent nodes, because the required algorithms navigate from
the bottom towards the root rather than the other way round.
To compute adjust level, for example, we sum up all block
levels on the path from an entry to the root, as outlined above.
Since the trees are balanced, the worst-case complexity for
navigating upwards is O(logn).

Pointer

Back-link

level([4)

before([0,[3)

[0 [1 [2 [3]3 [4]4]2]1 [5]5 [6]6]0

<

<

[0 [1 [2 [3
51

]3 [4]4]2]1 [5]5 [6]6]0
-1 102 1 153 -1 204 -2

[0 0 [2 0

[1 0

]3 -2

[4 2
[3 -2

]2 0

]1 0

[6 0]0

]6 -1
]5 -2

1

]4 1

[5 0

<

<
AO-Tree

BO-Tree

O-List

+

51 < 204

Links Queries

+
+

-1 1 1 0

-20

+

0

R
ID

le
ve

l

1

2

3
4

2

2
3

0
1
2
3
4
5
6

before([3,]0)

+

+

Legend Blocks

]5 -21 102 1

Block Level

Entries
]3 [4]4]3 [4]4

Parent Link

Block Key

Table

+<

Figure 9: Query evaluation in the Order Indexes

example. The top of Fig. 9 shows the AO-Tree from Fig. 7
in more detail. The red numbers to the right of the entries are
the block levels. The purple arrows show how to evaluate level
for node 4: We start with the value 2 from the table row #4
(back-links omitted in the figure) and sum up the block levels from
[4 upwards to get 2 + 2 − 2 + 1 = 3.

We check the entry order relation before(e1, e2) by simulta-
neously walking up the tree, starting at e1 and e2, to their
least common ancestor e′, and finally checking which of the
two paths arrives at e′ from the left.
example. In Fig. 9, we evaluate is descendant(3, 0) by checking
before([0, [3) (blue arrows) and before([3,]0) (green arrows).

Leaf updates correspond to basic binary tree insert and delete
operations, with rebalancing if necessary. Range relocations
are implemented in terms of the O(logn) operations split
and join as described in [7]: split splits a binary tree into
two, while join concatenates two binary trees. We perform
relocate range([a, b], p) by first splitting the tree before [a and
behind]b into a tree T1 containing all entries smaller than [a,
a tree T2 containing the range [a, b], and a tree T3 containing
all entries greater than]b. We then apply the desired level
delta δ to the root of T2; join T1 with T3; split the resulting
tree at p, resulting in trees T4 and T5; and finally join the
remaining trees in the order T4, T2, T5.

Even though all desired operations can be implemented
straightforwardly and yield O(logn) worst-case runtime, us-
ing a binary tree has certain disadvantages: It uses a lot of
space for storing three pointers (left, right, parent) and a
block level per entry; and it is not particularly cache-friendly,
as its entries are scattered in memory, so a traversal will
usually incur many cache misses.

BO-Tree. B+-trees are based on blocks of size B rather
than single-entry nodes, which greatly improves their cache-
friendliness over binary trees. A BO-Tree can be implemented
by adapting a B+-tree as follows: each block additionally
maintains a back-link to its parent block and a block level.

991

0

[0 [1 [2 [3]3 [4]4]2]1 [5]5 [6]6]0

[0[1 [2 [3]3 [4]4]2]1 [6]6]0

[0 [6]6]0[5]5

0+1 0

B1

B1[1 [2 [3]3 [4]4]2]1

[0 [6]6]0[5]5

[0 [6]6]0[5]5[1 [2 [3]3 [4]4]2]1

[0 [6]6]0[5]5[1 [2 [3]3 [4]4]2]1

1)

2)

3)

4)

5)

T2

T1 T2

T2

T1
B2

[5

Rebalance
Split after [5
Crop out 1
Legend

]5

Figure 10: Relocating 1 below 5 in a BO-Tree

In an inner block there are no separator keys but only child
block pointers. An entry in a leaf block consists of a row ID
and a lower flag. Most B+-Tree operations, including splitting
and rebalancing, need almost no adaptions. Key search is no
longer required since BO-Trees are keyless and the table stores
back-links to leaf entries rather than keys (cf. Sec. 4.3). Back-
links to parent blocks are needed, because most operations
involve leaf-to-root navigation. adjust level(e), for instance,
is computed by summing up all block levels on the path from
e’s leaf block to the root.
example. The middle of Fig. 9 shows a BO-Tree indexing the
hierarchy from Fig. 7. Back-links are displayed as red arrows,
block levels as red numbers. The purple arrows show the level
query for node 4: We sum up the table level and the block levels
on the path from [4 to the root, yielding 2 + 1 + 0 + 0 = 3.

Since the tree height is in O(logB n), that is the worst- and
best-case complexity for computing the level. The wider the
blocks in the BO-Tree, the faster level can be computed. Note
that a level query does not need to locate the corresponding
entry within its block; only the block level is accessed.

before(e1, e2) is evaluated as follows: If e1 and e2 are
located in the same leaf block, compare their positions within
that block. Otherwise, walk up the tree to the least common
ancestor lca of the two blocks containing e1 and e2; then
determine which of the two paths enters lca from further left,
by comparing the positions of the two corresponding pointers
to the children through which the paths pass.
example. In the figure, entries [0 and [3 are on the same leaf
block, so we compare their positions (blue arrow). To evaluate
before([3,]0) we walk up to the least common ancestor, which
happens to be the root block (green arrows). The [3 path enters
the root through child 0 and the]0 path enters through child 1, so
[3 is indeed before]0.

To determine the position of a block within its immediate
parent block, and to locate an entry within its leaf block,
we have to scan that block linearly. Note, however, that the
before algorithm needs to determine the child positions within
the lca block, but not within any of the other blocks on the
path to lca. In the before([3,]0) case, for example, we neither
need the positions of e1 and e2 within their leaf blocks nor
the positions of the leaf blocks within their parents. Thus,
we need only one linear block scan per query—rather than
one per visited block. Therefore, the worst case-complexity
is O(B) for the scan and O(logB n) for moving up the tree,
so O(B + logB n) overall (rather than O(B logB n)). If we
choose a large B, the query time will be dominated by B.

[0
1-1 -1

B1 merge B2
into B1

level
0
5

RID
1
2[5]5 [5]5[0

level
0
5

RID
1
4

B1B2

Figure 11: Adjusting levels after a leaf block merge

Sec. 4.3 shows how we can get rid of the linear scan, yielding
O(logB n), which is a very good asymptotic bound due to the
large logarithm base B. For example, a tree with B = 1024 is
able to represent a hierarchy with 500 million nodes at a height
of only 3, and thus needs at most 3 steps for a containment or
level query. Since the root block will probably reside in cache,
only 2 cache misses are to be anticipated in this case, which
makes the BO-Tree a very cache-efficient data structure.

Leaf updates correspond to simple B+-tree insertions or
deletions without prior key search and have an amortized
runtime of O(1). relocate range([a, b], p) is performed as fol-
lows: 1) Simultaneously split blocks upwards starting from
the positions of [a and]b within their respective leaf blocks.
As soon the least common ancestor block is reached, crop out
the entry range between the two split child blocks and place
it into a newly allocated block. This results in a cropped-out
tree T1 containing the entry range from [a to]b and a tree T2

containing all other entries. If a level delta δ is to be applied,
adjust T1’s root block level by δ. 2) Rebalance blocks split
in Step 1 to get rid of underfull blocks. 3) Split T2 starting
at the leaf block of p and continue to split upwards until
reaching a block L that is higher than the root of T1; the
height of T2 may have to be increased during this step to
obtain L. 4) Now, simply insert T1 as a new child block of L.
5) Rebalance blocks split in Step 3.
example. Fig. 10 shows how the subtree rooted in node 1 is
relocated below node 5 in the example BO-Tree. We omit back-
links and block levels (except for the root). After T1 is cropped
out (red lines), we apply δ = +1 to its root, since the target
parent 5 is one level higher than the old parent 0. We rebalance
the trees (green arrows), which shrinks T2. Now we split T2 behind
[5 to create a gap for T1 (blue lines). This increases its height by
one. Now, we add T1 as second child of the new root of T2. We
rebalance underfull nodes for a properly balanced result.

When entries are moved from a block B2 to another block B1

during rebalancing, they must have their level adjusted by
B2.level−B1.level. If B1 and B2 are inner blocks, the values
to be adjusted are the block levels of their child blocks. If
they are leaf blocks, the values to be adjusted are the level
fields in the table, but only for lower bound entries.
example. Fig. 11 shows the merging of the two leaf blocks B1

and B2 from Fig. 10. Entry [5 is moved to B1, so its table level
becomes 2 + 1 − (−1) = 4. No level update is performed for]5
because it is an upper bound.

In the worst case, we perform two block splits per level up
to the least common ancestor and as many block merges for
rebalancing, so we perform up to O(logB n) splits and merges
in total. Each block split and merge touches O(B) entries in
the worst case. Thus, the overall worst-case complexity of
range relocation is O(B logB n). The smaller the relocated
range, the higher the chance that the least common ancestor
block has a lower height. So, relocation is faster for small
ranges; O(B logB s) in the best case.

While a large block size B is desirable for speeding up
queries, it slows down updates. We can, however, take
advantage of the fact that leaf blocks are updated more
frequently than blocks further up in the tree, and enhance
the BO-Tree with support for blocks of different sizes at
different levels, based on the concepts described in [18]. As
our evaluation shows, using small leaf blocks and larger inner

992

blocks results in a tree that updates almost as fast as trees
with small B but queries almost as fast as trees with large B
and thus yields the best of both worlds.

O-List. Unlike AO-Tree and BO-Tree, the O-List is not
a tree structure but merely a doubly linked list of blocks—
hence its name. The bottom of Fig. 9 shows an O-List
for the example hierarchy. We use block keys to encode
the order among the blocks, an idea borrowed from GapNI.
Block keys are integers that are assigned using the whole
key universe, while leaving gaps so that new blocks can be
inserted between two blocks without having to relabel any
existing blocks, as long as there is a gap. In addition to the
block key, each block maintains a block level field for the
level adjustment. The blocks are comparable to BO-Tree
leaf blocks without a parent block, and we treat them in a
similar manner: Inserting into a full block triggers a split;
a block whose load factor drops below a certain percentage
(40% in our implementation) is either refilled with entries
from a neighboring block or merged with it. When moving
entries from one block to another, their levels have to be
adjusted (cf. Fig. 11). adjust level(e) simply returns the level
of e’s block. before(a, b) first checks if a and b are in the same
block; if so, it compares their positions in the block, if not, it
compares the keys of their blocks.
example. In Fig. 9, we compute the level of node 4 by adding
the block level 1 to the table level 2. before([0, [3) corresponds to
an in-block position comparison. before([3,]0) holds because the
block key 51 of [3 is less than the block key 204 of]0.

As both adjust level and before reduce to a constant number
of arithmetic operations, they are in O(1), which makes them
even faster than for the BO-Tree. But the improved query
performance comes at a price: While leaf updates have O(1)
amortized average-case time complexity, leaf insertion has a
linear worst-case complexity. If a block overflows, it has to
be split into two, and the new block needs an appropriate
key. If no gap is available, the keys of all blocks are relabeled,
yielding equally spaced keys again. For a block size of B,
there are O(n

B
) blocks, so the complexity of relabeling is

O(n
B

). Splitting a block is in O(B). Therefore, the worst-case
complexity of a leaf insertion is O(n

B
+B).

Range relocations are performed similarly to the BO-Tree,
with the difference that only one level of blocks has to be
split and rebalanced and the block keys of the moved bound
range have to be updated.
example. Fig. 12 shows the relocation of subtree 1 under node 5.
1) The block range for node 1 is cropped out. 2) Underfull block
51 is merged with 153. 3) The list is split after [5, and the block
keys of the split blocks are updated to fill the gap evenly. 4) The
cropped block range is linked in and its block levels and keys are
updated: 1 is added to all block levels. The gap between 68 and
136 fits the three blocks, so their keys are relabeled to divide it
evenly. 5) Underfull block 136 is merged with with 119.

Splitting and merging blocks is inO(B); relabeling all cropped
blocks is in O(s

B
). Thus, the runtime of subtree relocation is

in O(s
B

+B) if the gap fits the cropped range. Otherwise a
total relabeling is performed, yielding O(n

B
+B) worst-case

runtime. Although the runtime is linear in s, or even linear
in n when relabeling, the O-List still performs well in practice.
In particular, it is much more dynamic than GapNI, from
which the idea of block keys with gaps originated. Its strong
point is the divisor of B in the complexity. By choosing
a sufficiently large B, e. g., 256 or 1024, we can minimize
the cost of relabeling to a point where relabeling becomes
feasible even for very large hierarchies. Small and average-size

[0 [1 [2 [3]3 [4]4]2]1 [5]5 [6]6]0
51 -1 102 1 153 -1 204 -2

[1 [2 [3]3 [4]4]2]1
51 -1 102 1 153 -1

[0
51 -1

[5]5 [6]6]0
153 -1 204 -2

[1 [2 [3]3 [4]4]2]1
51 -1 102 1 153 -1

[0 [5]5 [6]6]0
51 -1 204 -2

]5 [6]6]0
136 -1 204 -2

[0 [5
68 -1

[1 [2 [3]3 [4]4]2]1
85 0 102 2 119 0

[0 [5
68 -1

]5 [6]6]0
136 -1 204 -2

[1 [2 [3]3 [4]4]2]1
51 -1 102 1 153 -1

[1 [2 [3]3 [4]4]2]1
85 0 102 2 119 0

[0 [5
68 -1

]5]6]6]0
204 -2

1)

2)

3)

4)

5)

Figure 12: Relocating 1 below 5 in an O-List

subtrees span only a few blocks in such O-Lists, so relocating
them is very efficient.

The O-List mitigates the relabeling problem in two ways:
not only does it reduce the time a relabeling takes by factor B,
it also multiplies the minimal number of inserts that can
possibly trigger a relabeling by that factor. In a basic GapNI
encoding using 64-bit integers, an adversary can force a
relabeling every 64− logn insertions by aiming all of them
into a specific gap. So a hierarchy of one million nodes would
need a relabeling every 44 inserts. For the O-List, this value
is multiplied by B. For example, for a huge hierarchy of
one billion bounds with B = 1024 and 64-bit block keys,
the adversary would need roughly 35,000 insertions at the
same position to trigger relabeling, and this would touch
only around 1 million blocks rather than 1 billion individual
bounds. Thus, the amortized relabeling cost per skewed
insertion is not just a factor B but a factor of B2 smaller
than for basic GapNI. When insertions happen in a less skewed
manner, relabeling will rarely ever be triggered. To increase
robustness even further, a wider data type for block keys
(e. g., 128-bit integers) can be chosen without sacrificing too
much memory, since only one key per block is required. We
could even use a variable-length encoding such as CDBS [13]
to avoid relabeling altogether. However, we settled for 64 bits
in our implementation, since variable-length encodings are
less processing-friendly than fixed-size integers, and relabeling
happens rarely in sane scenarios.

4.3 Representing Back-Links
We now cover the efficient implementation of find(l), which
locates an entry in the Order Index given a back-link l. Apart
from locating entries, back-links are also used in the BO-Tree
to look up positions of child blocks within their parent.

The implementation of find depends on how back-links are
actually represented. This is trivial for the AO-Tree: we can
use direct pointers to the AVL tree nodes, as they never move
in memory. For the BO-Tree and the O-List, however, entries
are shifted around within their blocks or even moved across
blocks by rotate, merge, and split operations. In these cases,
any pointers to the entries would have to be adjusted. This
causes a significant slowdown through random data access,
as adjacent entries in blocks do not necessarily correspond
to adjacent table tuples (recall that hierarchy indexes are
secondary indexes). We investigate three approaches for
representing back-links in these data structures: scan, pos,
and gap. Fig. 13 illustrates the three strategies for finding
entry [3 in a BO-Tree (shown on the left). The relevant
contents of the table are shown on the right. The address of
a block is shown in its top-left corner. The table and block
entries that are touched by find are highlighted in red.

993

8
5

[0 [1 [2 [3]3 [4]4]2]1 [5]5]6]6]0
0x2: 0x1 0x3: 0x1

0x00x1:
0x2
0x2
0x2
0x2 0x2
0x2 0x2

0x3
0x3
0x2

0x3
0x30x3

0x3

lowerupper

[0 [1 [2 [3]3 [4]4]2]1 [5]5]6]6]0
0x2: 0x1 0x3: 0x1

0x00x1:
0x2
0x2
0x2
0x2 0x2
0x2 0x2

0x3
0x3
0x2

0x3
0x30x3

0x3

lower upper

0 0

0
1
2
3
5
1
3

5
0
7
4
6
2
4

0

RID
0
1
2
3
4
5
6

[0 [1 [2 [3]3 [4]4

0x2: 0x1 0x3: 0x1

0x2
0x2
0x2
0x2 0x2
0x2 0x2

0x3
0x3
0x2

0x3
0x30x3

0x3

lower upper

85 171

28
57
85
114
170
73
146

219
37
227
142
199
109
183

2
8
5
7
8
5

1
1
4

1
4
2

1
7
0

1
9
9

0x00x1: 0171

3
7
7
3

1
0
9

1
4
6

1
8
3

2
1
9

RID
0
1
2
3
4
5
6

RID
0
1
2
3
4
5
6

]2

2
2
7

]1 [5]5]6]6]0

scan

pos

gap

Interpolation search for key 114

Look up position #3 directly

Scan to entry [3

BO-Tree Table

Figure 13: Using back-links to find entry [3

scan (top of Fig. 13) is a simple strategy also used by
B-BOX [19]. Back-links point only to the block containing
the entry, which has to be scanned linearly for the row’s ID
to locate the entry. scan has the advantage that only entries
that are migrated to another block during merges, splits,
and rotations need their back-links updated. However, linear
block scans add an unattractive O(B) factor to most queries
and thus hinder us from using larger blocks.

pos (middle of Fig. 13) represents back-links by a block
pointer and the offset in the block. While this eliminates the
O(B) factor and grants O(1) find performance, it necessitates
relabeling even when an entry is only shifted around within
its block. As any insertion or deletion in a block involves
shifting all entries behind the corresponding entry, this slows
down updates considerably, especially for a larger B.

As a compromise, we propose gap (bottom of Fig. 13),
again using the idea of gaps from GapNI: Each entry is tagged
with a block-local key (1 byte in the example) that is unique
only within its block. A back-link consists of a block pointer
and a key. Initially the keys are assigned by dividing the key
space equally among the entries in a block. When an entry is
inserted, it is assigned the arithmetic mean of its neighbors;
if no gap is available, all entries in the block are relabeled.
The block-local keys are used to locate an entry using binary
search or interpolation search. Interpolation search is very
beneficial, as block-local keys are initially equally spaced and
thus perfectly amenable for interpolation. A block may even
be relabeled proactively once an interpolation search takes too
many iterations, since this is a sign for heavily skewed keys.
The occasional relabeling makes gap significantly cheaper
than pos, which effectively relabels half a block, on average,
on every update. Like with GapNI, an adversary can trigger
frequent relabelings through repeated insertions into a gap.
That said, even frequent relabelings are not a serious problem,
as they are restricted to a single block of constant size B.

5. PERFORMANCE EVALUATION
We compare our Order Index implementations from the HyPer
kernel with several contending indexing schemes implemented
in C++. All measurements are executed on an Intel Core
I7-4770K CPU running Ubuntu 14.10 with Kernel 3.16.0-23.

5.1 Test Setup
We use a test hierarchy H whose structure is derived from a
real-world materials planning application of an SAP customer.

As scenarios featuring very large hierarchies are most critical,
we expand the size of H to 107 nodes by replicating subtrees
in such a way that the structural properties, especially the
average depth of 10.33, remain equal. Due to the large size,
the indexes exceed L3 cache, yielding “worst case” uncached
results. We also measured all figures for smaller H sizes, but
omit the results as they lead to the same conclusions. For
experiments involving subtrees of a specific size, we derive
a family of hierarchies Hx containing 107 nodes like H, but
with a different shape: There is a single root r and all of
its children are roots of subtrees of size x. We obtain each
subtree by choosing a random subtree of size ≥ x from H and
then removing random nodes to downsize it to x. Using Hx,
we can easily pick a subtree of size x among r’s children.

In order to get a complete picture of the assets and draw-
backs of the indexing schemes, we measure various important
update and query operations. The following update scenarios
assess single operations as well as mixed workloads.

bulk build — Bulk-build hierarchy H using an edge list or-
dered in pre-order. This simulates the scenario described
in [3], where an index is built from scratch from an existing
tree representation.

insert — Build H by issuing leaf inserts in a random order,
with the constraint that a node has to be inserted before
any of its children. This simulates a scenario where the
hierarchy is built over time through unskewed inserts.

delete — Delete all nodes fromH by issuing randomly chosen
leaf deletions. This is the counterpart of insert.

skewed insert — Choose a node a from H and then insert
10,000 nodes as children of a. This represents a scenario
where updates are issued at a single position, and assesses
the ability of an indexing scheme to handle skewed inserts.

relocate subtree[x] — Start withHx and then relocate 10,000
subtrees of size x to other positions below the root. We
vary x in powers of 4 from 8 to 8192. This scenario assesses
the performance of complex subtree updates.

relocate range[y] — Start with H8 and relocate 10,000 sib-
ling ranges consisting of y/8 siblings (and hence y nodes)
to other positions below r. Again we vary y in powers of 4
from 8 to 8192. This scenario assesses the performance of
this most expressive, most complex class of updates.

mixed updates[p] — Start with H and issue 100,000 mixed
random updates, consisting of either a subtree relocate
(probability p) or a leaf insert or delete (probability 1− p).
As the number of inserts and deletes are roughly equal, the
hierarchy size does not change much over time. The size
of the subtrees chosen for relocation is 107.46 on average.
It is derived from the update pattern we observed in the
materials planning hierarchy on which H is based. By
varying p, we simulate real-world update patterns with a
varying relocation rate.

Even though our primary focus is on dynamic hierarchies
and thus update operations, we also measure query opera-
tions, because a highly dynamic index is useless if it cannot
answer queries efficiently. We first assess the query primi-
tives is descendant, is child, is before pre, is before post, level,
is leaf, and find described in Sec. 2.1, involving randomly
selected nodes of H. In addition, we measure the perfor-
mance of a full index scan using next pre repeatedly, which
corresponds to a pre-order traversal over H. Beyond isolated
query primitives, we also measure the query from Fig. 3,
which uses an index-nested-loop join over the descendant axis

994

insert delete

0

1

2

3

4 16 64 256 1024 mix 4 16 64 256 1024 mix

m
il
li
o
n
o
p
er
a
ti
on

s/
se
c relocate subtree[1024]

0.0

0.1

0.2

0.3

4 16 64 256 1024 mix

find is descendant level scan[1024]

0

25

50

75

4 16 64 256 1024 mix 4 16 64 256 1024 mix 4 16 64 256 1024 mix 4 16 64 256 1024 mix

block size B

pos

gap

scan

Figure 14: Comparing BO-Tree performance for different back-link representations and block sizes B

and evaluates the level. The performance of an index join
varies with the size of the subtree that is scanned for each
tuple from the left input S. Therefore, we again use Hx and
pick random children of its root r as left input S. As the
query basically executes a partial index scan over x entries
for each S tuple, we call this measure scan[x]. It represents
an important query pattern and thus gives us a realistic hint
of the overall query processing performance we can expect.

5.2 Block Size & Back-Link Representation
We first conduct experiments to determine a good block
size B for BO-Tree and O-List, and assess the three back-link
variants from Sec. 4.3. We vary B in powers of 4 from 4 to
1024. Block size “mix” refers to a multi-level scheme: 16
for leaf blocks, 64 for height 1 blocks, and 256 for height 2
blocks and above. Fig. 14 shows results for various update
and query operations on the BO-Tree. We omit the O-List
figures as they lead to the same conclusions.

Concerning updates (left side) it is clearly visible that a
smaller block size B between 16 and 64 is most beneficial.
Concerning queries, we see that larger blocks are very benefi-
cial, especially for the important is descendant query (is child,
is before pre, is before post behave similarly). We seek a B
that provides a good trade-off between query and update
performance. For the BO-Tree, our favorite is mix: queries
are not as fast as for B = 1024, but still quite fast, espe-
cially on the compound scan[1024] query; in return, it is very
efficient for updates, where large B such as 1024 suffer, es-
pecially when relocating subtrees (cf. relocate subtree[1024]).
For rather static data, 1024 can be a good choice nevertheless,
as it maximizes query speed.

Concerning the back-link representations, we observe that
scan is infeasible: queries are too slow, and the increased
update speed it offers is not significant, as pos and especially
gap perform well enough. For the important scan[1024] query,
scan is up to 50 times slower than the other representations.
A query where scan seems acceptable is level, but this is only
due to the fact that this query does not involve back-links at
all. pos performs fine for smaller B and is preferable there,
while gap becomes almost mandatory for B ≥ 256, where pos
loses too much insert and delete performance.

In conclusion, a mixed block size is the best trade-off for
the BO-Tree. The scan back-links should be avoided; pos are
preferable for small B and scenarios with few updates, while
gap is preferable for larger B and dynamic scenarios. For the
remaining measurements we use gap back-links, B = mix for
BO-Tree, and B ∈ {16, 64, 256} for O-List.

5.3 Comparison to Existing Schemes
Our indexing schemes aim at highly dynamic settings where
high update performance even for complex updates is desir-
able. To show that prior dynamic labeling schemes cannot
support these settings efficiently, we compare our schemes AO-
Tree, BO-Tree[B] and O-List[B] to promising contenders from

different categories: Ordpath [17] as a representative for path-
based variable-length schemes; CDBS [13] for containment-
based variable-length schemes; GapNI [15] (with explicitly
maintained level) for containment-based schemes with gaps.
All three are backed up by a B-tree over the labels, which
is used for scans where necessary (most queries can be an-
swered by only considering the labels). Our fourth contender
is DeltaNI [7] as a versioned, index-based scheme. Finally,
we also measure the näıve schemes Adjacency and Linked.
Adjacency is indexed by a hash index on both the key and
the parent column. Linked does not need any index as it can
access the nodes directly via pointers.

Fig. 15 shows the query performance for various types
of queries. We first observe that the AO-Tree performs very
poorly, as its data is scattered and the height of the AVL tree
is large in comparison to a B-tree, so the index suffers from
a high number of cache misses. In contrast, the BO-Tree and
the O-List perform well for all query types. For queries that
labeling schemes can answer by considering just the labels,
the Order Indexes are slower than labeling schemes because
they need to consider also the index and thus suffer at least
one extra cache miss. For queries that need to access the
index (e. g., is leaf, traversal), the Order Indexes offer a very
good performance. The find operation is where Order Indexes
excel over labeling schemes, because they use fast O(1) back-
links instead of O(logn) B-tree key searches. DeltaNI appears
to perform fine on most queries, but this is only the case
because all the complexity is hidden in find, which DeltaNI
must always perform before it can issue a query. The näıve
schemes Linked and Adjacency show their greatest weakness
here: they fail to offer robust query performance. While some
queries such as is child are fast, other important queries such
as is descendant and level are unacceptably slow.

As the queries in Fig. 15 involve randomly selected nodes,
Order Indexes are expected to be slow due to extra cache
misses on accessing the index at random positions. In contrast,
when scanning the index, the current block is already in
cache and level becomes an O(1) operation, so we expect our
schemes to perform better in this case. Fig. 16 shows the
index-nested-loop join performance scan[x] with varying x.
All schemes benefit from larger subtrees, because the initial
find is the most expensive operation and always incurs a cache
miss. The subsequent index scan often incurs no further cache
misses due to prefetching. On this query, all Order Index
variants except for AO-Tree are superior. Linked is second
fastest as it just has to chase pointers, which is fast but not
as cache-friendly as scanning blocks. GapNI is also quite
fast by virtue of its processing-friendly integer labels, while
CDBS and Ordpath suffer from their variable-length labels.
Ordpath additionally suffers from the level query that requires
counting path elements; without this, it would be on a par
with CDBS. DeltaNI is quite slow; it pays the price of a
full-blown versioned scheme. The slowest of all is Adjacency,

995

is descendant is child is before pre is before post level is leaf find traversal

106

107

108

q
u
er
ie
s/
se
c

AO-Tree
BO-Tree[mix]
O-List[16]
O-List[64]
O-List[256]
DeltaNI
GapNI
CDBS
Ordpath
Linked
Adjacency

Figure 15: Performance of different query primitives

1

10

100

20 21 22 23 24 25 26 27 28 29 210 211 212 213

size x of subtree being scanned

m
il
li
o
n
o
p
er
a
ti
o
n
s/
se
c AO-Tree

BO-Tree[mix]
O-List[16]
O-List[64]
O-List[256]
DeltaNI
GapNI
CDBS
Ordpath
Linked
Adjacency

Figure 16: Compound query performance (scan[x])

bulk build

106

107

u
p
d
at
es
/s
ec

delete insert

105

106

skewed insert

102

104

106

Figure 17: Bulk build and leaf update performance

which has to use its hash indexes repeatedly to find child
nodes to be scanned. We conclude that Order Indexes excel
at an index-nested-loop-based hierarchy join. Since joins
are at the core of common hierarchy queries, we anticipate
outstanding overall query performance in real-world scenarios.

Fig. 17 depicts the update performance for bulk build-
ing and leaf updates. As anticipated in Fig. 6, Order Indexes
and the näıve schemes perform very well for most updates. For
bulk building and non-skewed leaf updates, Order Indexes are
superior to labeling schemes, though the contenders—in par-
ticular GapNI—also perform reasonably. Skewed insertions,
however, force frequent relabelings, so GapNI’s performance
plummets. O-List has the same problem, as its block keys
are also gap-based and skewed insertions fill up these gaps.
Still, as anticipated, O-List significantly outperforms GapNI,
because new block keys are required less often; the larger B,
the better. So, an O-List with sufficiently large blocks can
handle skewed insertions quite well. BO-Tree even benefits
from skewed insertions, as the blocks where the insertions
happen will usually be in cache, and so it outperforms labeling
schemes by a factor of around 20.

Let us now consider complex updates. Fig. 18 (a) shows
the workload simulation mixed updates[p] with p varying ex-
ponentially between 0% (no relocations) and 32%. While
all indexing schemes perform acceptably for p = 0%, the
contenders drop rapidly on increasing p; starting at only
p = 0.32% for labeling schemes. In this scenario the size
of the relocated subtrees is “only” 107; larger sizes exacer-
bate the situation. To investigate this, Fig. 18 (b) shows
relocate subtree[x] over varying x, the size of the relocated
subtrees. As we anticipate, all contenders but the näıve
schemes drop linearly in x, as they have to relabel all x
nodes. GapNI is particularly slow due to additional global
relabelings. At x = 8192, labeling schemes can handle only
around 100 updates per second, while Order Indexes remain

fast at around 200,000 updates per second. The figures also
attest that an O-List is just a list of blocks as opposed to a
robust tree structure: it turns slow when too many blocks
are involved (relabeled) in a relocation. The figure suggests
a rule of thumb: Once x exceeds 64 ·B, performance drops
noticeably (at 1024 for O-List[16] and 4096 for O-List[64]),
so B should be chosen accordingly.

The näıve schemes handle subtree relocation exceptionally
well by just updating single values or pointers. This advantage
vanishes as soon as we consider the more potent sibling range
updates in Fig. 18 (c). Now, the näıve schemes have to
process all siblings individually, so their performance drops
with increasing range sizes. Only Order Indexes and DeltaNI
handle these updates well, but again, O-List turns slow when
the range becomes too large.

For brevity reasons we do not include figures for inner
node updates; they are comparable to sibling range updates,
because the implementation is similar: Labeling schemes
need costly relabelings for all nodes below the updated inner
node a. GapNI and CDBS need to update the levels of these
nodes, other schemes need to update the whole label. The
näıve schemes have to relabel all children of a, as for range
relocation. Order Indexes and DeltaNI implement inner node
updates in terms of range relocations.

We conclude that while all contenders handle leaf inserts
and deletes well, only Order Indexes and DeltaNI can handle
all kinds of complex updates efficiently. Thus, Order Indexes
offer large benefits for use cases featuring complex updates.

Fig. 19 compares the memory consumption of all in-
dexes in bytes per hierarchy node. The first column is the size
after bulk-building H, the second column after building H
from random inserts; the third column is the average size
increase per skewed insertion after 10000 skewed insertions
have taken place. We see that gap back-links take the most
space, 8 bytes extra: 2 bytes per key in the entry and in the
label, times two because each node has a lower and an upper
bound. pos back-links require only 2 extra bytes: 1 byte for
the position stored in the label, per bound. Smaller blocks
incur a small overhead over larger ones. Apart from that, the
sizes are comparable to the contenders, with the exception of
Ordpath, which stores only one path label as opposed to two
bound labels. Note however, that the ordpaths in all our tests
contained almost no carets, so this represents a favorable case
for this scheme. CDBS shows its greatest demerit: Skewed in-
sertions blow up the label size; each new label is 2 bits longer
than the previous one. The sizes for DeltaNI and AOTree are
constantly large, since both use space-costly binary trees with
parent pointers. Adjancency’s memory usage is dominated
by its hash indexes. Linked constantly consumes 7× 8 = 56
bytes per node: 5 pointers plus a row ID, plus 1 pointer from
the table to each node.

Alltogether, our experiments show that our proposed Order
Indexes handle queries and updates competitively. Their
largest benefit over the contenders is robustness: Especially
BO-Tree performs well throughout all disciplines, while each

996

103

104

105

106

0% .1% .32% 1% 3.2%10% 32%
(a) relocate percentage p

u
p
d
a
te
s/
se
c

102

103

104

105

106

107

23 25 27 29 211 213

(b) size of relocated tree x

102

103

104

105

106

23 25 27 29 211 213

(c) size of relocated range y

AO-Tree
BO-Tree[mix]
O-List[16]
O-List[64]
O-List[256]
DeltaNI
GapNI
CDBS
Ordpath
Linked
Adjacency

Figure 18: (a) mixed updates[p] (b) relocate subtree[x] (c) relocate range[y]

Index bulk insert skewed

AO-Tree 96.0 96.0 96.0

BO-Tree[mix, pos] 43.3 55.8 72.0
BO-Tree[mix, gap] 50.6 66.1 89.1
BO-Tree[mix, scan] 41.3 52.3 68.9

O-List[16, pos] 41.8 51.5 65.5
O-List[64, pos] 38.9 48.0 59.9
O-List[256, pos] 38.2 47.1 58.7
O-List[16, gap] 47.8 60.8 79.5
O-List[64, gap] 44.9 57.4 73.9
O-List[256, gap] 44.2 58.7 72.7
O-List[16, scan] 39.8 49.5 63.5
O-List[64, scan] 36.9 46.0 57.9
O-List[256, scan] 36.2 45.1 56.7

DeltaNI 90.6 211.2 167.2
GapNI 53.8 66.1 54.0
CDBS 71.9 97.9 2579.0
Ordpath 27.0 33.9 41.5

Linked 56.0 56.0 56.0
Adjacency 81.4 81.4 40.0

Figure 19: bytes/node

contender has a problem in at least one of the disciplines. As
we anticipate, Order Indexes yield the largest gains over prior
techniques in settings featuring complex updates. AO-Tree
performs poorly; it is thus only interesting in theory due to
its conceptual simplicity. BO-Tree with mixed block sizes is
an excellent all-round index structure with full robustness
for all update operations; it should be the first choice when
the update pattern is unknown. O-List with sufficiently large
block size outperforms BO-Tree in queries by around 50%,
but it is less robust in dealing with skewed insertions and
relocations of large subtrees and ranges.

6. CONCLUSION
In this paper we have investigated into indexing schemes for
highly dynamic hierarchical data. Our analysis leads us to the
finding that existing indexing schemes bear three main prob-
lems: lack of query capabilities, insufficient complex update
support, and vulnerability to skewed updates. We therefore
propose Order Indexes as an efficient indexing technique for
highly dynamic settings. They can be viewed as a dynamic
flavor of a nested intervals labeling, using the concept of
accumulation to maintain node levels while supporting even
complex and skewed updates efficiently. Of our three imple-
mentations AO-Tree, BO-Tree, and O-List, the latter two
yield robust and competitive query and update performance.
Order Indexes considerably outperform prior techniques when
considering complex updates on subtrees, sibling ranges, and
inner nodes. Our evaluation shows how carefully choosing a
suitable back-link representation and block size can further
optimize performance. The BO-Tree with varying block sizes
yields a particularly attractive query/update tradeoff, making
it a prime choice for indexing dynamic hierarchies.

7. REFERENCES
[1] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A robust

numbering scheme for XML documents. In ICDE, pages
705–707, 2003.

[2] P. Boncz, S. Manegold, and J. Rittinger. Updating the
pre/post plane in MonetDB/XQuery. In XIME-P, 2005.

[3] R. Brunel, J. Finis, G. Franz, N. May, A. Kemper,
T. Neumann, and F. Faerber. Supporting hierarchical data in
SAP HANA. In ICDE, pages 1280–1291, 2015.

[4] J. Cai and C. K. Poon. OrdPathX: Supporting two
dimensions of node insertion in XML data. In DEXA, pages
903–908, 2009.

[5] S. Chawathe and H. Garcia-Molina. Meaningful change
detection in structured data. SIGMOD Rec., 26(2):26–37,
1997.

[6] E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML
trees. SIAM Journal on Computing, 39(5):2048–2074, 2010.

[7] J. Finis, R. Brunel, A. Kemper, T. Neumann, F. Faerber, and
N. May. DeltaNI: An efficient labeling scheme for versioned
hierarchical data. In SIGMOD, pages 905–916, 2013.

[8] T. Grust, M. van Keulen, and J. Teubner. Staircase Join:
Teach a relational DBMS to watch its (axis) steps. In VLDB,
pages 524–535, 2003.

[9] A. Halverson, J. Burger, L. Galanis, A. Kini,
R. Krishnamurthy, A. N. Rao, F. Tian, S. Viglas, Y. Wang,
J. Naughton, and D. DeWitt. Mixed mode XML query
processing. In VLDB, pages 225–236, 2003.

[10] M. Haustein, T. Härder, C. Mathis, and M. Wagner.
DeweyIDs—the key to fine-grained management of XML
documents. In SBBD, pages 85–99, 2005.

[11] H. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan,
A. Nierman, S. Paparizos, J. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu. Timber: A native
XML database. VLDB Journal, 11(4):274–291, 2002.

[12] C. Li and T. W. Ling. QED: A novel quaternary encoding to
completely avoid re-labeling in XML updates. In CIKM,
pages 501–508, 2005.

[13] C. Li, T. W. Ling, and M. Hu. Efficient processing of
updates in dynamic XML data. In ICDE, 2006.

[14] C. Li, T. W. Ling, and M. Hu. Efficient updates in dynamic
XML data: From binary string to quaternary string. VLDB
Journal, 17(3):573–601, 2008.

[15] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions. In VLDB, pages 361–370, 2001.

[16] J.-K. Min, J. Lee, and C.-W. Chung. An efficient XML
encoding and labeling method for query processing and
updating on dynamic XML data. JSS, 82(3):503–515, 2009.

[17] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: Insert-friendly XML node labels.
In SIGMOD, pages 903–908, 2004.

[18] S. Sasaki and T. Araki. Modularizing B+-trees: Three-level
B+-trees work fine. In ADMS, pages 46–57, 2013.

[19] A. Silberstein, H. He, K. Yi, and J. Yang. BOXes: Efficient
maintenance of order-based labeling for dynamic XML data.
In ICDE, pages 285–296, 2005.

[20] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In SIGMOD, pages
204–215, 2002.

[21] L. Xu, T. W. Ling, H. Wu, and Z. Bao. DDE: From Dewey
to a fully dynamic XML labeling scheme. In SIGMOD, pages
719–730, 2009.

[22] J.-H. Yun and C.-W. Chung. Dynamic interval-based
labeling scheme for efficient XML query and update
processing. JSS, 81(1):56–70, 2008.

[23] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman.
On supporting containment queries in relational database
management systems. SIGMOD Rec., 30(2):425–436, 2001.

997

