
Spatial Joins in Main Memory: Implementation Matters!

Darius Šidlauskas
Aarhus University
dariuss@cs.au.dk

Christian S. Jensen
Aalborg University

csj@cs.aau.dk

ABSTRACT
A recent PVLDB paper reports on experimental analyses of ten
spatial join techniques in main memory. We build on this compre-
hensive study to raise awareness of the fact that empirical running
time performance findings in main-memory settings are results of
not only the algorithms and data structures employed, but also their
implementation, which complicates the interpretation of the results.

In particular, we re-implement the worst performing technique
without changing the underlying high-level algorithm, and we then
offer evidence that the resulting re-implementation is capable of
outperforming all the other techniques. This study demonstrates
that in main memory, where no time-consuming I/O can mask vari-
ations in implementation, implementation details are very impor-
tant; and it offers a concrete illustration of how it is difficult to
make conclusions from empirical running time performance find-
ings in main-memory settings about data structures and algorithms
studied.

1. INTRODUCTION
Stated briefly, a spatial join takes two spatial data sets as argu-

ments and returns pairs of objects from the two sets that have in-
tersecting spatial extents. Spatial joins are important in a range of
applications.

Further, efficient in-memory spatial join processing is important
because of the continuously decreasing prices and increasing ca-
pacities of RAM chips, which enable single-server machines with
terabytes of main-memory storage, and because the size of raw lo-
cation data is often tiny. For example, two dimensional coordi-
nates are often encoded as two 4-byte single-precision or integer
values [2, 3, 7, 8].

Sowel et al. [7] report on a thorough experimental performance
study of ten spatial join techniques in main memory. The tech-
niques are first optimized for in-memory performance and then
studied in the same framework.

The techniques are divided into four categories, among which
we focus on the static index nested loop join category. Here, a
static index is built, and index nested loops are used to compute

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41th International Conference on
Very Large Data Bases, August 31st - September 4th, 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 1
Copyright 2014 VLDB Endowment 2150-8097/14/09.

join results. The following four static indexes belong to this cat-
egory: R-Tree [4, 6], CR-Tree [5], Linearized KD-Trie [3], and
Static Grid [8]. This category reports the best performance results
on average [7].

In Section 2, we repeat the experiments for the static indexes
using the source code of the experimental framework employed in
the original study [1]. The results match the results reported in the
original paper: The static, uniform grid-based technique, termed
Simple Grid, exhibits the worst performance by a large margin and
in all cases.

In Section 3, we analyze the implementation of Simple Grid and
make simple modifications to its grid directory, bucket list, and
algorithm implementations. We report the performance improve-
ments gained from each modification. In combination, they yield
approximately a 6-fold improvement in performance and elevate
Simple Grid from worst to best.

2. REPRODUCIBILITY STUDY
We describe the experimental setup and then report the results of

the reproducibility study.

2.1 Experimental Setup
The hardware used is a quad-core Intel i7 CPU clocked at 3.4

GHz with 16 GB of RAM.
The source code of the experimental framework [1] contains the

implementations of the ten spatial join techniques considered as
well as the workload generator used [7]. Due to the 4-page limit,
we show results only for synthetic workloads (based on [2]), but the
same performance trends also hold for the simulation workloads.

Workload parameters are given in Table 1 (with default values
in bold). A two-dimensional setting is assumed where the process-
ing is modeled using discrete time-steps called ticks. Each tick
consists of two non-overlapping phases: query and update. In the

Parameter Uniform Gaussian
Number of Ticks 100 120
Number of Points 10K .. 50K .. 90K 50K
Space Size 10K2 .. 22K2 .. 30K2 22K2

Maximum Speed 200 200
Query Size 400 400
% Queriers 10% .. 50% .. 90% 50%
% Updaters 10% .. 50% .. 90% N/A

Table 1: Parameters for Synthetic Workloads

query phase, some fraction of spatial objects (% Queriers) issues
spatial queries, which are rectangular range queries. In the update
phase, some fraction of objects (% Updaters) issues updates. Each
update may change an object’s velocity or position, and different

97

join algorithms handle updates differently. Objects can only read
the state of other objects as of the previous tick, and all updates are
applied at the end of each tick.

In the uniform workloads, objects are placed at random locations
in the data space, and their speeds and directions are chosen at ran-
dom. In the Gaussian workload, objects are placed around a fixed
set of hotspots, and their movements follow a Gaussian-like distri-
bution. For the complete description of the experimental setup, we
refer to the original study [7].

Optimal parameter values for all competing spatial join approach-
es are determined with parameter sweeps [7]. We repeat the same
experiments to determine the optimal parameters on our hardware.
For example, to determine the optimal values of the bucket size (bs)
and the number of cells per side (cps) for Simple Grid, the values
are varied from 4 to 32 and the corresponding performance is mea-
sured. The results are shown in Figure 1. We obtain the same opti-
mal configuration for Simple Grid, i.e., bs = 4 and cps = 13, as in
the original study. Varying bs has no effect on performance, while

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Entries per Bucket

(a) bs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Grid cells per side

(b) cps

Figure 1: Tuning Original Simple Grid

varying cps significantly affects the performance, with the best
configuration being a relatively coarse-granularity grid (13 × 13).
We obtained the same or very similar optimal configurations as re-
ported in [7] for all techniques.

2.2 Results
Figure 2 shows the performance of all the techniques that use

different static indexes. For each technique, the performance trends
are very similar to those originally reported, although the results are
slightly better due to our faster machine (3.4 versus 2.66 GHz).

The uniform grid-based approach, Simple Grid, performs the
worst in all cases. It falls behind even a baseline approach, termed
Binary Search, where the data points are sorted by one coordinate,
upon which a nested loop with binary search (on the sorted coor-
dinate) is used to compute the join. There is no clear winner: the
best-performing approaches, namely R-Tree [4, 6], CR-Tree [5],
and Linearized KD-Trie [3], exhibit very similar performance.

Next, as in the original study, we break the performance into
build, query, and update execution. Table 2 shows the average times
in seconds per tick (for the moment, ignore the lower part of the
table). Again, we observe the same performance trends, albeit the
run times are shorter on our faster machine.

3. SIMPLE GRID
We proceed to improve the implementation of the worst-performing

technique, Simple Grid, which is described as follows [7]:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.3 0.5 0.7 0.9

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Fraction of points issuing queries

Binary Search
R-Tree

CR-Tree
Linearized KD-Trie

Simple Grid

(a) Scaling the Query Rate

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 10 100 1000

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Number of Hotspots, logscale

Binary Search
R-Tree

CR-Tree
Linearized KD-Trie

Simple Grid

(b) Scaling the Number of Hotspots

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10K 30K 50K 70K 90K

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Num. of Points

Binary Search
R-Tree

CR-Tree
Linearized KD-Trie

Simple Grid

(c) Scaling the Number of Points

Figure 2: Reproduced Performance of Static Indices

Method Build (s) Query (s) Update (s)
R-Tree 0.008 0.098 0.0012
CR-Tree 0.009 0.096 0.0009
Lin. KD-Trie 0.005 0.107 0.0008
Simple Grid 0.0019 0.559 0.0029
+restructured 0.0015 0.494 0.0022
+querying 0.0015 0.381 0.0023
+bs tuned 0.0007 0.277 0.0009
+cps tuned 0.0009 0.093 0.0010

Table 2: Breakdown: 50% queries and updates, 50K points

This index partitions space uniformly into a fixed num-
ber of cells stored as a two-dimensional array. Each
cell contains a pointer to a linked list of buckets storing
the points that fall within that cell. The search algo-
rithm must examine every cell that intersects the query
region.

98

(a) Original (b) Refactored

Figure 3: Simple Grid Structure

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.1 0.3 0.5 0.7 0.9

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Fraction of points issuing queries

Original
+restructured

+querying
+bs tuned

+cps tuned

(a) Scaling the Query Rate

 0

 0.5

 1

 1.5

 2

 2.5

 1 10 100 1000

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Number of Hotspots, logscale

Original
+restructured

+querying
+bs tuned

+cps tuned

(b) Scaling the Number of Hotspots

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10K 30K 50K 70K 90K

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Num. of Points

Original
+restructured

+querying
+bs tuned

+cps tuned

(c) Scaling the Number of Points

Figure 4: New Performance of Simple Grid

This description clearly defines the main concepts behind the
uniform grid-based technique. At the implementation level, need-
less to say, there are plenty of ways to realize this technique. In Sec-
tions 3.1 and 3.2, we analyze the actual index structure and query
algorithm implementations of Simple Grid, proposing and evaluat-
ing improvements (based on [8]). In Section 3.3, we re-calibrate
the improved implementation and report the performance effects of
each improvement.

3.1 Structure
Figure 3a depicts the structure of Simple Grid as implemented

in [1]. Two implementation details are important. First, the grid
directory is implemented as a contiguous array of (integer, pointer)
pairs. The integer is used for counting the number of objects stored
in a cell, while the pointer references the singly-linked list of buck-
ets that store the cell’s data entries. As such, 16 bytes are required
per grid cell.

Second, each bucket contains a doubly-linked list of pointers to
the actual data entries. Such a list requires 24 bytes per data point
and is stored in a bucket that requires 32 bytes (cf. Figure 3a).
Assuming bs is the bucket size and n is the number of objects, the
memory consumption is n × 24 + n/bs × 32 = n(24 + 32/bs).
Next, the best-performing bucket size is 4 (as found by [7] and us).
This implies that in addition to the grid directory storage, Simple
Grid consumes 32 bytes extra for each indexed object.

We propose two simple modifications to the structure of Simple
Grid, as shown in Figure 3b. First, we remove the unnecessary
integer and store only a pointer in each grid cell. This cuts the grid
directory’s memory requirements by half. Second, we remove the
doubly-linked lists of data pointers and store them directly in the

buckets. The resulting memory consumption is n×8+n/bs×16 =
n(8 + 16/bs). Assuming the same configuration (bs = 4), Simple
Grid requires only 12 bytes per point.

These modifications are crucial in main memory. In addition to
reduced memory footprint, Simple Grid packs more data per cache
line and thus improves its cache hit rate. Also, the restructured
design removes an unnecessary layer of indirection, implying that
reaching each point’s data requires one hop less and thus avoids
another potential cache miss.

It is possible to further improve locality by storing the spatial at-
tributes (the x and y coordinates) in the buckets, too. However, as
the targeted setting assumes that secondary indexes are used (the
algorithms operate on pointers and never update the base data di-
rectly), we do not introduce this modification. All the techniques
studied comply with this assumption [1].

In Figure 4, the lines labeled “+restructured” show the perfor-
mance of Simple Grid after the above changes are applied. While
the performance gain is minor (a 1.13-fold speedup under the de-
fault workload), we expect to benefit from an increased bs, as larger
buckets improve data locality.

3.2 Query Algorithm
Algorithm 1 illustrates Simple Grid’s original range query algo-

rithm. Given the input region r, defined by its lower-left (x1, y1)
and upper-right (x2, y2) corners, the algorithm traverses all grid
cells one by one. If the current cell is fully contained in r, all its
points are reported. If the current cell only intersects with r, each
point is checked individually for containment in r.

We refactor the algorithm as shown in Algorithm 2. Instead of
scanning the entire grid directory, we compute and scan only the

99

overlapping cells. In Figure 4, the lines labeled “+querying” show
the performance of Simple Grid with these changes. We get another
1.3-fold speedup and also expect to benefit from more granular grid
cells.

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30 35

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Entries per Bucket

(a) bs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120

A
v
g
.
T

im
e
 p

e
r

T
ic

k
 (

s
)

Grid cells per side

(b) cps

Figure 5: Tuning Refactored Simple Grid

Algorithm 1: enumerateOverRegion(Region2D r)

1 cps← configured based on Figure 1b;
2 for i = 1 to cps do
3 for j = 1 to cps do
4 GridCell cell = getCell(i, j);
5 if r contains cell then
6 foreach p ∈ cell do
7 reportPoint(p);

8 else if r intersects cell then
9 foreach p ∈ cell and p ∈ r do

10 reportPoint(p);

Algorithm 2: enumerateOverRegion(Region2D r)

1 cellSize← set based on cps;
2 xmin = r.x1/cellSize; xmax = r.x2/cellSize;
3 ymin = r.y1/cellSize; ymax = r.y2/cellSize;
4 for i = xmin to xmax do
5 for j = ymin to ymax do
6 Lines 4–10 in Algorithm 1;

3.3 Parameter Tuning
Having applied the above modifications, we rerun the experi-

ments where bs and cps are varied. The results are shown in Fig-
ure 5. As expected, larger values for both bs and cps are preferred:
the values that yield the best performance are 20 and 64, respec-
tively. The larger bs makes it possible to exploit data locality in a
bucket, while the more granular grid (larger cps) better adapts to
the range queries in the workloads.

In Figure 4, the lines labeled “+bs tuned” show the performance
of Simple Grid after it is configured with bs = 20. The reconfigu-
ration improves the performance 1.4-fold. The lines labeled “+cps

tuned” show the performance after Simple Grid is further tuned
with cps = 64. This causes an additional 3-fold improvement un-
der the default workload. As a result, Simple Grid becomes the top
performer among all techniques (see “+cps tuned” in Table 2).

Finally, Table 3 shows the cycles-per-instruction (CPI), the num-
ber of total instructions (in billions), and the number of cache misses
(in millions) at different levels of the memory hierarchy in Simple
Grid before and after our modifications. We observe huge improve-
ments across all measurements.

Simple CPI Total Data Cache Misses
Grid INS L1 L2 L3
Before 1.32 171 B 8, 786 M 6, 148 M 325 M
After 1.13 37 B 1, 091 M 747 M 67 M

Table 3: Profiling: 50% queries and updates, 50K points

4. CONCLUSIONS
The results reported here suggest that, in the setting considered,

substantial performance gains can be achieved by means of careful
implementation, to the point that the implementations of the data
structures and algorithms are more important for the performance
than the data structures and algorithms themselves. In addition, the
results illustrate how empirical performance findings, which are
artifacts of not only the high-level data structures and algorithms
considered, but also their implementation, renders it challenging to
conclude about the data structures and algorithms from such find-
ings.

More generally, the results suggest that the empirical study of al-
gorithms and data structures in main-memory settings, even single-
threaded settings, is much more challenging than in disk-based set-
tings.

Acknowledgments We thank the reviewers for their helpful com-
ments. The research was supported in part by the Danish National
Research Foundation grant DNRF84 through Center for Massive
Data Algorithmics (MADALGO) and by a grant from the Obel
Family Foundation.

5. REFERENCES
[1] Spatial indexing at Cornell. http://www.cs.cornell.edu/

bigreddata/spatial-indexing/. Accessed: 2014-07-23.
[2] S. Chen, C. S. Jensen, and D. Lin. A benchmark for evaluating

moving object indexes. PVLDB, 1(2):1574–1585, 2008.
[3] J. Dittrich, L. Blunschi, and M. A. V. Salles. Indexing moving

objects using short-lived throwaway indexes. In SSTD, pages
189–207, 2009.

[4] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[5] K. Kim, S. K. Cha, and K. Kwon. Optimizing
multidimensional index trees for main memory access. In
SIGMOD, pages 139–150, 2001.

[6] S. T. Leutenegger, M. A. Lopez, and J. Edgington. STR: A
simple and efficient algorithm for R-tree packing. In ICDE,
pages 497–506, 1997.

[7] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke. An
experimental analysis of iterated spatial joins in main
memory. PVLDB, 6(14):1882–1893, 2013.

[8] D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Johansen,
and D. Šaulys. Trees or grids? Indexing moving objects in
main memory. In GIS, pages 236–245, 2009.

100

