
On the Surprising Difficulty of Simple Things:
the Case of Radix Partitioning

Felix Martin Schuhknecht Pankaj Khanchandani Jens Dittrich

Information Systems Group
infosys.cs.uni-saarland.de

1. PROBLEM STATEMENT
Partitioning a dataset into ranges is a task that is common in var-

ious applications such as sorting [1,6,7,8,9] and hashing [3] which
are in turn building blocks for almost any type of query processing.
Especially radix-based partitioning is very popular due to its sim-
plicity and high performance over comparison-based versions [6].

1 for i = 0 to num elems - 1 do
2 ++histogram[input[i] >> (32 - R)];
3 offset = 0;
4 for i = 0 to num partitions - 1 do
5 dest[i] = offset;
6 offset += histogram[i];
7 for i = 0 to num elems - 1 do
8 bucket num = input[i] >> (32 - R);
9 output[dest[bucket num]] = input[i];

10 ++dest[bucket num];

Figure 1: Original version

In its most primitive form,
coined original version from
here on, it partitions a dataset
into 2R (where R ≤ 32)
partitions as shown in Fig-
ure 1: in the first pass over
the data, we count for each
partition the number of en-
tries that will be sent to it
(lines 1-2). From this gen-

erated histogram, we calculate the start index of each partition
(lines 3-6). The second pass over the data finally copies the en-
tries to their designated partitions (lines 7-10).

Despite of its simple nature, several interesting techniques can
be applied to enhance this algorithm such as software-managed
buffers [3, 6, 7, 9], non-temporal streaming operations [3, 5, 6, 9],
prefetching, and memory layout [3, 6] with many variables having
an influence on the performance like buffer sizes, number of parti-
tions, and page sizes. Although being heavily used in the database
literature, it is unclear how these techniques individually contribute
to the performance of partitioning. Therefore, in this work we will
incrementally extend the original version by the mentioned opti-
mizations to carefully analyze the individual impact on the parti-
tioning process. As a result this paper provides a strong guideline
on when to use which optimization for partitioning.

2. EXPERIMENTAL SETUP
The dataset used in this evaluation consists of N = 100 mil-

lion entries, where each entry is composed of a 4B key (unsigned
int) and a 4B payload1. The keys follow a uniform and random

1We choose these sizes as typical numbers for main-memory in-
dexes. In Section 3.6 we vary the number of entries and entry size.
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distribution and cover the full unsigned 4B space. We repeat each
experiment five times and report the average runtime. All algo-
rithms evaluated are purely single-threaded. We run all the exper-
iments on a two-socket machine consisting of two quad-core In-
tel Xeon E5-2407 running at 2.2 GHz. The CPU neither supports
hyper-threading nor turbo mode. The sizes of the L1, L2, and L3
caches are 32KB, 256KB, and 10MB respectively. The TLB can
cache 64 (L1 dTLB) and 512 (L2 TLB) address translations for
4KB pages and 32 (L1 dTLB) translations for 2MB pages. The
system is equipped with 48GB of main memory in total and runs a
64-bit openSuse 12. All programs are written in C++ and compiled
using g++4.7.1 with optimization level O3.

3. EXPERIMENTAL EVALUATION
In the following evaluation, we incrementally extend and modify

the original version of radix partitioning by applying both known
techniques from the literature as well as new approaches to analyze
the impact of the optimizations on the total runtime of partitioning.
Figure 2 shows the paths we follow when incrementally optimizing
the original version alongside with their appearances in literature.

Original SW Buffers
[3, 6, 7, 9]

Streaming stores
[3, 6, 9]

Micro Row Layout: 
Fillstate [3,6]

Micro Row Layout: 
DestinationPrefetching 

Small (4KB) 
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Figure 2: Overview of the applied optimizations.

3.1 Software-Managed Buffers
A well known optimization for accessing multiple data streams

are software-managed buffers, that are used in a variety of works [3,
6, 7, 9]. As writing to p different streams means accessing p pages
(if stream offset is larger than the page size), we have to cache p
address translations in the TLB to avoid page walks. Unfortunately,
as the TLB capacity is scarce, for a larger value of p, TLB-misses
occur frequently [4]. Software-managed buffers try to reduce this
problem by keeping a buffer of b entry slots for each partition, such
that these buffers are filled first. Only if a buffer is full, its b entries
are flushed to the final partition. Thus, the output array is now
accessed at buffer granularity and no longer at entry granularity,
reducing the amount of required address translations by a factor
of b. In recent work [3, 6] a partition buffer is set to the size of a
single cache-line to minimize cache-misses when filling the buffers.
However, by choosing larger partition buffers, we might decrease
the number of TLB-lookups even more (at the risk of more data
cache misses as buffers are more likely to get evicted). Thus, we
will test a variety of partition buffer sizes to analyze this tradeoff.

Let us start by looking at the partitioning time using software-
managed buffers while varying the size of a partition buffer from
one cache-line (64B, capacity for 8 entries) to 1248 cache-lines
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Figure 3: Partitioning time of the software-managed buffers ver-
sion for varying partition buffer sizes.

(78KB, capacity for 9984 entries) and the number of partitions2

from 25 to 214 in Figure 3. As expected, the runtime increases
with the requested number of partitions. However, we can also ob-
serve that for all tested numbers of partitions, the runtime improves
with the buffer size until a certain optimal point is reached and then
slowly degrades again. The more partitions we request, the smaller
is this optimal partition buffer size. The point at which the perfor-
mance degrades also heavily depends on the number of partitions
(2048 elements per buffer for 128 partitions and around 512 ele-
ments per buffer for 1024 partitions). Thus, the performance degra-
dation is related to the total space that the buffers occupy with a
degradation point around 2MB (visualized by the vertical lines).

To get further insights into the behavior of the method, we mea-
sured the total amount of cache-misses for the software-managed
buffers version using perf. Compared with the runtimes of Fig-
ure 3, we observe a clear correlation. The increase in runtime for
buffers larger than 2MB is related to the increase in cache-misses.
Furthermore, the fastest runtime is measured around the partition
buffer size that triggers the smallest amount of misses. The ques-
tion is now how much we gained over the original version by using
software-managed buffers. Table 1 shows a direct comparison.

# Partitions Original Version [s] SW Buffers [s] ([cl]) Speedup
32 0.79 0.83 (26) 0.95x
64 1.91 0.85 (12) 2.25x

128 2.03 0.85 (12) 2.39x
256 2.12 0.94 (8) 2.25x
512 2.27 1.11 (52) 2.05x

1024 2.41 1.30 (26) 1.85x
2048 2.57 1.57 (12) 1.64x
4096 2.91 2.01 (11) 1.45x
8192 3.32 2.47 (6) 1.34x

16384 3.61 3.00 (4) 1.20x

Table 1: Partitioning time of the original version and the
software-managed buffers version (as shown in Figure 3). For
software-managed buffers, we show the runtime and the buffer size
per partition in number of cache-lines (cl) in brackets.

In the case of software-managed buffers, we individually picked
the best suitable partition buffer size (shown in the brackets) for
the comparison. Obviously, the buffered version significantly im-
proves the partitioning time for all numbers of partitions from 64
on, ranging from a speedup of 2.25x for 64 partitions to 1.20x for
16, 384 partitions. The improvement decreases with the number of
partitions, as the buffers run out of the private caches. Only for 32
partitions, the original version performs significantly better, as it
does not yet suffer from TLB- and cache-misses.
2We focus on typical numbers of partitions that are used in practice
like 256 partitions (byte-wise radix sort) and 1024 partitions (initial
range-partitioning step in database cracking algorithms [8]).

3.2 Non-temporal Streaming Stores
So far, we have flushed the buffers in the traditional way using

memcpy. Internally, this triggers the fetching of the correspond-
ing cache-lines from main memory to write the new data to them.
While this is a valid strategy in general, where modified cache-lines
are likely to be used subsequently, in the case of partitioning this
behavior is wasteful. Instead, we want to directly write the data to
main memory and bypass the caches entirely. This can be achieved
by using non-temporal streaming stores, that are used widely in
write-intensive situations [5] and partitioning tasks [3, 6, 9]. Since
we write entries of size 8B, we can use the following AVX intrinsic
to write 4 buffered entries to the partition at once:
mm256 stream si256( m256i* mem, m256i a)

Furthermore, the processor tries to apply write-combining [3,5,6,9]
to fill a cache-line in its write-combine buffer before writing to
main memory. As soon it is filled (after two subsequent calls to
the stream intrinsic), it is flushed out without ever reading the cor-
responding cache-line from main memory. However, streaming
stores also introduce difficulties: the address we flush to must be
a multiple of 32B. One solution to this problem is padding the par-
titions of the output array such that they are cache-line aligned, but
this increases the size of the array unnecessarily. In contrast to
that, our implementation simply offsets the start of the partitioning
filling to align it and corrects the few wrongly written entries after-
wards. As there is no runtime difference observable between the
padded and unpadded version, we will not distinguish them in the
further investigation.
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Figure 4: Partitioning time of the buffered & streamed version
for varying number of partitions and partition buffer sizes.

We can see in comparison to Figure 3 that for a high number of
partitions, using the non-temporal streaming store clearly improves
the runtime of partitioning. The higher the total number of par-
titions, the more space the buffers occupy and the more precious
cache memory becomes. In this situation, avoiding cache-pollution
caused by bringing in output cache-lines is clearly beneficial. How-
ever, one should use small buffers (less than 8 cache-lines) to make
this technique pay off or else the cache-misses triggered by buffer
filling overshadow the streaming benefit. In Table 2, we compare
the streamed version with the plain software managed buffers ver-
sion of Figure 3 to see the impact of this technique. In contrast to
the previous optimization (Table 1), the positive impact of stream-
ing stores increases with the number of partitions, up to a speedup
of 1.36x for 16384 partitions. The optimal partition buffer size de-
creases again with the number of partitions, with the best size of
a single-cache line from 2048 partitions on. We can see that the
streamed version prefers in all cases smaller buffers than the un-
streamed version. This shows that the avoidance of cache-misses
when flushing a buffer has a higher priority when using streaming
stores. Nevertheless, we also see that streaming introduces over-
head for a small number of partitions.
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(a) Partitioning time of the buffered & streamed & prefeteched
version.
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(b) Comparison of partitioning time of versions with
and without prefetching (best buffer size shown).

Figure 5: Analyzing the effect of prefetching hints on the original version and the buffered & streamed version.

SW Buffers +
# Partitions SW Buffers [s] ([cl]) Streaming [s] ([cl]) Speedup

32 0.83 (26) 0.84 (5) 0.98x
64 0.85 (12) 0.85 (7) 1x

128 0.85 (12) 0.86 (6) 0.99x
256 0.94 (8) 0.84 (6) 1.12x
512 1.11 (52) 0.94 (4) 1.18x

1024 1.30 (26) 1.08 (2) 1.20x
2048 1.57 (12) 1.21 (1) 1.30x
4096 2.01 (11) 1.54 (1) 1.31x
8192 2.47 (6) 1.95 (1) 1.27x

16384 3.00 (4) 2.21 (1) 1.36x

Table 2: Partitioning time of the software-managed buffers ver-
sion (Figure 3) and the software-managed buffers version using
non-temporal streaming stores (Figure 4). We show the best run-
time and partition buffer size in number of cache-lines (cl).

3.3 Prefetching
Writing to individual partitions respectively buffers resembles

random access that can cause cache-misses. Idealy, we want to
hide these by introducing prefetching hints to ensure that requested
data is cached in time. To do so, we use the following intrinsic:
builtin prefetch(void* mem, int rw, int l)

This triggers the generation of data prefetch instructions that will
prefetch the memory at address mem, such that it is (hopefully) al-
ready available in cache at access time. We set rw to 1 since we
write and l to 0, indicating that the temporal locality of the mem-
ory is low (high eviction chance after first access). To the best of
our knowledge, we are the first group extending both the original
version and the version using buffers and streaming stores in a way
that when writing to an output partition respectively a buffer, the
subsequent slot is prefetched. Figure 5(a) shows the runtime of the
version that extends the buffered and streamed version with previ-
ously mentioned prefetching hints. Obviously, the performance is
much more stable with respect to the buffer size, indicating that the
prefetching indeed hides the cache-miss latency nicely. If we com-
pare that with the versions without prefetching (see Figure 5(b)),
we can observe a high impact of the prefetching hints for both the
unbuffered and buffered version. From 4096 partitions on, both
prefetching versions improve over all previous ones, showing that
prefetching can indeed mask the cache misses from random writes.
However, we can also observe that prefetching adds overhead and
decreases the performance if misses are not a major problem, e.g.
for less than 1024 partitions.

3.4 Micro Row Layouts
In the trivial implementation using software-managed buffers,

each insertion of an entry into a buffer triggers the access of two

cache-lines. First, the buffer fillstate is read from an array (first
cache-line) and then, the entry is inserted (second cache-line). Ad-
ditionally, when a buffer is flushed, the destination index is read
from another array, leading to the access of a third cache-line. How-
ever, when limiting the buffer size to a single cache-line, it is possi-
ble to guarantee the access of only one line per entry. To do so, the
last slot of each buffer is used to temporarily store the working vari-
ables. The aforementioned fillstate is stored in that way in [3, 6].
We additionally store the write destination in that slot. Note that
this technique does not sacrifice a slot in the partition buffer: the
fillstate and the destination are overwritten by the last entry that
is inserted and restored from a local variable after a flush. In Ta-
ble 3 we present the impact of placing only the fillstate, or both fill-
state and destination on the cache-line (basically a micro row lay-
out) over the naive approach of storing them separately. Obviously,

# Partitions Nothing [s] Fillstate [s] Fillstate & Destination [s]
32 0.84 0.91 0.87
64 0.85 0.93 0.89

128 0.86 0.90 0.88
256 0.84 0.88 0.87
512 0.94 0.94 0.92

1024 1.08 0.99 0.96
2048 1.21 1.02 0.99
4096 1.54 1.18 1.11
8192 1.95 1.42 1.31

16384 2.21 1.59 1.45

Table 3: Partitioning time of the buffered & streamed version
with a partition buffer size of one cache-line. We distinguish on
whether only the buffer fillstate, destination and fillstate, or nothing
is stored on the partition buffer cache-line.

these tiny changes have a surprising and significant impact on the
runtime. For 16384 partitions, we see an improvement of factor
1.52x just due to this effect! Interestingly, we also observe that for
less than 1024 partitions, storing that data in separate arrays (a mi-
cro column layout) shows the best runtime as these structures are
small (e.g. 1KB for 128 partitions) and remain in L1 cache.

3.5 Small vs. Huge Pages
The initial motivation in using software-managed buffers was to

reduce TLB-misses when writing to a large number of partitions.
In this context, the size of the memory page is directly connected
to the amount of required address translations when writing to the
output array. In current linux kernels, pages of size 4KB and 2MB
(huge pages) are supported. Huge pages reduce the amount of
pages needed to allocate a consecutive memory area by a factor
of 512, therefore decreasing the chance of TLB misses at access
time. By default, our system was set up such that transparent huge
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pages were considered for all allocations, so we were actually us-
ing them in the previous experiments already. Let us now see how a
smaller page size affects the runtime of the algorithms in Figure 6.
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Figure 6: Partitioning time of the original version and the
buffered & streamed version for 4KB and 2MB pages.

For 32 partitions, the impact of the page size is negligible as the
translations can be cached in any case. From that on till 1024 par-
titions, we see a clear advantage of 4KB over 2MB pages for the
original version, since for a small number of partitions, a single par-
tition is still larger than a huge page and thus, we benefit from the
higher number of 4KB page TLB slots. This turns around as soon
as multiple partitions fit on a single huge page. Interestingly, in
combination with software-managed buffers and streaming stores,
the 4KB pages do never pay off. By buffering, the potential TLB
miss rate decreased already by factor b (see Section 3.1) and the
higher allocation costs for 4KB pages render the advantage void.

3.6 Varying Experimental Setup
So far, we have evaluated all methods over an array of 100 mil-

lion (key-payload) pairs of 8B each. Let us now see how the al-
gorithms scale with a ten-fold increase of the number of entries to
1 billion and when doubling the entry size to 16B for a pair. Fig-
ure 7 shows the average slowdown factors over all tested numbers
of partitions. Obviously, the tested methods scale almost linearly
with the number of entries. A doubling of the entry size results in
an average slowdown between only 1.31x for Original (prefetched)
and 1.69x for SW Buffers + Streaming (prefetched), although the
amount of data to move is twice as large as before. This indicates
again, that not data transfer is the limiting factor but the processing
of individual elements in terms of random access costs.

1 billion entries

Original SW Buffers SW Buffers + Streaming
Original (prefetched) SW Buffers + Streaming (prefetched) SW Buffers + Streaming + Opt. Layout
Opt. Version 1 from [2] Opt. Version 2 from [2]

16B per entry

10x

12x

8x

14x

2x

1x

1.5x

2.5x

3x

6x

Figure 7: Slowdown when increasing the number of entries from
100 million to 1 billion and the entry size from 8B to 16B.

4. CONCLUSION
In this mini paper, we saw that even a trivial algorithm such as

radix partition can be significantly improved by making it aware of
current hardware features, leading to an improvement over the orig-
inal version of factor 2.5x. Figure 8 gives a complete overview over
all evaluated methods in comparison to two state-of-the-art imple-
mentations [2] used in [3]. As a side-effect of our evaluation, we
were even able to improve over the existing methods in all tested

configurations. For smaller number of partitions, using larger parti-
tion buffers without micro layouts shows the best performance. For
32 partitions, we recommend using the original version without any
optimizations. For larger partition numbers, the layout-optimized
single cache-line version pays off the most. Further, prefetching
hints have a high impact on the runtime and are an option as soon as
cache-space becomes the limiting factor. Additionally to the iden-
tification of an absolute winner in terms of runtime, we carefully
investigated the individual positive and negative impact of each op-
timization. Figure 9 summarizes for all tested optimization paths
of Figure 2 those, that improved over the original version. This
final overview showing the influenceability of the techniques by
the partition count and their varying impact on the runtime clearly
demonstrates a surprising difficulty of simple things.
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