
Scalable Subgraph Enumeration in MapReduce

Longbin Lai§, Lu Qin‡§, Xuemin Lin§\, and Lijun Chang§
§ The University of New South Wales, Australia

‡Centre for QCIS, University of Technology, Sydney, Australia
\East China Normal University, China

§{llai,lxue,ljchang}@cse.unsw.edu.au; ‡lu.qin@uts.edu.au

ABSTRACT
Subgraph enumeration, which aims to find all the subgraphs of a
large data graph that are isomorphic to a given pattern graph, is
a fundamental graph problem with a wide range of applications.
However, existing sequential algorithms for subgraph enumeration
fall short in handling large graphs due to the involvement of compu-
tationally intensive subgraph isomorphism operations. Thus, some
recent researches focus on solving the problem using MapReduce.
Nevertheless, exiting MapReduce approaches are not scalable to
handle very large graphs since they either produce a huge number
of partial results or consume a large amount of memory. Motivated
by this, in this paper, we propose a new algorithm TwinTwigJoin
based on a left-deep-join framework in MapReduce, in which the
basic join unit is a TwinTwig (an edge or two incident edges of
a node). We show that in the Erdös-Rényi random-graph model,
TwinTwigJoin is instance optimal in the left-deep-join framework
under reasonable assumptions, and we devise an algorithm to com-
pute the optimal join plan. Three optimization strategies are ex-
plored to improve our algorithm. Furthermore, we discuss how our
approach can be adapted in the power-law random-graph model.We
conduct extensive performance studies in several real graphs, one
of which contains billions of edges. Our approach significantly out-
performs existing solutions in all tests.

1. INTRODUCTION
In this paper, we study subgraph enumeration, which is a funda-

mental problem in graph analysis. Given an undirected, unlabeled
data graph G and a pattern graph P , subgraph enumeration aims to
find all subgraph instances ofG that are isomorphic to P . Subgraph
enumeration is widely used in a lot of applications. For example,
subgraph enumeration is used for network motif computing [27, 5]
to facilitate the design of large networks from biochemistry, neu-
robiology, ecology, and bioinformatics. Subgraph enumeration is
utilized to compute the graphlet kernels for large graph comparison
[28, 30] and property generalization for biological networks [26].
Subgraph enumeration is considered as a key operation for the syn-
thesis of target structures in chemistry [31]. Subgraph enumeration
can also be adopted to illustrate the evolution of social networks
[20] and to discover the information trend in recommendation net-
works [24]. In addition, as a special case of subgraph enumeration,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 10
Copyright 2015 VLDB Endowment 2150-8097/15/06.

triangle enumeration is a preliminary operation in cluster coeffi-
cient calculation [40] and community detection [39].

Motivation. Despite a large variety of applications, enumerating
subgraphs in a big data graph is very challenging. The reasons are
twofold. First, subgraph enumeration is computationally intensive,
since determining whether a data graph contains a subgraph that is
isomorphic to a given pattern graph, known as subgraph isomor-
phism, is NP-hard. Second, the lack of label information makes it
hard to filter infeasible partial answers in early stages, rendering a
large number of partial results, whose size can be much larger than
the size of the data graph and the final results. Due to these chal-
lenges, existing sequential algorithms for subgraph enumeration [8,
16] are not scalable to handle big graphs. Some other studies try
to find approximate solutions [5, 15, 43] to reduce the computa-
tional cost, however, they only estimate the count of the matched
subgraphs rather than locate all the subgraph instances.

MapReduce [11], as one of the most popular parallel comput-
ing paradigms for big data processing, has been widely used in
both industry and academia. MapReduce embodies the advantages
of high scalability, reliability, and fault-tolerance. Its easy-to-use
programming model allows developers to develop highly scalable
data-driven algorithms in a distributed environment. Therefore,
MapReduce has recently been used for subgraph enumeration in
big graphs to pursue both scalability and efficiency. In the litera-
ture, two existing approaches focus on subgraph enumeration using
MapReduce, namely, edge-based join [29] and multiway join [1].

In edge-based join [29], the pattern graph is decomposed into
an ordered list of edges, and the algorithm proceeds in multiple
MapReduce rounds where each round grows one edge using the
join operation. Edge-based join is inefficient, as joining one edge
in each round cannot fully make use of the structural information,
which may render numerous partial results.In multiway join [1],
only one MapReduce round is needed for subgraph enumeration.
In the algorithm, each edge is duplicated in multiple machines such
that each machine can enumerate the subgraphs independently and
no match is missed. However, multiway join usually encounters
serious scalability problems by keeping almost the whole graph in
the memory of each machine when the pattern graph is complex.

Considering the drawbacks of edge-based join and multiway join,
in this paper, we propose a new approach for subgraph enumeration
in MapReduce. We introduce a left-deep-join framework that gen-
eralizes the edge-based join to allow the right join argument to be
a star (a tree of depth 1) rather than a single edge in each round.
However, joining a star is sometimes inefficient as well. Thus, we
propose the TwinTwigJoin, which uses a simple TwinTwig (an
edge or two incident edges of a node) as the right join argument
in each round. TwinTwigJoin, as a tradeoff between edge-based
join and star-based join, has several advantages. First, based on a

974



well-defined cost model and the Erdös Rényi random-graph model,
we show that under reasonable assumptions, TwinTwigJoin can
ensure instance optimality in the left-deep-join framework. Sec-
ond, the simple structure of a TwinTwig makes it easy to devise
an optimal join plan based on the A* algorithm. Third, many op-
timization strategies can be designed on top of TwinTwigJoin, in-
cluding order-aware cost reduction, workload skew reduction, and
early filtering.

Note that most real-life data graphs are far from random. In
this paper, we will first deliver the result of instance optimality of
TwinTwigJoin by assuming that the data graph is a random graph.
This not only provides the theoretic guarantee of the paradigm pre-
sented in the paper but also gives the foundation of our analysis of
the power-law graphs. Later, we extend the results to the power-law
graphs with the aim to cover many real applications, since many
real-life large graphs are power-law graphs.

Contributions. We make the following contributions in this paper.

(1) A left-deep-join framework to join multiple edges in each round:
In Section 3, we introduce a left-deep-join framework for subgraph
enumeration in MapReduce, which generalizes the edge-based join
to allow multiple edges (in the form of stars) to join in each round.

(2) A novel algorithm to ensure instance optimality: We propose
a novel TwinTwigJoin algorithm in Section 5 following the left-
deep-join framework, which uses TwinTwig as the right argument
of the join in each MapReduce round. We analyze the cost of
TwinTwigJoin based on the Erdös-Rényi random-graph model,
upon which we prove that TwinTwigJoin is instance optimal in the
left-deep-join framework under reasonable assumptions.We further
develop an A*-based algorithm to compute the optimal join plan
by defining a cost upper bound for any partial join. The algorithm
can be adapted to any other graph model given that the cost upper
bound for a partial join can be computed in the graph model.

(3) Three optimization strategies to further improve the algorithm:
We explore three optimization strategies in Section 6, namely, order-
aware cost reduction, workload skew reduction, and early filtering,
to further improve the TwinTwigJoin algorithm. Order-aware cost
reduction considers three types of TwinTwigs based on a prede-
fined order of nodes in the data graph and pattern graph, which can
be utilized to reduce the total computational cost. Workload skew
reduction is used to reduce the workload skew caused by a few
high-degree nodes in the data graph by partitioning their neighbors
into multiple machines. Early filtering makes use of the free mem-
ory to further filter invalid partial results in early stages.

(4) Extension to power-law random graphs: We show in Section 7
how our algorithms and theoretical results can be adapted to the
power-law graph model under a sound assumption.

(5) Extensive performance studies using web-scale real graphs:
In Section 8, we conduct extensive performance studies in six real
graphs with different graph properties, and the largest one of them
contains billions of edges. The experimental results demonstrate
that our TwinTwigJoin algorithm can achieve high scalability and
outperforms all other state-of-the-art algorithms in all datasets.

2. PROBLEM DEFINITION
Subgraph Enumeration. We model a data graph as an undirected
and unlabeled graph G(V,E), where V = V (G) represents the
set of nodes and E = E(G) represents the set of edges each of
which connects two nodes in V (G). We let |V (G)| = N and
|E(G)| = M , and assume M > N . We use {u1, u2, . . . , uN}
to denote the set of nodes in G. For each ui ∈ V (G), we use
N (ui) to denote the set of neighbor nodes of ui, and we use d(ui)

to denote the degree of ui, i.e., d(ui) = |N (ui)|, and dmax =
maxui∈V (G) d(ui). We define d = 2M/N to be the average de-
gree of the data graph. A subgraph g of G is a graph such that
V (g) ⊆ V (G), E(g) ⊆ E(G).

A pattern graph is an undirected, unlabeled and connected graph,
denoted P (V, E), where V (P ) represents the set of nodes and
E(P ) represents the set of edges, and we let |V (P )| = n and
|E(P )| = m. We use {v1, v2, . . . , vn} to denote the set of nodes
in P . For each vi ∈ V (P ),N (vi) and d(vi) are defined analogous
to those defined in the data graph G. Note that it is trivial when P
is a node or an edge, thus we assume |V (P )| ≥ 3 in this paper.

Definition 2.1: (Match) Given a pattern graph P and a data graph
G, a match f of P in G is a mapping from V (P ) to V (G) such
that the following two conditions hold:
• (Conflict Freedom) For any pair of nodes vi ∈ V (P ) and vj ∈
V (P ) (i 6= j), f(vi) 6= f(vj).
• (Structure Preservation) For any edge (vi, vj) ∈ E(P ), (f(vi),
f(vj)) ∈ E(G).

We use f = (uk1 , uk2 , . . . , ukn) to denote the match f , i.e., f(vi)
= uki for any 1 ≤ i ≤ n. 2

Definition 2.2: (Graph Isomorphism) Given two graphs gi and
gj , gi and gj are isomorphic, if and only if there exists a match of
gi in gj , and |V (gi)| = |V (gj)| and |E(gi)| = |E(gj)|. 2

Definition 2.3: (Subgraph Enumeration) Given a pattern graph
P and a data graph G, subgraph enumeration is to enumerate all
subgraphs g of G such that g is isomorphic to P . 2

Definition 2.4: (Automorphism) Given a graph g, an automor-
phism of g is a match from g to itself. We use A(g) to denote the
set of automorphisms for a graph g. 2

Given a pattern graph P and a data graph G, if the total number
of enumerated subgraphs is s then the total number of matches of
P in G is |A(P )| × s. Since then, if P has only one automor-
phism, i.e., |A(P )| = 1, the problem of subgraph enumeration is
equivalent to enumerating all matches of P in G. In the following,
for ease of analysis, we first assume that the pattern graph P has
only one automorphism, i.e., |A(P )| = 1, and thus we focus on
enumerating all matches of P in G. In Section 5.4, we will discuss
the general cases when |A(P )| ≥ 1.
Graph Storage. We assume the data graph G is stored in a dis-
tributed file system using adjacency lists, that is, for each node
u ∈ V (G), we store the adjacency list of u as a key-value pair
(u;N (u)) in the distributed file system.

Assumptions. In this paper, our theoretical results are derived
based on the following assumptions:
• A1: The data graph follows the Erdös Rényi random-graph

model, which will be introduced in Section 5.2.
• A2: The algorithm follows a left-deep-join framework, where

the right join argument is a star. It will be further discussed in
Section 3.
• A3: The data graph is sparse; more specifically, the average

degree d = 2M/N <
√
N .

Problem Statement. Given a data graph G stored in a distributed
file system, and a pattern graph P , the purpose of this work is to
enumerate all subgraphs of G that are isomorphic to P (based on
Definiton 2.3) using MapReduce.

3. ALGORITHM FRAMEWORK
In this section, we introduce a left-deep-join-based framework

for subgraph enumeration in MapReduce. Generally speaking, given
a data graph G and a patten graph P , subgraph enumeration is pro-

975



Algorithm 1 SubgraphEnum( data graph G, pattern graph P )

1: compute a graph decomposition {p0, p1, . . . , pt} of P ;
2: for i = 1 to t do
3: R(Pi)← R(Pi−1) 1 R(pi); (using mapi and reducei)
4: return R(Pt);

5: function mapi( key: ∅; value: either a match f ∈ R(Pi−1) when i > 1 or
(u,N (u)) for a node u ∈ V (G) )

6: {vk1
, vk2

, . . . , vkl
} ← V (Pi−1) ∩ V (pi);

7: if i = 1 then
8: Gu ← a graph formed by edges (u, v) for v ∈ N (u);
9: Ru(P0)← all matches of P0 in Gu;
10: for all match f ∈ Ru(P0) do
11: output ((f(vk1

), f(vk2
), . . . , f(vkl

)); f);
12: if value is a match f ∈ R(Pi−1) then
13: output ((f(vk1

), f(vk2
), . . . , f(vkl

)); f);
14: else
15: Gu ← a graph formed by edges (u, v) for v ∈ N (u);
16: Ru(pi)← all matches of pi in Gu;
17: for all match h ∈ Ru(pi) do
18: output ((h(vk1

), h(vk2
), . . . , h(vkl

));h);

19: function reducei( key: r = (uk1
, uk2

, . . . , ukl
); values: F = {f1, f2,

. . . }, H = {h1, h2, . . . } )
20: for all (f, h) ∈ (F ×H) s.t. (f − r) ∩ (h− r) = ∅ do
21: output (∅; f ∪ h);

cessed using a list of left-deep join operations, each of which is
evaluated using one round of MapReduce. Before introducing the
framework for subgraph enumeration, we first give the definitions
of pattern decomposition, partial pattern, and partial result.
Definition 3.1: (Pattern Decomposition) Given a pattern graph P ,
a pattern decomposition of P , D = {p0, p1, . . . , pt} is a disjoint
partition of the edges of P , such that pi (0 ≤ i ≤ t) is a star (a tree
of depth 1), and V (pi) ∩

⋃
0≤j<i V (pj) 6= ∅ (i 6= 0). 2

Definition 3.2: (Partial Pattern Pi) Given a pattern decomposi-
tion {p0, p1, . . . , pt} of P , a partial pattern Pi (0 ≤ i ≤ t) is a
subgraph of P , such that V (Pi) =

⋃
0≤j≤i V (pj) and E(Pi) =⋃

0≤j≤iE(pj). We have P0 = p0 and Pt = P . We useDi = {p0,

p1, . . . , pi} to denote a partial pattern decomposition of partial
pattern Pi for any 0 ≤ i ≤ t. 2

According to the above definitions, we require that each decom-
posed unit pi shares at least a common vertex with the partial pat-
tern Pi−1 for any 1 ≤ i ≤ t.
Definition 3.3: (Partial Result R(S)) Given a subgraph S of the
pattern graph P , and a data graph G, the partial result w.r.t. S,
denoted asR(S), is the set of matches of S inG. Obviously,R(P )
is the final result of the subgraph enumeration problem. 2

The Framework. The framework of subgraph enumeration using
MapReduce is shown in Algorithm 1. Given a graph G and a pat-
tern P , we first compute a graph decomposition {p0, p1, . . . , pt}
of P which indicates a join plan (line 1). Then the algorithm is
processed in t MapReduce rounds. Each round (lines 2-3) com-
putes the partial result R(Pi) by joining R(Pi−1) with R(pi), and
obviously, E(Pi) = E(Pi−1) ∪ E(pi) for 1 ≤ i ≤ t. Each join
operation is processed using MapReduce with mapi and reducei.
(Function mapi): The function mapi is shown in lines 5-18 of

Algorithm 1. The input of mapi is either a match f ∈ R(Pi−1) if
i > 1, or (u;N (u)) for a node u ∈ V (G) (line 5). Both R(Pi−1)
and G are stored in the distributed file system. We first calculate
the join key {vk1 , vk2 , . . . , vkl} using V (Pi−1) ∩ V (pi) (line 6).
If i = 1, we need to compute the matches of P0, Ru(P0), based
on node u and its neighborsN (u), and output each such match (as
a match in R(P0)) along with the corresponding join key (lines 7-
11). Then, if the input of mapi is a match f ∈ R(Pi−1), we
simply output f along with the corresponding join key (lines 12-
13). Otherwise, we compute the matches of pi associated with u,

��
�� ��

�� ���� ���� �� ���� �������� ���� ���� ���� ���� ������ ����
�� �����

Figure 1: Pattern Decomposition and Query Processing

Ru(pi), as we do when we compute P0 (lines 15-18).
(Function reducei): The set of key-value pairs with the same key
r = (uk1 , uk2 , . . . , ukl) are processed using the same function
reducei. There are two types of values, F = {f1, f2, . . . } and
H = {h1, h2, . . . }, generated by R(Pi−1) and R(pi) respec-
tively. For each (f, h) ∈ (F × H) that shares the same join key,
we output f ∪ h with the condition that (f − r) ∩ (h − r) = ∅
to avoid node conflict (refer to the conflict freedom condition in
Definiton 2.1)(lines 20-21).
Discussion. In the mapi phase of Algorithm 1, we need to compute
R(P0) for i = 1 (line 9) and R(pi) for 1 ≤ i ≤ t (line 16) in G.
Note that R(P0) = R(p0), thus overall we need to compute R(pi)
for 0 ≤ i ≤ t in G. We now discuss assumption A2. Recall that
G is stored as a set of key-value pairs (u;N (u)) for u ∈ V (G)
in the distributed file system, and each key-value pair is processed
by mapi separately according to the MapReduce framework. In
this framework, each pi should be a star. As taken (u;N (u)) as
input, each mapi function can generate the matched stars rooted at
u separately by enumerating the leaf nodes fromN (u).
Example 3.1: In Fig. 1, we decompose the pattern graph into {p0,
p1, p2}. The corresponding partial patterns P0, P1, and P2 are also
presented. Based on the framework in Algorithm 1, the subgraph
enumeration algorithm is processed in two MapReduce rounds. In
the first round, we compute R(P1) using R(P0) 1 R(p1) with
V (P0)∩V (p1) = {v2, v3, v4} as the join key. In the second round,
we compute R(P2) using R(P1) 1 R(p2) with V (P1)∩V (p2) =
{v3, v4} as the join key. 2

Remark. In Algorithm 1, we evaluate P using left-deep join based
on the pattern decomposition D. In addition to left-deep join, we
can also use bushy join to process the tasks. Bushy join actually
provides more varieties for an optimal join plan than its special
case, left-deep join. However, we choose left-deep join in this paper
due to the following aspects. First, as indicated in [32], left-deep
join can still provide optimal solutions in many cases, especially
when the join graph is highly connected. Second, left-deep join
requires keeping much fewer partial results than bushy join. The
partial results we need to keep are generated from only one iteration
(the iteration prior to current one) in left-deep join but multiple
iterations in bushy join. Finally and more importantly, it is much
less expensive to compute an optimal join plan for left-deep join
given its simpler computation structure.

4. EXISTING SOLUTIONS
In this section, we introduce three state-of-the-art algorithms for

subgraph enumeration in MapReduce: EdgeJoin, StarJoin, and
MultiwayJoin. Both EdgeJoin and StarJoin follow the left-deep-
join framework (Algorithm 1) with different pattern-decomposition
strategies. MultiwayJoin uses a new framework that enumerates all
subgraphs in only one MapReduce round by duplicating edges of
the data graph G.

Algorithm EdgeJoin. The EdgeJoin is proposed by Plantenga [29].
In EdgeJoin, each pattern graph P is decomposed into {p0, p1,
. . . , pt}, where each pi is an edge in E(P ). Thus, we have t =
m − 1. The main drawback of EdgeJoin is that it may generate a

976



large number of partial results since it cannot make full use of the
structural information of the pattern graph, which can be explained
via the following example.
Example 4.1: For a square patternP where V (p) = {v1, v2, v3, v4}
and E(P ) = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)}, the optimal
pattern decomposition based on EdgeJoin is p0 = {(v1, v2)}, p1 =
{(v2, v3)}, p2 = {(v3, v4)}, p3 = {(v4, v1)}. However, using
this pattern-decomposition strategy, the algorithm executes in three
MapReduce rounds, and the partial pattern P3 is a path {(v1, v2),
(v2, v3), (v3, v4)} with length 3, which may result in a large num-
ber of partial results. A better strategy is to decompose P into two
parts: p0 = {(v1, v2), (v2, v3)} and p1 = {(v3, v4), (v4, v1)},
which can be processed in only one MapReduce round, and we can
avoid processing P3 as that in EdgeJoin. 2

Algorithm StarJoin. The StarJoin algorithm decomposes the pat-
tern graph into stars, where a star is a tree of depth 1. The star
decomposition strategy is proposed by Sun et al. [33]. Given a pat-
tern graph P and a node v ∈ V (P ), we denote star(v) the star
rooted at v with N (v) as its child nodes. According to [33], a star
decomposition of P is defined as follows.

Definition 4.1: (Star Decomposition) Given a pattern graph P ,
a star decomposition is a decomposition {p0, p1, . . . , pt} of P ,
such that there exists {vk0 , vk1 , . . . , vkt} ⊆ V (P ) with p0 =
star(vk0), and pi = star(vki) \ E(Pi−1) for any 1 ≤ i ≤ t. 2

Compared to EdgeJoin, StarJoin can finish in fewer MapRe-
duce rounds, however, StarJoin still suffers from the scalability
problems due to the generation of many matches when evaluating
a star with many edges.

Example 4.2: Fig. 1 shows an example of star decomposition for
a 4-clique pattern graph P , in which p0 is a star with three edges.
In a social network such as Twitter, it is very common for a node
to have more than 10,000 followers. As a result, this node with its
followers will contribute to over 1012 matches of p0. 2

Algorithm MultiwayJoin. The MultiwayJoin algorithm is pro-
posed by Afrati et al. [1]. MultiwayJoin enumerates subgraphs in
the data graph using only one MapReduce round, while in order to
do so, MultiwayJoin has to duplicate the edges several times in the
map phase, and the number of duplications grows enormously with
the size of the pattern graph. It is shown in [34] that MultiwayJoin
can be efficient when P is a triangle. However, it will suffer from
the scalability problem when P becomes more complex. For ease
of analysis, we suppose P is a clique (complete graph) with n
nodes. Let b = n

√
#r, where #r is the number of reducers. With

the optimal settings according to [1], the number of duplications
for each edge of G is Θ(m · bn−2) = Θ(n2 · bn−2), resulting in
Θ(M · n2 · bn−2) as a whole. Each reducer will hence receive
Θ(M·n

2·bn−2

#r
) = Θ(M · n

2

b2
) by average. There are two cases:

• (Case-1: b ≤ n) A reducer will receive Θ(M · n
2

b2
) ≥ Θ(M)

edges, which is equivalent to holding the whole graph G.

• (Case-2: b > n) The total number of edge duplications is
Θ(M · n2 · bn−2) > Θ(M · nn), which is too large.

Obviously, both case-1 and case-2 are not scalable for either large
data graph G or complex pattern graph P . Similar result can be
derived when P is a general graph.

5. A NEW APPROACH
As discussed above, EdgeJoin, StarJoin, and MultiwayJoin will

encounter scalability problems when the data graph is large or the
pattern graph is complex. In this section, we propose a new al-
gorithm TwinTwigJoin that follows the left-deep join framework

introduced in Section 3 with a new pattern decomposition strat-
egy, namely, TwinTwig decomposition. We first introduce the
TwinTwig decomposition strategy, and analyze its optimality based
on a variant of the random-graph model. Then we propose an op-
timal TwinTwig decomposition algorithm based on the A* frame-
work. Finally, we discuss symmetry breaking to allow the pattern
graph to have multiple automorphisms.

5.1 TwinTwig Decomposition
Definition 5.1: (TwinTwig Decomposition) A TwinTwig decom-
position is a decomposition D = {p0, p1, . . . , pt} of pattern P
such that each pi (0 ≤ i ≤ t) is a TwinTwig, where a TwinTwig
is either a single edge or two incident edges of a node. 2

Our algorithm TwinTwigJoin is a left-deep-join algorithm (fol-
lowing Algorithm 1) based on TwinTwig decomposition. Obvi-
ously, TwinTwigJoin is a generalization of EdgeJoin. Compared
to EdgeJoin, TwinTwigJoin can make use of more structural in-
formation of the pattern graph to reduce the size of the partial re-
sults. Compared to StarJoin, TwinTwigJoin can avoid joining a
star with many edges by restricting the number of edges to be at
most 2, and it is more flexible to select which one or two edge(s) of
a star to join in a certain round to minimize the overall cost. Next,
we introduce a special TwinTwig decomposition, namely, strong
TwinTwig decomposition.

Definition 5.2: (Strong TwinTwig Decomposition) LetD = {p0,
. . . , pt} be a TwinTwig decomposition of P , a TwinTwig pi
(1 ≤ i ≤ t) is a strong TwinTwig if |V (pi) ∩ V (Pi−1)| ≥ 2,
otherwise pi is a non-strong TwinTwig. D is a strong TwinTwig
decomposition if each pi (1 ≤ i ≤ t) is a strong TwinTwig. The
pattern P is strong TwinTwig decomposable, denoted SDEC, if
there exists a strong TwinTwig decomposition of P . 2

In the following, we will introduce the cost model and graph
model, based on which we can prove the instance optimality of
TwinTwigJoin under the assumptions introduced in Section 2.

5.2 Cost Analysis
Cost Model. Following the framework in Algorithm 1, for each
MapReduce round i (1 ≤ i ≤ t), we consider three types of data,
denotedMi, Si, andRi, which are defined as follows:
• Mi is the input of the i-th map phase. Mi includes all edges

of graph G, and the partial result R(Pi−1) generated in the pre-
vious round (if i > 1). Thus, we have |M1| = |E(G)| and
|Mi| = |R(Pi−1)|+ |E(G)| for i > 1.
• Si is the data transferred in the i-th shuffle phase, which is also

the output of the i-th map phase as well as the input of the i-th
reduce phase. Si includes two parts, R(Pi−1) and R(pi), thus
we have |Si| = |R(Pi−1)|+ |R(pi)|.
• Ri is the output of the i-th reduce phase. Ri includes the set of

partial matches R(Pi), thus we have |Ri| = |R(Pi)|.
There are many factors that can affect the efficiency of Algorithm 1,
including I/O cost, communication cost, computational cost, num-
ber of MapReduce rounds, and workload balancing. We hence con-
sider an overall cost C as follows:

C =

t∑
i=1

(|Mi|+ |Si|+ |Ri|)

= 3

t∑
i=1

|R(Pi)|+ |R(P0)|+
t∑
i=1

|R(pi)|+ t|E(G)| − 2|R(Pt)|

= 3

t∑
i=1

|R(Pi)|+
t∑
i=0

|R(pi)|+ t|E(G)| − 2|R(Pt)|

Obviously, C is a comprehensive measurement of I/O cost, com-
munication cost and computational cost, and it also implies the im-
pact of the number of MapReduce rounds. Note that the last term

977



2|R(Pt)| = 2|R(P )| is independent of the decomposition strategy,
thus it can be removed from the cost function. Therefore, given any
pattern decompositionD= {p0, p1, . . . , pt}, the cost function, de-
noted as cost(D), can be defined as:

cost(D) = 3
t∑
i=1

|R(Pi)|+
t∑
i=0

|R(pi)|+ t|E(G)| (1)

Similarly, for any 0 ≤ i ≤ t, we can define the cost of a partial
pattern decomposition Di as:

cost(Di) = 3
i∑

j=1

|R(Pj)|+
i∑

j=0

|R(pj)|+ i|E(G)| (2)

For any 1 ≤ i ≤ t, given that Di = Di−1 ∪ {pi}, we have:

cost(Di) = cost(Di−1) + 3|R(Pi)|+ |R(pi)|+ |E(G)| (3)

Our aim is to find a decompositionD of the pattern graph P so that
cost(D) is minimized.
Graph Model. In order to analyze the cost of different pattern-
decomposition strategies, we will use two graph models to depict
the data graph G, namely the Erdös-Rényi random-graph model
[13], denoted ER model, and the power-law random-graph model
[4], denoted PR model. In this paper, unless otherwise specified,
we will use random graph to represent a graph constructed us-
ing the ER model, and power-law random graph for a graph con-
structed via PR model. As indicated by assumption A1, we first
focus on the case that the data graph is a random graph. Then we
will extend our algorithm to handle the power-law random graphs
in Section 7.

In the ER model, a graph is constructed by connecting nodes
randomly. Each edge is included in the graph with probability ω
independently from every other edges. Thus, for a data graph with
N nodes andM edges, the probability ω can be calculated as: ω =

2M
N(N−1)

, which can be approximated as 2M
N2 when N is large.

For simplicity, we use |R(P )| to denote the expected number of
matches for a pattern P in a random graph. The following lemma
from [7] gives the value of |R(P )|.
Lemma 5.1: Given a pattern graph P and a random graph G, if
P is a connected graph, we have |R(P )| = N !

(N−n)!
× ωm. 2

Remark In practice, we often have n� N , hence we can evaluate
|R(P )| as:

|R(P )| = (2M)m/N2m−n (4)
Results on SDEC Pattern Graph P . In order to show the instance
optimality of the TwinTwig decomposition, we first study a special
case, in which the pattern graph P is strong TwinTwig decompos-
able (SDEC). We have the following lemma.

Lemma 5.2: Given an SDEC pattern graph P , suppose D = {p0,
p1, . . . , pt} is a strong TwinTwig decomposition of P . For any
partial pattern Pi (1 ≤ i ≤ t), we have:
|R(Pi)| ≤ |R(Pi−1)| × (2M)2

N3 ≤ |R(p0)| × ( (2M)2

N3 )i. 2

Proof: Suppose Pi contains ni nodes and mi edges, we have
|R(Pi−1)| = (2M)

mi−1

N
2mi−1−ni−1

and |R(Pi)| = (2M)mi

N2mi−ni
. Let ∆mi =

mi −mi−1 and ∆ni = ni − ni−1, we have:

|R(Pi)| = |R(Pi−1)| × (
2M

N2
)∆mi ×N∆ni (5)

SinceD is a strong TwinTwig decomposition, there are three cases
for pi (1 ≤ i ≤ t):
• (|E(pi)| = 1 and |V (pi) ∩ V (Pi−1)| = 2): In this case, ∆mi = 1

and ∆ni = 0. It follows that:
|R(Pi))| = |R(Pi−1)| ×

2M

N2
< |R(Pi−1)| ×

(2M)2

N3
.

• (|E(pi)| = 2 and |V (pi) ∩ V (Pi−1)| = 2): In this case, ∆mi = 2
and ∆ni = 1. It follows that:
|R(Pi))| = |R(Pi−1)| × (

2M

N2
)2 ×N = |R(Pi−1)| ×

(2M)2

N3

���

���

���

���

��� ���

� ��

�

��� ���
�

��
�
�

−
��

�
� �

��
�
�

+ �����
�

�
�

�

�
�

�

�
�

�
��

�
�

−
��

�
�

�
��

�
�

+ �

�

�
��

�
�
�

�
�

�

�
� ��� �

��
�
�

− ��
�
�

� �

�

�
� − �

�

�
�

�
���� �

�
�

�
�

�
��

�
�

+ �
��

�
�

+

���

��������	
��	
�� �����������	
��	
��

� ���− �

�
�
�−

�

�
�
�−

Figure 2: Constructing D based on D′

• (|E(pi)| = 2 and |V (pi) ∩ V (Pi−1)| = 3): In this case, ∆mi = 2
and ∆ni = 0. It follows that:

|R(Pi))| = |R(Pi−1)| × (
2M

N2
)2 < |R(Pi−1)| ×

(2M)2

N3

In all the above three cases, we have |R(Pi)| ≤ |R(Pi−1)| × (2M)2

N3 .

As a result, |R(Pi)| ≤ |R(Pi−1)| × (2M)2

N3 ≤ |R(Pi−2)| × ( (2M)2

N3 )2

≤ . . . ≤ |R(p0)| × ( (2M)2

N3 )i. 2

Corollary 5.1: Under A3, given an SDEC pattern graph P , sup-
pose D = {p0, p1, . . . , pt} is a strong TwinTwig decomposition
of P . For any partial pattern Pi (1 ≤ i ≤ t), we have:

|R(Pi)| ≤ |R(Pi−1)| ≤ . . . ≤ |R(P0)| = |R(p0)| 2

Proof Sketch: By assumption A3 (d = 2M/N <
√
N), we know

that (2M)2

N3 = d2

N
< 1. It is immediate that Corollary 5.1 holds

according to Lemma 5.2. 2

The General Case. We prove the instance optimality of the gen-
eral TwinTwig decomposition by showing that given any pattern
decompositionD′ = {p′0, p′1, . . . , p′t′}, where each p′i (0≤ i≤ t′)
is a star, we can construct a corresponding TwinTwig decomposi-
tion D = {p0, p1, . . . , pt} with cost(D) ≤ Θ(cost(D′)).

We first introduce how to construct D based on D′. For any
p′i ∈ D′, letDi = {pi1, pi2, . . . , piti} be a TwinTwig decomposition
of p′i which is constructed as follows: Suppose ri is the root of p′i
and {li1, li2, . . . , lit′i} is the set of leaves of p′i sorted by putting those

nodes lij with lij ∈ V (P ′i−1) in the front (P ′i−1 is the i−1-th partial
pattern w.r.t. D′), i.e., there exists a number ki, s.t., if 1 ≤ j ≤ ki,
lij ∈ V (P ′i−1), and if ki < j ≤ t′i, l

i
j /∈ V (P ′i−1). Di = {pi1, pi2,

. . . , piti} is constructed as follows:

• If t′i is an even number, then ti =
t′i
2

, and pij (1 ≤ j ≤ ti) is a
TwinTwig with root ri and two leaves li2j−1 and li2j .

• If t′i is an odd number, then ti =
t′i+1

2
, and pij (1 ≤ j ≤ ti − 1)

is a TwinTwig with root ri and two leaves li2j−1 and li2j , and
piti is a TwinTwig with only one edge (ri, lit′i

).

In other words, Di is constructed by generating strong TwinTwigs
followed by non-strong TwinTwigs. After constructing Di for all
0 ≤ i ≤ t′, we have D by combining all Di, i.e., D =

⋃t′

i=0D
i.

The construction of D from D′ is illustrated in Fig. 2.
We show the instance optimality of a general TwinTwig decom-

position using the following theorem:

Theorem 5.1: Under the assumption A3, given a pattern decom-
position D′ = {p′0, p′1, . . . , p′t′} where each p′i (0 ≤ i ≤ t′) is a
star, let D be the TwinTwig decomposition constructed based on
D′ using the above method, then cost(D) ≤ Θ(cost(D′)). 2

Proof: For any pattern decomposition D, we divide cost(D) =
3Σti=1|R(Pi)|+ Σti=0|R(pi)|+ t|E(G)| (Eq. 1) into two parts:
• cost1(D) = Σti=0 |R(pi)| + t|E(G)|.
• cost2(D) = 3 Σti=1 |R(Pi)|.

978



Accordingly, we divide the proof into two parts:

(Part 1): We prove cost1(D) ≤ Θ(cost1(D′)). We only need to
prove cost1(Di) ≤ Θ(cost1({p′i})) for each 0 ≤ i ≤ t′. Note
that when |E(p′i)| ≤ 2, cost1(Di) = cost1({p′i}), thus, we only
consider |E(p′i)| ≥ 3. In this case, we have:
• cost1(Di) ≤ Θ(t′i · d2 ·N). According to Eq. 4, we know that

each pattern pij ∈ Di is a TwinTwig with |R(pij)| ≤ (2M)2

N
=

Θ(d2 ·N). Hence, we have:

cost1(Di) =

dt′i/2e∑
j=1

(|R(pij)|+ |E(G)|) ≤ Θ(t′i · d2 ·N)

• cost1({p′i}) ≥ Θ(t′i · d3 ·N). This is because:

cost1({p′i}) ≥ |R(p′i)| = dt
′
i ×N ≥ (t′i − 2)× d3 ×N

≥ t′i/3× d3 ×N (by t′i = |E(p′i)| ≥ 3)

= Θ(t′i · d3 ·N)

Thus, cost1(Di) ≤ Θ(cost1({p′i})).

(Part 2): We prove cost2(D) = Θ(cost2(D′)). We reformulate

cost2(D′) as 3(
p′0
2

+
Σt′

i=1|R(P ′i−1)|+|R(P ′i )|
2

+
|R(P ′

t′ )|
2

). Thus:

cost2(D′) = Θ(

t′∑
i=1

(|R(P ′i−1)|+ |R(P ′i )|)) (6)

Note that in D that is constructed based on D′, we will gradually
combine pi1, pi2, . . . , piti to P ′i−1 in order to get P ′i . Hence, the
term |R(P ′i−1)| + |R(P ′i )| for each 1 ≤ i ≤ t′ in cost2(D′) is
replaced by:

costi2(D) = |R(P ′i−1)|+ |R(P ′i−1 ∪ pi1)|

+ · · ·+ |R(P ′i−1 ∪ pi1 ∪ · · · ∪ piti−1)|+ |R(P ′i )|
(7)

Recall that there exists a ki such that, when 1 ≤ j ≤ ki, pij is
a strong TwinTwig, and when ki < j ≤ ti, pij is a non-strong
TwinTwig. Let x = ki and y = ti − ki, then there are x+ y + 1
terms in costi2(D). We have,
• (S1): The sum of the first x+1 terms in costi2(D) is Θ(|R(P ′i−1)|).

Since each pij is a strong TwinTwig, according to Lemma 5.2
and Corollary 5.1, when j increases, the size of the j-th term de-
creases exponentially with a rate ≤ (2M)2

N3 < 1, thus, statement
S1 holds.
• (S2): The sum of the last y terms in costi2(D) is Θ(|R(P ′i )|).

Since each pij is a non-strong TwinTwig, according to Eq. 5,
when j increases, the size of the j-th term increases exponen-
tially with a rate ≥ d > 1, thus, statement S2 holds.

Based on S1 and S2, we have cost2(D) = Θ(cost2(D′)), and ac-
cording to Part 1 and Part 2, Theorem 5.1 holds. 2

5.3 Optimal Decomposition by A*
In this subsection, we will show how to construct an optimal

TwinTwig decomposition for any pattern graph P using an A*-
based algorithm.

The Cost Function. The key of the A*-based algorithm is to find
a cost function for each partial solution, which defines the priority
of the partial solution to be expanded to form the final solution.
In the subgraph enumeration problem, for any partial TwinTwig
decomposition Di of P (refer to Definiton 3.2), we need to define
a cost function cost(Di, P ), which is the cost lower bound for any
TwinTwig decomposition of P expanded from Di. We compute
cost(Di, P ) using dynamic programming. Given a partial pattern
Pi, we use ∆cost(Pi,∆m,∆n) to denote the lower bound of the
increased cost when adding any ∆m edges and ∆n nodes into the
partial pattern Pi. Let card(m,n) = |R(P )| be the number of

Algorithm 2 Optimal-Decomp( data graph G, pattern graph P )

1: H ← ∅;
2: for all TwinTwig p in P do
3: H.push((p, {p}, cost({p}, P )));
4: (P ′,D′, cost(D′, P ))← H.pop();
5: while P ′ 6= P do
6: for all TwinTwig p with V (p) ∩ V (P ′) 6= ∅ and E(p) ∩E(P ′) = ∅ do
7: ifH.find(P ′ ∪ p) 6= ∅ then
8: H.update(P ′ ∪ p,D′ ∪ {p}, cost(D′ ∪ {p}, P ));
9: elseH.push((P ′ ∪ p,D′ ∪ {p}, cost(D′ ∪ {p}, P )));
10: (P ′,D′, cost(D′, P ))← H.pop();
11: returnD′;

matches of any connected pattern graph P with m edges and n
nodes, according to Eq. 4, we have:

card(m,n) = (2M)m/N2m−n (8)

In the dynamic algorithm, the initial state is ∆cost(Pi, 0, 0) = 0,
and according to Eq. 3, the transaction function is formulated as:

∆cost(Pi,∆m,∆n) = min{∆cost(Pi,∆m− a,∆n− b)
+ 3× card(|E(Pi)|+ ∆m, |V (Pi)|+ ∆n) + card(a, b)

+M | ∀1 ≤ a ≤ 2, 0 ≤ b ≤ a, a ≤ ∆m, b ≤ ∆n}
The conditions 1 ≤ a ≤ 2 and 0 ≤ b ≤ a are required to guarantee
that we join a TwinTwig each time. Accordingly, cost(Di, P ) can
be calculated as:

cost(Di, P ) = cost(Di)
+ ∆cost(Pi, |E(P )| − |E(Pi)|, |V (P )| − |V (Pi|)

(9)

Note that ∆cost(Pi,∆m,∆n) is only dependent on |E(Pi)| and
|V (Pi)|, thus we can denote ∆cost( Pi, ∆m, ∆n) of any Pi as:

∆cost(m′, n′,∆m,∆n)

where m′ = |E(Pi)| and n′ = |V (Pi)|. As a result, given a
data graph G, we can precompute ∆cost(m′, n′,∆m,∆n) for all
possiblem′, n′, ∆m, and ∆n, given that ∆cost(m′, n′,∆m,∆n)
is query independent. The time complexity and space complexity
for the precomputation are both O((m · n)2), where m and n are
the upper bounds on m′ and n′ respectively. In such a way, given
any Di and P , suppose cost(Di) is computed, then cost(Di, P )
can be computed in O(1) time.
The Algorithm. The A* algorithm to compute the optimal decom-
position is shown in Algorithm 2. Let H be a heap in which each
entry has the form (P ′,D′, cost(D′, P )), where P ′ is a partial pat-
tern andD′ is the corresponding partial TwinTwig decomposition.
The top entry in H is a pattern decomposition D′ with the mini-
mum cost(D′, P ). The algorithm follows a typical A* framework
that (1) iteratively pops the minimum entry (line 4 and line 10), (2)
expands the entry with one TwinTwig (line 6), and (3) updates the
new entry if the corresponding partial pattern is already in H and
current cost is smaller than the existing one (line 7-8), or (4) pushes
the new entry into H if the corresponding partial pattern is not in
H (line 9). The algorithm stops when the popped partial pattern is
the pattern graph P (line 5) and returns the last popped D′ as the
optimal TwinTwig decomposition (line 11).

Lemma 5.3: The space complexity and time complexity of Algo-
rithm 2 are O(2m) and O(d · m · 2m) respectively, where d =
maxv∈V (P ) d(v). 2

Proof Sketch: We first prove the space complexity. Each entry
(P ′,D′, cost(D′, P )) inH is uniquely identified by the partial pat-
tern P ′, and there are at most 2m partial patterns, which consumes
at mostO(2m) space. Note that each P ′ andD′ can be stored using
constant space by only keeping the last TwinTwig p that generates
P ′ and D′, and a link to the entry identified by P ′ − p.

Next we prove the time complexity. Let s be the possible number
of TwinTwigs in P , we have:

s = Σv∈V (P )d(v)2 ≤ Σv∈V (P )d(v)× d = 2m× d.

979



When an entry is popped out from H, it can be expanded at most
s times. Using a Fibonacci heap, pop works in log(|H|) time, and
update and push both work in O(1) time. Thus the overall time
complexity is:

O(2m ·(s+log(|H|))) = O(2m ·(s+log(2m))) = O(d·m·2m)2

Discussion. In practice, the processing time for Algorithm 2 is
much smaller than O(d · m · 2m) since H only keeps connected
subgraphs of P that can potentially result in the optimal solution.

5.4 Symmetry Breaking
Graph automorphism is also known as graph symmetry [12, 16].

In this subsection, we show how to use symmetry-breaking to re-
move the assumption that the pattern graph P has no non-trivial
automorphism. When |A(P )| > 1, by directly applying Algo-
rithm 1, each enumerated subgraph will be duplicated for |A(P )|
times. The primary goal is to effectively prevent duplicates (i.e.,
a subgraph of a data graph will not be enumerated twice) while
not missing results. For this purpose, we implemented the tech-
niques in [16] that ensures 1) no duplicates are generated while
enumerating, and 2) no missing results. Below we provide a brief
description.

We assume that there is a total order (defined by ≺ ) among
all nodes in the data graph G. The symmetry-breaking paradigm is
performed by assigning a partial order (defined by< ) among some
pairs of nodes in the pattern graph P . The algorithm to compute the
partial order for symmetry-breaking has been introduced in details
in [16].

Given a partial order in P , a match is redefined from Defini-
ton 2.1 by adding a new order preservation constraint, that is, for
any pair of nodes vi ∈ V (P ) and vj ∈ V (P ), if vi < vj , then f(vi)
≺ f(vj).

Algorithm 1 can be extended to handle the partial order as fol-
lows: In the mapi phase, when computing R(pi) (line 9, line 16),
we make sure that each match satisfies the order preservation con-
straint. In the reducei phase, in line 21, we only output those f ∪h
that satisfy the order preservation constraint. In Section 6.1, we
will discuss how to use the partial order to further optimize pattern
decomposition.

6. OPTIMIZATION STRATEGIES
In this section, we discuss three optimization strategies to further

improve our subgraph enumeration algorithm, namely, order-aware
cost reduction, workload skew reduction, and early filtering.

6.1 Order-aware Cost Reduction
In this subsection, we discuss how to make use of the partial

order to further reduce the computational cost. We first consider a
motivating example: Let the pattern graph P be a triangle of three
nodes v1, v2, and v3, with v1 < v2 < v3 for symmetry-breaking.
By TwinTwig decomposition, P is decomposed into D = {p, e},
where p is a two-edge TwinTwig, and e is a single edge. According
to Eq. 1, we can derive cost(D) = 3|R(P )|+ |R(p)|+ 2M . Since
|R(P )| andM are fixed, cost(D) is only dependent on pwhich has
3 choices: p1 = {(v1, v2), (v1, v3)}, p2 = {(v1, v2), (v2, v3)},
and p3 = {(v1, v3), (v2, v3)}. Let the data graph G be a star with
a root node r and N − 1 leaf nodes. Obviously, in such a case
|R(P )| = 0. Consider the following 3 cases C1, C2 and C3:
• C1: r has the largest order in V (G). In this case, |R(p1)| =
|R(p2)| = 0 and |R(p3)| = Θ(N2).
• C2: r has the smallest order in V (G). In this case, |R(p1)| =

Θ(N2) and |R(p2)| = |R(p3)| = 0.
• C3: r has the median order in V (G). In this case, |R(p1)| =
|R(p2)| = |R(p3)| = Θ(N2).

�

�

�

�
�

�

�

�

� � � �

� � � �< < <

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�
�

�

�

�

�

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�
�

�
�

�

�

�

�

�

Figure 3: Order-Aware Decomposition

In both C1 and C2, we can find a p with |R(p)| = 0 which is
optimal. This extreme example motivates us to link the order of
nodes in V (G) to their degrees. Specifically, we assign a new total
order of nodes in V (G) by redefining the operator ≺ as follows:
Definition 6.1: (Operator ≺) For any two nodes ui and uj in
V (G), ui ≺ uj if and only if one of the two conditions holds:
• d(ui) < d(uj),
• d(ui) = d(uj) and id(ui) < id(uj).

Where id(u) is the unique identity of node u (∈ V (G)). Obviously,
the operator ≺ specifies a total order for nodes in V (G). 2

Given the new total order for V (G), for any u ∈ V (G), we
let N+(u) = {u′ | u′ ∈ N (u), u ≺ u′} and N−(u) = {u′ |
u′ ∈ N (u), u′ ≺ u}. We then define d+(u) = |N+(u)| and
d−(u) = |N−(u)|, and d+

max = maxu∈V (G) d
+(u) and d−max =

maxu∈V (G) d
−(u). For a two-edge TwinTwig p = {(v, v1), (v,

v2)}, we consider the following three types of orders:
• T1: v < v1 < v2 or v < v2 < v1;
• T2: v1 < v < v2 or v2 < v < v1;
• T3: v1 < v2 < v or v2 < v1 < v.

Let pT1 , pT2 , and pT3 be TwinTwigs of types T1, T2, and T3 re-
spectively. We have the following results:
• |R(pT1)| = O(Σu∈V (G)(d

+(u))2) = O(α ·M);
• |R(pT2)| = O(Σu∈V (G)(d

+(u) · d−(u))) = O(d+
max ·M);

• |R(pT3)| = O(Σu∈V (G)(d
−(u))2) = O(d−max ·M).

Where α is the arboricity of the graph G and α ≤ d+
max ≤ d−max

according to [8]. Thus, when selecting TwinTwigs for joining, pT1

is preferable to pT2 , followed by pT3 . We give an example below
to show the three types of TwinTwigs.
Example 6.1: Fig. 3 shows a 4-clique pattern graph P with order
v1 < v2 < v3 < v4, and two decomposition plans D1 and D2,
both of which are strong TwinTwig decompositions. However,D1

contains two pT1s and one pT2 , and D2 contains two pT2s and one
pT3 . Obviously, D1 is better than D2. 2

Order-aware TwinTwig Decomposition. We discuss how to mod-
ify Algorithm 2 for TwinTwig decomposition by taking the partial
order into consideration. Recall that Algorithm 2 only depends on
the cost function cost(Di, P ) (Eq. 9) for any partial TwinTwig de-
composition Di, and cost(Di, P ) is calculated based on cost(Di)
and ∆cost(Pi,∆m,∆n), both of which are originated from Eq. 1.
Thus, we only need to reestimate |R(pi)| and |R(Pi)| for any pi
and partial pattern Pi by taking the partial order into consideration.
(Reestimate |R(pi)|): Let pi = {(v, v1), (v, v2)}. In order to cal-
culate |R(pi)|, we precompute |R(pT1)|, |R(pT2)|, and |R(pT3)|.
If pi only contains 1 edge, then |R(pi)| = M ; otherwise, |R(pi)|
can be calculated from |R(pT1)|, |R(pT2)|, and |R(pT3)| depend-
ing on the partial orders defined on V (pi). For instance, if the
partial order is only defined on one pair v < v1 in pi, then |R(pi)|
can be calculated as 2 × |R(pT1)| + |R(pT2)|.
(Reestimate |R(Pi)|): |R(Pi)| is hard to calculate when the par-

tial order is involved, however, after each round of join, we try
to make use of the updated information to better estimate |R(Pi)|
at runtime. Specifically, after the j-th round of join, suppose the

980



current partial pattern is Pj , and |R(Pj)| has been accurately cal-
culated. Then for any possible future partial pattern Pi which is a
supergraph of Pj , according to Eq. 5, |R(Pi)| can be calculated as:

|R(Pi)| = |R(Pj)|×(
2M

N2
)|E(Pi)|−|E(Pj)|×N |V (Pi)|−|V (Pj)| (10)

Based on the reestimating technique, Algorithm 1 is modified as
follows: In the first round, it computes the optimal decomposition
plan using the A* algorithm (Algorithm 2) directly, and then pro-
cesses the first MapReduce round accordingly. In the following
round i (i > 1), before processing MapReduce, the algorithm re-
computes the optimal decomposition using the A* algorithm with
the reestimating technique where each |R(Pj)| for 0 ≤ j < i is
replaced by the accurate value. In this way, the partial order is in-
volved in Algorithm 1.

6.2 Workload Skew Reduction
For many real graphs, it is very common that a small number of

nodes in a graph have very high degrees. Given a data graph G,
we denote the high-degree nodes by V H (e.g., nodes with degree
larger than

√
M ). Recall thatG is stored in a distributed file system

using adjacency lists in the form (u;N (u)) for each u ∈ V (G).
For a two-edge TwinTwig p, evaluating p on the adjacency list
(u;N (u)) will generate Θ(d(u)2) matches, rendering very high
workloads in the machines that are processing high-degree nodes.
This motivates us to consider the workload balancing issue. In the
following, we discuss our strategy to reduce the workload skew.

Suppose there are λ machines in the system, for any u ∈ V H ,
instead of using (u,N (u)), we divideN (u) uniformly into β parti-
tions: N (u) = {N1(u),N2(u), . . . ,Nβ(u)}. Note that we cannot
simply distribute the β partitions into the λ machines. Because if
so, given a TwinTwig p = {(v, v1), (v, v2)}, the match f = (u,
u1, u2) ∈ R(p) with u1 ∈ Ni(u) and u2 ∈ Nj(u) (i 6= j) cannot
be generated by any machine. To handle this, we create β×(β+1)

2
partitions in the following two sets S1(u) and S2(u), and distribute
the partitions uniformly into the λ machines.
• S1(u) = {(u;Ni(u))|1 ≤ i ≤ β};
• S2(u) = {(u; (Ni(u),Nj(u)))|1 ≤ i < j ≤ β}.

With S1(u) and S2(u), when evaluating a TwinTwig with one
edge, only S1(u) needs to be used; and when evaluating a TwinTwig
with two edges, both S1(u) and S2(u) need to be used. By setting
β = Θ(

√
λ), the number of partitions becomes Θ(λ). As a re-

sult, each machine just keeps a constant number of partitions in
S1(u) ∪ S2(u) uniformly. It is easy to verify that the total space
used to keep S1(u) and S2(u) is Θ(

√
λ · |N (u)|).

6.3 Early Filtering
Recall that Algorithm 1 only requires very small memory in both

mapi and reducei. This motivates us to make use of the remain-
ing memory for further optimization. Specifically, we use bloom
filter [6] to prune the invalid partial matches in early stages of the
algorithm to reduce the cost. Generally speaking, given a set S and
a memory budgetM , a bloom filter for S denoted as G(S), can
be created using no more thanM memory such that given any el-
ement e, it can answer whether e ∈ S with no false negatives and
a small probability of false positives denoted as fp . There is a
trade-off between the size of the memoryM and the probability of
false positives fp.

In our approach, we create a bloom filter G(E(G)) in every ma-
chine of the system, and we use the bloom filter G(E(G)) for the
following two types of early filtering mechanisms in Algorithm 1:
• (Map Side Filtering): When evaluatingR(pi) for any TwinTwig
pi = {(v, v1), (v, v2)} in the map phase, if (v1, v2) ∈ E(P ),
then any match (u, u1, u2) with (u1, u2) /∈ E(G) is pruned by
G(E(G)) with probability 1− fp.

• (Reduce Side Filtering): When evaluating R(Pi) for any par-
tial pattern Pi in the reduce phase, for any (v1, v2) ∈ E(P )
− E(Pi) with v1 ∈ V (Pi) and v2 ∈ V (Pi), any partial match
f ∈ R(Pi) with (f(v1), f(v2)) /∈E(G) is pruned by G(E(G))
with probability 1− fp.

Obviously, early filtering does not affect the correctness of Algo-
rithm 1 since only invalid partial patterns are pruned by the bloom
filter G(E(G)). Note that early filtering can be applied for all the
three algorithms EdgeJoin, StarJoin, and TwinTwigJoin.
Example 6.2: Suppose the pattern graph P is a triangle of three
nodes. We can decompose P into D = {p, e} where p is a two-
edge TwinTwig and e is a single edge. According to Eq. 1, we
have cost(D) = 3|R(P )|+ |R(p)|+ 2M . Without early filtering,
it is possible that |R(p)| dominates the whole cost with |R(p)| >>
|R(P )| and |R(p)| >> M . Suppose we use G(E(G)) with fp =
0.1, then R(p) is filtered in the map phase with only 0.1 ratio of
false positives, i.e., |R(p)| = 1.1|R(P )|, as a result |cost(D)| =
Θ(|R(P )|+M), which is optimal since M is the size of the input
and |R(P )| is the size of the final output. 2

7. HANDLING POWER-LAW GRAPHS
We model the data graphG ofN nodes andM edges as a power-

law random graph according to [4]. We consider a non-increasing
degree sequence {w1, w2, . . . , wN} that satisfies the power-law
distribution, that is, the number of nodes with a certain degree x
is proportional to x−β , where β is the power-law exponent. For
any pair of nodes ui and uj in a power-law random graph, the
edge between ui and uj is independently assigned with probability
Pi,j = wiwjρ, where ρ = 1/ΣNi=1wi = 1/2M . It is easy to verify
that the expected degree of ui is equal to wi for any 1 ≤ i ≤ N .
We define the average degree as d = (ΣNi=1wi)/N , and the max-
imum degree as dmax. Note that we only consider 2 < β < 3 in
this paper, as many real graphs have the power-law exponent in this
range [9, 10]. We engage the small-degree assumption A4 in this
model as follows:

A4 : dmax ≤
√
N

Though this assumption may not be satisfied in some real graphs,
in the experiment, we will show the intermediate results from the
vertices with degree ≤

√
N play a dominant role in the total inter-

mediate results.
Instance Optimality. In order to show the instance optimality, we
will prove that Theorem 5.1 holds in a power-law random graph
under the small-degree assumption A4, following the same proof
structure as that in the proof of Theorem 5.1. Similarly, we di-
vide the proof into the following two parts: In part 1, we prove that
cost1(D) ≤ Θ(cost1(D′)), and in part 2, we prove that cost2(D) =
Θ(cost2(D′)). In order to prove part 2, we still compare Eq. 6 and
Eq. 7, and then prove the two cases, namely, S1: the size of the
results decreases after joining a strong TwinTwig; S2: the size of
the results increases after joining a non-strong TwinTwig. The de-
tailed proof is as follows.
(Part 1): Let p be a two-edge TwinTwig, we have:

cost1(Di) = Θ(|R(p)| · t′i) and,

cost1({p′i}) = Θ(|R(p)| · E[d(u)t
′
i−2])

≥ Θ(|R(p)| · E[d(u)]t
′
i−2) = Θ(|R(p)| · dt

′
i−2)

where E[d(u)] is the expected degree for an arbitrary node u in
V (G). Given that d ≥ 2 and t′i ≥ 3, it is easy to see that cost1(Di)
≤ cost1({p′i}) for each 0 ≤ i ≤ t′, which results in cost1(D) ≤
Θ(cost1(D′)). Therefore, part 1 is proved.
(Part 2): For a certain pattern decomposition, we consider gen-

erating R(Pi) using R(Pi−1) and R(pi). Suppose γ is the ex-

981



0

0.1

0.2

0.3

0.4

0.5

0.6

10K 100K 1M 10M 100M

γ
β = 2.1

β = 2.2

β = 2.3

β = 2.5

β = 2.9

(a) Vary N : d = 5

0

0.1

0.2

0.3

0.4

0.5

0.6

10k 100k 1M 10M 100M

γ

β = 2.1

β = 2.2

β = 2.3

β = 2.5

β = 2.9

(b) Vary N : d = 10

0

0.1

0.2

0.3

0.4

0.5

1M 2M 4M 8M 16M

γ

β = 2.1

β = 2.2

β = 2.3

β = 2.5

β = 2.9

(c) Vary N : d = 100

0.4

0.5

0.6

1M 2M 4M 8M 16M

γ

β = 2.1

β = 2.2

β = 2.3

β = 2.5

β = 2.9

(d) Vary N : d = 500

Figure 4: The values of γ in different parameter combinations
pected number of matches in R(Pi) that are generated from a cer-
tain match in R(Pi−1), we have:

|R(Pi)| = γ|R(Pi−1)| (11)

The value of γ depends on how pi is joined with Pi−1. Suppose
pi = {(v, v′), (v, v′′)}, in order to prove part 2, we need to prove
the following S1 and S2 accordingly.
(S1): We prove that γ < 1 when pi is a strong TwinTwig with
v′ ∈ V (Pi−1) and v′′ ∈ V (Pi−1). When v ∈ V (Pi−1), γ < 1
can be easily proved since no new node is added into V (Pi). When
v /∈ V (Pi−1), suppose u′ and u′′ are arbitrary matches of v′ and
v′′ respectively, we have:

γ = E[
∑

u∈V (G)
d(u′)d(u)ρ× d(u′′)d(u)ρ]

= E[d(u′)d(u′′)]× ρ2
∑N

i=1
w2
i

In order to calculate γ, we simplify the calculation of E[d(u′)d(u′′)]
by only considering the relationship between u′ and u′′. There are
two cases:

First, there is no edge between v′ and v′′ in Pi−1, and we con-
sider that their matches, u′ and u′′, are independent. In this case,
E[d(u′)d(u′′)] = E[d(u′)]E[d(u′′)] = d2. We have:

γ = d2 × ρ2
∑N

i=1
w2
i =

∑N
i=1 w

2
i

N2
(12)

According to A4, wi ≤ dmax ≤
√
N , therefore, γ < d2max

N
≤ 1.

Second, there is an edge between v′ and v′′ in Pi−1. In this case,
u′ and u′′ must have an edge in the data graph. Using the Bayes
equation, we can derive the equation:
P (u′ = ui, u

′′ = uj |u′, u′′ form an edge)

=
P (u′, u′′ form an edge |u′ = ui, u

′′ = uj)× P (u′ = ui, u
′′ = uj)

P (u′, u′′ form an edge)

=
Pi,j × (1/N2)

2M/N2
= ρPi,j

As a result, we have:
E[d(u′)d(u′′)] =

∑N

i,j=1
ρPi,jwiwj

= ρ2(
∑N

i=1
w2
i

∑N

j=1
w2
j ) = ρ2(

∑N

i=1
w2
i )2

Therefore, γ can be calculated as:

γ = ρ2(
∑N

i=1
w2
i )2 × ρ2

∑N

i=1
w2
i =

(
∑N
i=1 w

2
i )3

(
∑N
i=1 wi)

4
(13)

It is hard to compute an upper bound for γ in this case. However,
we show that γ < 1 for most real-world graphs. In order to do so,
we vary β from 2.1 to 2.9, d from 5 to 500, and N from 10, 000 to
100, 000, 000. Since γ increases with dmax, we set dmax =

√
N .

With β, d,N , and dmax, we can generatewi(1 ≤ i ≤ N) via [37],
and thus γ can be calculated via Eq. 13. The results are shown in
Fig. 4, in which we can see that γ < 1 for all practical cases.
(S2): We prove that γ > 1 when pi is a non-strong TwinTwig
with u ∈ V (Pi−1), u′ /∈ V (Pi−1), and u′′ /∈ V (Pi−1). In this
situation, we have:
γ = E[

∑
u′,u′′∈V (G)

d(u)d(u′)ρ× d(u)d(u′′)ρ]

= E[d(u)2]ρ2
∑N

i,j=1
wiwj = E[d(u)2] =

∑N

i=1
w2
i /N

(14)

Obviously, γ ≥ E[d(u)]2 = d2 > 1. Now according to S1 and S2,
part 2 is proved when pi is a two-edge TwinTwig. When pi only
contains one edge, part 2 can be proved similarly.

According to Part 1 and Part 2, the instance optimality of the
TwinTwig decomposition holds for a power-law random graph.
Optimal Decomposition. We show how to compute the optimal
TwinTwig decomposition using A* for power-law random graph.
Recall that Algorithm 2 is independent of the graph model. It is
only required to compute cost(Di, P ), which is a cost lower bound
for any TwinTwig decomposition of P expanded from Di. In or-
der to do so, we can simply set cost(Di, P ) = cost(Di), where
cost(Di) can be computed using Eq. 3, which depends on |R(Pi)|
and |R(pi)|. Here, |R(pi)| can be precomputed, and |R(Pi)| can
be computed recursively using Eq. 11, where the value of each γ
depends on how pi is joined with Pi−1. Three typical cases for
calculating γ are given in Eq. 12, Eq. 13, and Eq. 14, respectively.
In this way, Algorithm 2 can be adopted to compute the optimal
TwinTwig decomposition for the power-law random graph. The
space and time complexities of the algorithm are the same as those
shown in Lemma 5.3.
Optimization. In the three optimization strategies proposed in Sec-
tion 6, workload skew reduction and early filtering are independent
to the graph model. In order-aware cost reduction, reestimating
|R(pi)| is also independent to the graph model. Therefore, we only
discuss how to reestimate |R(Pi)| in the power-law random graph.
In order to do so, suppose for a partial pattern Pj with j < i,
|R(Pj)| has been accurately calculated, then for any future partial
pattern Pi that is a supergraph of Pj , |R(Pi)| can be calculated us-
ing Eq. 11 by considering adding TwinTwigs into Pj iteratively.
Here how to compute γ after joining specific TwinTwigs is dis-
cussed in the above paragraph.

8. PERFORMANCE STUDIES
In this section, we show our experimental results. We deploy a

cluster of up to 15 computing nodes including one master node and
14 slave nodes and we use 10 slave nodes by default. Each of the
computing nodes has one 3.47GHz Intel Xeon CPU with 6 cores
and 12GB memory running 64-bit Ubuntu Linux. We allocate a
JVM heap space of 1024MB for each mapper and 2048MB for each
reducer, and we allow at most 3 mappers and 3 reducers running
concurrently in each machine. The block size in HDFS is set to be
128MB, the data replication factor of HDFS is set to be 3, and the
I/O sort size is set to be 512MB.

Datasets. We use five real-world data graphs (see Table 1) for
testing. Among them, sk, lj, orkut, and fs are downloaded from
SNAP (http://snap.stanford.edu), yt is downloaded from KONECT
(http://konect.uni-koblenz.de), and uk is downloaded from WEB
(http://law.di.unimi.it).

Algorithms. We implement and compare seven algorithms:

• Edge: EdgeJoin (Section 4) with early filtering (Section 6.3).
• Mul: MultiwayJoin (Section 4).
• Star: StarJoin (Section 4) with early filtering (Section 6.3).
• TTBS: TwinTwigJoin (Section 5) without optimization.
• TTOA: TTBS + order-aware cost reduction (Section 6.1).
• TTLB: TTOA + workload skew reduction (Section 6.2).
• TT: TTLB + early filtering (Section 6.3).

982



dataset name N = |V | M = |E|
as-skitter sk 1,696,415 11,095,298
youtube yt 3,223,589 12,223,774

live-journal lj 4,847,571 42,851,237
com-orkut orkut 3,072,441 117,185,083
uk-2002 uk 18,520,486 261,787,258
friendster fs 65,608,366 1,806,067,135

Table 1: Datasets used in Experiments

�

�

�

�
�
�

�
�

� � �

� �

� � �

� �

< <

<

�

�

�

�
�
�

� � �

� � �< <

�

�

�

�
�
�

�
�

� � � �

� � � �

�

�

� � � �

� � � �

< <

< <

�

�

�

�
�
�

�
�

� �

� �

� �

� �

<

<

�

�

�

�

�
�

�
�

�
�

� � �

� � �

� � �

� � �

< <

< <

�

�
�

�
�

�
�

�
�

�

Figure 5: Queries
All algorithms are implemented using Hadoop (version 1.2.1) with
Java 1.6. Note that the early filtering strategy (Section 6.3) is also
applied in Edge and Star, and all the optimization strategies intro-
duced in [1] are applied in Mul. We set the maximum running time
to be 12 hours. If a test does not stop in the time limit, or fails due to
out-of-memory exception, we denote the running time as INF. The
time for computing the join plan using Algorithm 2 for TwinTwig
decomposition is less than one second for all test cases, thus it is
omitted in the total processing time.
Queries. The five queries denoted by q1 to q5 are illustrated in
Fig. 5 with edge number varying from 3 to 10 and node number
varying from 3 to 5. We show the vertex order for symmetry break-
ing under each query graph. Here, we only consider n ≤ 5 for fair
comparison, because when n is larger than 5, except for TT, all
other algorithms cannot terminate in the time limit in most cases.
Exp-1: Vary Algorithms. In this experiment, we evaluate the per-
formance of all seven algorithms using two query graphs q3 and q4
as representatives on the two datasets yt and lj. The experimental
results are shown in Fig. 6. We also list the size of the output (see
Table 2) generated by mappers and reducers in each round when
we process q4 on lj. Here we use “NA” to denote that the algorithm
crashes due to out-of-memory exceptions, and use “-” to denote that
no extra MapReduce round is needed. Note that we only present
the results of the first three rounds for Edge which actually finishes
in five rounds. The sizes of the output produced by TTLB and
TTOA are the same, and thus we only show one of them. When
evaluating q3 on yt, we find that without early filtering, none of the
algorithms can terminate in the time limit because yt contains a lot
of high-degree nodes, thus we apply early filtering for both TTBS
and TTOA in this case. The experimental results support our moti-
vation to minimize the cost discussed in Section 5.2, as lower cost
generally results in better performance.

As shown in Fig. 6, Mul fails in evaluating q3 on yt and lj, and
q4 on lj due to out-of-memory exceptions. We analyze the reason
below. Take the evaluation of q4 on lj for example. Mul outputs 0.9
billion data, which is approximately 20 times larger than the size of
the data graph. Since we need to use auxiliary data structures such
as hash tables to index these data, each of which is represented by
around 20 integers, leading to a 70GB memory consumption as a
whole. However, we only configure 60GB memory for all reducers
in the cluster (2GB per reducer for 30 reducers). Therefore, Mul
runs out of memory.
Edge is slow and cannot finish in the time limit when evaluating

q3 on both yt and lj. This is because Edge often generates numer-
ous partial results in early stages even after filtering. As shown in

m/r Edge Mul Star TTBS TTLB TT

map1 0.09 0.90 10.20 2.77 1.36 0.57
reduce1 0.29 NA 9.93 16.34 14.9 9.93
map2 0.33 - 9.98 21.55 16.27 10.22
reduce2 9.94 - 9.93 9.93 9.93 9.93
map3 9.98 - - - - -
reduce3 9.94 - - - - -

total 90.29 NA 40.07 50.59 42.49 30.67

Table 2: Size of Output for processing q4 on lj (in billions)

Table 2, Edge has to deal with over 9.9 billion data from the third
round, yet there are two more rounds to complete the task, in which
more partial results are generated.

In most cases, Star is slower than TTBS, which demonstrates
the instance optimality of TwinTwig decomposition in Theorem 5.1.
However, TTBS spends much longer time than Star when evaluat-
ing q4 on yt. This is because yt contains many high-degree nodes,
and TTBS (without any optimization) can generate large number
of partial results, while Star can avoid this issue by applying the
early filtering strategy.

TTOA performs better than TTBS in all cases, which verifies
the effectiveness of the order-aware cost reduction strategy, and
TTLB outperforms TTOA in all cases, which is consistent with
the analysis in Section 6.2. TT consistently outperforms all other
algorithms for all test cases. Comparing TT to TTLB, we ob-
serve from Table 2 that TTLB generates 10 billion more data than
TT, which shows the effectiveness of early filtering. In the rest
of the experiments, we exclude the results of TTBS, TTOA, and
TTLB, since their relative performances are similar to those shown
in Fig. 6. Therefore, we focus on comparing Edge, Star, and Mul
with our algorithm TT.

Exp-2: Vary Datasets. In this experiment, we test the algorithms
on all the five datasets shown in Table 1 and show our results for
query q1 and q4 for algorithms Edge, Mul, Star, and TT.

Fig. 7(a) shows the testing results for query q1. Note that for q1,
star decomposition is the same as TwinTwig decomposition, hence
Star has the same performance as TT, which outperforms Edge
and Mul for over an order of magnitude. Generally, Mul performs
slightly worse than Edge, except that Mul spends much longer time
on orkut. This is because orkut contains too many edges, which
results in a large number of edge duplications in Mul. Edge and
Mul cannot handle large data graphs uk and fs.

The testing results for q4 are shown in Fig. 7(b). TT is 5 times
faster than Star on orkut, and is only 2 times faster than Star on
lj. This is because that the larger the average degree of the data
graph is, the better performance TT has over Star. The average
degree of orkut, which is 76, is larger than that of lj, which is 28.
Hence, such an experimental result is expected. Another interesting
observation is that, when evaluating q4, it takes longer time on uk
than fs, while uk is much smaller than fs. The reason is that, uk is
a web graph, which contains a lot of large cliques, since webpages
in the same domain tend to link each other. On the contrary, fs is
a social network, which contains fewer large cliques than a web
graph.

Exp-3: Vary Queries. We evaluate all queries q1 to q5 in Fig. 5.
The results are illustrated in Fig. 8(a) to Fig. 8(e) respectively. Note
that Star is the same as TT when processing q1 and q2 since no
node in q1 and q2 has degree larger than 2. Generally, the more
complex the pattern graph is, the more time it takes to evaluate
the query for all algorithms. TT performs the best in all test cases.
Note that all the tests are conducted on yt and lj except for q5, which
is conducted on yt and sk. The reason is that, the number of results

983



0

100

200

300

400

500

INF

yt lj

R
un

ni
ng

 T
im

e 
(m

in
) Edge

Mul
Star

TTBS
TTOA
TTLB

TT

(a) Query q3

0

100

200

300

INF

yt lj

R
un

ni
ng

 T
im

e 
(m

in
)

0.923.173.214.22

Edge
Mul
Star

TTBS
TTOA
TTLB

TT

(b) Query q4
Figure 6: Vary Algorithms

0

10

20

30

40

INF

yt sk lj orkut uk fs

R
un

ni
ng

 T
im

e 
(m

in
)

0.35 0.45

Edge
Mul
Star

TT

(a) Query q1

0
100
200
300
400
500

INF

yt sk lj orkut uk fs

R
un

ni
ng

 T
im

e 
(m

in
)

4.22
0.92

5.13
1.65

Edge
Mul
Star

TT

(b) Query q4
Figure 7: Vary Datasets

0

1

2

3

4

5

6

yt lj

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(a) Query q1

0

10

20

30

INF

yt lj

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(b) Query q2

0

100

200

300

400

INF

yt lj

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(c) Query q3

0
50

100

200

300

INF

yt lj

R
u
n
n
in

g
 T

im
e
 (

m
in

)

4.22 0.92

Edge
Mul
Star

TT

(d) Query q4

0

10

20

30

INF

yt sk

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(e) Query q5
Figure 8: Vary Queries

0

50

100

INF

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e 
(m

in
) Edge

Mul
TT

(a) Query q1 on fs

0

50

100

200

INF

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e 
(m

in
)

Edge
Mul
Star

TT

(b) Query q4 on fs
Figure 9: Vary Graph Size

0

50

100

200

300

INF

11 22 33 44 55

R
un

ni
ng

 T
im

e 
(m

in
)

Edge
Mul
TT

(a) Query q1 on fs

0
100

200

300

400

500

INF

11 22 33 44 55

R
un

ni
ng

 T
im

e 
(m

in
)

Edge
Mul
Star

TT

(b) Query q4 on fs
Figure 10: Vary Averge Degree

of q5 on lj is over 400 billion, which surpasses the processing ability
of our current cluster. However, we can scale to handle such a case
by deploying more slave nodes.

Exp-4: Vary Graph Size. We extract subgraphs of 20%, 40%,
60%, 80%, and 100% nodes from the original graph of fs, and test
the algorithms using queries q1 and q4. The results are shown in
Fig. 9(a) and Fig. 9(b) respectively. We omit the curve of Star in
Fig. 9(a) since Star is the same as TT when evaluating q1. When
the graph size increases, the running time of Edge, Mul and Star
grow much sharper than TT. When the graph size is over 80%,
only TT can finish in the time limit. The testing results show the
high scalability of our TT algorithm.

Exp-5: Vary Average Degree. We fix the set of nodes and ran-
domly sample 20%, 40%, 60%, 80% and 100% edges from the
original graph fs to generate graphs with average degrees from 11
to 55, and test the algorithms using queries q1 and q4. The results
are shown in Fig. 10(a) and Fig. 10(b) respectively. We omit the
curve of Star in Fig. 10(a) since Star is the same as TT when eval-
uating q1. Edge and Mul fail at the very beginning. In Fig. 10(b),
TT is 3, 5, 8 and > 9 times faster than Star when the average
degree varies from 11 to 55, which shows the advantage of TT
for dense data graphs. The trend is consistent with our theoretical
analysis in Section 5.

Exp-6: Vary Slave Nodes. In this experiment, we vary the num-
ber of slave nodes from 6 to 14, and evaluate our algorithms on
the lj and fs dataset using query q4. The testing results are shown
in Fig. 11(a) and Fig. 11(b) respectively. As shown in Fig. 11(a),
when the number of slave nodes increases, the processing time of
all algorithms decreases, and the running time drops more sharply
when the number of slave nodes is small. This is because that
the increment of slave nodes, on the one hand, contributes to the
performance improvement as workloads are more largely shared,
on the other hand, introduces extra communication cost as more
data transmissions are involved among slave nodes. As shown in
Fig. 11(b), TT is the only algorithm that can compute the 4-clique
on fs even when 14 slave nodes are deployed. We also make the
tests using other queries when varying slave nodes. The curves are
similar to those in Fig. 10 thus are omitted due to lack of space.

0

100

200

300

400

INF

6 8 10 12 14

R
un

ni
ng

 T
im

e 
(m

in
)

Edge
Mul
Star

TT

(a) Query q4 on lj
0

100

200

300

INF

6 8 10 12 14

R
un

ni
ng

 T
im

e 
(m

in
)

Edge
Mul
Star

TT

(b) Query q4 on fs
Figure 11: Vary Slave Nodes

Exp-7: Small-Degree Assumption. In this experiment, we show
that the small-degree assumption A4 is useful in practice. We call
a vertex u with d(u) >

√
N a high-degree vertex. For a data graph

G, we create G∗ by iteratively removing some edges of the high-
degree vertices randomly until every vertex u in G has d(u) ≤√
N . We denote C and C∗ the cost (by Eq. 1) when evaluating

a specific pattern in the graph G and G∗, respectively. And we
denote α = C∗/C to show the ratio of the cost that is only related
to G∗ (in which our algorithm can guarantee instance optimality).
In table Table 3, we show the value of α when evaluating q1 and q4
in the datasets sk, yt and lj, respectively. As we can see, the cost in
G∗ are actually the dominate part.

queries sk yt lj
q1 0.740 0.784 0.971
q4 0.796 0.828 0.970

Table 3: The value of α

9. RELATED WORK
MapReduce Framework. MapReduce, introduced by Google, has
attracted plenty of attentions is academia. A lot of researches focus
on optimizing MapReduce framework. For example, cost analysis
of MapReduce is given by Afrati et al. [2]. MapReduce classes are
discussed by Karloff et al. [21] and Tao et al. [35]. Some other
researches focus on solving specific queries in MapReduce. For
example, Theta joins in MapReduce are discussed by Zhang et al.
[41]. Multiway joins are optimized by Afrati et al. [3]. Duplication
detection using MapReduce is proposed by Wang et al. [38].
Subgraph Matching. Most subgraph matching approaches work
in a label-aware context, where vertices (and/or edges) are assigned

984



labels in both data graph and query graph. For example, node labels
in the neighborhood are utilized to filter unexpected candidates in
[18] and [42]. In [17], the authors observe that a good matching
order can significantly improve the performance of subgraph query.
Inexact subgraph matching is also studied in [22], and [14]. Lee et
al. [23] provide an in-depth comparison of subgraph isomorphism
algorithms. Subgraph enumeration in a centralized environment is
also studied in exact and approximate settings. The exact solutions
including [8] and [16] are not scalable to handle large data graphs.
The approximate solutions [5, 15, 43] only estimate the count rather
than locate all the subgraph instances.
Subgraph Matching in Cloud. Due to the NP-hardness of the
subgraph isomorphism problem, a lot of recent researches focus on
solving subgraph matching in cloud. Zhao et al. [43] introduce a
parallel color coding method for subgraph counting. Ma et al. [25]
study inexact graph pattern matching based on graph simulation in
a distributed environment. Gonzalez et al. report an experimen-
tal result on triangle counting in PowerGraph [19]. Recently, Sun
et al. [33] propose a subgraph matching algorithm to utilize node
filtering to handle labelled graphs in the Trinity memory cloud.
Subgraph Enumeration in MapReduce. MapReduce has been
shown to be scalable to handle a lot of graph related problems,
among which subgraph enumeration has attached lots of interests.
Tsourakakis et al. [36] propose an approximate triangle counting
algorithm using MapReduce. Suri et al. [34] introduce a MapRe-
duce algorithm to compute exact triangle counting. Afrati et al. [1]
propose multiway join in MapReduce to handle subgraph enumera-
tion. Plantenga [29] introduces an edge join method in MapReduce
which can be used for subgraph enumeration. Both [1] and [29]
have been introduced in details in Section 4.

10. CONCLUSIONS
In this paper, we study scalable subgraph enumeration in MapRe-

duce, considering that existing solutions for subgraph enumeration
are not scalable enough to handle large graphs. We propose a new
TwinTwigJoin algorithm based on a left-deep-join framework in
MapReduce. In the Erdös-Rényi random-graph model, we show
that under reasonable assumptions, TwinTwigJoin is instance opti-
mal in the left-deep-join framework. An A*-based solution is given
to compute the optimal join plan. We further improve our approach
using three novel optimization strategies and extend our approach
to handle the power-law random-graph model.We conduct exten-
sive performance studies on real large graphs with up to billions of
edges to demonstrate the effectiveness of our approach.
Acknowledgements. We would like to thank all the reviewers for
their dedicated work, especially we want to thank Prof. Jeffrey
D. Ullman for many insightful comments. Lu Qin is supported by
ARC DE140100999. Xuemin Lin is supported by NSFC61232006,
ARC DP120104168, ARC DP140103578, and ARC DP150102728.
Lijun Chang is supported by ARC DE150100563.

11. REFERENCES[1] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating subgraph instances
using map-reduce. In Proc. of ICDE’13, 2013.

[2] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower
bounds on the cost of a map-reduce computation. PVLDB, 6(4), 2013.

[3] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce
environment. IEEE Trans. Knowl. Data Eng., 23(9), 2011.

[4] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In
Proc. of STOC ’00, 2000.

[5] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp.
Biomolecular network motif counting and discovery by color coding. In Proc.
of ISMB’08, 2008.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7), 1970.

[7] B. Bollobás. Random graphs. Springer, 1998.
[8] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.

Comput., 14(1), 1985.

[9] F. R. K. Chung, L. Lu, and V. H. Vu. The spectra of random graphs with given
expected degrees. Internet Mathematics, 1(3), 2003.

[10] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in
empirical data. SIAM Rev., Nov. 2009.

[11] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proc. of OSDI’04, 2004.

[12] P. Eades, X. Lin, and R. Tamassia. An algorithm for drawing a hierarchical
graph. International Journal of Computational Geometry & Applications,
6(02):145–155, 1996.

[13] P. Erdos and A. Renyi. On the evolution of random graphs. In Publ. Math. Inst.
Hungary. Acad. Sci., 1960.

[14] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching: From
intractable to polynomial time. PVLDB, 3(1), 2010.

[15] M. Gonen, D. Ron, and Y. Shavitt. Counting stars and other small subgraphs in
sublinear time. In Proc. of SODA’10, 2010.

[16] J. A. Grochow and M. Kellis. Network motif discovery using subgraph
enumeration and symmetry-breaking. In Proc. of RECOMB’07, 2007.

[17] W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: Towards ultrafast and robust
subgraph isomorphism search in large graph databases. In Proc. of
SIGMOD’13, 2013.

[18] H. He and A. K. Singh. Graphs-at-a-time: Query language and access methods
for graph databases. In Proc. of SIGMOD’08, 2008.

[19] J.Gonzalez, Y.Low, H.Gu, D.Bickson, and C.Guestrin. Powergraph:distributed
graph-parallel computation on natural graphs. In Proc. of OSDI’12, 2012.

[20] S. R. Kairam, D. J. Wang, and J. Leskovec. The life and death of online groups:
Predicting group growth and longevity. In Proc. of WSDM’12, 2012.

[21] H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for
mapreduce. In Proc. of SODA’10, 2010.

[22] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema: Fast graph search with
label similarity. PVLDB, 6(3), 2013.

[23] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth comparison of
subgraph isomorphism algorithms in graph databases. PVLDB, 6(2), 2012.

[24] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of influence in a
recommendation network. In Proc. of PAKDD’06, 2006.

[25] S. Ma, Y. Cao, J. Huai, and T. Wo. Distributed graph pattern matching. In
WWW, 2012.

[26] T. Milenkovic and N. Przulj. Uncovering biological network function via
graphlet degree signatures. Cancer Inform, 6, 2008.

[27] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: Simple building blocks of complex networks. Science,
298(5594), 2002.

[28] N.Shervashidze, S.Vishwanathan, T.Petri, K.Mehlhorn, and K.Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, 2009.

[29] T. Plantenga. Inexact subgraph isomorphism in mapreduce. J. Parallel Distrib.
Comput., 73(2), 2013.

[30] N. Przulj. Biological network comparison using graphlet degree distribution.
Bioinformatics, 23(2), 2007.

[31] G. Rücker and C. Rücker. Substructure, subgraph, and walk counts as measures
of the complexity of graphs and molecules. Journal of Chemical Information
and Computer Sciences, 41(6), 2001.

[32] M. Steinbrunn, G. Moerkotte, and A. Kemper. Optimizing join orders.
Technical report, 1993.

[33] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on
billion node graphs. PVLDB, 5(9), 2012.

[34] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer.
In Proc. of WWW’11, 2011.

[35] Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce algorithms. In Proc. of
SIGMOD’13, 2013.

[36] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: Counting
triangles in massive graphs with a coin. In Proc. of KDD’09, 2009.

[37] F. Viger and M. Latapy. Efficient and simple generation of random simple
connected graphs with prescribed degree sequence. In COCOON’05, pages
440–449, Berlin, Heidelberg, 2005. Springer-Verlag.

[38] C. Wang, J. Wang, X. Lin, W. Wang, H. Wang, H. Li, W. Tian, J. Xu, and R. Li.
Mapdupreducer: detecting near duplicates over massive datasets. In Proc. of
SIGMOD’10, pages 1119–1122, 2010.

[39] J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB, 5(9),
2012.

[40] D. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 6684(393), 1998.

[41] X. Zhang, L. Chen, and M. Wang. Efficient multi-way theta-join processing
using mapreduce. PVLDB, 5(11), 2012.

[42] P. Zhao and J. Han. On graph query optimization in large networks. PVLDB,
3(1-2), 2010.

[43] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe. Subgraph enumeration
in large social contact networks using parallel color coding and streaming. In
Proc. of ICPP’10, 2010.

985


	Introduction
	Problem Definition
	Algorithm Framework
	Existing Solutions
	A New Approach
	TwinTwig Decomposition
	Cost Analysis
	Optimal Decomposition by A*
	Symmetry Breaking

	Optimization Strategies
	Order-aware Cost Reduction
	Workload Skew Reduction
	Early Filtering

	Handling Power-Law Graphs
	Performance Studies
	Related Work
	Conclusions
	References

